高二数学必修二综合测试题含答案

合集下载

(人教版B版)高中数学必修第二册 第五章综合测试试卷01及答案

(人教版B版)高中数学必修第二册 第五章综合测试试卷01及答案

第五章综合测试一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图是容量为100的样本数据质量的频率分布直方图,已知样本质量均在[5,20]内,其分组为[5,10),[10,15),[15,20],则样本质量落在[15,20]内的频数为()A.10B.20C.30D.402.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A.0.5B.0.6C.0.7D.0.83.把红、蓝、黑、白4张纸牌随机分给甲、乙、丙、丁4个人,每人分得一张,事件“甲分得红牌”与事件“乙分得红牌”是()A.对立事件B.互斥但不对立事件C.不可能事件D.以上都不对4.根据某跑步团体每月跑步的平均里程(单位:公里)的数据绘制了如图所示的折线图.根据折线图,下列结论正确的是()A.月跑步平均里程的中位数为6月份对应的里程数B.月跑步平均里程逐月增加C.月跑步平均里程高峰期大致在8、9月D.1月至5月的月跑步平均里程相对于6月至11月,波动性更小,变化比较平稳5.在掷一个骰子的试验中,事件A表示“小于5的偶数点出现”,事件B表示“小于5的点数出现”,则一U发生的概率为()次试验中,事件A BA .13B .12C .23D .566.某示范农场的鱼塘放养鱼苗8万条,根据这几年的经验知道,鱼苗的成活率为95%,一段时间后准备打捞出售,第一网捞出40条,称得平均每条鱼2.5 kg ,第二网捞出25条,称得平均每条鱼2.2 kg ,第三网捞出35条,称得平均每条鱼2.8 kg ,估计这时鱼塘中鱼的总质量为( )A .192 280 kgB .202 280 kgC .182 280 kgD .172 280 kg7.为比较甲、乙两名篮球运动员的近期竞技状态,选取这两名球员最近五场比赛的得分制成如图所示的茎叶图,有以下结论:①甲最近五场比赛得分的中位数高于乙最近五场比赛得分的中位数;②甲最近五场比赛得分平均数低于乙最近五场比赛得分的平均数;③从最近五场比赛的得分看,乙比甲更稳定;④从最近五场比赛的得分看,甲比乙更稳定.其中所有正确结论的编号为()A .①③B .①④C .②③D .②④8.已知某地区中小学生人数和近视情况分别如图①和图②所示.为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A .100,10B .100,20C .200,10D .200,209.甲、乙、丙三人参加一次考试,他们合格的概率分别为23,34,25,那么三人中恰有两人合格的概率是( )A .25B .715C .1130D .1610.如图所示,小王与小张二人参加某射击比赛的预赛的五次测试成绩的折线图,设小王与小张成绩的样本平均数分别为A X 和B X ,方差分别为2A s 和2B s ,则()A .AB X X <,22A B s s >B .A B X X <,22A Bs s <C .A B X X >,22A B s s >D .A B X X >,22A Bs s <11.袋子中有四个小球,分别写有“美”“丽”“中”“国”四个字,有放回地从中任取一个小球,直到“中”“国”两个字都取到时停止,用随机模拟的方法估计恰好在第三次停止的概率.利用电脑随机产生0到3之间取整数值的随机数,分别用0,1,2,3代表“中”“国”“美”“丽”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下18组随机数:232321230023123021132220001231131133231031320122130233由此可以估计,恰好第三次停止的概率为( )A .19B .318C .29D .51812.有能力互异的3人应聘同一公司,他们按照报名顺序依次接受面试,经理决定“不录用第一个接受面试的人,如果第二个接受面试的人比第一个人能力强,就录用第二个人,否则就录用第三个人”,记该公司录用到能力最强的人的概率为p ,录用到能力中等的人的概率为q ,则(),p q =()A .11,66æöç÷èøB .11,26æöç÷èøC .11,24æöç÷èøD .11,23æöç÷èø二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)13.某单位青年、中年、老年职员的人数之比为11: 8: 6,从中抽取200名职员作为样本,则应抽取青年职员的人数为__________.14.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为__________.15.某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x (吨),一位居民的月用水量不超过x 的部分按平价收费,超出x 的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.若该市政府希望使85%的居民每月的用水量不超过标准x (吨),估计x 的值为__________.16.袋中共有6个除了颜色外完全相同的球,其中有1个红球、2个白球和3个黑球.从袋中任取两球,两球颜色为1白1黑的概率等于__________.三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.[10分]为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如图所示.(1)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);(2)设甲、乙两校高三年级学生这次联考数学平均成绩分别为1x ,2x ,估计12x x -的值.18.[12分]为了调查某市市民对出行的满意程度,研究人员随机抽取了1 000名市民进行调查,并将满意程度以分数的形式统计成如图所示的频率分布直方图,其中4a b =.(1)求a,b的值;(2)求被调查的市民的满意程度的平均数、众数、中位数;(3)若按照分层抽样从[50,60),[60,70)中随机抽取8人,应如何抽取?19.[12分]某地区有小学21所,中学14所,大学7所。

人教版A版27课标高中数学必修第二册第八章综合测试试题试卷含答案

人教版A版27课标高中数学必修第二册第八章综合测试试题试卷含答案

第八章综合测试一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知m ,n 是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是( ) A.若m ∥α,n ∥α,则m n ∥ B.若⊥αγ,⊥βγ,则∥αβ C.若m ∥α,m ⊥β,则⊥αβD.若m ∥α,⊥αβ,则m ⊥β2.如图,O A B ′′′△是水平放置的OAB △的直观图,6A O =′′,2B O =′′,则OAB △的面积是( )A.6B.C.D.123.BC 是Rt ABC △的斜边,PA ABC ⊥平面,PD BC D ⊥于点,则图8-7-37中直角三角形的个数是( )A.8B.7C.6D.54.如图,在正方体1111ABCD A B C D -中,点M ,N 分别是线段1DB 和1A C 上不重合的两个动点,则下列结论正确的是( )A.1BC MN ⊥B.1B N CM ∥C.11ABN C MD 平面∥平面D.1111CDM A B C D 平面⊥平面5.已知一个多面体的内切球的半径为1,多面体的表面积为18,则此多面体的体积为( ) A.18B.12C.6D.12π6.如图8-7-39所示,在三棱柱111ABC A B C -中,侧棱垂直于底面,AB AC ==,16BB BC ==,E ,F 为侧棱1AA 上的两点,且3EF =,则多面体11BB C CEF 的体积为( ) A.30 B.18 C.15D.127.如图,一个无盖的正方体盒子的棱长为2,BC 的中点为M ,一只蚂蚁从盒外的B 点沿正方形的表面爬到盒内的M 点,则蚂蚁爬行的最短距离是( )B.1D.2+8.如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点E ,F ,且12EF =,则下列结论中错误的是( )A.AC BE ⊥B.EF ABCD ∥平面C.三棱锥A BEF -的体积为定值D.AEF △的面积与BEF △的面积相等9.如图8-7-42,在长方体1111ABCD A B C D -中,1AD AA =,则下列结论中不正确的是( )A.111A B CD BC D ⊥平面平面B.1111A B CD P D P BC D 在平面上存在一点使得∥平面C.111A C Q D Q BC D 在直线上存在一点,使得∥平面D.111A C R D R BC D ⊥在直线上存在一点,使得平面10.如图,在长方体1111ABCD A B C D -中,12AB AA AD ==,E 是1DD 的中点,114BF C K AB ==,设过点E ,F ,K 的平面与平面ABCD 的交线为l ,则直线l 与直线11A D 所成角的正切值为( )A.1B.2C.3D.4二、填空题(本大题共4小题,每小题5分,共20分,请把正确答案填在题中的横线上) 11.如图所示,正方形ABCD 的边长为a ,沿对角线AC 将ADC △折起,若°60DAB ∠=,则二面角D AC B --的平面角的大小为________.12.在正三棱锥S ABC -中,AB =,SA =,E ,F 分别为AC ,SB 的中点.平面α过点A ,SBC ∥平面α,ABC l α= 平面,则异面直线l 和EF 所成角的余弦值为________.13.如图,一个实心六角螺帽毛坯(正六棱柱)的底边长为4,高为3,若在中间竖直钻一个圆柱形孔后,其表面积没有变化,则孔的半径为________.14.如图8-7-46,直角梯形ABCD 中,°90DAB ∠=,AB CD ∥,CE AB ⊥于点E .已知22BE AE ==,°30BCE ∠=.若将直角梯形绕直线AD 旋转一周,则图中阴影部分所得旋转体的体积为________.三、解答题(本大题共4小题,共50分.解答时写出必要的文字说明、证明过程或演算步骤)15.[12分]如图所示,一个圆锥形的空杯子(只考虑杯身部分)上放着一个直径为8 cm 的半球形冰淇淋,请你设计一种这样的圆锥形杯子(杯口直径等于半球形冰淇淋的直径,杯壁厚度忽略不计),使冰淇淋融化后不会溢出杯子,怎样设计才能使其所用材料面积最小?并求面积的最小值.16.[12分]在四面体ABCD 中,E ,H 分别是线段AB ,AD 的中点,F ,G 分别是线段CB ,CD 上的点,且12CF CG BF DG ==.求证: (1)四边形EFGH 是梯形;(2)AC ,EF ,GH 三条直线相交于同一点.17.[13分]在如图所示的多面体中,EF AEB ⊥平面,AE EB ⊥,AD EF ∥,EF BC ∥,24BC AD ==,3EF =,2AE BE ==,G 是BC 的中点。

2019-2020高中数学必修二综合测试卷及答案解析

2019-2020高中数学必修二综合测试卷及答案解析

1 2019-2020数学必修二综合检测试卷 (总分:150分 时间:120分钟) 一、选择题:(本大题共12小题,每小题5分,共60分) 1、已知直线经过点A (0,4)和点B (1,2),则直线AB 的斜率为 ( ) A .3 B .-2 C .2 D .不存在 2、下列命题正确的是( ) A .四条线段顺次首尾连接,所得的图形一定是平面图形 B .一条直线和两条平行直线都相交,则三条直线共面 C .两两平行的三条直线一定确定三个平面 D .和两条异面直线都相交的直线一定是异面直线 3、已知直线(a -2)x +ay -1=0与直线2x +3y +5=0平行,则a 的值为( ) A .-6 B .6 C .-45 D.45 4、下列四个说法(其中a ,b ,c 为三条不同直线,α,β,γ为三个不同的平面): ①若a ⊥b ,c ⊥b ,则a ∥c ;②若a ∥α,b ∥α,则a ∥b ;③若a ⊥α,b ⊥α,则a ∥b ; ④若α∥β,β∥γ,则α∥γ. 其中正确的个数为 ( ) A .1 B .2 C .3 D .4 5、已知圆C 方程为(x -2)2+(y -1)2=9,直线l 的方程为3x -4y -12=0,在圆C 上到直线l 的距离为1的点有几个 ( )A .4B .3C .2D .16、已知点A (1,2,2)、B (1,-3,1),点C 在yOz 平面上,且点C 到点A 、B 的距离相等,则点C 的坐标可以为 ( ) A .(0,1,-1) B .(0,-1,6) C .(0,1,-6) D .(0,1,6)7、过原点且倾斜角为60°的直线被圆x 2+y 2-4y =0所截得的弦长为( ) A. 3 B .2 C. 6 D .238、圆台侧面的母线长为2a ,母线与轴的夹角为30°,一个底面的半径是另一个底面半径的2倍.求两底面的面积之和是( ) A .3πa 2 B .4πa 2 C .5πa 2 D .6πa 29、点P 在正方形ABCD 所在平面外,PD ⊥平面ABCD ,PD =AD ,则PA 与BD 所成角的度数为( ) A .30° B .45° C .60° D .90° 10、某三棱锥的三视图如图所示,则该三棱锥的表面积是 ( )班级姓名考号密封线内不要答题。

人教版A版(2019)高中数学必修第二册:第九章 统计 综合测试(附答案与解析)

人教版A版(2019)高中数学必修第二册:第九章 统计 综合测试(附答案与解析)

第九章综合测试一、单项选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.某公司从代理的,,,A B C D 四种产品中,按分层随机抽样的方法抽取容量为110的样本,已知,,,A B C D 四种产品的数量比是2:3:2:4,则该样本中D 类产品的数量为( ) A .22件 B .33件 C .40件 D .55件2.已知总体容量为106,若用随机数法抽取一个容量为10的样本,下面对总体的编号最方便的是( ) A .1,2,…,106 B .0,1,2,…,105 C .00,01,…,105 D .000,001,…,1053.一个容量为200的样本,其数据的分组与各组的频数如下表:则样本数据落在[20,60)内的频率为( ) A .0.11 B .0.5 C .0.45 D .0.554.如图为某个容量为100的样本的频率分布直方图,分组为[96,98),[98,100),100,[102),102,[104),104,[106],则在区间[98,100)内的频数为( )A .10B .30C .20D .405.图甲和图乙分别表示某地区中小学生人数和近视情况.为了了解该地区中小学生的近视形成原因,用分层随机抽样的方法抽取了2%的学生进行调查,则样本量和抽取的高中生近视人数分别为( )图甲图乙A .100,10B .100,20C .200,10D .200,206.某学校高一年级有1 802人,高二年级有1 600人,高三年级有1 499人,现采用分层随机抽样的方法从中抽取98名学生参加全国中学生禁毒知识竞赛,则在高一、高二、高三三个年级中抽取的人数分别为( ) A .33,33,30 B .36,32,30C .36,33,29D .35,32,31 7.若数据12,,,n x x x 的平均数为x ,方差为2s ,则1235,35,,35n x x x +++的平均数和标准差分别为( )A . ,x sB .35,x s +C .35,3x s +D .3x +8.如图所示,样本A 和B 分别取自两个不同的总体,它们的样本平均数分别为A x 和B x ,样本标准差分别为A s 和B s 则( )ABA .,AB A B x x s s >>B .,A B A B x x s s <>C .A ,B A B x x s s ><D .,A B A B x x s s <<9.某校为了对初三学生的体重进行摸底调查,随机抽取了50名学生称其体重(单位:kg ),将所得数据整理后,画出了频率分布直方图如图所示,体重在[45,50)内适合跑步训练,体重在[50,55)内适合跳远训练,体重在[55,60]内适合投掷训练,估计该校初三学生适合参加跑步、跳远、投掷三项训练的人数之比为( )A .4:3:1B .5:3:1C .5:3:2D .3:2:110.为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如图所示.由于不慎将部分数据丢失,但知道前4组的频数为1234,,,x x x x ,且满足324123x x x x x x ==,后6组的频数123456,,,,,y y y y y y ,且后6组各频数之间差值相同,设最大频率为a ,视力在4.6到5.0之间的学生数为b ,则,a b 的值分别为( )A .0.27,78B .0.27,83C .2.7,78D .2.7,83二、多项选择题(本大题共2小题,每小题5分,共10分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分)11.在某次高中学科竞赛中,4000名考生的参赛成绩统计如图所示,60分以下视为不及格,若同一组中的数据用该组区间中点值为代表,则下列说法中正确的是( )A .成绩在[70,80)分的考生人数最多B .不及格的考生人数为1 000C .考生竞赛成绩的平均分约为70.5分D .考生竞赛成绩的中位数为75分12.在某地区某高传染性病毒流行期间,为了建立指标来显示疫情已受控制,以便向该地区居民显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续7天的新增病例数计算,下列各选项中,一定符合上述指标的是( ) A .平均数3x ≤B .平均数3x ≤且标准差2s ≤C .平均数3x ≤且极差小于或等于2D .众数等于1且极差小于或等于4三、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中横线上)13.从甲、乙两个厂家生产的同一种产品中各抽取8件产品,对其使用寿命(单位:年)跟踪调查结果如下: 甲:3,4,5,6,8,8,8,10; 乙:3,3,4,7,9,10,11,12.两个厂家在广告中都称该产品的使用寿命是8年,请根据结果判断厂家在广告中分别运用了平均数、众数、中位数中的哪一种集中趋势的特征数:甲:________,乙:________.(本题第一空2分,第二空3分)14.1895年,在英国伦敦有106块男性头盖骨被挖掘出土.经考证,这些头盖骨的主人死于1665~1666年的大瘟疫.人类学家分别测量了这些头盖骨的宽度(单位:mm ),数据如下:146 141 139 140 145 141 142 131 142 140 144 140 138 139 147 139 141 137 141 132 140 140 141 143 134 146 134 142 133 149 140 140 143 143 149 136 141 143 143 141 138 136 138 144 136 145 143 137 142 146 140 148 140 140 139 139 144 138 146 153 158 135 132 148 142 145 145 121 129 143 148 138 148 152 143 140 141 145 148 139 136 141 140 139 149 146 141 142 144 137 153 148 144 138 150 148 138 145 145 142 143 143 148 141 145 141则95%分位数是________mm.15.某学校三个兴趣小组的学生人数分布如下表(每名同学只参加一个小组,单位:人):16.从一堆苹果中任取20个称其重量,它们的质量(单位:克)数据分布如下:则这堆苹果中,质量不少于120克的苹果数约占苹果总数的________%.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)某市化工厂三个车间共有工人1000名,各车间男、女工人数如下表:已知在全厂工人中随机抽取1名,抽到第二车间男工人的可能性是0.15.(1)求x的值;(2)现用分层随机抽样的方法在全厂抽取50名工人,则应在第三车间抽取多少名工人?18.(本小题满分12分)从高三学生中抽出50名学生参加数学竞赛,根据竞赛成绩得到如图所示的频率分布直方图.试利用频率分布直方图估算:(结果保留小数点后一位)(1)这50名学生成绩的众数与中位数;(2)这50名学生的平均成绩.19.(本小题满分12分)有关部门要了解甲型H1N1流感预防知识在学校的普及情况,特制了一份有10道题的问卷到各学校进行问卷调查.某中学,A B两个班各被随机抽取了5名学生接受问卷调查,A班5名学生得分分别为5,8,9,9,9;B班5名学生得分分别为6,7,8,9,10(单位:分).请你估计A,B两个班中哪个班的预防知识的问卷得分要稳定一些。

