组合逻辑电路的分析与设计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章组合逻辑电路的分析和设计

[教学要求]

1.掌握逻辑代数的三种基本运算、三项基本定理、基本公式和常用公式;

2.掌握逻辑函数的公式化简法和卡诺图化简法;

3.了解最小项、最大项、约束项的概念及其在逻辑函数化简中的使用。

4.掌握组合逻辑电路的分析和设计方法;

5.了解组合电路中的竞争和冒险现象、产生原因及消除方法。

[教学内容]

1.逻辑代数的三种基本运算、三项基本定理、基本公式和常用公式

2.逻辑函数的公式化简法和卡诺图化简法

3.最小项、最大项、约束项的概念及其在逻辑函数化简中的使用

4.组合逻辑电路的分析方法

5.组合逻辑电路的设计方法

6.组合电路中的竞争和冒险现象、产生原因及消除方法

组合逻辑电路――在任何时刻,输出状态只决定于同一时刻各输入状态的组合,而和先前状态无关的逻辑电路。

组合逻辑电路具有如下特点:

(1)输出、输入之间没有反馈延迟通路;

(2)电路中不含记忆单元。

3.1 逻辑代数

逻辑代数是分析和设计逻辑电路不可缺少的数学工具。逻辑代数提供了一种方法,即使用二值函数进行逻辑运算。逻辑代数有一系列的定律和规则,用它们对数学表达式进行处理,可以完成对电路的化简、变换、分析和设计。

一、逻辑代数的基本定律和恒等式

常用逻辑代数定律和恒等式表:P90

加乘非

基本定律

结合律

交换律

分配律

反演律(摩根定律)

吸收律

其他常用恒等式

表中的基本定律是根据逻辑加、乘、非三种基本运算法则,推导出的逻辑运算的一些基本定律。对于表中所列的定律的证明,最有效的方法就是检验等式左边的函数和右边函数的真值表是否吻合。

证明:

证明如下:

二、逻辑代数的基本规则

1.代入规则:在任何一个逻辑等式中,如果将等式两边出现的某变量A ,都用一个函数

代替,则等式依然成立,这个规则称为代人规则。

例如,在B(A+C)=BA+BC中。。。,代人规则可以扩展所有基本定律的使用范围。

2.反演规则:根据摩根定律,求一个逻辑函数L的非函数时,可以将L中的和(·)换成或(+),或(+)换成和(·);再将原变量换为非变量(如A换成),非变量换为原变量;并将1换成0,0换成1;那么所得逻辑函数式就是。这个规则称为反演规则。注意,交换时要保持原式中的先后顺序,否则容易出错。

例如,求的非函数时,按照上述法则,可得

,不能写成。

运用反演规则时必须注意两点:

(1)保持原来的运算优先顺序,即如果在原函数表达式中,AB之间先运算,再和其他变量进行运算,那么非函数的表达式中,仍然是AB之间先运算。

(2)对于反变量以外的非号应保留不变。

3.对偶规则:L是一个逻辑表达式,如把L中的和(·)换成或(+),或(+)换成

和(·);1换成0,0换成1,那么就得到一个新的逻辑函数式,这就是L的对偶式,记作L。

例如,,则。变换时仍需注意保持原式中先和后或的顺序。

所谓对偶规则,是指当某个逻辑恒等式成立时,则其对偶式也成立。

利用对偶规则,可从已知公式中得到更多的运算公式。

例如,吸收律成立,则它的对偶式也是成立的。三、逻辑函数的代数变换和化简法

在第1章,曾经通过列写真值表,得到了楼梯照明灯控制的逻辑表达式,它是一个同或函数。那么,对应唯一的真值表,逻辑函数表达式和实现它的逻辑电路是不是唯一的呢?下面就讨论这个问题。

1.逻辑函数的变换

例3.1.1:函数对应的逻辑图如下图所示。利用逻辑代数的基本定律对上述表达式进行变换。

解:

结果表明,图示电路也是一个同或门。

例3.1.2:求同或函数的非函数。

解:P93

这个函数称为异或函数,它表示当两个输入变量取值相异(一个为0,另一个为1)时,输出函数值为1。

在MOS门电路中,我们已接触过异或门,上面的推导更明确地告诉我们,异或门和同或门互为非函数。所以在异或门电路的输出端再加一级反相器,也能得到同或门,如下图所示。

至此,我们已经学到了不止一种同或函数,但是同或函数的真值表却是唯一的,事实上还可以列举许多。由此可以得出结论:一个特定的逻辑问题,对应的真值表是唯一的,但实现它的电路多种多样。这给设计电路带来了方便,当我们手头缺少某种逻辑门的器件时,可以通过函数表达式的变换,避免使用这种器件而改用其他器件。这种情形在实际工作中常会遇到。

2.逻辑函数的化简

一个逻辑函数可以有多种不同的逻辑表达式,如和—或表达式、或—和表达式、和非—和非表达式、或非—或非表达式以及和—或—非表达式等。

以上五个式子是同一函数不同形式的最简表达式。以下将着重讨论和或表达式的化

简,因为和或表达式易于从真值表直接写出,且只需运用一次摩根定律就可以从最简和或表达式变换为和非一和非表达式,从而可以用和非门电路来实现。

最简和或表达式有以下两个特点:

①和项(即乘积项)的个数最少。②每个乘积项中变量的个数最少。

代数法化简逻辑函数是运用逻辑代数的基本定律和恒等式进行化简,常用下列方法:

① 并项法

② 吸收法

③ 消去法

④ 配项法

使用配项的方法要有一定的经验,否则越配越繁。通常对逻辑表达式进行化简,要综合使用上述技巧。以下再举几例。(课本P95)

例3.1.3 化简: EF B EF B A BD C A AB D A AD L ++++++= 例3.1.4

第二节 逻辑函数的卡诺图化简法

经代数法化简后得到的逻辑表达式是否是最简式较难确定。运用卡诺图法可以较简便的方法得到最简表达式。但首先需要了解最小项的概念。

一、最小项的定义及其性质

1.最小项的基本概念

由A 、B 、C 三个逻辑变量构成的许多乘积项中有八个被称为A 、B 、C 的最小项的乘积项,它们的特点是:1. 每项都只有三个因子;2. 每个变量都是它的一个因子;3. 每一变量或以原变量(A、B、C)的形式出现,或以反(非)变量(A、B、C)的形式出现,各出现一

次。一般情况下,对n个变量来说,最小项共有2n 个,如n =3时,最小项有23

=8个 2.最小项的性质

为了分析最小项的性质,以下列出3个变量的所有最小项的真值表。

由此可见,最小项具有下列性质:

(1)对于任意一个最小项,只有一组变量取值使得它的值为1,而在变量取其他各组值时,这个最小项的值都是0。

(2)不同的最小项,使它的值为1的那一组变量取值也不同。

相关文档
最新文档