《运筹学》_期末考试_试卷A_答案

合集下载

运筹学2024学年期末考试题A卷及答案

运筹学2024学年期末考试题A卷及答案

运筹学2024学年期末考试题A卷及答案一、选择题(每题5分,共25分)1. 运筹学的主要研究方法是()A. 定性分析B. 定量分析C. 定性分析与定量分析相结合D. 案例分析答案:C2. 下列哪个不是运筹学的基本分支?()A. 线性规划B. 非线性规划C. 动态规划D. 英语翻译答案:D3. 在线性规划问题中,约束条件是()A. 等式约束B. 不等式约束C. 等式与不等式约束D. 以上都对答案:D4. 下列哪个算法适用于解决非线性规划问题?()A. 单纯形法B. 拉格朗日乘数法C. 牛顿法D. 二分法答案:C5. 在库存管理中,EOQ模型适用于()A. 确定性库存系统B. 随机库存系统C. 连续库存系统D. 离散库存系统答案:A二、填空题(每题5分,共25分)6. 运筹学起源于__________战争期间。

答案:第二次世界大战7. 线性规划问题的标准形式是:max(或min)__________,s.t.__________。

答案:目标函数;约束条件8. 在非线性规划问题中,若目标函数和约束条件均为凸函数,则该问题为__________规划问题。

答案:凸规划9. 库存管理中的ABC分类法是根据__________、__________和__________三个指标进行的。

答案:重要性、价值、需求量10. 在排队论中,顾客到达和服务时间的分布通常假设为__________分布。

答案:负指数分布三、计算题(每题15分,共60分)11. 某工厂生产A、B两种产品,生产一个A产品需要2个工时和3个原材料,生产一个B产品需要1个工时和2个原材料。

工厂每周可利用的工时为120小时,原材料为150个。

A产品的利润为30元,B产品的利润为20元。

请制定生产计划,以使工厂获得最大利润。

答案:生产A产品20个,B产品50个,最大利润为1300元。

12. 某公司有两种投资方案:方案一需投资100万元,年收益率为10%;方案二需投资150万元,年收益率为12%。

运筹学期末考试题及答案

运筹学期末考试题及答案

运筹学期末考试题及答案一、单项选择题(每题2分,共20分)1. 线性规划问题的标准形式是:A. 所有变量都是非负的B. 目标函数是最大化C. 所有约束条件都是等式D. 所有变量都是正的答案:A2. 单纯形法中,如果某变量的检验数大于0,则该变量:A. 可以增加B. 可以减少C. 不能增加也不能减少D. 可以增加也可以减少答案:A3. 在对偶理论中,如果原问题的最优解是无界的,则对偶问题的:A. 无解B. 有唯一最优解C. 有无穷多解D. 无界答案:A4. 动态规划中,状态转移方程的作用是:A. 确定最优解B. 描述系统状态的变化C. 计算最优值D. 确定初始状态答案:B5. 网络流问题中,增广路径是指:A. 从源点到汇点的路径B. 从汇点到源点的路径C. 流量可以增加的路径D. 流量可以减少的路径答案:C6. 整数规划问题中,分支定界法的基本思想是:A. 将整数变量分解为两个二元变量B. 将问题分解为多个子问题C. 通过松弛变量将问题转化为线性规划问题D. 通过增加约束条件来缩小解空间答案:B7. 排队论中,M/M/1队列的平均等待时间是:A. 1/μ - λ/μ^2B. λ/μ - 1/μC. λ/μ^2 - 1/μD. 1/μ - λ/μ^2答案:A8. 敏感性分析的目的是:A. 确定最优解B. 确定最优解的稳定性C. 确定目标函数系数的变化范围D. 确定约束条件的变化范围答案:B9. 决策树分析中,期望值的计算是基于:A. 每个分支的概率B. 每个分支的收益C. 每个分支的概率和收益D. 每个分支的成本答案:C10. 博弈论中,纳什均衡是指:A. 每个玩家都有最优策略B. 每个玩家的策略都是最优的C. 没有玩家可以通过单方面改变策略来提高自己的收益D. 所有玩家的策略都是固定的答案:C二、计算题(每题10分,共30分)1. 给定线性规划问题的标准形式,求解最优解。

Max Z = 3x1 + 2x2s.t.x1 + 2x2 ≤ 102x1 + x2 ≤ 8x1, x2 ≥ 02. 使用单纯形法求解以下线性规划问题的最优解。

运筹学试卷及参考答案

运筹学试卷及参考答案

运筹学试卷及参考答案运筹学试卷一、选择题(每小题2分,共20分)1、下列哪个不是线性规划的标准形式?() A. min z = 3x1 + 2x2B. max z = -4x1 - 3x2C. s.t. 2x1 - x2 <= 1D. s.t. x1 + x2 >= 0答案:C2、以下哪个是最小生成树的Prim算法?() A. 按照权值从小到大的顺序选择顶点 B. 按照权值从大到小的顺序选择顶点 C. 按照距离从小到大的顺序选择顶点 D. 按照距离从大到小的顺序选择顶点答案:B3、下列哪个不是网络流模型的典型应用?() A. 道路交通流量优化 B. 人员部署 C. 最短路径问题 D. 生产计划答案:C4、下列哪个是最小化问题中常用的动态规划解法?() A. 自顶向下的递推求解 B. 自底向上的递推求解 C. 分治算法 D. 回溯法答案:A5、下列哪个是最大流问题的 Ford-Fulkerson 算法?() A. 增广路径的寻找采用深度优先搜索 B. 增广路径的寻找采用广度优先搜索 C. 初始流采用最大边的二分法求解 D. 初始流采用最小边的二分法求解答案:B二、简答题(每小题10分,共40分)1、请简述运筹学在现实生活中的应用。

答案:运筹学在现实生活中的应用非常广泛。

例如,线性规划可以用于生产计划、货物运输和资源配置等问题;网络流模型可以用于解决道路交通流量优化、人员部署和生产计划等问题;动态规划可以用于解决最短路径、货物存储和序列安排等问题;图论模型可以用于解决最大流、最短路径和最小生成树等问题。