高中数学必修第二册第十章综合测试01含答案解析

高中数学必修第二册第十章综合测试01含答案解析

加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!第十章综合测试一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.有一个游戏,其规则是甲、乙、丙、丁四个人从同一地点随机地向东、南、西、北四个方向前进,每人一个方向,事件“甲向南”与事件“乙向南”的关系为()A.互斥但非对立事件B.对立事件C.相互独立事件D.以上都不对2.甲、乙、丙、丁、戊5名同学参加“《论语》知识大赛”,决出了第1名到第5名的名次.甲、乙两名参赛者去询问成绩,回答者对甲说“虽然你的成绩比乙好,但是你俩都没得到第一名”;对乙说“你当然不会是最差的”从上述回答分析,丙是第一名的概率是()A.15B.13C.14D.163.甲骑自行车从A地到B地,途中要经过4个十字路口,已知甲在每个十字路口遇到红灯的概率都是,且在每个路口是否遇到红灯相互独立,那么甲在前两个十字路口都没有遇到红灯,直到第三个路口才首次遇到红灯的概率是()A.13B.427C.49D.1274.从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于()A.110B.18C.16D.155.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A.13B.12C.23D.346.某袋中有编号为1,2,3,4,5,6的6个球(小球除编号外完全相同),甲先从袋中摸出一个球,记下编号后放回,乙再从袋中摸出一个球,记下编号,则甲、乙两人所摸出球的编号不同的概率是()A.15B.16C.56D.35367.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()A.15B.25C.825D.9258.四个人围坐在一张圆桌旁,每个人面前都放着一枚完全相同的硬币,所有人同时抛出自己的硬币.若硬币正面朝上,则这个人站起来;若硬币正面朝下,则这个人继续坐着.那么没有相邻的两个人站起来的概率为()A.14B.716C.12D.9169.在2,0,1,5这组数据中,随机取出三个不同的数,则数字2是取出的三个不同数的中位数的概率为()A .34B .58C .12D .1410.设一元二次方程20x Bx C ++=,若B ,C 是一枚质地均匀的骰子连续投掷两次出现的点数,则方程有实数根的概率为( )A .112B .736C .1336D .1936二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)11.某中学青年教师、中年教师和老年教师的人数比例为451::,其中青年教师有120人.现采用分层抽样的方法从这所学校抽取容量为30的教师样本以了解教师的工作压力情况,则每位老年教师被抽到的概率为________.12.甲、乙、丙三人独立破译同一份密码.已知甲、乙、丙各自独立破译出密码的概率分别为12,13,14且他们是否破译出密码互不影响,则至少有1人破译出密码的概率是________.13.已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数: 907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989 据此估计,该运动员三次投篮恰有两次命中的概率为________.14.如图10-4-6所示的茎叶图是甲、乙两人在4次模拟测试中的成绩,其中一个数字被污损,则甲的平均成绩不超过乙的平均成绩的概率为________. 三、解答题(本大题共4小题,共50分,解答时写出必要的文字说明、证明过程或演算步骤)15.[12分]围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为17,都是白子的概率是1235,求从中任意取出2粒恰好是同一色的概率.16.[12分]某日用品按行业质量标准分成五个等级,等级系数X 依次为1,2,3,4,5,现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到如下频率分布表:X 1 2 3 4 5 fa0.20.45bc(1)若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求a ,b ,c 的值; (2)在(1)的条件下,将等级系数为4的3件日用品记为1x ,2x ,3x ,等级系数为5的2件日用品记为1y ,2y ,现从1x ,2x ,3x ,1y ,2y 这5件日用品中任取2件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这2件日用品的等级系数恰好相等的概率.17.[13分]某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)参加书法社团未参加书法社团参加演讲社团 8 5 未参加演讲社团230(1)从该班随机选1名同学,求该同学至少参加上述一个社团的概率;(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学1A ,2A ,3A ,4A ,5A ,3名女同学1B ,2B ,3B .现从这5名男同学和3名女同学中各随机选1人,求1A 被选中且1B 未被选中的概率.18.[13分]一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同,随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a ,b ,c .(1)求“抽取的卡片上的数字满足a b c +=”的概率; (2)求“抽取的卡片上的数字a ,b ,c 不完全相同”的概率. (注:若三个数a ,b ,c 满足a b c ≤≤,则称b 为这三个数的中位数)第十章综合测试答案解析一、 1.【答案】A 2.【答案】B 3.【答案】B 4.【答案】D 5.【答案】A 6.【答案】C 7.【答案】B【解析】从甲、乙等5名学生中随机选2人共有10种情况,甲被选中有4种情况,则甲被选中的概率为42105=. 8.【答案】B【解析】四个人按顺序围成一桌,同时抛出自己的硬币,抛出的硬币正面记为0,反面记为1,则总的样本点为(0,0,0,0),(0,0,0,1),(0,0,1,0),(0,0,1,1),(0,1,0,0),(0,1,0,1),(0,1,1,0),(0,1,1,1),(1,0,0,0),(1,0,0,1),(1,0,1,0),(1,0,1,1),(1,1,0,0),(1,1,0,1),(1,1,1,0),(1,1,1,1),共有16种情况.若四个人同时坐着,有1种情况;若三个人坐着,一个人站着,有4种情况;若两个人坐着,两个人站着,此时没有相邻的两个人站起来有2种情况,所以没有相邻的两个人站起来的情况共有1427++=(种),故所求概率716P =. 9.【答案】C【解析】分析题意可知,共有(0,1,2),(0,2,5),(1,2,5),(0,1,5),4种取法,符合题意的取法有2种,故所求概率12P =. 10.【答案】D【解析】因为B ,C 是一枚质地均匀的骰子连续投掷两次出现的点数,所以一共有36种情况。

数学必修二第二章经典测试题含答案

数学必修二第二章经典测试题含答案

必修二第二章综合检测题一、选择题1.假设直线a与b没有公共点,那么a及b的位置关系是( ) A.相交B.平行C.异面D.平行或异面2.平行六面体-A1B1C1D1中,既及共面也及1共面的棱的条数为( )A.3 B.4 C.5 D.63.平面α与直线l,那么α内至少有一条直线及l( )A.平行B.相交C.垂直D.异面4.长方体-A1B1C1D1中,异面直线,A1D1所成的角等于( ) A.30°B.45°C.60°D.90°5.对两条不相交的空间直线a及b,必存在平面α,使得( ) A.a⊂α,b⊂αB.a⊂α,b∥αC.a⊥α,b⊥αD.a⊂α,b⊥α6.下面四个命题:其中真命题的个数为( )①假设直线a,b异面,b,c异面,那么a,c异面;②假设直线a,b相交,b,c相交,那么a,c相交;③假设a∥b,那么a,b及c所成的角相等;④假设a⊥b,b⊥c,那么a∥c.A.4 B.3 C.2 D.17.在正方体-A1B1C1D1中,E,F分别是线段A1B1,B1C1上的不及端点重合的动点,如果A1E=B1F,有下面四个结论:①⊥1;②∥;③及异面;④∥平面.其中一定正确的有( )A.①②B.②③C.②④D.①④8.设a,b为两条不重合的直线,α,β为两个不重合的平面,以下命题中为真命题的是( )A.假设a,b及α所成的角相等,那么a∥bB.假设a∥α,b∥β,α∥β,那么a∥bC.假设a⊂α,b⊂β,a∥b,那么α∥βD.假设a⊥α,b⊥β,α⊥β,那么a⊥b9.平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线∥l,直线⊥l,直线m∥α,n∥β,那么以下四种位置关系中,不一定成立的是( )A.∥m B.⊥m C.∥βD.⊥β10.正方体-A1B1C1D1中,E、F分别为1、1的中点,那么直线及D1F所成角的余弦值为( )A.- B D.-11.三棱锥D-的三个侧面及底面全等,且==,=2,那么以为棱,以面及面为面的二面角的余弦值为( )C.0 D.-12.如下图,点P在正方形所在平面外,⊥平面,=,那么及所成的角是( )A.90°B.60°C.45°D.30°二、填空题三、13.以下图形可用符号表示为.14.正方体-A1B1C1D1中,二面角C1--C的平面角等于.15.设平面α∥平面β,A,C∈α,B,D∈β,直线及交于点S,且点S位于平面α,β之间,=8,=6,=12,那么=.16.将正方形沿对角线折成直二面角A--C,有如下四个结论:②△是等边三角形;③及平面成60°的角;④及所成的角是60°.其中正确结论的序号是.三、解答题(解容许写出文字说明,证明过程或演算步骤)17.如以下图,在三棱柱-A1B1C1中,△及△A1B1C1都为正三角形且1⊥面,F、F1分别是,A1C1的中点.求证:(1)平面1F1∥平面C1;(2)平面1F1⊥平面1A118.如下图,在四棱锥P-中,⊥平面,=4,=3,=5,∠=∠=90°,E是的中点.(1)证明:⊥平面;(2)假设直线及平面所成的角与及平面所成的角相等,求四棱锥P -的体积.19.如下图,边长为2的等边△所在的平面垂直于矩形所在的平面,=2,M为的中点.(1)证明:⊥;(2)求二面角P--D的大小.20.如图,棱柱-A1B1C1的侧面1B1是菱形,B1C⊥A1B.(1)证明:平面1C⊥平面A11;(2)设D是A1C1上的点,且A1B∥平面B1,求A1D1的值.21.如图,△中,==,是边长为1的正方形,平面⊥底面,假设G,F分别是,的中点.(1)求证:∥底面;(2)求证:⊥平面;(3)求几何体的体积V.22.如以下图所示,在直三棱柱-A1B1C1中,=3,=4,=5,=4,点D是的中点.1(1)求证:⊥1;(2)求证:1∥平面1;(3)求异面直线1及B1C所成角的余弦值.必修二第二章综合检测题1 D2 C 及1为异面直线,故棱中不存在同时及两者平行的直线,因此只有两类:第一类及平行及1相交的有:、C1D1及1平行且及相交的有:1、1,第二类及两者都相交的只有,故共有5条.3 C 当直线l及平面α斜交时,在平面α内不存在及l平行的直线,∴A错;当l⊂α时,在α内不存在直线及l异面,∴D错;当l∥α时,在α内不存在直线及l相交.无论哪种情形在平面α内都有无数条直线及l垂直.4 D 由于∥A1D1,那么∠是异面直线,A1D1所成的角,很明显∠=90°.5 B 对于选项A,当a及b是异面直线时,A错误;对于选项B,假设a,b不相交,那么a及b平行或异面,都存在α,使a ⊂α,b∥α,B正确;对于选项C,a⊥α,b⊥α,一定有a∥b,C 错误;对于选项D,a⊂α,b⊥α,一定有a⊥b,D错误.6 D 异面、相交关系在空间中不能传递,故①②错;根据等角定理,可知③正确;对于④,在平面内,a∥c,而在空间中,a及c可以平行,可以相交,也可以异面,故④错误.7 D 如下图.由于1⊥平面A1B1C1D1,⊂平面A1B1C1D1,那么⊥1,所以①正确;当E,F分别是线段A1B1,B1C1的中点时,∥A1C1,又∥A1C1,那么∥,所以③不正确;当E,F分别不是线段A1B1,B1C1的中点时,及异面,所以②不正确;由于平面A1B1C1D1∥平面,⊂平面A1B1C1D1,所以∥平面,所以④正确.8 D选项A中,a,b还可能相交或异面,所以A是假命题;选项B中,a,b还可能相交或异面,所以B是假命题;选项C中,α,β还可能相交,所以C是假命题;选项D中,由于a⊥α,α⊥β,那么a∥β或a⊂β,那么β内存在直线l∥a,又b⊥β,那么b⊥l,所以a⊥b.9 C如下图:∥l∥m;⊥l,m∥l⇒⊥m;∥l⇒∥β.10、11 C 取中点E,连、,可证⊥,⊥,∴∠为二面角A--D 的平面角又==,=2,∴∠=90°,应选C.12 B 将其复原成正方体-,显见∥,△为正三角形,∴∠=60°.13 α∩β=14 45°如下图,正方体-A1B1C1D1中,由于⊥,1⊥,那么∠C1是二面角C1--C的平面角.又△1是等腰直角三角形,那么∠C1=45°.15、9如以下图所示,连接,,那么直线,确定一个平面.∵α∥β,∴∥,那么=,∴=,解得=9.16 ①②④如下图,①取中点,E连接,,那么⊥,⊥,而∩=E,∴⊥平面,⊂平面,故⊥,故①正确.②设正方形的边长为a,那么==a.由①知∠=90°是直二面角A--C的平面角,且∠=90°,∴=a,∴△是等边三角形,故②正确.③由题意及①知,⊥平面,故∠是及平面所成的角,而∠=45°,所以③不正确.④分别取,的中点为M,N,连接,,.那么∥,且==a,∥,且==a,∴∠是异面直线,所成的角.在△中,==a,=a,∴==a.∴△是正三角形,∴∠=60°,故④正确.17 (1)在正三棱柱-A1B1C1中,∵F、F1分别是、A1C1的中点,∴B1F1∥,1∥C1F.又∵B1F1∩1=F1,C1F∩=F ∴平面1F1∥平面C1.(2)在三棱柱-A1B1C1中,1⊥平面A1B1C1,∴B1F1⊥1.又B1F1⊥A1C1,A1C1∩1=A1 ∴B1F1⊥平面1A1,而B1F1⊂平面1F1 ∴平面1F1⊥平面1A1.18(1)如下图,连接,由=4,=3,∠=90°,得=5.又=5,E是的中点,所以⊥.∵⊥平面,⊂平面,所以⊥.而,是平面内的两条相交直线,所以⊥平面.(2)过点B作∥,分别及,相交于F,G,连接.由(1)⊥平面知,⊥∠为直线及平面所成的角,且⊥.由⊥平面知,∠为直线及平面所成的角.=4,=2,⊥,由题意,知∠=∠,因为∠=,∠=,所以=.由∠=∠=90°知,∥,又∥,所以四边形是平行四边形,故==3.于是=2.在△中,=4,=2,⊥,所以==2,===.于是==.又梯形的面积为S=×(5+3)×4=16,所以四棱锥P-的体积为V=×S×=×16×=.19[解析] (1)证明:如下图,取的中点E,连接,,,∵△为正三角形,∴⊥,=∠=260°=.∵平面⊥平面,∴⊥平面,而⊂平面,∴⊥.∵四边形是矩形,∴△,△,△均为直角三角形,由勾股定理可求得=,=,=3 ∴2+2=2.∴⊥.又∩=E,∴⊥平面,∴⊥.(2)解:由(1)可知⊥,⊥,∴∠是二面角P--D的平面角.∴∠===1,∴∠=45°.∴二面角P--D的大小为45°20(1)因为侧面1B1是菱形,所以B1C⊥1,又B1C⊥A1B,且A1B∩1=B,所以B1C⊥平面A11,又B1C⊂平面1C所以平面1C⊥平面A11 .(2)设1交B1C于点E,连接,那么是平面A11及平面B1的交线.因为A1B∥平面B1,A1B⊂平面A11,平面A11∩平面B1=,所以A1B∥.又E是1的中点,所以D为A1C1的中点.即A1D1=1.21[解] (1)证明:连接,如以下图所示.∵为正方形∴∩=F,且F是的中点,又G是的中点∴∥,又⊂平面,⊄平面,∴∥平面.(2)证明:∵为正方形,∴⊥,又∵平面⊥平面,平面∩平面=,⊂平面,∴⊥平面,∴⊥.又∵==,∴2+2=2,∴⊥.又∵∩=B,∴⊥平面.(3)取的中点H,连,∵===,∴⊥,且=,又平面⊥平面∴⊥平面,∴V=×1×=.22[解析] (1)证明:在直三棱柱-A1B1C1中,底面三边长=3,=4,=5,∴⊥.又∵C1C⊥.∴⊥平面1B1∵1⊂平面1B,∴⊥1.(2)证明:设1及C1B的交点为E,连接,又四边形1B1为正方形.∵D是的中点,E是1的中点,∴∥1.∵⊂平面1,1⊄平面1,∴1∥平面1.(3)解:∵∥1,∴∠为1及B1C所成的角.在△中,=1=,==,=1=2,∴∠==.∴异面直线1及B1C所成角的余弦值为.。

