射线检测技术方法与介绍

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

盖革计数器的原理图
主要缺点:不能鉴别粒子的能量和粒子的 种类,不能进行快计数。
2.1.4 电离室
电离室即工作在饱和区的气体探测器。 由处于不同电位的电极和限定在电极之间 的气体组成,通过收集因辐射在气体中产 生的电子或离子运动而产生的电讯号来定 量测量电离辐射的探测器。
电离室的原理
受射线照射时,射线与气体中的分子作用,产生 由一个电子和一个正离子组成的离子对。
非晶硅型
碘化铯/非晶硅型
结构 碘化铯 ( CsI ) + a-Si + TFT 硫氧化钆 ( Gd2O2S ) + a-Si + TFT 原理 X射线先经荧光介质材料转换成可见光,再 由光敏元件将可见光信号转换成电信号, 最后将模拟电信号经A/D转换成数字信号。 典型企业代表:Canon和瓦里安公司
像素大小由CCD的最小体积决定,而CCD体积制 造工艺受限。
2.1.6 IP成像板
2.1.6 IP成像板
工作原理 某些物质在第一次受到光照射时,能将一 次激发光所携带的信息储存下来,当再次 受到光照射时,能发出与一次激发光所携 带信息相关的荧光,这种现象被称之为激 励发光(PSL)。 掺杂2价铕离子的氟卤化钡结晶( BaFBr:Eu2+ ),在已知的PSL物质中光激 励发光作用最强,因此被选作IP的发光材料 。
2.1.1 感光胶片
原理 利用射线照射胶片时将溴化银中的银离子 还原为银。
2.1.2 闪烁体计数器
基本原理 光子作用于荧光物质时,使荧光物质发出荧光, 利用光电倍增管将荧光转换为电脉冲,再用电子 测量仪器把它放大和记录下来。 由闪烁体和光电倍增管构成 光电倍增原理 把光子转换成电子,把微弱荧光按比例转变为电 信号。 闪烁体 NaI(加微量Tl)、CSI(加微量Tl)、ZnS(加微量Ag ) 等无机盐晶体和蒽、茋、对联三苯等有机晶体,
这些离子向周围区域自由扩散。扩散过程中,电 子和正离子可以复合重新形成中性分子。
若在构成气体探测器的收集极和高压极上加直流 的极化电压V,形成电场,那么电子和正离子就 会分别被拉向正负两极,并被收集。
随着极化电压V逐渐增加,气体探测器的工作状 态就会从复合区、饱和区、正比区、有限正比区 、盖革区(G - M区)一直变化到连续放电区。
碘化铯/非晶硅型
优点: 转换效率高 动态范围广 空间分辨率高 在低分辨率区X线吸收率高(原因是其原 子序数高于非晶硒) 环境适应性强
非晶硒型
结构 非晶硒层(amorphous Selemium,a-Se)加 薄膜半导体阵列(Thin Film Transistor array ,TFT)构成
闪烁体计数器作用
能探测各种带电粒子,还能探测各种不带 电的核辐射;不仅能探测核辐射是否存在 ,还能鉴别它们的性质和种类;不但能计 数,还能根据脉冲幅度确定辐射粒子的能 量。 多用于核物理和粒子物理实验中。
2.1.3 盖革计数器(Geiger counter)
又称盖革-米勒计数器(Geiger-Müller counter),是一种用于探测电离辐射的粒子 探测器,通常用于探测α 粒子和β 粒子。
ຫໍສະໝຸດ Baidu
原理
光导半导体直接将接收的X射线光子转换成 电荷,再由薄膜晶体管阵列将电信号读出 并数字化。 代表:岛津、AnRad、Hologic公司
非晶硒型
不足 对X线吸收率低,在低剂量条件下图像质 量不能很好的保证。 硒层对温度敏感,使用条件受限,环境 适应性差。 怕冷
CCD型
原理:间接转换探测器(通过闪烁体材料将射线 转换为可见光)。主要是信号电荷的产生、存储 、转移、检测。 生产工艺难:CCD面积难以做大,需多片才能获 得足够的尺寸,这便带来了拼接的问题,导致系 统复杂度升高可靠性降低,且接缝两面有影像偏 差。
盖革计数器构造及原理
根据射线对气体的电离性质设计成的。 盖革管两端用绝缘物质密闭并充入稀薄气体(通常 是掺加了卤素的稀有气体,如氦、氖、氩等), 盖革管轴线上安装有一根金属丝电极
在金属管壁和金属丝电极之间加上略低于管内气 体击穿电压的电压。通常状态下,管内气体不放 电。 当有高速粒子射入管内时,粒子的能量使管内气 体电离导电,在丝极与管壁之间产生迅速的气体 放电现象,从而输出一个脉冲电流信号。
盖革计数器。图中左下角的 黑色管是其探测器——盖革管
盖革计数器历史
1908年由德国物理学家汉斯· 盖革和著名的 英国物理学家卢瑟福在α粒子散射实验中, 为了探测α粒子而设计的。 1928年,盖革和学生米勒(Walther Müller) 进行了改进,使其可以用于探测所有的电 离辐射。 1947年,美国人Sidney H. Liebson在其博 士学位研究中又对盖革计数器做了进一步 改进,使得盖革管使用较低的工作电压, 并且显著延长了其使用寿命。
2.1 射线探测方法
主要内容
概述 2.1.1 感光胶片 2.1.2 闪烁体计数器 2.1.3 气体探测器--盖革计数器 2.1.4气体探测器--电离室 2.1.5 平板探测器 2.1.6 IP成像板 2.1.7 半导体探测器
概述
利用射线中的带电粒子或电磁波在物质中 所引起的原子或分子的激发或电离进行的 。 射线与物质作用的各种特性 胶片感光特性、使某些荧光物质发出荧光 的效应和使物质电离的效应等。
电离室
分为脉冲电离室和电流电离室 脉冲电离室前者可记录单个辐射粒子的 电离辐射,主要用于重带电粒子的能量 和注量或注量率的测量。 电流电离室用来记录大量辐射产生的平 均效应,用于测量X射线,γ光子束,β射 线和中子束的注量、注量率和剂量。
2.1.5 平板探测器
碘化铯/非晶硅型(间接能量转换) 非晶硒型(直接能量转换) CCD型
2.1.6 IP成像板
当掺杂2价铕离子的氟卤化钡晶体受到X线照射, 产生电离形成电子空穴对 空穴被PSL络合体俘获(空穴究竟被什么离子俘 获目前尚未完全明了),电子则被已形成的X- 空位捕获,形成亚稳态(较高能态)的荧光中心 此后,当采用特定波长的光(二次激发光)照射 该激活的、掺杂2价铕离子的氟卤化钡晶体时,F 心吸收二次激发光,将捕获的电子释放,并把能 量转移给2价铕离子(转移途经目前尚未明了), 2价铕离子向低能态跃迁发出荧光。 荧光的强弱与第一次激发的能量呈线性正相关
相关文档
最新文档