此外,运筹学还可以用于医疗资源管理、金融风险管理、军事战略规划等领域。

总之,运筹学的理论和方法可以帮助人们更好地解决实际生活中的问题,提高决策的效率和准确性。

2、请简述单纯形法求解线性规划的过程。

答案:单纯形法是一种求解线性规划问题的常用方法。

它通过不断迭代和修改可行解,最终找到最优解。

具体步骤如下: (1) 将线性规划问题转化为标准形式; (2) 根据标准形式构造初始可行基,通常选取一个非基变量,使其取值为零,其余非基变量的取值均为零; (3) 根据目标函数的系数,计算出目标函数值; (4) 通过比较目标函数值和已选取的非基变量的取值,选取最优的非基变量进行迭代; (5) 在迭代过程中,不断修正基变量和非基变量的取值,直到找到最优解或确定无解为止。

《运筹学》期末考试试题及参考答案

《运筹学》期末考试试题及参考答案

《运筹学》试题参考答案一、填空题(每空2分,共10分)1、在线性规划问题中,称满足所有约束条件方程和非负限制的解为 可行解 。

2、在线性规划问题中,图解法适合用于处理 变量 为两个的线性规划问题。

3、求解不平衡的运输问题的基本思想是 设立虚供地或虚需求点,化为供求平衡的标准形式 。

4、在图论中,称 无圈的 连通图为树。

5、运输问题中求初始基本可行解的方法通常有 最小费用法 、 西北角法 两种方法。

二、(每小题5分,共10分)用图解法求解下列线性规划问题: 1)max z = 6x 1+4x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0781022122121x x x x x x x , 解:此题在“《运筹学》复习参考资料.doc ”中已有,不再重复。

2)min z =-3x 1+2x 2⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤-≤-≤+-≤+0,137210422422121212121x x x x x x x x x x 解:⑴ ⑵ ⑶ ⑷ ⑸ ⑹、⑺⑴⑵ ⑶ ⑷ ⑸、⑹可行解域为abcda ,最优解为b 点。

由方程组⎩⎨⎧==+02242221x x x 解出x 1=11,x 2=0∴X *=⎪⎪⎭⎫ ⎝⎛21x x =(11,0)T ∴min z =-3×11+2×0=-33三、(15分)某厂生产甲、乙两种产品,这两种产品均需要A 、B 、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示:A B C 甲 9 4 3 70 乙 4 6 10 1203602003001)建立使得该厂能获得最大利润的生产计划的线性规划模型;(5分)2)用单纯形法求该问题的最优解。

(10分) 解:1)建立线性规划数学模型:设甲、乙产品的生产数量应为x 1、x 2,则x 1、x 2≥0,设z 是产品售后的总利润,则max z =70x 1+120x 2s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+0300103200643604921212121x x x x x x x x , 2)用单纯形法求最优解:加入松弛变量x 3,x 4,x 5,得到等效的标准模型:max z =70x 1+120x 2+0 x 3+0 x 4+0 x 5s.t.⎪⎪⎩⎪⎪⎨⎧=≥=++=++=++5,...,2,1,03001032006436049521421321j x x x x x x x x x x j 列表计算如下:∴X *=(11,11,11,0,0)T∴max z =70×11100+120×11300=1143000四、(10分)用大M 法或对偶单纯形法求解如下线性规划模型:min z =5x 1+2x 2+4x 3⎪⎩⎪⎨⎧≥≥++≥++0,,10536423321321321x x x x x x x x x解:用大M 法,先化为等效的标准模型:max z / =-5x 1-2x 2-4x 3 s.t.⎪⎩⎪⎨⎧=≥=-++=-++5,...,2,1,010********214321j y x x x x x x x x j增加人工变量x 6、x 7,得到:max z / =-5x 1-2x 2-4x 3-M x 6-M x 7 s.t⎪⎩⎪⎨⎧=≥=+-++=+-++7,...,2,1,010*********2164321j x x x x x x x x x x x j大M 法单纯形表求解过程如下:∴x *=(32,2,0,0,0)T最优目标函数值min z =-max z / =-(-322)=322五、(15分)给定下列运输问题:(表中数据为产地A i 到销地B j 的单位运费)1)用最小费用法求初始运输方案,并写出相应的总运费;(5分) 2)用1)得到的基本可行解,继续迭代求该问题的最优解。

《运筹学》期末考试试题及参考答案

《运筹学》期末考试试题及参考答案

�� �
1
0
1 0� �
0 0�
0 1�
0
0
�� �
∴使总消耗时间为最少的分配任务方案为�
甲→C�乙→B�丙→D�丁→A 此时总消耗时间 W=9+4+11+4=28
七、�6 分�计算下图所示的网络从 A 点到 F 点的最短路线及其长度。
此题在“《运筹学参考综合习题》�我站搜集信息自编�.doc”中已有。
B1
B2
B3
B4
si
A1
1
2
3
4
10
A2
8
7
6
5
80
A3
9
10
11
9
15
dj
8
22
12
18
1�用最小费用法求初始运输方案�并写出相应的总运费��5 分� 2�用 1�得到的基本可行解�继续迭代求该问题的最优解。�10 分� 解�用“表上作业法”求解。
1�先用最小费用法�最小元素法�求此问题的初始基本可行解�
�2 x1 � 4 x2 � 22

�� �
� 2
x1 x1
� �
4 x
x
2
2 � 10 �7
� �
x1

3x2
�1
�� x1 , x 2 � 0
⑴ ⑵ ⑶ ⑷ ⑸ ⑹、⑺
解�
第 1 页 共 11 页
可行解域为 abcda�最优解为 b 点。
�2 x1 � 4 x2 � 22
由方程组 �

x2 � 0
18
60
费销
用 地
B1
B2
B3

《运筹学》-期末考试-试卷A-答案

《运筹学》-期末考试-试卷A-答案

《运筹学》-期末考试-试卷A-答案《运筹学》-期末考试-试卷A-答案《运筹学》试题样卷(⼀)题号⼀⼆三四五六七⼋九⼗总分得分⼀、判断题(共计10分,每⼩题1分,对的打√,错的打X)1.⽆孤⽴点的图⼀定是连通图。