新课标高中数学必修二综合试题及答案

新课标高中数学必修二综合试题及答案

高中新课标数学必修②测试卷(4)班别 _____ 姓名 ____________ 座号 ____ 分数______一. 选择题 (每小题4分,共48分)1. 直线0x a ++=(a 为实常数)的倾斜角的大小是( D ).A.030 B. 060 C. 0120 D. 0150 2. 到直线3410x y --=的距离为2的直线方程是( B ).A. 34110x y --=B. 34110x y --=或3490x y -+=C. 3490x y -+=D. 34110x y -+= 或 3490x y --= 3. 下列说法正确的是( C ).A. 经过定点0P (0x ,0y )的直线都可以用方程00()y y k x x -=-表示.B. 经过不同两点1P (1x ,1y ),2P (2x ,2y )的直线都可以用方程112121y y x x y y x x --=--表示.C. 经过定点0P (0,b )且斜率存在的直线都可以用方程y kx b =+表示.D. 不过原点的直线都可以用方程1x ya b+=表示. 4. 无论m 为何值,直线1(2)y m x +=-总过一个定点,其中m R ∈,该定点坐标为( D ). A.(1,2-) B.(1-,2) C.(2-,1-) D.(2,1-) 5. 若直线1l :()34350m x y m +++-=与2l :()2580x m y ++-=平行,则m 的值为( A ).A. 7-B. 17--或C. 6-D. 133-6. 一条直线与一个平面内的( D )都垂直,则该直线与此平面垂直.A. 无数条直线B. 两条直线C. 两条平行直线D.两条相交直线 7. 下列四个命题中错误的个数是( B ). ① 垂直于同一条直线的两条直线相互平行 ② 垂直于同一个平面的两条直线相互平行③ 垂直于同一条直线的两个平面相互平行 ④ 垂直于同一个平面的两个平面相互垂直A. 1B. 2C. 3D. 48. 半径为R 的球内接一个正方体,则该正方体的体积是( C ).A. 3B.343R π3D. 39R 9. 下列命题中错误的是( B ). A. 若//,,m n n m βα⊥⊂,则αβ⊥B. 若α⊥β,a ⊂α,则a ⊥βC. 若α⊥γ,β⊥γ,l αβ=,则l ⊥γD. 若α⊥β,aβ=AB ,a //α,a⊥AB ,则a ⊥β10. P 为ABC 所在平面外一点,PB PC =,P 在平面ABC 上的射影必在ABC 的( A ).A. BC 边的垂直平分线上B. BC 边的高线上C. BC 边的中线上D. BAC ∠的角平分线上11. 圆1C :222880x y x y +++-=与圆2C 224420x y x y +-+-=的位置关系是( A ). A. 相交 B. 外切 C. 内切 D. 相离 12. 直线()110a x y +++=与圆2220x y x +-=相切,则a 的值为( C ).A. 1,1-B. 2-C. 1-D. 1 二. 填空题(每小题4分,共20分)1. 圆224460x y x y +-++=截直线50x y --=所得的弦长为, 2. 过点(1,2)且与直线210x y +-=平行的直线的方程是 250x y +-= 3. 过点A (0,1),B (2,0)的直线的方程为 220x y +-= .4. 已知各面均为等边三角形的四面体的棱长 为2,则它的表面积是5. 如图,在正方体111ABCD A B C D -中,异面 直线1A D 与1D C 所成的角为 060 度;直线1A D 与平面11AB C D 所成的角为 030 度.三. 解答题(第1、2题各9分,第3题14分,共1. 求经过两条直线1l :3420x y +-=与2l :220x y ++=的交点P ,且垂直于直线3l :210x y --=直线l 的方程.1解:由3420220x y x y +-=⎧⎨++=⎩ 解得22x y =-⎧⎨=⎩∴ 点P 的坐标是(2-,2) ∵ 所求直线l 与3l 垂直,∴ 设直线l 的方程为 20x y C ++= 把点P 的坐标代入得 ()2220C ⨯-++= ,得2C =∴ 所求直线l 的方程为 220x y ++= 2. 已知圆心为C 的圆经过点A (0,6-),B (1,5-),且圆心在直线l :10x y -+=上,求圆心为C的圆的标准方程. 解:因为A (0,6-),B (1,5-),所以线段AB 的中点D 的坐标为111,22⎛⎫- ⎪⎝⎭,直线AB 的斜率 ()56110AB k ---==-,因此线段AB 的垂直平分线'l 的方程是11122y x ⎛⎫+=-- ⎪⎝⎭, 即 50x y ++=圆心C 的坐标是方程组 5010x y x y ++=⎧⎨-+=⎩,的解.解此方程组,得 32x y =-⎧⎨=-⎩,所以圆心C 的坐标是(3-,2-). 圆心为C 的圆的半径长所以,圆心为C 的圆的标准方程是3. 如图:在三棱锥S ABC -中,已知点D 、E 、F 分别为棱AC 、SA 、SC 的中点. ①求证:EF ∥平面ABC .②若SA SC =,BA BC =,求证:平面SBD ⊥平面ABC . 解:①证明:∵EF 是SAC 的中位线,∴EF ∥AC ,B又∵EF ⊄平面ABC ,AC ⊂平面ABC ,∴EF ∥平面ABC .②证明:∵SA SC =,AD DC = ∴SD ⊥AC , ∵BA BC =,AD DC = ∴BD ⊥AC ,又∵SD ⊂平面SBD ,BD ⊂平面SBD ,SD DB D =,∴AC ⊥平面SBD , 又∵AC ⊂平面ABC , ∴平面SBD ⊥平面ABC .。

高中数学人教A版必修二 章末综合测评2 Word版含答案

高中数学人教A版必修二 章末综合测评2 Word版含答案

点、直线、平面之间的位置关系一、选择题1.设a、b为两条直线α、β为两个平面则正确的命题是()【09960089】A.若a、b与α所成的角相等则a∥bB.若a∥αb∥βα∥β则a∥bC.若a⊂αb⊂βa∥b则α∥βD.若a⊥αb⊥βα⊥β则a⊥b【解析】A中a、b可以平行、相交或异面;B中a、b可以平行或异面;C中α、β可以平行或相交.【答案】 D2.(2016·山西山大附中高二检测)如图1在正方体ABCD-A1B1C1D1中E、F、G、H分别为AA1、AB、BB1、B1C1的中点则异面直线EF与GH所成的角等于()图1A.45°B.60°C.90°D.120°【解析】如图连接A1B、BC1、A1C1则A1B=BC1=A1C1且EF∥A1B、GH∥BC1所以异面直线EF与GH所成的角等于60°【答案】 B3.设l为直线αβ是两个不同的平面.下列命题中正确的是() A.若l∥αl∥β则α∥βB.若l⊥αl⊥β则α∥βC.若l⊥αl∥β则α∥βD.若α⊥βl∥α则l⊥β【解析】选项A平行于同一条直线的两个平面也可能相交故选项A错误;选项B垂直于同一直线的两个平面互相平行选项B正确;选项C由条件应得α⊥β故选项C错误;选项D l与β的位置不确定故选项D错误.故选B【答案】 B7.(2015·洛阳高一检测)如图2△ADB和△ADC都是以D为直角顶点的等腰直角三角形且∠BAC=60°下列说法中错误的是()图2A.AD⊥平面BDCB.BD⊥平面ADCC.DC⊥平面ABDD.BC⊥平面ABD【解析】由题可知AD⊥BDAD⊥DC所以AD⊥平面BDC又△ABD与△ADC均为以D为直角顶点的等腰直角三角形所以AB=ACBD=DC=22AB又∠BAC=60°所以△ABC为等边三角形故BC=AB=2BD所以∠BDC=90°即BD⊥DC所以BD⊥平面ADC同理DC⊥平面ABD所以A、B、C项均正确.选D【答案】 D8.正四棱锥(顶点在底面的射影是底面正方形的中心)的体积为12底面对角线的长为26则侧面与底面所成的二面角为() A.30°B.45°C.60°D.90°【解析】由棱锥体积公式可得底面边长为23高为3在底面正方形的任一边上取其中点连接棱锥的顶点及其在底面的射影根据二面角定义即可判定其平面角在直角三角形中因为tan θ=3(设θ为所求平面角)所以二面角为60°选C【答案】 C9.将正方形ABCD沿BD折成直二面角M为CD的中点则∠AMD 的大小是()A.45°B.30°C.60°D.90°【解析】 如图设正方形边长为a 作AO ⊥BD 则AM =AO 2+OM 2=⎝ ⎛⎭⎪⎫22a 2+⎝ ⎛⎭⎪⎫12a 2=32a又AD =aDM =a2∴AD 2=DM 2+AM 2∴∠AMD =90° 【答案】 D10.在矩形ABCD 中若AB =3BC =4P A ⊥平面AC 且P A =1则点P 到对角线BD 的距离为( )A 292B 135C 175D 1195【解析】 如图过点A 作AE ⊥BD 于点E 连接PE∵P A ⊥平面ABCDBD ⊂平面ABCD ∴P A ⊥BD ∴BD ⊥平面P AE ∴BD ⊥PE∵AE =AB ·AD BD =125P A =1 ∴PE =1+⎝ ⎛⎭⎪⎫1252=135 【答案】 B11.(2016·大连高一检测)已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直体积为94底面是边长为3的正三角形.若P 为底面A 1B 1C 1的中心则P A 与平面ABC 所成角的大小为( )【09960090】A.75°B.60°C.45°D.30°【解析】如图所示P为正三角形A1B1C1的中心设O为△ABC的中心由题意知:PO⊥平面ABC连接OA则∠P AO即为P A与平面ABC 所成的角.在正三角形ABC中AB=BC=AC= 3则S=34×(3)2=334VABC-A1B1C1=S×PO=94∴PO= 3又AO=33×3=1∴tan ∠P AO=POAO=3∴∠P AO=60°【答案】 B12.正方体ABCD-A1B1C1D1中过点A作平面A1BD的垂线垂足为点H以下结论中错误的是()A.点H是△A1BD的垂心B.AH⊥平面CB1D1C.AH的延长线经过点C1D.直线AH和BB1所成的角为45°【解析】因为AH⊥平面A1BDBD⊂平面A1BD所以BD⊥AH又BD⊥AA1且AH∩AA1=A所以BD⊥平面AA1H又A1H⊂平面AA1H所以A1H⊥BD同理可证BH⊥A1D所以点H是△A1BD的垂心A正确.因为平面A1BD∥平面CB1D1所以AH⊥平面CB1D1B正确.易证AC1⊥平面A1BD因为过一点有且只有一条直线与已知平面垂直所以AC1和AH重合.故C正确.因为AA1∥BB1所以∠A1AH为直线AH和BB1所成的角.因为∠AA1H≠45°所以∠A1AH≠45°故D错误.【答案】 D二、填空题(本大题共4小题每小题5分共20分将答案填在题中的横线上)13.设平面α∥平面βA、C∈αB、D∈β直线AB与CD交于点S 且点S位于平面αβ之间AS=8BS=6CS=12则SD=________【解析】由面面平行的性质得AC∥BD ASBS=CSSD解得SD=9【答案】914.如图3四棱锥S-ABCD中底面ABCD为平行四边形E是SA上一点当点E满足条件:________时SC∥平面EBD图3【解析】当E是SA的中点时连接EBEDAC设AC与BD的交点为O连接EO∵四边形ABCD是平行四边形∴点O是AC的中点.又E是SA的中点∴OE是△SAC的中位线.∴OE∥SC∵SC⊄平面EBDOE⊂平面EBD∴SC∥平面EBD【答案】E是SA的中点15.如图4所示在正方体ABCD-A1B1C1D1中MN分别是棱AA1和AB上的点若∠B1MN是直角则∠C1MN等于________.图4【解析】∵B1C1⊥平面A1ABB1MN⊂平面A1ABB1∴B1C1⊥MN又∠B1MN为直角∴B1M⊥MN而B1M∩B1C1=B1∴MN ⊥平面MB 1C 1又MC 1⊂平面MB 1C 1 ∴MN ⊥MC 1∴∠C 1MN =90° 【答案】 90°16.已知四棱锥P -ABCD 的底面ABCD 是矩形P A ⊥底面ABCD 点E 、F 分别是棱PC 、PD 的中点则①棱AB 与PD 所在直线垂直; ②平面PBC 与平面ABCD 垂直; ③△PCD 的面积大于△P AB 的面积; ④直线AE 与直线BF 是异面直线.以上结论正确的是________.(写出所有正确结论的序号) 【解析】 由条件可得AB ⊥平面P AD ∴AB ⊥PD 故①正确;若平面PBC ⊥平面ABCD 由PB ⊥BC得PB ⊥平面ABCD 从而P A ∥PB 这是不可能的故②错;S △PCD =12CD ·PDS △P AB =12AB ·P A由AB =CDPD >P A 知③正确; 由E 、F 分别是棱PC 、PD 的中点 可得EF ∥CD 又AB ∥CD∴EF ∥AB 故AE 与BF 共面④错. 【答案】 ①③三、解答题(本大题共6小题共70分.解答应写出文字说明证明过程或演算步骤)17.(本小题满分10分)如图5所示已知△ABC 中∠ACB =90°SA ⊥平面ABCAD ⊥SC 求证:AD ⊥平面SBC图5【证明】∵∠ACB=90°∴BC⊥AC又∵SA⊥平面ABC∴SA⊥BC∵SA∩AC=A∴BC⊥平面SAC∴BC⊥AD又∵SC⊥ADSC∩BC=C∴AD⊥平面SBC18.(本小题满分12分)如图6三棱柱ABC-A1B1C1的侧棱与底面垂直AC=9BC=12AB=15AA1=12点D是AB的中点.图6(1)求证:AC⊥B1C;(2)求证:AC1∥平面CDB1【证明】(1)∵C1C⊥平面ABC∴C1C⊥AC∵AC=9BC=12AB=15∴AC2+BC2=AB2∴AC⊥BC又BC∩C1C=C∴AC⊥平面BCC1B1而B1C⊂平面BCC1B1∴AC⊥B1C(2)连接BC1交B1C于O点连接OD如图∵OD分别为BC1AB的中点∴OD∥AC1又OD⊂平面CDB1AC1⊄平面CDB1∴AC1∥平面CDB1 19.(本小题满分12分)(2016·德州高一检测)某几何体的三视图如图7所示P是正方形ABCD对角线的交点G是PB的中点.(1)根据三视图画出该几何体的直观图;(2)在直观图中①证明:PD∥面AGC;②证明:面PBD⊥面AGC图7【解】(1)该几何体的直观图如图所示:(2)证明:①连接ACBD交于点O连接OG因为G为PB的中点O为BD 的中点所以OG ∥PD②连接PO 由三视图知PO ⊥平面ABCD 所以AO ⊥PO又AO ⊥BO 所以AO ⊥平面PBD因为AO ⊂平面AGC所以平面PBD ⊥平面AGC20.(本小题满分12分)(2016·济宁高一检测)如图8正方形ABCD 和四边形ACEF 所在的平面互相垂直EF ∥ACAB =2CE =EF =1图8(1)求证:AF ∥平面BDE ;(2)求证:CF ⊥平面BDE【09960091】【证明】 (1)如图设AC 与BD 交于点G因为EF ∥AG 且EF =1AG =12AC =1所以四边形AGEF 为平行四边形.所以AF ∥EG因为EG⊂平面BDEAF⊄平面BDE所以AF∥平面BDE(2)连接FG∵EF∥CGEF=CG=1∴四边形CEFG为平行四边形又∵CE=EF=1∴▱CEFG为菱形∴EG⊥CF在正方形ABCD中AC⊥BD∵正方形ABCD和四边形ACEF所在的平面互相垂直∴BD⊥平面CEFG∴BD⊥CF又∵EG∩BD=G∴CF⊥平面BDE21.(本小题满分12分)(2015·山东高考)如图9三棱台DEF-ABC 中AB=2DEGH分别为ACBC的中点.图9(1)求证:BD∥平面FGH;(2)若CF⊥BCAB⊥BC求证:平面BCD⊥平面EGH【解】(1)证法一:连接DGCD设CD∩GF=M连接MH在三棱台DEF-ABC中AB=2DEG为AC的中点可得DF∥GCDF=GC所以四边形DFCG为平行四边形则M为CD的中点.又H为BC的中点所以MH∥BD又MH⊂平面FGHBD⊄平面FGH所以BD∥平面FGH 证法二:在三棱台DEF-ABC中由BC=2EFH为BC的中点可得BH∥EFBH=EF所以四边形BHFE为平行四边形可得BE∥HF在△ABC中G为AC的中点H为BC的中点所以GH∥AB又GH∩HF=H所以平面FGH∥平面ABED因为BD⊂平面ABED所以BD∥平面FGH(2)连接HE因为GH分别为ACBC的中点所以GH∥AB由AB⊥BC得GH⊥BC又H为BC的中点所以EF∥HCEF=HC因此四边形EFCH是平行四边形.所以CF∥HE又CF⊥BC所以HE⊥BC又HEGH⊂平面EGHHE∩GH=H所以BC⊥平面EGH又BC⊂平面BCD所以平面BCD⊥平面EGH22.(本小题满分12分)(2016·重庆高一检测)如图10所示ABCD是正方形O是正方形的中心PO⊥底面ABCD底面边长为aE是PC的中点.图10(1)求证:P A∥平面BDE;平面P AC⊥平面BDE;(2)若二面角E-BD-C为30°求四棱锥P-ABCD的体积.【解】(1)证明:连接OE如图所示.∵O、E分别为AC、PC的中点∴OE∥P A∵OE⊂平面BDEP A⊄平面BDE∴P A∥平面BDE∵PO⊥平面ABCD∴PO⊥BD在正方形ABCD中BD⊥AC又∵PO∩AC=O∴BD⊥平面P AC又∵BD⊂平面BDE∴平面P AC⊥平面BDE(2)取OC中点F连接EF∵E为PC中点∴EF为△POC的中位线∴EF∥PO又∵PO⊥平面ABCD∴EF⊥平面ABCD∵OF ⊥BD ∴OE ⊥BD∴∠EOF 为二面角E -BD -C 的平面角 ∴∠EOF =30°在Rt △OEF 中OF =12OC =14AC =24a∴EF =OF ·tan 30°=612a ∴OP =2EF =66a∴V P -ABCD =13×a 2×66a =618a 3。

新人教版(2019A版)高中数学必修第二册综合测试卷(含答案解析)

新人教版(2019A版)高中数学必修第二册综合测试卷(含答案解析)