2.对于线性规划的原问题和其对偶问题,若其中⼀个有最优解,另⼀个也⼀定有最优解。

3.如果⼀个线性规划问题有可⾏解,那么它必有最优解。

4.对偶问题的对偶问题⼀定是原问题。

5.⽤单纯形法求解标准形式(求最⼩值)的线性规划问题时,与0>jσ对应的变量都可以被选作换⼊变量。

6.若线性规划的原问题有⽆穷多个最优解时,其对偶问题也有⽆穷多个最优解。

7. 度为0的点称为悬挂点。

8. 表上作业法实质上就是求解运输问题的单纯形法。

9. ⼀个图G 是树的充分必要条件是边数最少的⽆孤⽴点的图。

10.任何线性规划问题都存在且有唯⼀的对①②③④⑤⑥⑦⑧⑨⼆、建⽴下⾯问题的线性规划模型(8分)某农场有100公顷⼟地及15000元资⾦可⽤于发展⽣产。

农场劳动⼒情况为秋冬季3500⼈⽇;春夏季4000⼈⽇。

如劳动⼒本⾝⽤不了时可外出打⼯,春秋季收⼊为25元 / ⼈⽇,秋冬季收⼊为20元 / ⼈⽇。

该农场种植三种作物:⼤⾖、⽟⽶、⼩麦,并饲养奶⽜和鸡。

种作物时不需要专门投资,⽽饲养每头奶⽜需投资800元,每只鸡投资3元。

养奶⽜时每头需拨出1.5公顷⼟地种饲料,并占⽤⼈⼯秋冬季为100⼈⽇,春夏季为50⼈⽇,年净收⼊900元 / 每头奶⽜。

养鸡时不占⽤⼟地,需⼈⼯为每只鸡秋冬季0.6⼈⽇,春夏季为0.3⼈⽇,年净收⼊2元 / 每只鸡。

农场现有鸡舍允许最多养1500只鸡,⽜栏允许最多养200头。

三种作物每年需要的⼈⼯及收⼊情况如下表所⽰:⼤⾖⽟⽶麦⼦秋冬季需⼈⽇数春夏季需⼈⽇数年净收⼊(元/公顷)20 50 300035 75 410010 40 46002x3x 4x 5x 3x 5/2 0 1/2 1 1/2 01x 5/2 1-1/2 0 -1/6 1/3 jj z c --4-4-2(1)写出原线性规划问题;(4分) (2)写出原问题的对偶问题;(3分) (3)直接由上表写出对偶问题的最优解。

运筹学考试题a卷及答案

运筹学考试题a卷及答案

运筹学期末考试题(a 卷)注意事项:1、答题前,考生务必将自己的姓名、班级填写在答题卡上。

2、答案用钢笔或圆珠笔写在答题卡上,答在试卷上不给分。

3、考试结束,将试卷和答题卡一并交回。

一、 单项选择题(每小题1分,共10分)1:在下面的数学模型中,属于线性规划模型的为( ) ⎪⎩⎪⎨⎧≥≤+=0Y ,X 3XY .t .s Y X 4S max .A ⎪⎩⎪⎨⎧≥-≥-+=0Y ,X 1Y X 2.t .s Y X 3S min .B ⎪⎩⎪⎨⎧≥≤-+=0Y ,X 2Y X .t .s Y X S max .C 22 ⎪⎩⎪⎨⎧≥≥+=0Y ,X 3Y X .t .s XY2S min.D 2.线性规划问题若有最优解,则一定可以在可行域的 ( )上达到。

A .内点 B .顶点 C .外点 D .几何点 3:在线性规划模型中,没有非负约束的变量称为 ( )A .多余变量B .松弛变量 C.自由变量 D .人工变量4:若线性规划问题的最优解同时在可行解域的两个顶点处达到,那么该线性规划问题最优解为( )A.两个B.零个C.无穷多个D.有限多个 5:原问题与对偶问题的最优( )相同。

A .解B .目标值C . 解结构D .解的分量个数 6:若原问题中i x 为自由变量,那么对偶问题中的第i 个约束一定为 ( )A .等式约束B .“≤”型约束C .“≥”约束D .无法确定7:若运输问题已求得最优解,此时所求出的检验数一定是全部( ) A .小于或等于零 B .大于零 C .小于零 D .大于或等于零 8:对于m 个发点、n 个收点的运输问题,叙述错误的是( ) A .该问题的系数矩阵有m ×n 列 B .该问题的系数矩阵有m+n 行 C .该问题的系数矩阵的秩必为m+n-1 D .该问题的最优解必唯一 9:关于动态规划问题的下列命题中错误的是( ) A 、动态规划分阶段顺序不同,则结果不同 B 、状态对决策有影响C 、动态规划中,定义状态时应保证在各个阶段中所做决策的相对独立性D 、动态规划的求解过程都可以用列表形式实现10:若P 为网络G 的一条流量增广链,则P 中所有正向弧都为G 的( ) A .对边 B .饱和边 C .邻边 D .不饱和边 二、 判断题(每小题1分,共10分)1:图解法和单纯形法虽然求解的形式不同,但从几何上理解,两者是一致的。

《运筹学》(A)参考答案.docx

《运筹学》(A)参考答案.docx

《运筹学》(A)参考答案一、不定项选择题(每小题3分,共9分)1.线性规划的标准型有特点(B D )0A、右端项非零;B、目标求最大;C、有等式或不等式约束;D、变量均非负。

2.一个线性规划问题(P)与它的对偶问题(D)有关系(BCD)。

A、(P)无可行解则(D) 一定无可行解;B、(P)、(D)均有可行解则都有最优解;C、(P)的约束均为等式,则(D)的所有变量均无非负限制;D、若(D)是(P)的对偶问题,则(P)是(D)的对偶问题。

3.关于动态规划问题的下列命题中(B )是错误的。

A、动态规划阶段的顺序与求解过程无关;B、状态是由决策确定的;C、用逆序法求解动态规划问题的重要基础之一是最优性原理;D、列表法是求解某些离散变量动态规划问题的有效方法。

二、判断题(每小题2分,共10分)1.若某种资源的影子价格等于Q在其他条件不变的情况下,当该种资源增加5个单位时,相应的目标函数值将增大5k个单位。

(X)2.如果运输问题单位运价表的某一行(或某一列)元素分别加上一个常数久最优调运方案将不会发生变化。

(V)3.运输问题是一种特殊的线性规划模型,因而求解结果也可能出现下列四种情况之一:有唯一最优解,有无穷多最优解,无界解,无可行解。

(X )4.用割平面法求解纯整数规划问题时,要求包括松弛变量在内的全部变量必须取整数值。

(V )5.如图中某点匕有若干个相邻点,与其距离最远的相邻点为耳,则边卩,刀必不包含在最小支撑树内。

(X)三(20分)、考虑下列线性规划:max z = 3xj + 5x2 + x34xj + 2X2+x3 < 14< X] + x2 + x3 < 4Xj > 0, j = 1,2,31(10分)、写出此线性规划的最优解、最优值、最优基B和它的逆沪;2(2分)、求线性规划的对偶问题的最优解;3(4分)、试求C2在什么范围内,此线性规划的最优解不变;4 (4分)、若^=14变为9,最优解及最优值是什么?解:1(10分)、写出此线性规划的最优解、最优值、最优基B和它的逆沪;标准形式:max z = 3xj + 5x2 + x34xj + 2*2 + X3 + 卩=14< X] + *2 + X3 + x5 = 4X j > 0, j = 1,2,3,4,5最优解 X' =(0,4,0,6,0)『 最优值r =20 ---------------- (1分) 最优基5 = P 2]---------------- (2分)0 1 "1 -2B~l= o ]---------------- (2 分)2(2分)、求线性规划的对偶问题的最优解; 对偶问题的最优解厂=(0,5)3(4分)、试求c?在什么范围内,此线性规划的最优解不变;(1分)(2分)要使得原最优解不变,则所有检验数非正,即 3 — c 2 W 0 <1-C 2 <0 ,解得c 2 >3--------------- (2 分)~C 2 - 04(4分)、若$=14变为9,最优解及最优值是什么?-2j9 1 4最优值r =20-四(10分)、下述线性规划问题:max z = 10“ + 24x 2 + 20x 3 + 2O.r 4 + 25x 5X] + x 2 + 2x, + 3X 4 + 5X 5 < 19 < 2x 1 + 4X 2 + 3x, + 2X 4 + x 5 < 57 ">(2分)(2分)0, j =l,2,---,5以几,力为对偶变量写出其对偶问题。

《运筹学》期末考试试卷A-答案

《运筹学》期末考试试卷A-答案

《运筹学》期末考试试卷A-答案一、选择题(每题5分,共25分)1. 运筹学是一门研究在复杂系统中进行决策的科学,以下哪个选项不属于运筹学的研究内容?A. 优化问题B. 随机过程C. 系统建模D. 心理咨询答案:D2. 在线性规划中,若一个线性规划问题的可行域是空集,则该问题称为:A. 无界问题B. 无解问题C. 无可行解问题D. 有解问题答案:C3. 线性规划问题中,目标函数和约束条件均为线性函数的是:A. 线性规划B. 非线性规划C. 动态规划D. 随机规划答案:A4. 在整数规划中,若决策变量只能取整数值,则该问题称为:A. 线性规划B. 整数规划C. 非线性规划D. 动态规划答案:B5. 在排队论中,以下哪个因素对服务效率影响最大?A. 服务速率B. 到达率C. 排队长度D. 服务时间答案:A二、填空题(每题5分,共25分)1. 运筹学的基本方法是________、________和________。

答案:模型化、最优化、计算机模拟2. 线性规划的标准形式包括________、________和________。

答案:目标函数、约束条件、非负约束3. 在非线性规划中,目标函数和约束条件至少有一个是________函数。

答案:非线性4. 动态规划适用于解决________决策问题。

答案:多阶段5. 排队论中的基本参数包括________、________和________。

答案:到达率、服务率、服务台数量三、简答题(每题10分,共30分)1. 请简要介绍线性规划的基本概念。

答案:线性规划是运筹学的一个基本分支,主要研究在一定的线性约束条件下,如何求解目标函数的最大值或最小值问题。

线性规划问题通常包括目标函数、约束条件和非负约束。

目标函数是决策者要优化的目标,约束条件是决策者需要满足的条件,非负约束要求决策变量取非负值。

2. 请简要阐述整数规划的特点。

答案:整数规划是线性规划的一种特殊情况,要求决策变量取整数值。

《运筹学》期末考试试题及参考答案

《运筹学》期末考试试题及参考答案

《运筹学》试题参考答案 一、填空题�每空2分�共10分� 1、在线性规划问题中�称满足所有约束条件方程和非负限制的解为 可行解 。

2、在线性规划问题中�图解法适合用于处理 变量 为两个的线性规划问题。

3、求解不平衡的运输问题的基本思想是 设立虚供地或虚需求点�化为供求平衡的标准形式 。

4、在图论中�称 无圈的 连通图为树。

5、运输问题中求初始基本可行解的方法通常有 最小费用法 、 西北角法 两种方法。

二、�每小题5分�共10分�用图解法求解下列线性规划问题� 1�m a x z = 6x 1+4x 2�������������0781022122121x x x x x x x � 解�此题在“《运筹学》复习参考资料.d o c ”中已有�不再重复。

2�m i n z =�3x 1+2x 2 �������������������0,137210422422121212121x x x x x x x x x x解�⑴⑵⑶ ⑷ ⑸⑹、⑺⑴⑵⑶ ⑷ ⑸、⑹可行解域为a b c d a �最优解为b 点。

由方程组������02242221xx x 解出x 1=11�x 2=0 ∴X *=��������21x x =�11�0�T∴m i n z =�3×11+2×0=�33三、�15分�某厂生产甲、乙两种产品�这两种产品均需要A 、B 、C 三种资源�每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示�ABC甲 9 4 3 70 乙 4 6 10 120 360 200 3002�用单纯形法求该问题的最优解。