新人教版(2019A 版)高中数学必修第二册综合测试卷(时间:120分钟 分值:150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题所给的四个选项中,只有一个选项是符合题目要求的)1.若复数z =2i3-i ,则z 的共轭复数z =( ) A.-15-35I B.-15+35I C.15+35I D.15-35i 答案:A2.某公司生产三种型号的轿车,其中型号Ⅰ的轿车的月产量为 1 200辆,型号Ⅱ的轿车的月产量为6 000辆,型号Ⅲ的轿车的月产量为2 000辆,现用分层抽样的方法抽取92辆车进行检验,则型号Ⅲ的轿车应抽取( )A.12辆B.36辆C.20辆D.60辆答案:C3.2010-2018年之间,受益于基础设施建设对光纤产品的需求,以及个人计算机及智能手机的下一代规格升级,电动汽车及物联网等新机遇,连接器行业发展较快.2010-2018年全球连接器营收情况如图所示,根据折线图,下列结论正确的个数为 ( )①每年的营收额逐年增长;②营收额增长最快的一年为2013-2014年;③2010-2018年的营收额增长率约为40%;④2014-2018年每年的营收额相对于2010-2014年每年的营收额,变化比较平稳.A.1B.2C.3D.4答案:C4.已知小张每次射击命中十环的概率都为40%,现采用随机模拟的方法估计小张三次射击恰有两次命中十环的概率,先由计算器产生0到9之间取整数值的随机数,指定2,4,6,8表示命中十环,0,1,3,5,7,9表示未命中十环,再以每三个随机数为一组,代表三次射击的结果,经随机模拟产生了如下20组随机数:321 421 292 925 274 632 800 478 598 663 531 297 396 021 506 318 230 113 507 965据此估计,小张三次射击恰有两次命中十环的概率约为( )A.0.25B.0.3C.0.35D.0.4答案:B5.盒子中有若干个大小和质地完全相同的红球和黄球,从中任意取出2个球,都是红球的概率为328,都是黄球的概率为514,则从盒子中任意取出2个球,恰好是同一颜色的概率为( )A.1328B.57C.1528D.37 答案:A6.某校篮球运动员进行投篮练习,若他前一球投进,则后一球投进的概率为34;若他前一球投不进,则后一球投进的概率为14.若他第1球投进的概率为34,则他第3球投进的概率为( ) A.34 B.58 C.116 D.916 答案:D7.已知数据x 1,x 2,x 3的中位数为k ,众数为m ,平均数为n ,方差为p ,下列说法中,错误的是( )A.数据2x 1,2x 2,2x 3的中位数为2kB.数据2x 1,2x 2,2x 3的众数为2mC.数据2x 1,2x 2,2x 3的平均数为2nD.数据2x 1,2x 2,2x 3的方差为2p答案:D8.一个圆柱的轴截面是正方形,如果这个圆柱的侧面积与一个球的表面积相等,那么圆柱的体积与球的体积之比为( )A.1∶3B.3∶1C.2∶3D.3∶2答案:D二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.如图,已知点O 为正六边形ABCDEF 的中心,下列结论中正确的是( )A.OA ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ =0B.(OA ⃗⃗⃗⃗⃗ -AF ⃗⃗⃗⃗⃗ )·(EF ⃗⃗⃗⃗⃗ -DC ⃗⃗⃗⃗⃗ )=0C.(OA ⃗⃗⃗⃗⃗ +AF ⃗⃗⃗⃗⃗ )·BC ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ +AF ⃗⃗⃗⃗⃗ ·BC⃗⃗⃗⃗⃗ D.|OF ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ |=|FA ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ -CB⃗⃗⃗⃗⃗ | 答案:BC10.在发生公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.过去10日,甲、乙、丙、丁四地新增疑似病例数据信息如下,一定符合该标志的是( )甲地:中位数为2,极差为5;乙地:总体平均数为2,众数为2;丙地:总体平均数为1,总体方差大于0;丁地:总体平均数为2,总体方差为3.A.甲地B.乙地C.丙地D.丁地答案:AD11.如图,在正方体ABCD -A 1B 1C 1D 1中,以下四个选项正确的是( )A.D1C∥平面A1ABB1B.A1D1与平面BCD1相交C.AD⊥平面D1DBD.平面BCD1⊥平面A1ABB1答案:AD12.在△ABC中,三个内角A,B,C所对的边分别为a,b,c.若b=c cos A,A的平分线交BC于点D,AD=1,cos A=18,以下结论正确的是()A.AC=34B.AB=8C.CDBD =1 8D.△ABD的面积为3√74答案:ACD三、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.已知a=(1,-1),b=(λ,1),若a与b的夹角为钝角,则实数λ的取值范围是(-∞,-1)∪(-1,1).14.从分别写有1,2,3,4,5的五张质地相同的卡片中,任取两张,这两.张卡片上的数字之差的绝对值等于1的概率为2515.(本题第一空2分,第二空3分)随机抽取100名学生,测得他们的身高(单位:cm),按照身高依次分成六组:[155,160),[160,165), [165,170),[170,175),[175,180),[180,185),并得到样本身高的频率分布直方图如图所示,则频率分布直方图中的x的值为0.06;若将身高区间[170,175),[175,180),[180,185)依次记为A,B,C三组,并用分层抽样的方法从这三组中抽取6人,则从A,B,C三组中依次抽取的人数为3,2,1.16.如图所示,已知六棱锥P-ABCDEF的底面是正六边形, PA⊥平面ABC,PA=2 AB.则下列命题中正确的有②④.(填序号)①PB⊥AD;②平面PAB⊥平面PAE;③BC∥平面PAE;④直线PD 与平面ABC所成的角为45°.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算过程)17.(10分)如图,正方体ABCD-A1B1C1D1的棱长为2,E,F分别为A1B,AC的中点.(1)证明:EF∥平面A1C1D;(2)求三棱锥C-A1C1D的体积.(1)证明:如图,连接BD.因为四边形ABCD为正方形,所以BD交AC于点F,且F为BD的中点.因为E为A1B的中点,所以EF∥A1D.因为EF⊄平面A1C1D,A1D⊂平面A1C1D,所以EF∥平面A1C1D.(2)解:三棱锥C-A1C1D的体积V=V棱锥A1-CC1D =13S△CC1D·A1D1=13×12×2×2×2=43.18.(12分)从含有两件正品a 1,a 2和一件次品b 1的三件产品中,每次任取一件,每次取出后不放回,连续取两次.(1)写出所有可能的结果组成的样本空间.(2)求取出的两件产品中,恰有一件次品的概率.解:(1)每次取出一个,取后不放回地连续取两次,其所有可能的结果有6个,即Ω={(a 1,a 2),(a 1,b 1),(a 2,a 1),(a 2,b 1),(b 1,a 1),(b 1,a 2)},其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产品.(2)用A 表示事件“取出的两件产品中,恰好有一件次品”,则A ={(a 1,b 1),(a 2,b 1),(b 1,a 1),(b 1,a 2)},所以P (A )=46=23. 19.(12分)某居民小区为了提高小区居民的读书兴趣,特举办读书活动,准备进一定量的书籍丰富小区图书站.由于不同年龄段需看不同类型的书籍,为了合理配备资源,现对小区内读书者进行年龄调查, 随机抽取了一天中40名读书者进行调查,将他们的年龄分成6段:[20,30),[30,40),[40,50),[50,60),[60,70),[70,80],得到的频率分布直方图如图所示.(1)估计在这40名读书者中年龄分布在区间[40,70)上的人数;(2)求这40名读书者年龄的平均数和中位数;(3)从年龄在区间[20,40)上的读书者中任选两名,求这两名读书者年龄在区间[30,40)上的人数恰为1的概率.解:(1)由频率分布直方图知,年龄在区间[40,70)上的频率为(0.020+0.030+0.025)×10=0.75.所以40名读书者中年龄分布在区间[40,70)上的人数为40×0.75=30.(2)40名读书者年龄的平均数为25×0.05+35×0.1+45×0.2+55×0.3+ 65×0.25+75×0.1=54.设40名读书者年龄的中位数为x,0.05+0.1+0.2+(x-50)×0.03=0.5,解得x=55,即40名读书者年龄的中位数为55岁.(3)年龄在区间[20,30)上的读书者有2人,分别记为a,b,年龄在区间[30,40)上的读书者有4人,分别记为A,B,C,D.从上述6人中选出2人,有如下样本点:(a,b),(a,A),(a,B),(a,C),(a,D),(b,A),(b,B),(b,C),(b,D),(A,B), (A,C),(A,D),(B,C),(B,D),(C,D),共15个,记选取的两名读书者中恰好有1人年龄在区间[30,40)上为事件A,则事件A包含8个样本点:(a,A),(a,B),(a,C),(a,D),(b,A),(b,B),(b,C), (b,D),故P(A)=8.1520.(12分)在△ABC中,内角A,B,C的对边分别为a,b,c,设△ABC的面积为S,已知3c2=16S+3(b2-a2).(1)求tan B 的值;(2)若S =42,a =10,求b 的值.解:(1)因为3c 2=16S +3(b 2-a 2),所以3(c 2+a 2-b 2)=16S ,即3×2ac cos B =16×12ac sin B , 所以3cos B =4sin B ,即tan B =34. (2)由(1)可得sin B =35,cos B =45, 所以S =12ac sin B =12×10c ×35=3c =42, 所以c =14.由余弦定理可得,45=100+196-b 22×10×14,整理可得,b =6√2.21.(12分)已知向量a ,b 满足|a |=|b |=1,|xa +b |=√3|a -xb |(x >0,x ∈R).(1)求a ·b 关于x 的解析式f (x );(2)求向量a 与b 夹角的最大值;(3)若a 与b 平行,且方向相同,试求x 的值. 解:(1)由题意得|xa +b |2=3|a -xb |2,即x 2a 2+2xa ·b +b 2=3a 2-6xa ·b +3x 2b 2. 因为|a |=|b |=1,所以8xa ·b =2x 2+2, 所以a ·b =x 2+14x (x >0),即f (x )=14(x +1x ) (x >0). (2)设向量a 与b 夹角为θ,则cos θ=a ·b |a ||b |=f (x )=14[(√x -√x )2+2], 当√x =√x ,即x =1时,cos θ有最小值12.因为0≤θ≤π,所以θmax =π3. (3)因为a 与b 平行,且方向相同,|a |=|b |=1,所以a =b ,所以a ·b =14(x +1x )=1, 解得x =2±√3.22.(12分)如图,在四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为菱形,AA 1⊥平面ABCD ,AC 与BD 交于点O ,∠BAD =60°,AB =2,AA 1=√6.(1)证明:平面A 1BD ⊥平面ACC 1A 1;(2)求二面角A -A 1C -B 的大小.(1)证明:由AA 1⊥平面ABCD ,得AA 1⊥BD ,AA 1⊥AC. 因为四边形ABCD 为菱形,所以AC ⊥BD.因为AC ∩AA 1=A ,所以BD ⊥平面ACC 1A 1.因为BD ⊂平面A 1BD ,所以平面A 1BD ⊥平面ACC 1A 1.(2)解:如图,过点O 作OE ⊥A 1C 于点E ,连接BE ,DE. 由(1)知BD ⊥平面ACC 1A 1,所以BD ⊥A 1C.因为OE ⊥A 1C ,OE ∩BD =O ,所以A 1C ⊥平面BDE ,所以A 1C ⊥BE. 因为OE ⊥A 1C ,BE ⊥A 1C ,所以∠OEB 为二面角A -A 1C -B 的平面角. 因为△ABD 为等边三角形且O 为BD 中点, 所以OB =12AB =1,OA =OC =√32AB =√3. 因为AA 1⊥AC ,所以A 1C =√AA 12+AC 2=3√2. 因为△A 1AC ∽△OEC ,所以OE AA 1=OC A 1C ,所以OE =OC ·AA 1A 1C =√3×√63√2=1. 在△OEB 中,OB ⊥OE ,所以tan ∠OEB =OBOE =1,即∠OEB =45°. 综上,二面角A -A 1C -B 的大小为45°.。

北师大版27课标高中数学必修第二册第五章综合测试试题试卷含答案

北师大版27课标高中数学必修第二册第五章综合测试试题试卷含答案

第五章综合测试一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数12z i =--(i 为虚数单位)在复平面内对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限2.复数17 1ii-+的虚部为()A .0B C .4D .4-3.复数()()2231z a a a =--++,i 为纯虚数,实数a 的值是()A .1-B .3C .1D .1-或34.已知()()31z m m =++-i 在复平面内对应的点在第四象限,则实数m 的取值范围是()A .(3-,1)B .(1-,3)C .(1,+∞)D .(-∞,3-)5.已知复数112z i =-+,21z i =-,334z i =-,它们在复平面上所对应的点分别为A ,B ,C ,若(,)OC OA OB λμλμ=+∈R ,则 λμ+的值是()A .1B .2C .3D .46.定义运算a b ad bc c d=- ,则符合条件1142i z zi-=+ 的复数z 为()A .3i-B .13i+C .3i+D .13i-7.已知i 为虚数单位,a 为实数,复数()()21z a i i =-+在复平面内对应的点为M ,则“1a =”是“点M 在第四象限”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8.复数()z x yi x y R =+∈,满足条件42z i z -=+,则|24x y +的最小值为()A .2B .4C .D .16二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9.下列命题正确的是()A .若z C ∈,则20z ≥B .21z i =-的虚部是2C .若a b R ∈,,且a b >,则a i b i ++>D .实数集在复数集中的补集是虚数集10.下列命题中为真命题的是()A .若复数z 满足()11i z i +=-,则z 为纯虚数B .若复数z 满足210z +=,则z i =C .若复数12z z ,满足12z z R ∈,则12z z =D .若复数1z a bi =+,()2z a bi a b R =-∈,,则12z z ,在复平面内对应的点关于实轴对称11.设12z z ,是复数,则下列命题中为真命题的是()A .若120z z -=,则12z z =B .若12z z = ,则12z z =C .若12z z =,则1122z z z z ⋅=⋅D .若12z z =,则2212z z =12.已知复数z 满足21 ·2k i z i k Z +=+∈,()则z 在复平面内对应的点可能位于()A .第一象限B .第二象限C .第三象限D .第四象限三、填空题(本题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.若复数()()12z m m i =-++对应的点在直线2y x =上,则实数m 的值是________.14.设复数z 满足()132i z i +=-+(i 是虚数单位),则z 的实部是________.15.在复平面内,复数1i +与13i -+分别对应向量OA 和 O B ,其中O 为坐标原点,则AB = ________.16.设i 是虚数单位,若复数10()3ia a R -∈-是纯虚数,则 a 的值为________.四、解答题(本题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.已知复数z 满足3413i z i ++=+.(1)求z;(2)求2(1)(43)2zi i ++ 的值.18.已知复数12z i =-+,1255z z i =-+(i 为虚数单位).(1)求复数2z ;(2)若复数()()()2323231z z m m m i ⎡⎤=---+-⎣⎦在复平面内所对应的点在第四象限,求实数m 的取值范围.19.已知复数z 的实部为正数,z =2z 的虚部为2.(1)求复数z ;(2)若22z z-在复平面内对应的向量为OZ ,求向量OZ 的模.20.已知复数12z z ,在复平面内对应的点分别为A (2-,1),B (a ,3),a R ∈.(1)若12z z -=,求a 的值;(2)若复数12·z z z =对应的点在第二、四象限的角平分线上,求a 的值.21.已知复数()2135z a a i =-++,()22121z a a a i =-++-,a R ∈分别对应向量2OZ ,2OZ,O 为原点.(1)若向量2OZ表示的点在第四象限,求a 的取值范围;(2)若向量12OZ OZ对应的复数为纯虚数,求a 的值.22.已知复数z 和w 满足2210zw iz iw +-+=,其中i 为虚数单位.(1)若z 和w 又满足2w z i -=,求z 和w 的值;(2)求证:如果z =,那么4w i -的值是一个常数,并求这个常数.第五章综合测试答案解析一、1.【答案】C【解析】由题意得复数z 的实部为1-,虚部为2-,因此在复平面内对应的点为12--(,),位于第三象限.2.【答案】D 【解析】17(17)(1)68341(1)(1)2i i i ii i i i -----===--++-,∴复数171ii-+的虚部为4-,选D .3.【答案】B【解析】由题意知223010a a a ⎧--=⎨+≠⎩解得3a =,故选B .4.【答案】A【解析】由已知可得复数z 在复平面内对应的点的坐标为()31m m +-,,且该点在第四象限,所以3010m m +⎧⎨-⎩><,解得31m -<<.5.【答案】A【解析】依题意:4(12)(1)(2)i i i i βλμμλλμ-=-++-=-+-,324μλλμ-=⎧∴⎨-=-⎩,12u λ=-⎧∴⎨=⎩,1λμ∴+=.6.【答案】A【解析】11(1)42i z z i zi z i z -=+=+=+ ∣,42(42)(1)4223122i i i iz i i ++-+-∴====-+.7.【答案】A【解析】()()()()2122z a i i a a i =-+=+-,所以点M 在第四象限的充要条件是20 20a a +⎧⎨-⎩><,即22a -<<,所以“1a =”是“点M 在第四象限”的充分不必要条件.8.【答案】C【解析】由|4||2|z i z -=+得23x y +=,则242x y +⋅ ,二、9.【答案】BD【解析】A 中,令z i ∈C =,则210i =-<,不正确;B 中,2112z i i =-=-+的虚部是2,正确;C 中,a i +与b i +都是虚数,不能比较大小,不正确;D 中,由实数集与虚数集可组成复数集,正确,故选BD .10.【答案】AD 【解析】A 中11iz i i-==-+是纯虚数,A 为真;B 中,当z i =-时,满足210z +=,B 为假;C 中,当12z z ,互为共轭复数时,12z z R ⋅∈,C 为假;D 正确,故选AD .11.【答案】ABC【解析】对于A ,若120z z -=,则12z z =,即12z z =;对于B 、C ,容易判断是真命题;对于D ,若1 z =21i z =+,则12 z z ==212z =,222i z =,所以是假命题,故选ABC .12.【答案】BD 【解析】212k i z i+⋅=+ 212k iz i ++∴=15i i i === ,37i i i ===- ,当k 为奇数时22122(2)12ki i i iz i i i i ++++∴====-+--,在复平面内对应的点为1,2-(),位于第二象限;当k 为偶数时,21222(2)122k i i i i z i i i ++++====-在复平面内对应的点为12-(,),位于第四象限.故选BD .三、13.【答案】4【解析】由已知得 2(1)(2)0m m --+=,4m ∴=.14.【答案】1【解析】设(,)z a bi a b R =+∈,则(1)(1)(1)32i z i a bi b a i i +=++=-++=-+,所以1,3a b ==,复数z 的实部是1.15.【答案】 【解析】()()13122AB i i i =-+-+=-+,||AB ∴= 16.【答案】3【解析】先利用复数的运算法则将复数化为(,)x yi x y +∈R 的形式,再由纯虚数的定义求a ,因为1010(3)10(3)(3)3(3)(3)10i i a a a a i i i i ++-=-=-=----+,由纯虚数的定义,知30a -=,所以3a =.四、17.【答案】(1)因为345i +=,所以13543z i i =+-=-+,所以43z i =--,(2)2(1)(43)2(43)22(43)i i i i i z i +++==---,18.【答案】(1)1255z z i =-+ ,21555532i i z i z i-+-+∴===--+.(2)()()232 323(1)z z m m m i ⎡⎤=---+-⎣⎦,()223(1)i m m m i ⎡⎤=--+-⎣⎦,()2(1)23m m m i =--+--,3 z 在复平面内所对应的点在第四象限,2(1)0230m m m --⎧∴⎨--⎩><,解得 11m -<<,故实数m 的取值范围是( 1-,1).19.【答案】(1)设(),z a bi a b =+∈R,则由条件||z =,可得222a b +=①因为2222i z a b ab =-+,所以22ab =②联立①②,解得1a b ==或1a b ==-,又复数z 的实部为正数,所以0a >,所以1a b ==,于是1z i =+(2)由(1)可知1z i =+,则2222(1)131z i i z i-=-+=-+,则(1,3)OZ =- ,所以向量 OZ 的模为=.20.【答案】由复数的几何意义可知12z i =-+,23z a i =+.(1)因为12z z -=,所以|22|a i ---=,即()()130a a ++=,解得1a =-或3a =-;(2)复数12(2)(3)(23)(6)z z z i a i a a i =⋅=-+-=-+++,由题意可知,点()23,6a a -++在直线y x =-上,所以()623a a +=--+,解得9a =.21.【答案】(1) 复数213(5)z a a i =-++对应向量1OZ ,向量1OZ表示的点在第四象限,23050a a ⎧-∴⎨+⎩><,解得 5a -<,a ∴的取值范围是5-∞-(,);(2)1221Z Z OZ OZ =-,∴向量12Z Z 对应的复数为()()()2222211213(5)26z z a a a i a a i a a a a i ⎡⎤⎡⎤-=-++---++=---++-⎣⎦⎣⎦,根据向量12Z Z对应的复数为纯虚数,可得()220a a ---=且()260a a +-≠,解得1a =-.22.【答案】(1)设(),w x yi x y =+∈R ,则由2w z i -= ,得()22z w i x y i =-=-+,()()()()2222122221652zw iz iw x y i x yi i x y i i x yi x y y xi ∴+-+=⎡-+⎤++⎡-+⎤-++=+++-⎣⎦⎣⎦,22652i 0x y y x ∴+++-=,根据复数相等的充要条件,得2265020x y y x ⎧+++=⎨-=⎩,01x y ⎧∴==⎨-⎩或05x y =⎧⎨=-⎩,,z i w i ∴=-=-或 3,5z i w i ==-,(2)证明:2210zw iz iw +-+= (2)21z w i iw ∴+=-,|(2)||21|z w i iw ∴+=-,即 ||221z w i iw ⋅+=-,又||z =,2|21w i iw +=-,设()i ,w x y x y =+∈R ,,两边平方,得22223312124441x y y x y y +++=+++,化简,得22 811x v y +-=,|4||4|3w i x yi i ∴-=+-=是一个常数,故 4w i -的值是一个常数,且这个常数为 .。