�10分� 解�1�建立线性规划数学模型� 设甲、乙产品的生产数量应为x 1、x 2�则x 1、x 2≥0�设z 是产品售后的总利润�则 ma x z =70x 1+120x 2 s.t . ��������������0300103200643604921212121x x x x x x x x � 2�用单纯形法求最优解� 加入松弛变量x 3�x 4�x 5�得到等效的标准模型� ma x z =70x 1+120x 2+0 x 3+0 x 4+0 x 5 s.t . ������������������5,...,2,1,03001032006436049521421321j x x x x x x xx x x j 列表计算如下�CB XB b70 120 0θL x1 x2 x3 x4 x5 0x 3 360 94190 0 x 4 200 4 6 0 1 0 100/3 0 x 5 300 3 �10� 0 0 1 300 0 0 0 0 70 120↑ 0 0 0 0 x3 240 39/5 0 1 0 - 2/5 400/13 0 x4 20 �11/5� 0 0 1 - 3/5 100/11 120 x 2 30 3/10 1 0 0 1/10 10036 120 0 0 12 34↑ 0 0 0 �12 0 x3 1860/11 0 0 1 �39/11 19/11 70 x 1 100/11 1 0 0 5/11 - 3/11 120 x 2 300/11 0 1 0 - 3/22 2/11114300070 120 0 170/11 30/11 0 0-170/11 �30/11 ∴X *=�11100�11300�111860�0�0�T ∴m a x z =70×11100+120×11300=1143000四、�10分�用大M 法或对偶单纯形法求解如下线性规划模型� mi n z =5x 1�2x 2�4x 3 ������������0,,10536423321321321x x x x x x x x x解�用大M 法�先化为等效的标准模型� ma x z / =�5x 1�2x 2�4x 3 s.t . ���������������5,...,2,1,01053642353214321j y x x x xx x x x j 增加人工变量x 6、x 7�得到� ma x z / =�5x 1�2x 2�4x 3�M x 6�M x 7 s.t �����������������7,...,2,1,0105364237532164321j x x x x x x x x x x x j 大M 法单纯形表求解过程如下�C B X B b�5�2�400�M�MθLx1x2x3x4x5x6x7�M x64�3�12�10104/3�M x7106350�1015/3�9M�4M�7M M M�M�M9M�5↑4M�27M�4�M�M00�5x14/311/32/3�1/301/30——�M x72011�2��1�211�5-M�5/3-M�10/3-2M+5/3M2M�5/3-M0M�1/3M�2/32M�5/3↑�M�3M+5/30�5x15/311/25/60�1/601/610/3 0x410�1/2�1/21�1/2�11/22�5�5/2�25/605/60�5/601/2↑1/60�5/6�M�M+5/6�5�2x12/3101/3�11/31�1/3 x220112�1�21�322�5�2�11/311/3�1�1/3 00�1/3�1�1/3�M+1�M+1/3∴x*=�32�2�0�0�0�T最优目标函数值m i n z=�m a x z/=���322�=322五、�15分�给定下列运输问题��表中数据为产地A i到销地B j的单位运费�B1 B2 B3 B4 si A 1 A 2 A 3 1 2 3 4 8 7 6 5 9 10 11 9 10 80 15 dj 8 22 12 181�用最小费用法求初始运输方案�并写出相应的总运费��5分� 2�用1�得到的基本可行解�继续迭代求该问题的最优解。

《运筹学》 期末考试 试卷A 答案

《运筹学》 期末考试 试卷A 答案

《运筹学》试题样卷(一)一、判断题(共计10分,每小题1分,对的打√,错的打X )1. 无孤立点的图一定是连通图。

2. 对于线性规划的原问题和其对偶问题,若其中一个有最优解, 另一个也一定有最优解。

3. 如果一个线性规划问题有可行解,那么它必有最优解。

4.对偶问题的对偶问题一定是原问题。

5.用单纯形法求解标准形式(求最小值)的线性规划问题时,与0>j σ对应的变量都可以被选作换入变量。

6.若线性规划的原问题有无穷多个最优解时,其对偶问题也有无穷 多个最优解。

7. 度为0的点称为悬挂点。

8. 表上作业法实质上就是求解运输问题的单纯形法。

9. 一个图G 是树的充分必要条件是边数最少的无孤立点的图。

二、建立下面问题的线性规划模型(8分)某农场有100公顷土地及15000元资金可用于发展生产。

农场劳动力情况为秋冬季3500人日;春夏季4000人日。

如劳动力本身用不了时可外出打工,春秋季收入为25元 / 人日,秋冬季收入为20元 / 人日。

该农场种植三种作物:大豆、玉米、小麦,并饲养奶牛和鸡。

种作物时不需要专门投资,而饲养每头奶牛需投资800元,每只鸡投资3元。

养奶牛时每头需拨出1.5公顷土地种饲料,并占用人工秋冬季为100人日,春夏季为50人日,年净收入900元 / 每头奶牛。

养鸡时不占用土地,需人工为每只鸡秋冬季0.6人日,春夏季为0.3人日,年净收入2元 / 每只鸡。

农场现有鸡舍允许最多养1500只鸡,牛栏允许最多养200头。

三种作物每年需要的人工及收入情况如下表所示:试决定该农场的经营方案,使年净收入为最大。

三、已知下表为求解某目标函数为极大化线性规划问题的最终单纯形表,表中54,x x 为(1)写出原线性规划问题;(4分) (2)写出原问题的对偶问题;(3分)(3)直接由上表写出对偶问题的最优解。

(1分) 四、用单纯形法解下列线性规划问题(16分)3212max x x x Z +-=s. t. 3 x 1 + x 2 + x 3 ≤ 60 x 1- x 2 +2 x 3 ≤ 10 x 1+ x 2- x 3 ≤ 20 x 1, x 2 , x 3 ≥0五、求解下面运输问题。

运筹学期末试卷A卷答案-01-23

运筹学期末试卷A卷答案-01-23

运筹学 期末试卷(A 卷)系别: 工商管理学院 专业: 工商管理 考试日期: 年 月 日姓名: 学号: 成 绩:1.[12分]某公司正在制造两种产品:产品I 和产品II ,每天的产量分别为30个和120个,利润分别为500元/个和400元/个。

公司负责制造的副总经理希望了解是否可以通过改变这种产品的数量而提高公司的利润。

公司各个车间的加工能力和制造单位产品所需的加工工时如下表:(1) 假设生产的全部产品都能销售出去,试建立使公司获利最大的生产计划模型。

(2) 用图解法求出最优解。

P25 No72.[12分] 某超市实行24小时营业,各班次所需服务员和管理人员如下:何安排使得超市用人总数最少?(1) 建立线性规划模型(只建模不求具体解); (2) 写出基于Lindo 软件的源程序(代码)。