(北师大版2019课标)高中数学必修第二册 第六章综合测试(含答案)

(北师大版2019课标)高中数学必修第二册 第六章综合测试(含答案)

第六章综合测试一、单项选择题(本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列结论正确的是( )A .各个面都是三角形的几何体是三棱锥B .以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C .棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥D .圆锥的顶点与底面圆周上的任意一点的连线都是母线2.在正方体1111ABCD A B C D -中,点Q 是棱DD 1上的动点,则过A ,Q ,B 1三点的截面图形不可能的是( ) A .等边三角形 B .矩形 C .等腰梯形 D .正方形3.若圆柱的轴截面是一个正方形,其面积为4S ,则它的一个底面面积是( ) A .4SB .4S πC .S πD .2S π 4.如果一个正四面体(各个面都是正三角形)的体积为39 cm ,则其表面积为( )A .2B .218 cmC .2D .212 cm5.已知平面α⊥平面β,且l αβ=,要得到直线m ⊥平面β,还需要补充的条件是( )A .m α⊂B .m α∥C .m l ⊥D .m α⊂且m l ⊥6.一个四面体共一个顶点的三条棱两两互相垂直,其长分别为13,其四面体的四个顶点在一个球面上,则这个球的表面积为( ) A .16πB .32πC .36πD .64π7.如图,在棱长为4的正方体1111ABCD A B C D -中,P 是11A B 上一点,且11114PB A B =,则多面体11P BCC B -的体积为( )A .83B .163C .4D .58.如图,在边长为1的正方形ABCD 中,点E ,F 分别为边BC ,AD 的中点,将ABF △沿BF 所在的直线进行翻折,将CDE △沿DE 所在的直线进行翻折,在翻折过程中,下列说法错误的是( )A .无论翻折到什么位置,A 、C 两点都不可能重合B .存在某个位置,使得直线AF 与直线CE 所成的角为60︒C .存在某个位置,使得直线AF 与直线CE 所成的角为90︒D .存在某个位置,使得直线AB 与直线CD 所成的角为90︒二、多项选择题(大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9.已知α,β是两个不重合的平面,m 、n 是两条不重合的直线,则下列命题正确的是( ) A .若m n ∥,m α⊥,则n α⊥ B .若m α∥,n αβ=,则m n ∥C .若m α⊥,m β⊥,则αβ∥D .若m α⊥,m n ∥,n β⊥,则αβ∥10.已知m 、n 为两条不重合的直线,α、β为两个不重合的平面,则下列说法正确的是( ) A .若m α∥,n β∥且αβ∥,则m n ∥ B .若m n ∥,m α⊥,n β⊥,则αβ∥ C .若m n ∥,n α⊂,αβ∥,m β⊄,则m β∥ D .若m n ∥,n α⊥,αβ⊥,则m β∥11.如图,在四棱锥P —ABCD 中,底面ABCD 为菱形,60DAB ∠=︒,侧面PAD 为正三角形,且平面PAD⊥平面ABCD ,则下列说法正确的是( ) A .在棱AD 上存在点M ,使AD ⊥平面PMB B .异面直线AD 与PB 所成的角为90︒ C .二面角P —BC —A 的大小为45︒ D .BD ⊥平面PAC12.在正方体1111ABCD A B C D -中,N 为底面ABCD 的中心,P 为线段A 1D 1上的动点(不包括两个端点),M 为线段AP 的中点,则( ) A .CM 与PN 是异面直线 B .CM PN >C .平面PAN ⊥平面BDD 1B 1D .过P 、A 、C 三点的正方体的截面一定是等腰梯形三、填空题(本题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.已知一圆锥的侧面展开图是半径为2的半圆,则该圆锥的表面积为________,体积为________.14.已知正四棱锥的侧棱长为60︒,则该四棱锥的高为________.15.设α,β,γ是三个不同平面,a ,b 是两条不同直线,有下列三个条件:(1)a γ∥,b β∥;(2)a γ∥,b β⊂;(3)b β∥,a γ⊂,如果命题“a b αβγ=⊂,,且________,则a b ∥”为真命题,则可以在横线处填入的条件是________(把所有正确的序号填上).16.如图,已知六棱锥P —ABCDEF 的底面是正六边形,PA ⊥平面ABC ,2PA AB =,则下列结论中: ①PB AE ⊥;②平面ABC ⊥平面PBC ;③直线BC ∥平面PAE ;④45PDA ∠=︒,其中正确的有________(把所有正确的序号都填上).四、解答题(本题共6小题,共70分,解答时应写出必要的文字说明,证明过程或演算步骤) 17.已知正方体1111ABCD A B C D -. (1)证明:1D A ∥平面1C BD ; (2)求异面直线1D A 与BD 所成的角.18.如图,正方体1111ABCD A B C D -的棱长为a ,连接AC A D A B BD BC C D '''''',,,,,,得到一个三棱锥.求:(1)三棱锥—A BC D ''的表面积与正方体表面积的比值; (2)三棱锥—A BC D ''的体积.19.在如图的几何体中,四边形ABCD 是正方形,MA ⊥平面ABCD ,PD MA ∥,点E ,G ,F 分别为棱MB ,PB ,PC 的中点,且2AD PD MA ==.求证: (1)平面EFG ∥平面PMA ; (2)平面PDC ⊥平面EFG .20.如图平行四边形ABCD 中,BD =,2AB =,4AD =,将BCD △沿BD 折起到EBD △的位置,使平面EBD ⊥平面ABD . (1)求证:AB DE ⊥;(2)求三棱锥E —ABD 的侧面积.21.如图,在正方体1111ABCD A B C D -中,E 是棱1DD 的中点. (1)求直线BE 与平面11ABB A 所成的角的正弦值;(2)在棱C 1D 1上是否存在一点F ,使1B F ∥平面1A BE ?证明你的结论.22.如图,在三棱柱111ABC A B C -中,1AA ⊥底面ABC ,90ACB ∠=︒,1AC =,12AA BC ==,点D 在侧棱1AA 上.(1)若D 为1AA 的中点,求证:1C D ⊥平面BCD ;(2)若1A D =1B C D C --的大小.第六章综合测试答案解析一、 1.【答案】D【解析】A 错误,如图1所示,由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不是棱锥,B 错误,如图2,若ABC △不是直角三角形或是直角三角形,但旋转轴不是直角边所在直线,所得的几何体都不是圆锥,C 错误,若六棱锥的所有棱长都相等,则底面多边形是正六边形,由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长,D 正确. 2.【答案】D【解析】当点Q 与点D1重合时,截面图形为等边三角形11AB D ,如图(1);当点Q 与点D 重合时,截面图形为矩形11AB C D ,如图(2);当点Q 不与点D 、1D 重合时,令Q 、R 分别为1DD 、11C D 的中点,则截面图形为等腰梯形1AQRB ,如图(3)D 是不可能的. 3.【答案】C【解析】由题意知圆柱的母线长为底面圆的直径2R ,则224R R S ⋅=,得2R S =,所以底面面积为2R S ππ=. 4.【答案】A【解析】设正四面体的棱长为 cm a ,则底面积为22 cm ,易求得高为 cm ,则体积为231934312a ⨯⨯==,解得a =,所以其表面积为)224cm 4⨯=. 5.【答案】D【解析】选项A ,B ,C 的条件都不能得到直线m ⊥平面β,而补充选项D 后,可以得到直线m ⊥平面β,理由如下:若两平面垂直,则一个平面内垂直于交线的直线垂直于另一个平面. 6.【答案】A【解析】将四面体可补形为长方体,此长方体的对角线即为球的直径,而长方体的对角线长为4=,即球的半径为2,故这个球的表面积为4216r ππ=.7.【答案】B【解析】】V 多面体1113P BCC B S -=正方形21111164133BCC B PB ⋅=⨯⨯=. 8.【答案】D【解析】在A 中,点A 与点C 一定不重合,故A 正确;在B 中,存在某个位置,使得直线AF 与直线CE 所成的角为60︒,故B 正确;在C 中,当平面ABF ⊥平面BEDF ,平面DCE ⊥平面BEDF 时,直线AF 与直线CE 垂直,故C 正确; 在D 中,直线AB 与直线CD 不可能垂直,故D 错误. 二、9.【答案】ACD【解析】若m α⊥,则a ∃,b α⊂且a b P ⋂=使得m α⊥,m b ⊥,又m n ∥,则n a ⊥,n b ⊥,由线面垂直的判定定理得n a ⊥,故A 对;若m α∥,n αβ⋂=,如图,设m AB =,平面1111A B C D 为平面α,m α∥,设平面11ADD A 为平面β,11A D n αβ==,则m n ⊥,故B 错;垂直于同一条直线的两个平面平行,故C 对;若m α⊥,m n ∥,则n a ⊥,又n β⊥,则αβ∥,故D 对. 10.【答案】BC【解析】若m α∥,n β∥且αβ∥,则可以m n ∥,m ,n 异面,或m ,n 相交,故A 错误;若m n ∥,m α⊥,则n a ⊥,又n β⊥,故α∥β,B 正确;若m n ∥,n α⊂,则m α∥或m α⊂,又αβ∥,m β⊄,故m β∥,C 正确;若m n ∥,n α⊥,则m α⊥,αβ⊥,则m β∥或m β⊂,D 错误. 11.【答案】ABC【解析】对于A ,取AD 的中点M ,连PM ,BM ,则侧面PAD 为正三角形,PM AD ∴⊥,又底面ABCD 是菱形,60DAB ∠=︒,ABD ∴△是等边三角形,AD BM ∴⊥,又PM BM M ⋂=,PM ,BM ⊂平面PMB ,AD ∴⊥平面PBM ,故A 正确,对于B ,AD ⊥平面PBM ,AD PB ∴⊥,即异面直线AD 与PB 所成的角为90︒,故B 正确,对于C ,平面PBC ⋂平面ABCD BC =,BC AD ∥,BC ∴⊥平面PBM ,BC PB ∴⊥,BC BM ⊥,PBM ∴∠是二面角P —BC —A 的平面角,设1AB =,则BM PM =,在Rt PBM △中,tan 1PMPBM RM∠==,即45PBM ∠=︒,故二面角P —BC —A 的大小为45︒,故C 正确,对于D ,因为BD 与PA 不垂直,所以BD 与平面PAC 不垂直,故D 错误. 12.【答案】BCD 【解析】C 、N 、A 共线,即CN 、PM 交于点A ,共面,因此CM 、PN 共面,A 错误; 记PAC θ∠=,则2222212cos cos 4PN AP AN AP AN AP AC AP AC θθ=+-⋅=+⋅︒-, 2222212cos cos 4CM AC AM AC AM AC AP AP AC θθ=+-⋅=+-⋅,又AP AC <, ()2222304CM PN AC AP -=->,22CM PN >,即 CM PN >,B 正确; 由于正方体中,AN BD ⊥,1BB ⊥平面ABCD ,则1BB AN ⊥,1BB BD B =,可得AN ⊥平面11BB D D ,AN ⊂平面PAN ,从而可得平面PAN ⊥平面11BDD B ,C 正确;取11C D 中点K ,连接KP ,KC ,11A C ,易知11PK AC ∥,又正方体中,11AC AC ∥,PK AC ∴∥,PK 、AC 共面,PKCA 就是过P 、A 、C 三点的正方体的截面,它是等腰梯形,D 正确. 三、13.【答案】3π【解析】设圆锥的底面半径为r ,根据题意,得22r ππ=,解得1r =,根据勾股定理,得圆锥的高为=,所以圆锥的表面积2212132S πππ=⨯⨯+⨯=,体积21133V π=⨯⨯=. 14.【答案】3【解析】如图,过点S 作SO ⊥平面ABCD ,连接OC ,则60SCO ∠=︒,sin 603SO SC ∴=︒=⋅⋅=. 15.【答案】(2)(3)【解析】a γ∥,b β∥,不可以,举出反例如下:使βγ∥,b γ⊂,a β⊂,则此时能有a γ∥,b β∥,但不一定有a b ∥; a γ∥,b β⊂,可以,由a γ∥得a 与γ没有公共点,由b β⊂,a αβ⋂=,b γ⊂知,a ,b 在面β内,且没有公共点,故平行; b β∥,a γ⊂可以,由b β∥,a αβ=知,a ,b 无公共点,再由a γ⊂,b γ⊂,可得两直线平行. 综上可知满足的条件有(2)和(3). 16.【答案】①④【解析】对于①,因为PA ⊥平面ABC ,所以PA AE ⊥,又EA AB ⊥,PA AB A ⋂=,所以EA ⊥平面PAB ,从而可得EA PB ⊥,故①正确;对于②,由于PA ⊥平面ABC ,所以平面ABC 与平面PBC 不可能垂直,故②不正确;对于③,由于在正六边形中BC AD ∥,所以BC 与EA 必有公共点,从而BC 与平面PAE 有公共点,所以直线BC 与平面PAE 不平行,故③不正确;对于④,由条件得PAD △为直角三角形,且PA AD ⊥,又2PA AB AD ==,所以45PDA ∠=︒,故④正确, 综上①④正确. 四、17.【答案】(1)证明:在正方体1111ABCD A B C D -中,11AB D C ∥,11AB D C =, ∴四边形11ABC D 是平行四边形,11AD BC ∴∥,1AD ⊄平面1C BD ,1BC ⊂平面1C BD ,1D A ∴∥平面1C BD ,(2)由(1)知,11AD BC ∥,∴异面直线1D A 与BD 所成的角即为1C BD ∠,易知1C BD △为等边三角形,160C BD ∴∠=︒,即异面直线1D A 与BD 所成的角为60︒, 18.【答案】(1)1111ABCD A B C D -是正方体,A B AC A D BC BD C D a ∴'=''='='=='=,∴三棱锥—A BC D ''的表面积为21422⨯⨯=,而正方体的表面积为26a ,故三棱锥A BC D '-' (2)三棱锥A ABD C BCD D A D C B A B C '-'--'''-''',,,是完全一样的,故 4A BC A ABD V D V V '''-=-正方体三枚维三衫维,332114323a a a a =-⨯⨯⨯=.19.【答案】(1)点E 、G 、F 分别为棱MB 、PB 、PC 的中点,EG PM GF BC ∴∥,∥,又PM ⊂平面PMA ,EG ⊄平面PMA ,EG ∴∥平面PMA , 四边形ABCD 是正方形,BC AD ∴∥,GF AD ∴∥,AD ⊂平面PMA ,GF ⊄平面PMA ,GF ∴∥平面PMA ,又EG GF G =,∴平面EFG ∥平面PMA ,(2)由已知MA ⊥平面ABCD ,PD MA ∥,PD ∴⊥平面ABCD , 又BC ⊂平面ABCD ,PD BC ∴⊥, 四边形ABCD 为正方形,BC DC ∴⊥, 又PDDC D =,BC ∴⊥平面PDC ,在PBC △中,G ,F 分别为PB ,PC 的中点,GF BC ∴∥,GF ∴⊥平面PDC ,又GF ⊂平面EFG ,∴平面PDC ⊥平面EFG .20.【答案】(1)证明:2AB =,BD =,4AD =,222AB BD AD ∴=+,AB BD ∴⊥,平面EBD ⊥平面ABD ,且平面EBD ⋂平面ABD BD =,AB ∴⊥平面EBD ,DE ⊂平面EBD ,AB DE ∴⊥,(2)由(1)知AB BD ⊥,CD AB ∥,CD BD ∴⊥,从而折叠后DE BD ⊥, 在Rt DBE △中,2DB =2DE DC AB ===,12DBE S DB DE ∴=⋅=△ 又AB ⊥平面EBD ,BE ⊂平面EBD ,AB BE ∴⊥, 4BE BC AD ===,412·ABE S AB BE ∴==△, DE BD ⊥,平面EBD ⊥平面ABD ,ED ∴⊥平面ABD , 又AD ⊂平面ABD ,ED AD ∴⊥,142ADE S AD DE ∴=⋅=△,综上,三棱锥E —ABD 的侧面积8S =+21.【答案】(1)如图(1),取1AA 的中点M ,连接EM ,BM , E 是1DD 的中点,四边形11ADD A 为正方形,EM AD ∴∥,在正方体1111-ABCD A B C D 中,AD ⊥平面11ABB A ,EM ∴⊥平面11ABB A ,从而EBM ∠为直线BE 与平面11ABB A 所成的角,设正方体1111-ABCD A B C D 的棱长为2,则2EM AD ==,3BE =, 在Rt BEM △中,2sin 3EM EBM BE ∠==, 即直线BE 与平面11ABB A 所成的角的正弦值为23.(2)在棱11C D 上存在点F ,使1B F ∥平面1A BE , 证明如下:如图(2),分别取11C D 和CD 的中点F 和G ,连接EG ,BG ,1CD ,FG ,1B F1111A D B C BC ∥∥,且11 A D BC =, ∴四边形11A BCD 为平行四边形,11D C A B ∴∥, 又E ,G 分别为D 1D ,CD 的中点,1EG D C ∴∥, 1EG A B ∴∥,1A ∴,B ,G ,E 四点共面,BG ∴⊂平面1A BE , 在正方体1AC 中,F 和G 分别为11C D 和CD 的中点, GF ∴綊1C C 綊1B B ,∴四边形1B BGF 为平行四边形, 1B F BG ∴∥,又1B F ⊄平面1A BE ,BG ⊂平面1A BE ,1B F ∴∥平面1A BE ,22.【答案】(1)证明:由已知,得1AA BC ⊥,AC BC ⊥,则BC ⊥平面11AAC C ,又1C D ⊂平面11AAC C ,则1BC C D ⊥,①因为D 为1AA 的中点,所以1AD AC ==,又AD AC ⊥,则CAD △为等腰直角三角形,所以45ADC ∠=︒,同理1145A DC ∠=︒,所以190CDC ∠=︒,即1CD C D ⊥,② 结合①②得,1C D ⊥平面BCD ,(2)作1CE C D ⊥,垂足为E ,连接BE ,如图, 因为BC ⊥平面11AAC C ,所以1BC C D ⊥,所以1C D ⊥平面BCE , 则1C D BE ⊥,所以BEC ∠为二面角1B C D C --的平面角,因为1111A D A C ==,所以1C D =在1CC D △中,12CC =,1CC 边上的高为1,则其面积为1,所以由112=得CE =,在Rt BCE △中,tan BC BEC CE ∠==,则 60BEC ∠=︒, 所以二面角1B C D C --的大小为60︒.。

(人教版B版)高中数学必修第二册第四章综合测试03(含答案)

(人教版B版)高中数学必修第二册第四章综合测试03(含答案)

第四章综合测试一、选择题(本大题共12小题,每小题5分,共60分)1.已知函数()()lg 4f x x =-的定义域为M ,函数()g x =的值域为N ,则M N 等于( ) A .MB .NC .[)0,4D .[)0,+∞2.函数||31x y =-的定义域为[]1,2-,则函数的值域为( ) A .[]2,8B .[]0,8C .[]1,8D .[]1,8-3.已知()23log f x =()1f 的值为( ) A .1B .2C .1-D .12 4.21+log 52等于( ) A .7B .10C .6D .925.若1005a =,102b =,则2a b +等于( ) A .0B .1C .2D .36.比较13.11.5、 3.12、13.12的大小关系是( ) A .113.13.13.122 1.5<< B .113.13.13.11.522<<C .11 3.13.13.11.522<<D .11 3.13.13.12 1.52<<7.()()4839log 3log 3log 2log 8++等于( ) A .56B .2512C .94D .以上都不对8.已知0ab >,下面四个等式:①()lg lg lg ab a b =+;②lg lg lg a a b b =-;③21lg lg 2a ab b ⎛⎫= ⎪⎝⎭;④()1lg log 10ab ab =其中正确的个数为( ) A .0B .1C .2D .39.函数x y a =(0a >且1a ≠)与函数()2121y a x x =---在同一个坐标系内的图像可能是( )ABCD10.抽气机每次可抽出容器内空气的60%,要使容器内的空气少于原来的0.1%,则至少要抽( ) (参考数据:120.3010g ≈) A .6次B .7次C .8次D .9次11.已知113log 2x =,1222x -=,3x 满足3331log 3x x ⎛⎫= ⎪⎝⎭,则1x ,2x ,3x 的大小关系是( )A .123x x x <<B .132x x x <<C .213x x x <<D .312x x x <<12.已知幂函数()()22421mm f x m x -+=-在()0,+∞上单调递增,函数()2x g x k =-,当[)1,2x ∈时,记()f x ,()g x 的值域分别为集合A ,B ,若A B A = ,则实数k 的取值范围是( )A .()0,1B .[)0,1C .(]0,1D .[]0,1二、填空题(本大题共4小题,每小题5分,共20分)13.若函数()f x 的反函数为()12f x x -=(0x >),则()4=f ________。

(人教版A版)高中数学必修第二册 第七章综合测试试卷02及答案

(人教版A版)高中数学必修第二册 第七章综合测试试卷02及答案

第七章综合测试一、单项选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设1234i,23i z z =-+=-其中i 为虚数单位,则12z z +在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.已知i 为虚数单位,复数122i,2i z a z =+=-,且21z z =,则实数a 的值为( )A .1B .1-C .1或1-D .1±或03.复数:满足31i z z +=-(i 为虚数单位),则复数z 对应的点的轨迹是( )A .直线B .正方形C .圆D .射线4.已知复数(12i)(23i)z =++(i 是虚数单位),则z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限5.若复数z 满足(12i)5z +=,i 为虚数单位,则z 的虚部为( )A 2i-B .2C .2-D .2i6.定义运算a b ad bc c d =-,则符合条件1142i iz z -=+(i 是虚数单位)的复数z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限7.已知复数2349i+i +i +i ++i 1+iz =L (i 是虚数单位),则复数z 在复平面内对应的点为( )A .11,22æöç÷èøB .(1,1)C .11,22æö-ç÷èøD .(1,1)-8.设z 是纯虚数,i 是虚数单位,若21iz +-是实数,则z =( )A .2i -B .1i 2-C .1i 2D .2i9.对于复数,,,a b c d ,若集合{,,,}S a b c d =具有性质“对任意,x y S Î,必有xy S Δ,则当,,,a b c d 同时满足①1a =:②21b =;③2c b =时,b c d ++=( )A .1B .1-C .0D .i10.已知i 是虚数单位,给出下列命题,其中正确的是( )A .满足i i z z -=+的复数z 对应的点的轨迹是圆B .若2,i 1m Î=-Z ,则123i i i i 0m m m m ++++++=C .复数i z a b =+(其中,a b ÎR )的虚部为iD .在复平面内,实轴上的点都表示实数,虚轴上的点都表示虚数二、多项选择题(本大题共2小题,每小题5分,共10分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分)11.已知复数z ,下列结论正确的是( )A .“0z z +=”是“z 为纯虚数”的充分不必要条件B .“0z z +=”是“z 为纯虚数”的必要不充分条件C .“z z =”是“z 为实数”的充要条件D .“z z ÎR g ”是“z 为实数”的充分不必要条件12.设()()2225322i,z t t t t t =+-+++ÎR ,i 为虚数单位,则以下结论正确的是( )A .z 对应的点在第一象限B .z 一定不为纯虚数C .z 一定不为实数D .z 对应的点在实轴的下方三、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中横线上)13.已知i 为虚数单位,若复数24(2)i()z a a a =-+-ÎR 是纯虚数,则1z +=________;z z =g ________.(本题第一空2分,第二空3分)14.如图所示,网格中的小正方形的边长是1,复平面内的点Z 对应复数z ,则复数12z i-(i 为虚数单位)的共轭复数的虚部是________.15.若34i z =-(i 为虚数单位),则z z=________.16.复数12,z z 分别对应复平面内的点12M M 、,且1212z z z z +=-,线段12M M 的中点M 对应的复数为43i +(i 为虚数单位),则2212z z +=________.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知复数z 满足13z i z =+-,i 是虚数单位,化简22(1i)(34i)2z++.18.(本小题满分12分)(1)已知m ÎR ,i 是虚数单位,复数()()2245215i z m m m m =--+--是纯虚数,求m 的值;(2)已知复数z 满足方程(2)i 0z z +-=,i 是虚数单位,求z 及|2i |z +的值.19.(本小题满分12分)(1)已知2i 1-(i 是虚数单位)是关于x 的方程10mx n +-=的根,,m n ÎR ,求+m n 的值;(2)已知2i 1-(i 是虚数单位)是关于x 的方程210x mx n ++-=的一个根,,m n ÎR ,求+m n 的值.20.(本小题满分12分)已知复数()21223(25)i,10i 15z a z a a a =+-=+--+,其中a 为实数,i 为虚数单位.(1)若复数1z 在复平面内对应的点在第三象限,求a 的取值范围;(2)若12z z +是实数(2z 是2z 的共轭复数),求1z 的值.21.(本小题满分12分)欧拉公式cos sin ix e x i x =+(e 为自然对数的底数,i 为虚数单位,x ÎR )是由瑞士著名数学家欧拉提出的,它将指数函数的定义域扩大到复数,阐述了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,根据欧拉公式:(1)判断复数2i e 在复平面内对应的点位于第几象限,并说明理由;(2)若0ix e <,求cos x 的值.22.(本小题满分12分)若,42i,sin icos z z z w q q Î+=+=-C (q 为实数),i 为虚数单位.(1)求复数z ;(2)求z w -的取值范围.第七章综合测试答案解析一、1.【答案】B【解析】1234i,23i z z =-+=-Q ,1234i 23i 1i z z \+=-++-=-+,12z z \+在复平面内对应的点坐标为(1,1)-,位于第二象限,故选B .2.【答案】C【解析】因为复数12i z a =+,22i z =-,且12z z =,所以2441a +=+,解得1a =±,故选C .3.【答案】C【解析】设i(,)z x y x y =+ÎR ,则33i 1i i x y x y ++=+-,所以2222(31)9(1)x y x y ++=+-,即224430x y x y +++=.所以复数z 对应的点的轨迹为圆.故选C .4.【答案】B【解析】(12i)(23i)47i z =++=-+Q ,z \在复平面内对应的点的坐标为(4,7)-,位于第二象限,故选B .5.【答案】C 【解析】依题意得,512i 12iz ==-+,所以z 的虚部为2-,故选C .6.【答案】D【解析】依题意得,i 42i z z +=+,42i 3i 1iz +\==-+,对应的点的坐标为(3,1)-,位于第四象限,故选D .7.【答案】A 【解析】2349i i i i i i 1i 1i ==1i 1iz +++++--+++=++L L i (1i)i 11i 1i (1i)(1i)22-==+++-,所以复数z 在复平面呢对应的点的坐标为11,22æöç÷èø.8.【答案】A【解析】z Q 为纯虚数,\设i z b =(b ÎR 且0b ¹),则2i 2(i 2)(1i)21(2)i 1i 1i (1i)(1i)22z b b b b ++++-+===++---+,又21i z +-Q 为实数,1(2)02b \+=,即2b =-,2i z \=-.9.【答案】B【解析】由题意知1,i b c =-=±.当i c =时,满足性质“对任意,x y S Î,必有xy S Δ的d 为i -;同理,当i c =-时,i d =.综上可知,0c d +=,1b c d \++=-.10.【答案】B【解析】对于A ,满足i i z z -=+的复数:对应的点的轨迹是实轴,不是圆,A 错误;对于B ,若2,i 1m Î=-Z ,则123i i i i i (1i 1i)0m m m m n ++++++=+--=,B 正确;对于C ,复数i z a b =+(其中,a b ÎR )的虚部为b ,i 是虚数单位,C 错误;对于D ,在复平面内,实轴上的点都表示实数,虚轴上的点除原点外都表示虚数,D 错误.故选B .二、11.【答案】BC【解析】对于复数z ,若0z z +=,z 不一定为纯虚数,可以为0,反之,若z 为纯虚数,则0z z +=,\“0z z +=”是“z 为纯虚数”的必要不充分条件,A 错误,B 正确;“z z =”是“z 为实数”的充要条件,C 正确;若z z ×ÎR ,z 不一定为实数,也可以为虚数,反之,若z ÎR ,则z z ×ÎR .\“z z ×ÎR ”是“z 为实数”的必要不充分条件,D 错误.故选BC .12.【答案】CD【解析】对于A ,22549492532488t t t æö+-=+--ç÷èø>,2222(1)10t t t ++=++>,所以复数z 对应的点可能在第一象限,也可能在第二象限,故A 错误;对于B ,当222530,220,t t t t ì+-=ïí++¹ïî即3t =-或12t =时,z 为纯虚数,故B 错误;对于C ,因为2220t t ++>恒成立,所以z 一定不为实数,故C 正确;对于D ,由选项A 的分析知,z 对应的点在实轴的上方,所以z 对应的点在实轴的下方,故D 正确.故选CD .三、13.16【解析】Q 复数24(2)i()z a a a =-+-ÎR 是纯虚数,240,20,a a ì-=ï\í-¹ïî解得2a =-,4i z \=-,4i z =,114i z \+=-=,z z ×.14.【答案】1-【解析】由题图可知,点Z 的坐标为(2,1),2i z \=+,2i (2i)(12i)i 12i 12i (12i)(12i)z +++\===---+,其共轭复数为i -,\其共轭复数的虚数是1-.15.【答案】34i 55+【解析】依题意得,34i 55z z ==+.16.【答案】100【解析】设O 为坐标原点,由1212z z z z +=-知,以线段12,OM OM 为邻边的平行四边形是矩形,即12M OM Ð为直角,又M 是斜边12M M 的中点,5OM ==u u u r ,所以1210M M =u u u u u u r ,所以22222121212100z z OM OM M M +=+==u u u r u u u r u u u u u u r .四、17.【答案】解:设i(,)z a b a b =+ÎR ,则由13i z z =+-13i i 0a b -++=,10,30,a b +-=\-=ïî解得4,3,a b =-ìí=î43iz \=-+22(1i)(34i)2i(724i)247i (247i)(43i)34i 22(43i)43i (43i)(43i)z ++-++++\====+-+--+.18.【答案】(1)解:由复数z 是纯虚数,可得22450,2150,m m m m ì--=ïí--¹ïî即251,53,m k m m m ì==-ïí¹¹-ïî或且解得1m =-.(2)解:由题意可得,2i 2i(1i)1+i 1i (1i)(1i)z -===++-,从而1i z =-,所以2i (1i)z +=-+.19.【答案】(1)解:由已知得(2i 1)10m n -+-=,(1)2i 0n m m \--+=,10,20,n m m --=ì\í=î解得1,0,n m =ìí=î1m n \+=.(2)解:解法一:由已知得2(2i 1)(2i 1)10m n -+-+-=,(4)(24)i 0n m m \--+-=,40,240,n m m --=ì\í-=î解得6,2,n m =ìí=î8m n \+=.解法二:2i 1-Q 是实系数方程21=0x mx n ++-的根,\12i --也是此方程的根,因此,(12)(12),(12)(12)1,i i m i i n -++--=-ìí-+--=-î解得6,2,n m =ìí=î8m n \+=.20.【答案】(1)复数1z 在复平面内对应的点在第三象限,则20,1250.a a ìï-íï-î<解得1,5,2a a ìïíïî><即52a 1<<,故实数a 的取值范围是51,2æöç÷èø.(2)解:()22310i 5z a a =+-+Q ()22310i 5z a a \=--+()()22122332(25)i 10i (25)10i 1551z z a a a a a a a a éù\+=+-+--=++---ëû-++-.12z z +Q 是实数,()225100(15)a a a a \---=¹¹且.由()225100a a ---=得22150a a +-=,解得3a =或5a =-(舍).12(25)i 1i 1z a a \=+-=-+-,1z \=.21.【答案】(1)解:位于第二象限.理由如下:2i cos 2isin 2e =+在复平面内对应的点的坐标为(cos 2,sin 2),由于22pp <,因此cos2<0,sin 20>,\点(cos 2,sin 2)在第二象限,故复数2i e 在复平面内对应的点位于第二象限。