3.[10分]设xA ,xB 分别代表购买股票A 和股票B 的数量,f 代表投资风险指数,建立线性规划模型如下: 目标函数:Min f=8x A +3x B约束条件:投资总额120万元 投资回报至少6万购买量非负501001200000A B x x +≤,0A B x x ≥100300000B x ≥5460000A B x x +≥股票B 投资不少于30万元利用教材附带软件进行求解,结果如下:**********************最优解如下************************* 目标函数最优值为 : 62000变量 最优解 相差值 ------- -------- -------- x1 4000 0 x2 10000 0约束 松弛/剩余变量 对偶价格 ------- ------------- -------- 1 0 .057 2 0 -2.167 3 700000 0 目标函数系数范围 :变量 下限 当前值 上限 ------- -------- -------- -------- x1 3.75 8 无上限 x2 无下限 3 6.4 常数项数范围 :约束 下限 当前值 上限------- -------- -------- -------- 1 780000 1200000 1500000 2 48000 60000 102000 3 无下限 300000 1000000试回答下列问题:(1) 在这个最优解中,购买股票A 和股票B 的数量各为多少?这时投资风险是多少?(2) 上述求解结果中松弛/剩余变量的含义是什么?(3) 当目标函数系数在什么范围内变化时,最优购买计划不变?(4) 请对右端常数项范围的上、下限给予具体解释,应如何应用这些数据?(5) 当每单位股票A 的风险指数从8降为6,而每单位股票B 的风险指数从3升为5时,用百分一百法则能否断定其最优解是否发生变化?为什么? 4.[6分]设有矩阵对策},,{21A S S G =,其中,{}112345,,,,S ααααα=,{}212345,,,,S βββββ=2343564132421457346454126A --⎛⎫ ⎪- ⎪ ⎪=-- ⎪-- ⎪ ⎪⎝⎭求矩阵对策的最优纯策略(要求图示)。

运筹学期末试题及答案

运筹学期末试题及答案

运筹学期末试题及答案一、单项选择题(每题2分,共20分)1. 线性规划的最优解一定在可行域的哪个位置?A. 边界上B. 内部C. 顶点D. 不确定答案:A2. 动态规划的基本原理是什么?A. 贪心算法B. 分而治之C. 动态规划D. 回溯算法答案:B3. 整数规划问题中,变量的取值范围是?A. 连续的B. 离散的C. 整数D. 任意实数答案:C4. 以下哪个不是网络流问题?A. 最短路径问题B. 最大流问题C. 旅行商问题D. 线性规划问题答案:D5. 用单纯形法求解线性规划问题时,如果目标函数的系数矩阵是奇异的,则会出现什么情况?A. 无解B. 多解C. 无界解D. 有唯一解答案:C6. 以下哪个算法不是启发式算法?A. 遗传算法B. 模拟退火算法C. 动态规划D. 贪心算法答案:C7. 以下哪个是多目标优化问题?A. 只有一个目标函数B. 有多个目标函数C. 目标函数是线性的D. 目标函数是凸的答案:B8. 以下哪个是确定性决策方法?A. 决策树B. 随机模拟C. 蒙特卡洛方法D. 马尔可夫决策过程答案:A9. 以下哪个是排队论中的基本概念?A. 服务时间B. 到达率C. 队列长度D. 以上都是答案:D10. 以下哪个是存储论中的基本概念?A. 订货点B. 订货周期C. 订货量D. 以上都是答案:D二、多项选择题(每题3分,共15分)1. 以下哪些是线性规划问题的解?A. 可行解B. 基本解C. 基本可行解D. 非基本解答案:ABC2. 以下哪些是整数规划问题的解?A. 整数解B. 混合整数解C. 连续解D. 非整数解答案:AB3. 以下哪些是动态规划的步骤?A. 确定状态B. 确定决策C. 确定状态转移方程D. 确定目标函数答案:ABC4. 以下哪些是排队论中的基本概念?A. 到达过程B. 服务过程C. 等待时间D. 服务台数量答案:ABCD5. 以下哪些是图论中的基本概念?A. 节点B. 边C. 路径D. 环答案:ABCD三、简答题(每题5分,共20分)1. 请简述线性规划的几何意义。

《运筹学》期末考试试题及参考答案

《运筹学》期末考试试题及参考答案

《运筹学》期末考试试题及参考答案《运筹学》期末考试试题及参考答案一、填空题1、运筹学是一门新兴的_________学科,它运用_________方法,研究有关_________的一切可能答案。

2、运筹学包括的内容有_______、、、_______、和。

3、对于一个线性规划问题,如果其目标函数的最优解在某个整数约束条件的约束范围内,那么该最优解是一个_______。

二、选择题1、下列哪一项不是运筹学的研究对象?( ) A. 背包问题 B. 生产组织问题 C. 信号传输问题 D. 原子核物理学2、以下哪一个不是运筹学问题的基本特征?( ) A. 唯一性 B. 现实性 C. 有解性 D. 确定性三、解答题1、请简述运筹学在日常生活中的应用实例,并就其中一个进行详细说明。

2、某企业生产三种产品,每种产品都可以选择用手工或机器生产。

假设生产每件产品手工需要的劳动时间为3小时,机器生产为2小时,卖价均为50元。

此外,手工生产每件产品的材料消耗为10元,机器生产为6元。

已知每个工人每天工作时间为24小时,可生产10件产品,每件产品的毛利润为50元。

请用运筹学方法确定手工或机器生产的数量,以达到最大利润。

参考答案:一、填空题1、交叉学科;数学;合理利用有限资源,获得最大效益2、线性规划、整数规划、动态规划、图论与网络、排队论、对策论3、整点最优解二、选择题1、D 2. A三、解答题1、运筹学在日常生活中的应用非常广泛。

例如,在背包问题中,如何在有限容量的背包中选择最有价值的物品;在生产组织问题中,如何合理安排生产计划,以最小化生产成本或最大化生产效率;在信号传输问题中,如何设计最优的信号传输路径,以确保信号的稳定传输。