高中数学必修2测试题附答案

高中数学必修2测试题附答案

高中数学必修2测试题附答案数学必修2一、选择题1、下列命题为真命题的是()A.平行于同一平面的两条直线平行;解析:平行于同一平面的两条直线一定平行,为真命题,选A。

2、下列命题中错误的是:()A.如果α⊥β,那么α内一定存在直线平行于平面β;解析:如果直线α垂直于平面β,则α内不存在直线平行于平面β,选A。

3、右图的正方体ABCD-A’B’C’D’中,异面直线AA’与BC所成的角是()解析:异面直线AA’与BC所成的角为直角,选D。

4、右图的正方体ABCD-A’B’C’D’中,AB二面角D’-AB-D的大小是()解析:AB二面角D’-AB-D为60度,选C。

5、直线5x-2y-10=0在x轴上的截距为a,在y轴上的截距为b,则()解析:将y=0代入5x-2y-10=0,得到x=2,即直线在x轴上的截距为2;将x=0代入5x-2y-10=0,得到y=-5,即直线在y轴上的截距为-5,选B。

6、直线2x-y=7与直线3x+2y-7=0的交点是()解析:将2x-y=7和3x+2y-7=0联立,解得交点为(3,-1),选A。

7、过点P(4,-1)且与直线3x-4y+6=0垂直的直线方程是()解析:3x-4y+6=0的斜率为3/4,与其垂直的直线斜率为-4/3,过点P(4,-1),代入点斜式方程y+1=-4/3(x-4),化简得到4x+3y-13=0,选A。

8、正方体的全面积为a,它的顶点都在球面上,则这个球的表面积是:()解析:正方体的全面积为6a,每个面积为a,每个面的对角线长为正方体的对角线长,即球的直径。

因此球的直径为正方体的对角线长,即a的开根号乘以根号3.球的表面积为4πr^2,即4π(0.5a√3)^2=3πa^2,选C。

9、圆x^2+y^2-4x-2y-5=0的圆心坐标是:()解析:将x^2-4x和y^2-2y分别配方得到(x-2)^2-4+(y-1)^2-1=0,即(x-2)^2+(y-1)^2=5,圆心坐标为(2,1),选B。

高中数学必修二综合测试题(含答案)

高中数学必修二综合测试题(含答案)

高中数学必修二综合测试题(含答案)高二数学必修二综合测试题一、选择题(本大题共12小题,每小题5分,共60分)1.下面四个命题:①分别在两个平面内的两直线是异面直线;②若两个平面平行,则其中一个平面内的任何一条直线必平行于另一个平面;③如果一个平面内的两条直线平行于另一个平面,则这两个平面平行;④如果一个平面内的任何一条直线都平行于另一个平面,则这两个平面平行.其中正确的命题是()A.①② B.②④ C.①③ D.②③2.过点P(1,3)且垂直于直线x2y3的直线方程为()A.2x y1 B.2x y5 C.x2y5D.x2y73.圆(x-1)2+y2=1的圆心到直线y=3x的距离是()A.2 B.2 C.1 D.34.已知F1,F2是椭圆x2/16+y2/9=1的左右焦点,P为椭圆上一个点,且A.2 B. C. D.5.已知空间两条不同的直线m,n和两个不同的平面α,β,则下列命题中正确的是()A.若m//α,n⊥α,则m//n B.若α∩β=m,m⊥n,则n⊥αC.若m//α,n//α,则m//n D.若m//α,m⊥β,αβ=n,则m//n6.圆x2+y2-2x+4y-20=0截直线5x-12y+c=0所得的弦长为8,则c的值是()A.10 B.10或-68 C.5或-34 D.-687.已知ab0,则直线ax+by=c通过()A.第一、二、三象限 B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限8.正方体ABCD—A1B1C1D1中,E、F分别是AA1与CC1的中点,则直线ED与D1F所成角的大小是()A.1/5 B.113° C. D.232°9.在三棱柱ABC—A1B1C1中,各棱长相等,侧面BC1C 的中心为D,则AD与平面BC1C所成角的大小是()10.将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论:①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD 成60°的角;④AB与CD所成的角是60°。

高二数学必修二测试题及答案

高二数学必修二测试题及答案

精心整理高二数学必修二测试题及答案【一】卷Ⅰ既不充 偶数 离为4.在一次跳伞训练中,甲、乙两位学员各跳一次,设命题是“甲降落在指定范围”,是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为5.若双曲线的离心率为,则其渐近线的斜率为A.否命题“若函数在上是减函数,则”是真命题B.逆否命题“若,则函数在上不是增函数”是真命题C.逆否命题“若,则函数在上是减函数”是真命题D.逆否命题“若,则函数在上是增函数”是假命题10.马云常说“便宜没好货”,他这句话的意思是:“不便宜”是“好货”的A.充分条件B.必要条件C.充分必要条件D.既不充分也不必要条件为15.已知函数,则=________.16.过抛物线的焦点作倾斜角为的直线,与抛物线分别交于、两点(在轴左侧),则.三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知z是复数,和均为实数(为虚数单位).(Ⅰ)求复数;(Ⅱ)求的模.点,(Ⅰ)已知函数在处取得极值,求的值;(Ⅱ)已知不等式对任意都成立,求实数的取值范围.21.(本小题满分12分)已知椭圆的离心率为,且椭圆上点到椭圆左焦点距离的最小值为.(Ⅰ)求的方程;(Ⅱ)设直线同时与椭圆和抛物线相切,求直线的方程.22.(本小题满分12分)又因为为实数,所以,即.┅┅┅┅┅┅┅5分(Ⅱ),所以模为┅┅┅┅┅┅┅10分18.解:(1)时,,若是的充分不必要条件,所以,,检验符合题意;┅┅┅┅┅┅┅4分(2)时,,符合题意;┅┅┅┅┅┅┅8分(3)时,,若是的充分不必要条件,所以,,检验不符合题意.综上.┅┅┅┅┅┅┅12分分分21.解:(Ⅰ)设左右焦点分别为,椭圆上点满足所以在左顶点时取到最小值,又,解得,所以的方程为.(或者利用设解出得出取到最小值,对于直接说明在左顶点时取到最小值的,酌情扣分);┅┅┅┅┅┅┅4分(Ⅱ)由题显然直线存在斜率,所以设其方程为,┅┅┅┅┅┅┅5分联立其与,得到,,化简得┅┅┅┅┅┅┅8分(Ⅱ)原函数恒过点,由(Ⅰ)可得时符合题意.┅┅┅┅┅┅┅10分当时,在增,减,所以,不符合题意.┅┅┅┅┅┅┅12分【二】一、选择题1.一个物体的位移s(米)和与时间t(秒)的关系为s?4?2t?t,则该物体在4秒末的瞬时速度是A.12米/秒B.8米/秒C.6米/秒D.8米/)2i-1z1,z2个B.猜想数列(n?N?);n(n?1)1?22?33?42C.半径为r圆的面积S??r,则单位圆的面积S??;D.由平面直角坐标系中圆的方程为(x?a)2?(y?b)2?r2,推测空间直角坐标系中球的方程为(x?a)2?(y?b)2?(z?c)2?r2.6.已知f?x???2x?1??2a?3a,若f???1??8,则f??1??xA.4B.5C.-2D.-337.若函数f?x??lnx?ax在点P?1,b?处的切线与x?3y?2?0垂直,则C.C.3个D计算A.nB.nC.nD.n?3?n12.已知可导函数f(x)(x?R)满足f¢(x)>f(x),则当a?0时,f(a)和eaf(0)大小关系为A.f(a)eaf(0)C.f(a)=eaf(0)D.f(a)≤eaf(0)232二、填空题13.若复数z=(a-2)+3i(a?R)是纯虚数,则14.f(n)=1+a+i=.1+ai111++鬃?(n?N+)23n经计算的f(2)?357,f(4)?2,f(8)?,f(16)?3,f(32)?,推测当n≥2时,有______.2221(n?N+),记f(n)?(1?a1)(1?a2)???(1?an),试通过计算测出r看作(0R 看式:述为面积114??.a?bb?ca?c2an?2an?219.已知数列{an}的前n项和Sn满足:Sn?,且an?0,n?N?.2an(1)求a1,a2,a3;(2)猜想{an}的通项公式,并用数学归纳法证明21.设函数f?x??xekx?k?0?(1)求曲线y?f?x?在点0,f?0?处的切线方程.(2)若函数f?x?在区间??1,1?内单调递增,求k的取值范围.22.已知函数f(x)=alnx+x(a为实常数).(1)若a=-2,求证:函数f(x)在(1,+?)上是增函数;(2)求函数f(x)在[1,e]上的最小值及相应的x值;:令,即25n?2111f(n)?(1?2)(1?2)???[1?]2n?223(n?1)215.f(n)?111111?(1?)(1?)(1?)(1?)???(1?)(1?)2233 n?1n?113243nn?2n?2??????...???22334n?1n?12n?216.(?R)'?4?R;球的体积函数的导数等于球的表面积函数4332三、解答题17.解由x?1?0,得抛物线与轴的交点坐标是(?1,0)和(1,0),所求图形分成两块,积a-ca-c114.+≥4得+≥a-bb-ca-bb-ca-ca11+-1,所以,a1=-1?2a119.(1)a1=S1=3,又∵an>0,所以a1=3-1.S2=a1?a2?a21??1,所以a2?5?3,2a23S3=a1?a2?a3?(2)猜想an=a31??1所以a3?7?5.2a32n-1.3-1成立.2k-1成立2k+1.2n+1-证明:1o当n=1时,由(1)知a1=2o假设n=k(k?N+)时,ak=2k+1-ak+1=Sk?1?Sk?(ak?1aa111-??1)?(k??1)=k+1+2ak+12ak?12 ak2,则当若k0,f(x)内单调法二∵f(x)在区间(-1,1)内单调递增,(x)≥0在区间(-1,1)上恒成立.∴f¢ekx+kxekx≥0,∵ekx>0,∴1+kx≥0.即1+kx≥0在区间(-1,1)上恒成立.令g(x)=1+kx,4ìg(-1)≥0??∴í解得-1≤k≤1.?g(1)≥0??当k=0时,f(x)=1.故k的取值范围是[-1,0)U(0,1].22.解:(1)当a??2时,f(x)?x2?2lnx,2(x2-1)(x)=>0.x?(1,?),f¢x故函数f(x)在(1,+?)上是增函数.)-2e21;。

人教版B版(2019)高中数学必修第二册:第六章 平面向量初步 综合测试(附答案与解析)

人教版B版(2019)高中数学必修第二册:第六章 平面向量初步 综合测试(附答案与解析)
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
第六章综合测试
一、单项选择题(本大题共 10 小题,每小题 5 分,共 50 分.在每小题给出的四个选项中,只有一项是符合 题目要求的)
1.已知平面向量 a = (−1, 2) ; b = (1,0) ,则向量 3a + b 等于( )
A. (−2,6)
C.若 a 和 b 都是单位向量,则 a = b 或 a = −b
D.零向量与任何向量都共线
uuur uuur uuur
uuur
4.在四边形 ABCD 中,设 AB = a, AD = b, BC = c ,则 DC 等于( )
D. (2, −6) uuur
D. DB
A. a − b + c
B. b − (a + c)
(1)求 3a + b − 3c 的值; (2)求满足 a = mb + nc 的实数 m,n 的值;
uuur (3)若线段 AB 的中点为 M ,线段 BC 的三等分点为 N (点 N 靠近点 B ),求 MN .
6 / 15
知识像烛光,能照亮一个人,也能照亮无数的人。--培根 22.(12 分)如图,已知河水自西向东流,流速为 v0 = 1 m / s ,设某人在静水中游泳的速度为 v1 ,在水中的
C.外心
D.内心
uuur uuur
uuur
9.已知 O, A, B 是平面内的三个点,直线 AB 上有一点 C ,满足 AB + AC = 0 ,则 OC = ( )
uur uuur A. 2OA − OB
uur uuur B. −OA + 2OB
C.
2
uur OA

高二数学必修二综合测试题(含答案)

高二数学必修二综合测试题(含答案)

高二数学必修二综合测试题班级_______________ XX___________________ 总分:________________ 一、选择题〔本大题共12小题,每小题5分,共60分〕 1.下面四个命题:①分别在两个平面内的两直线是异面直线;②若两个平面平行,则其中一个平面内的任何一条直线必平行于另一个平面; ③如果一个平面内的两条直线平行于另一个平面,则这两个平面平行; ④如果一个平面内的任何一条直线都平行于另一个平面,则这两个平面平行. 其中正确的命题是( )A .①②B .②④C .①③D .②③2.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为〔〕 A .012=-+y x B .052=-+y x C .052=-+y x D .072=+-y x 3.圆(x -1)2+y 2=1的圆心到直线y =33x 的距离是( )A .12B .32C .1 D .34.已知21F ,F 是椭圆 的左右焦点,P 为椭圆上一个点,且2:1PF :PF 21=,则21PF F cos ∠等于( )A .12B .31C .41D .225.已知空间两条不同的直线m,n 和两个不同的平面,αβ,则下列命题中正确的是( ) A .若//,,//m n m n αα⊂则B .若,,m m n n αβα⋂=⊥⊥则 C .若//,//,//m n m n αα则D .若//,,,//m m n m n αβαβ⊂=则6.圆x 2+y 2-2x +4y -20=0截直线5x -12y +c =0所得的弦长为8,则c 的值是( ) A .10 B .10或-68C .5或-34 D .-68 7.已知0,0ab bc <<,则直线ax by c +=通过〔〕 A .第一、二、三象限B .第一、二、四象限 C .第一、三、四象限D .第二、三、四象限8.正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是AA 1与CC 1的中点,则直线ED 与D 1F 所成角的大小是〔〕15y 9x 22=+Q PC'B'A'C BAA .15B .13C .12D 39. 在三棱柱111ABC A B C -中,各棱长相等,侧掕垂直于底面,点D 是侧面11BB C C 的中心,则AD 与平面11BB C C 所成角的大小是 ( ) A .30 B .45C .60 D .9010.将正方形ABCD 沿对角线BD 折成直二面角A -BD -C ,有如下四个结论:①AC ⊥BD ;②△ACD 是等边三角形;③AB 与平面BCD 成60°的角;④AB 与CD 所成的角是60°.其中正确结论的个数是〔 〕A. 1B. 2C. 3D. 411.如图:直三棱柱ABC —A 1B 1C 1的体积为V ,点P 、Q 分别在侧棱AA 1 和 CC 1上,AP=C 1Q ,则四棱锥B —APQC 的体积为( ) A .2V B .3V C .4V D .5V〔11题〕 12.如图,正方体ABCD —A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点 E 、F ,且EF =12,则下列结论错误的是( )A .AC ⊥BEB .EF ∥平面ABCD 〔12题〕C .三棱锥A —BEF 的体积为定值D .△AEF 的面积与△BEF 的面积相二、填空题〔本大题共4小题,每小题5分,共20分〕13.一个几何体的三视图与其尺寸(单位:cm)如图所示,则该几何体的侧面积为_ ______cm 214.两圆221x y +=和22(4)()25x y a ++-=相切,则实数a 的值为15.已知21F ,F 是椭圆的两个焦点,过2F 的直线交椭圆于P 、Q 两点,PQ PF 1⊥且PQ PF 1=,则椭圆的离心率为16.过点A (4,0)的直线l 与圆(x -2)2+y 2=1有公共点,则直线l 斜率的取值X 围为 三、解答题17.如图,在三棱柱ABC -A 1B 1C 1中,△ABC 与△A 1B 1C 1都为正三角形且AA 1⊥面ABC ,F 、F 1俯视图8558855第14题分别是AC ,A 1C 1的中点. 求证:(1)平面AB 1F 1∥平面C 1BF ; (2)平面AB 1F 1⊥平面ACC 1A 1.〔17题〕18.已知点),(y x P 在圆1)1(22=-+y x 上运动. 〔1〕求21--x y 的最大值与最小值;〔2〕求y x +2的最大值与最小值.19. 如图,DC ⊥平面ABC ,EB ∥DC ,AC =BC =EB =2DC =2,∠ACB =120°, P ,Q 分别为AE ,AB 的中点. 〔1〕证明:PQ ∥平面ACD ;〔2〕求AD 与平面ABE 所成角的正弦值〔19题〕20.已知圆C 1:x 2+y 2-2x -4y +m =0, 〔1〕XX 数m 的取值X 围;〔2〕若直线l :x +2y -4=0与圆C 相交于M 、N 两点,且OM ⊥ON ,求m 的值。