以下以背包问题为例进行详细说明。

在背包问题中,给定一组物品,每个物品都有自己的重量和价值。

现在需要从中选择若干物品放入背包中,使得背包的容量恰好被填满,同时物品的总价值最大。

这是一个典型的0-1背包问题,属于运筹学的研究范畴。

运筹学期末试题及答案

运筹学期末试题及答案

运筹学期末试题及答案一、选择题1. 运筹学是通过分析和决策来实现最佳利益的学科。

以下哪个选项最准确地描述了运筹学的定义?A. 运筹学是一门研究如何安排和管理物流的学科。

B. 运筹学是一门研究如何制定合理的销售策略的学科。

C. 运筹学是一门研究如何决策和规划资源的学科。

D. 运筹学是一门研究如何提高生产效率的学科。

答案:C2. 线性规划是一种常用于解决最优化问题的数学方法。

以下哪个选项最准确地解释了线性规划问题?A. 线性规划是一种通过建立线性方程组来寻找最小值或最大值的方法。

B. 线性规划是一种通过建立非线性方程组来寻找最小值或最大值的方法。

C. 线性规划是一种通过建立线性方程组来寻找全局最优解的方法。

D. 线性规划是一种通过建立非线性方程组来寻找局部最优解的方法。

答案:C3. 整数规划是一种特殊的线性规划问题,其中决策变量必须是整数。

以下哪个选项最准确地描述了整数规划的特点?A. 整数规划只适用于小规模问题,无法处理大规模问题。

B. 整数规划可以保证找到问题的最优整数解。

C. 整数规划只能用于决策变量为0或1的二进制问题。

D. 整数规划在求解过程中需要考虑所有可能的整数解。

答案:B4. 单纯形法是一种用于解决线性规划问题的常用算法。

以下哪个选项最准确地描述了单纯形法的特点?A. 单纯形法只能用于求解可行解存在且有限的线性规划问题。

B. 单纯形法可以保证找到线性规划问题的最优解。

C. 单纯形法在求解过程中需要考虑所有可能的解空间。

D. 单纯形法只适用于二维线性规划问题,无法处理高维问题。

答案:B5. 敏感性分析是一种用于评估线性规划模型解的稳定性和可靠性的方法。

以下哪个选项最准确地解释了敏感性分析?A. 敏感性分析是一种通过调整决策变量的值来优化线性规划模型的方法。

B. 敏感性分析是一种通过改变约束条件的值来评估线性规划模型的可行性的方法。

C. 敏感性分析是一种通过改变目标函数系数的值来评估线性规划模型解的稳定性的方法。

安徽理工大学《运筹学》2023-2024学年第一学期期末试卷及答案

安徽理工大学《运筹学》2023-2024学年第一学期期末试卷及答案

安徽理工大学《运筹学》2023-2024学年第一学期期末试卷及答案一、选择题(每题2分,共20分)1. 运筹学起源于以下哪个国家?A. 英国B. 美国C. 德国D. 法国答案:B2. 线性规划问题的标准形式中,目标函数是以下哪种类型?A. 最大化B. 最小化C. 两者均可D. 无法确定答案:C3. 在目标规划中,若目标函数为最小化,则约束条件应满足以下哪种关系?A. ≤B. ≥C. =D. 以上都对答案:D4. 对于非线性规划问题,以下哪种方法不适用于求解?A. 拉格朗日乘数法B. 牛顿法C. 柯西法D. 线性规划法答案:D5. 在运输问题中,以下哪个概念表示运输成本?A. 价值系数B. 机会成本C. 运费D. 产出系数答案:C二、填空题(每题3分,共15分)6. 线性规划问题中,若约束条件为等式,则称为__________约束。

答案:等式7. 在目标规划中,若目标函数为最大化,则约束条件应满足__________关系。

答案:≥8. 在非线性规划问题中,若目标函数为凸函数,则求解得到的极小值是__________。

答案:全局最小值9. 在运输问题中,若产地与销地的供需平衡,则称为__________问题。

答案:平衡10. 网络计划中,关键路径是指__________。

答案:完成时间最长的路径三、判断题(每题2分,共10分)11. 线性规划问题中,目标函数和约束条件必须是线性的。

()答案:错误12. 在目标规划中,目标函数可以同时包含最小化和最大化目标。

()答案:正确13. 非线性规划问题中,若目标函数为凹函数,则求解得到的极大值是全局最大值。

()答案:正确14. 在运输问题中,若产地与销地的供需不平衡,可以通过添加虚拟产地或销地来平衡。

()答案:正确15. 网络计划中,关键路径上的活动称为关键活动。

()答案:正确四、计算题(每题15分,共60分)16. 某企业生产甲、乙两种产品,生产一单位甲产品需要消耗2单位原材料,3单位劳动力,产生4单位利润;生产一单位乙产品需要消耗1单位原材料,2单位劳动力,产生3单位利润。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《运筹学》试题样卷(一)一、判断题(共计10分,每小题1分,对的打√,错的打X )1. 无孤立点的图一定是连通图。

2. 对于线性规划的原问题和其对偶问题,若其中一个有最优解, 另一个也一定有最优解。

3. 如果一个线性规划问题有可行解,那么它必有最优解。

4.对偶问题的对偶问题一定是原问题。

5.用单纯形法求解标准形式(求最小值)的线性规划问题时,与0>j σ对应的变量都可以被选作换入变量。

6.若线性规划的原问题有无穷多个最优解时,其对偶问题也有无穷 多个最优解。

7. 度为0的点称为悬挂点。

8. 表上作业法实质上就是求解运输问题的单纯形法。

9. 一个图G 是树的充分必要条件是边数最少的无孤立点的图。

二、建立下面问题的线性规划模型(8分)某农场有100公顷土地及15000元资金可用于发展生产。

农场劳动力情况为秋冬季3500人日;春夏季4000人日。

如劳动力本身用不了时可外出打工,春秋季收入为25元 / 人日,秋冬季收入为20元 / 人日。

该农场种植三种作物:大豆、玉米、小麦,并饲养奶牛和鸡。

种作物时不需要专门投资,而饲养每头奶牛需投资800元,每只鸡投资3元。

养奶牛时每头需拨出1.5公顷土地种饲料,并占用人工秋冬季为100人日,春夏季为50人日,年净收入900元 / 每头奶牛。

养鸡时不占用土地,需人工为每只鸡秋冬季0.6人日,春夏季为0.3人日,年净收入2元 / 每只鸡。

农场现有鸡舍允许最多养1500只鸡,牛栏允许最多养200头。

三种作物每年需要的人工及收入情况如下表所示:试决定该农场的经营方案,使年净收入为最大。

三、已知下表为求解某目标函数为极大化线性规划问题的最终单纯形表,表中54,x x 为(1)写出原线性规划问题;(4分) (2)写出原问题的对偶问题;(3分)(3)直接由上表写出对偶问题的最优解。

(1分) 四、用单纯形法解下列线性规划问题(16分)3212max x x x Z +-=s. t. 3 x 1 + x 2 + x 3 ≤ 60 x 1- x 2 +2 x 3 ≤ 10 x 1+ x 2- x 3 ≤ 20 x 1, x 2 , x 3 ≥0五、求解下面运输问题。