人教A版(2019)高中数学必修第二册第六章、第七章检测试题及参考答案

人教A版(2019)高中数学必修第二册第六章、第七章检测试题及参考答案

高中数学必修第2册第六章、第七章综合测试一、单选题(共8小题)1. 在△ABC中,角A,B,C所对边分别为a,b,c,则下列结论正确的是( )A. a2=b2+c2+2bc cos AB. a2=b2+c2+bc cos AC. a2=b2+c2-2bc cos AD. a2=b2+c2-bc cos A2. 如果将直角三角形的三边分别增加同样的长度,那么新三角形的形状是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 由增加的长度确定3. 已知复数z=-i,则复平面内对应的点Z的坐标为( )A. (0,-1)B. (-1,0)C. (0,0)D. (-1,-1)4. 设复数z1=,z2=6,则z1z2为( )A. 3iB. 3C. -3iD. 35. “复数z=(a∈R)在复平面内对应的点位于第三象限”是“a≥0”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6. 若(1+i)=1-i,则z=( )A. 1-iB. 1+iC. -iD. i7. 在四边形ABCD中,AB∥CD,AB=3DC,E为BC的中点,则等于()A. B. C. D.8. 已知三个力F1=(-2,-1),F2=(-3,2),F3=(4,-3)同时作用于某物体上一点,为使物体保持平衡,再加上一个力F4,则F4等于( )A. (-1,-2)B. (1,-2)C. (-1,2)D. (1,2)二、多选题(共4小题)9. 如图所示,四边形ABCD,CEFG,CGHD是全等的菱形,则下列结论中一定成立的是( )A. ||=||B. 与共线C. 与共线D. =10. 已知△ABC是边长为2a(a>0)的等边三角形,P为△ABC所在平面内一点,则·(+)的值可能是( )A. -2a2B. -a2C. -a2D. -a211. 下列各式中结果为零向量的是( )A. +++B. ++C. +++D. -+-12. △ABC的内角A,B,C所对的边分别为a,b,c,对于△ABC,有如下命题,其中正确的有( )A. sin(B+C)=sin AB. cos(B+C)=cos AC. 若a2+b2=c2,则△ABC为直角三角形D. 若a2+b2<c2,则△ABC为锐角三角形三、填空题(共4小题)13. 已知|a|=|b|=1,且a⊥b,若|a+b+m|≤1恒成立,则|m|的取值范围是________.14. 方程x2-2x+5的复数根为________.15. 设复数z=a+b i(a,b∈R),1≤|z|≤2,则|z+1|的取值范围是________.16. 小顾同学在用向量法研究解三角形面积问题时有如下研究成果:若=(x1,y1),=(x2,y2),则S△OAB=|x1y2-x2y1|.试用上述成果解决问题:已知A(1,1),B(2,3),C(4,5),则S△ABC=______.四、解答题(共6小题)17. 如图所示,在正方形ABCD中,E,F分别是AB,BC的中点,求证:AF⊥DE.18. 已知△ABC的三个内角A,B,C所对的边分别为a,b,c,(a+b+c)(b+c-a)=3bc.(1)求A的大小;(2)若b+c=2a=2,试判断△ABC的形状.19. 在△ABC中,已知A=15°,B=45°,c=3+,解这个三角形.20. 如图所示,四边形ABCD是矩形,点A和B对应的复数分别为-1+2i,1+i,并且|BA|∶|DA|=1∶,求点C和点D分别对应的复数.21. 设复数z=(a2+a-2)+(a2-7a+6)i,其中a∈R,当a取何值时,(1)z∈R;(2)z 是纯虚数;(3)z是零.22. 如图,E,F,G,H分别是梯形ABCD的边AB,BC,CD,DA的中点,化简下列各式:(1)++;(2)+++.参考答案1. 【答案】C【解析】由余弦定理的结构特征易知选C.2. 【答案】A【解析】设直角三角形的三条边长分别为a,b,c,且a2+b2=c2,三条边均增加同样的长度m,三边长度变为a+m,b+m,c+m,此时最长边为c+m,设该边所对角为θ,则由余弦定理,得cosθ==.因为m2>0,a+b-c>0,所以cosθ>0,所以θ为锐角,其他各角必为锐角,故新三角形是锐角三角形.3. 【答案】A【解析】由z=-i可知,复平面内对应的点Z的坐标为(0,-1).4. 【答案】A【解析】z1z2=×6=3=3i.5. 【答案】A【解析】易得z==-a-3i,则z在复平面内对应的点位于第三象限⇔a>0.又a>0⇒a≥0,a≥0D⇒/a>0,所以“a>0”是“a≥0”的充分不必要条件,即“z在复平面内对应的点位于第三象限”是“a≥0”的充分不必要条件.6. 【答案】D【解析】由(1+i)=1-i,得===-i,故z=i.7. 【答案】A【解析】=-=8. 【答案】D【解析】为使物体平衡,则合力为零,即F4=(0-(-2)-(-3)-4,0-(-1)-2-(-3))=(1,2).9. 【答案】ABD【解析】由向量相等及共线的概念,由∠EDB与∠HED不一定相等可知C选项不一定正确.10. 【答案】BCD【解析】建立如图所示的平面直角坐标系.设P(x,y),因为A(0,a),B(-a,0),C(a,0),则=(-x,a-y),=(-a-x,-y),=(a-x,-y).所以·(+)=(-x,a-y)·[(-a-x,-y)+(a-x,-y)]=(-x,a-y)·(-2x,-2y)=2x2+2y2-2ay=2x2+22-a2≥-a2,当且仅当x=0,y=a时取等.故选项B,C,D满足,故选BCD.11. 【答案】BD【解析】由向量加法的法则得A:+++=++=,故结果不为零向量;B:++=+=0,结果为零向量;C:+++=+=,结果不为零向量;D:-+-=+-(+)=-=0,结果为零向量.12. 【答案】AC【解析】依题意,在△ABC中,B+C=π-A,sin(B+C)=sin(π-A)=sin A,A正确;cos(B+C)=cos(π-A)=-cos A,B不正确;因为a2+b2=c2,则由余弦定理的推论得cos C==0,而0<C<π,即有C=,则△ABC为直角三角形,C正确;因为a2+b2<c2,则cos C=<0,而0<C<π,即有<C<π,则△ABC为钝角三角形,D不正确.13. 【答案】[-1,+1]【解析】建立平面直角坐标系(图略),设a=(1,0),b=(0,1),a+b=(1,1),m=(x,y),a+b+m=(x+1,y+1).由题意可知(x+1)2+(y+1)2≤1,|m|表示以点(-1,-1)为圆心,1为半径的圆面(包括边界)上的动点与原点连线段的长度,易知|m|的最大值为+1,最小值为-1.14. 【答案】1±2i【解析】由求根公式得x===1±2i.15. 【答案】[0,3]【解析】由复数的模及复数加减运算的几何意义可知,1≤|z|≤2表示如图所示的圆环,而|z+1|表示复数z的对应点A(a,b)与复数z1=-1的对应点B(-1,0)之间的距离,即圆环内的点到点B的距离d.由图易知当A与B重合时,d min=0,当点A与点C(2,0)重合时,d max=3,所以0≤|z+1|≤3.16. 【答案】1【解析】因为A(1,1),B(2,3),C(4,5),所以=(1,2),=(3,4),又当=(x1,y1),=(x2,y2)时,S△OAB=|x1y2-x2y1|,所以S△ABC=×|1×4-3×2|=1.17. 【答案】证明方法一设=a,=b,则|a|=|b|,a·b=0.又=+=-a+,=+=b+,所以·=·=-a2-a·b+=-|a|2+|b|2=0.故⊥,即AF⊥DE.方法二如图所示,建立平面直角坐标系,设正方形的边长为2,则A(0,0),D(0,2),E(1,0),F(2,1),则=(2,1),=(1,-2).因为·=(2,1)·(1,-2)=2-2=0.所以⊥,即AF⊥DE.18. 【答案】解(1)∵(a+b+c)(b+c-a)=3bc,∴a2=b2+c2-bc,由余弦定理得a2=b2+c2-2bc cos A,∴cos A=.∵A∈(0,π),∴A=.(2)∵在△ABC中,a2=b2+c2-2bc cos A,且a=,∴()2=b2+c2-2bc·=b2+c2-bc.①又∵b+c=2,与①联立,解得bc=3,∴∴b=c=,又∵a=,∴△ABC为等边三角形.19. 【答案】解由三角形内角和定理,得C=180°-(A+B)=180°-(15°+45°)=120°.由正弦定理,得a=====,b======+.20. 【答案】解要求出点C对应的复数,即求出向量对应的复数,结合图形并注意到=+,可以先求向量对应的复数.向量可以看成向量的长度扩大为原来的倍,并绕点B按顺时针方向旋转90°后得到,又向量对应的复数为(-1+2i)-(1+i)=-2+i,故向量对应的复数为(-2+i)··[cos(-90°)+isin(-90°)]=+2i.于是点C对应的复数为(+2i)+(1+i)=(+1)+(2+1)i.同理可得点D对应的复数是(-1)+(2+2)i.21. 【答案】解(1)z∈R,只需a2-7a+6=0,所以a=1或a=6.(2)z是纯虚数,只需所以a=-2.(3)因为z=0,所以所以a=1.22. 【答案】解(1)++=++=++=+=;(2)+++=+++=++=+=0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学必修二综合测试题班级_______________ 姓名___________________ 总分:________________一、选择题(本大题共12小题,每小题5分,共60分) 1.下面四个命题:①分别在两个平面内的两直线是异面直线;②若两个平面平行,则其中一个平面内的任何一条直线必平行于另一个平面;③如果一个平面内的两条直线平行于另一个平面,则这两个平面平行;④如果一个平面内的任何一条直线都平行于另一个平面,则这两个平面平行.其中正确的命题是( )A .①②B .②④C .①③D .②③2.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( ) A .012=-+y x B .052=-+y x C .052=-+y x D .072=+-y x3.圆(x -1)2+y 2=1的圆心到直线y =33x 的距离是( )A .12B .32 C .1 D .34.已知21F ,F 是椭圆 的左右焦点,P 为椭圆上一个点,且2:1PF :PF 21=,则21PF Fcos ∠等于( ) A .12 B .31 C .41 D .225.已知空间两条不同的直线m,n 和两个不同的平面,αβ,则下列命题中正确的是( ) A .若//,,//m n m n αα⊂则 B .若,,m m n n αβα⋂=⊥⊥则 C .若//,//,//m n m n αα则 D .若//,,,//m m n m n αβαβ⊂=则6.圆x 2+y 2-2x +4y -20=0截直线5x -12y +c =0所得的弦长为8,则c 的值是( ) A .10 B .10或-68 C .5或-34D .-687.已知0,0ab bc <<,则直线ax by c +=通过( )15y 9x 22=+QP C'B'A'CB AA .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限8.正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是AA 1与CC 1的中点,则直线ED 与D 1F 所成角的大小是( ) A .15B .13 C .12D 39. 在三棱柱111ABC A B C -中,各棱长相等,侧掕垂直于底面,点D 是侧面11BB C C 的中心,则AD 与平面11BB C C 所成角的大小是 ( )A .30B .45C .60D .9010.将正方形ABCD 沿对角线BD 折成直二面角A -BD -C ,有如下四个结论:①AC ⊥BD ;②△ACD 是等边三角形;③AB 与平面BCD 成60°的角;④AB 与CD 所成的角 是60°.其中正确结论的个数是( ) A. 1 B. 2 C. 3 D. 411.如图:直三棱柱ABC —A 1B 1C 1的体积为V ,点P 、Q 分别在侧棱AA 1 和 CC 1上,AP=C 1Q ,则四棱锥B —APQC 的体积为( ) A .2V B .3V C .4V D .5V(11题)12.如图,正方体ABCD —A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E 、F , 且EF =12,则下列结论错误的是( )A .AC ⊥BEB .EF ∥平面ABCD (12题)C .三棱锥A —BEF 的体积为定值D .△AEF 的面积与△BEF 的面积相二、填空题(本大题共4小题,每小题5分,共20分)13.一个几何体的三视图及其尺寸(单位:cm)如图所示, 则该几何体的侧面积为_ ______cm214.两圆221x y +=和22(4)()25x y a ++-=相切, 则实数a 的值为 15.已知21F ,F 是椭圆的两个焦点,过2F 的直线交椭圆于P 、Q 两点,PQ PF 1⊥且PQ PF 1=,俯视正(主) 侧(左) 8第14题则椭圆的离心率为16.过点A (4,0)的直线l 与圆(x -2)2+y 2=1有公共点,则直线l 斜率的取值范围为 三、解答题17.如图,在三棱柱ABC -A 1B 1C 1中,△ABC 与△A 1B 1C 1都为正三角形且AA 1⊥面ABC ,F 、F 1分别是AC ,A 1C 1的中点. 求证:(1)平面AB 1F 1∥平面C 1BF ; (2)平面AB 1F 1⊥平面ACC 1A 1.(17题)18.已知点),(y x P 在圆1)1(22=-+y x 上运动. (1)求21--x y 的最大值与最小值;(2)求y x +2的最大值与最小值. 19. 如图,DC ⊥平面ABC ,EB ∥DC ,AC =BC =EB =2DC =2,∠ACB =120°,P ,Q 分别为AE ,AB 的中点. (1)证明:PQ ∥平面ACD ;(2)求AD 与平面ABE 所成角的正弦值(19题)20.已知圆C 1:x 2+y 2-2x -4y +m =0, (1)求实数m 的取值范围;(2)若直线l :x +2y -4=0与圆C 相交于M 、N 两点,且OM ⊥ON ,求m 的值。

21.如图所示,边长为2的等边△PCD 所在的平面垂直于矩形 ABCD 所在的平面,BC =22,M 为BC 的中点. (1)证明:AM ⊥PM ;(2)求二面角P -AM -D 的大小.(21题) 22.如图,△ABC 中,AC =BC = AB ,ABED 是边长为1的正方形,平面ABED ⊥底面ABC ,若G ,F 分别是EC ,BD 的中点.22(1)求证:GF ∥底面ABC ; (2)求证:AC⊥平面EBC;(22题)(3)求几何体ADEBC 的体积V.高二数学必修二综合测试题参考答案一、选择题:1-5 BAACD 6-10 BCACC 11-12 BD二、填空题13 . 80 14.25±或0 15 .36- 16.⎥⎦⎤⎢⎣⎡-33,33 三、解答题17 .证明:(1)在正三棱柱ABC -A 1B 1C 1中,∵F 、F 1分别是AC 、A 1C 1的中点,∴B 1F 1∥BF ,AF 1∥C 1F.又∵B 1F 1∩AF 1=F 1,C 1F ∩BF =F , ∴平面AB 1F 1∥平面C 1BF.(2)在三棱柱ABC -A 1B 1C 1中,AA 1⊥平面A 1B 1C 1,∴B 1F 1⊥AA 1.又B 1F 1⊥A 1C 1,A 1C 1∩AA 1=A 1,∴B 1F 1⊥平面ACC 1A 1,而B 1F 1?平面AB 1F 1, ∴平面AB 1F 1⊥平面ACC 1A 1.18 .解:(1)设k x y =--21,则k 表示点),(y x P 与点(2,1)连线的斜率.当该直线与圆相切时,k 取得最大值与最小值.由1122=+k k ,解得33±=k ,∴21--x y 的最大值为33,最小值为33-. (2)设m y x =+2,则m 表示直线m y x =+2在y 轴上的截距. 当该直线与圆相切时,m取得最大值与最小值.由151=-m ,解得51±=m ,∴y x +2的最大值为51+,最小值为51-.19.(1)证明:因为P ,Q 分别为AE ,AB 的中点,所以PQ ∥EB.又DC ∥EB ,因此PQ ∥DC , 又PQ?平面ACD , 从而PQ ∥平面ACD.(2)如图,连接CQ ,DP ,因为Q 为AB 的中点,且AC =BC ,所以CQ ⊥AB.因为DC ⊥平面ABC ,EB ∥DC , 所以EB ⊥平面ABC ,因此CQ ⊥EB. 故CQ ⊥平面ABE.由(1)有PQ ∥DC ,又PQ = EB =DC ,所以四边形CQPD 为平行四边形,故DP ∥CQ ,因此DP ⊥平面ABE ,∠DAP 为AD 和平面ABE 所成的角, 在Rt △DPA 中,AD =5,DP =1,sin ∠DAP = ,因此AD 和平面ABE 所成角的正弦值为20.解:(1)配方得(x -1)2+(y -2)2=5-m ,所以5-m>0,即m<5,(2)设M(x 1,y 1)、N(x 2,y 2),∵ OM ⊥ON ,所以x 1x 2+y 1y 2=0, 由22240240x y x y x y m +-=⎧⎨+--+=⎩ 得5x 2-16x+m+8=0,因为直线与圆相交于M 、N 两点, 所以△=162-20(m+8)>0,即m<245, 所以x 1+x 2=165,x 1x 2=85m +, y 1y 2=(4-2x 1)(4-2x 2)=16-8(x 1+x 2)+4x 1x 2=4165m -, 代入解得m=58满足m<5且m<245,所以m=58.21.(1)证明:如图所示,取CD 的中点E ,连接PE ,EM ,EA , ∵△PCD 为正三角形,215555∴PE ⊥CD ,PE =PDsin ∠PDE =2sin60°= 3. ∵平面PCD ⊥平面ABCD ,∴PE ⊥平面ABCD ,而AM?平面ABCD ,∴PE ⊥AM. ∵四边形ABCD 是矩形,∴△ADE ,△ECM ,△ABM 均为直角三角形,由勾股定理可求得EM =3,AM =6,AE =3,∴EM 2+AM 2=AE 2.∴AM ⊥EM.又PE ∩EM =E ,∴AM ⊥平面PEM ,∴AM ⊥PM. (2)解:由(1)可知EM ⊥AM ,PM ⊥AM , ∴∠PME 是二面角P -AM -D 的平面角. ∴tan ∠PME =PE EM =33=1,∴∠PME =45°.∴二面角P -AM -D 的大小为45°. 22.(1)证明:连接AE ,如下图所示.∵ADEB 为正方形,∴AE ∩BD =F ,且F 是AE 的中点, 又G 是EC 的中点,∴GF ∥AC ,又AC?平面ABC ,GF?平面ABC , ∴GF ∥平面ABC.(2)证明:∵ADEB 为正方形,∴EB ⊥AB ,又∵平面ABED ⊥平面ABC ,平面ABED ∩平面ABC =AB ,EB?平面ABED ,∴BE ⊥平面ABC ,∴BE ⊥AC. 又∵AC =BC =22AB ,∴CA 2+CB 2=AB 2, ∴AC ⊥BC.又∵BC ∩BE =B ,∴AC ⊥平面BCE.(3)取AB 的中点H ,连GH ,∵BC =AC =22AB =22,∴CH ⊥AB ,且CH =12,又平面ABED ⊥平面ABC∴GH ⊥平面ABCD ,∴V =13×1×12=16.。

相关文档
最新文档