(18分)某公司从三个产地A 1、A 2、A 3 将物品运往四个销地B 1、B 2、B 3、B 4,各产地的产量、各销地的销量和各产地运往各销地每件物品的运费如表所示: 问:应如何调运,可使得总运输费最小?六、灵敏度分析(共8分)线性规划max z = 10x 1 + 6x 2 + 4x 3s.t. x 1 + x 2 + x 3 ≤ 100 10x 1 +4 x 2 + 5 x 3 ≤ 600 2x 1 +2 x 2 + 6 x 3 ≤ 300 x 1 , x 2 , x 3 ≥ 0的最优单纯形表如下:(1)C1在何围变化,最优计划不变?(4分)(2)b1在什么围变化,最优基不变?(4分)七、试建立一个动态规划模型。

(共8分)某工厂购进100台机器,准备生产p1 , p2 两种产品。

若生产产品p1 ,每台机器每年可收入45万元,损坏率为65%;若生产产品p2 ,每台机器每年可收入35万元,损坏率为35%;估计三年后将有新的机器出现,旧的机器将全部淘汰。

试问每年应如何安排生产,使在三年收入最多?八、求解对策问题。

(共10分)某种子商店希望订购一批种子。

据已往经验,种子的销售量可能为500,1000,1500或2000公斤。

假定每公斤种子的订购价为6元,销售价为9元,剩余种子的处理价为每公斤3元。

要求:(1)建立损益矩阵;(3分)(2)用悲观法决定该商店应订购的种子数。

(2分)(3)建立后悔矩阵,并用后悔值法决定商店应订购的种子数。

(5分)九、求下列网络计划图的各时间参数并找出关键问题和关键路径。

(8分)十、用标号法求V1到V6的最短路。

(6分)运筹学样卷(一)答案一、 判断题。

共计10分,每小题1分二、建线性规划模型。

共计8分(酌情扣分)解:用321,,x x x 分别表示大豆、玉米、麦子的种植公顷数;54,x x 分别表示奶牛和鸡的饲养数;76,x x 分别表示秋冬季和春夏季的劳动力(人日)数,则有 7654321252020900460041003000max x x x x x x x Z ++++++=⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=≥≤≤≤+++++≤+++++≤+≤+++)7,,2,1(0)(1500)(200)(40003.0504017550)(35006.010*******)(150003400)(1005.154754321654321544321Λj x x x x x x x x x x x x x x x x x x x x x j 鸡舍限制牛栏限制劳动力限制劳动力限制资金限制土地限制三、对偶问题。

共计8分解:(1)原线性规划问题:3211026maxx x x z +-=⎪⎩⎪⎨⎧≥≤+-≤+0,103522132122x x x x x x x ;……4分(2)原问题的对偶规划问题为:21105min y y w +=⎪⎪⎩⎪⎪⎨⎧≥≥+-≥-≥0,1022632121212y y y y y y y ; ……3分(3)对偶规划问题的最优解为:)2,4(=*Y T 。

……1分四、单纯形表求解线性规划。

共计16分 解:引入松弛变量x 4、 x 5、 x 6,标准化得,3212max x x x Z +-=s. t. 3 x 1 + x 2 + x 3+ x 4= 60x 1- x 2 +2 x 3 + x 5 = 10 x 1+ x 2- x 3 + x 6 = 0x 1, x 2 , x 3, x 4、 x 5、 x 6,≥0……………3分建初始单纯形表,进行迭代运算: ……………………… …9分由最优单纯形表可知,原线性规划的最优解为: ( 15 , 5 , 0 )T …2分最优值为: z*=25。

………2分五、求解运输问题。

共计18分 解:(1)最小元素法:(也可以用其他方法,酌情给分) 设x ij 为由A i 运往B j 的运量(i=1,2,3; j=1,2,3,4), 列表如下:……………3分 所以,基本的初始可行解为:x 14 =25; x 22=20 ; x 24 =5 ;X 31 =15; x 33 =30; x 34=5其余的x ij=0。

…………3分(2)求最优调运方案:1会求检验数,检验解的最优性:σ11=2;σ12=2;σ13=3;σ21=1;σ23=5;σ32= - 1…………3分2会求调整量进行调整:=5 …………2分…3分3再次检验 …………2分4能够写出正确结论解为:x 14=25 ; x 22 =15 ; x 24 =10 x 31 =15, x 32 =5 x 33=30其余的x ij=0。

……1分最少运费为: 535 ………1分。

六、灵敏度分析。

共计8分 (1)(4分)(2)(4分)10401=∆≤-b七、建动态规划模型。

共计8分解:(1)设阶段变量k 表示年度,因此,阶段总数n =3。

(2)状态变量sk 表示第k 年度初拥有的完好机床台数, 同时也是第 k –1 年度末时的完好机床数量。

(3)决策变量uk ,表示第k 年度中分配于生产产品 p 1 的机器台数。

于是sk – uk 便为该年度中分配于生产产品 p 1的机器台数. (4) 状态转移方程为(5)允许决策集合,在第 k 段为 ⎭⎬⎫⎩⎨⎧--≤∆≤⎭⎬⎫⎩⎨⎧--3/23/10min 6/13/2,6/13/8max 1c 155104106,54111=+≤∆+≤-=≤∆≤-c c c ⎭⎬⎫⎩⎨⎧----≤∆≤⎭⎬⎫⎩⎨⎧-∞-2100,3/23/100min 3/53/200,max 1b )(65.035.01k k k k u s u s -+=+}{)(kkkkks u u s U ≤≤=0(6)目标函数。

设gk (sk ,uk )为第k 年度的产量,则gk (sk ,uk ) = 45uk + 35(sk –uk ) ,因此,目标函数为 (7)条件最优目标函数递推方程。

令fk (sk )表示由第k 年的状态sk 出发,采取最优分配方案到第3年度结束这段时间的产品产量,根据最优化原理有以下递推关系: (8).边界条件为八、解决对策问题。

共10分(1)益损矩阵如下表所示:……3分(2)悲观法:A 1 ,订购500公斤。

……2分 (3)后悔矩阵如下表所示:……3分23……2分∑==3),(k i kk k k u s g R ))((max )(k k U u k k s u s f kk ∈=)]}(65.035.0[)](3545{[1k k k k k k k u s u f u s u -++-++0)(1313=++s f关键问题是:①→②;2→④;④→⑤;④→6;6→⑦ 关键线路是:评分标准:①能正确给各顶点标号并填表......................4分②正确写出关键问题.............. 2分③正确画出关键线路............. 2分十、用标号法求v 1 到 v 6 的最短路。

(6分)最短路为:v1,v2,v3,v4,v5,v6长度为:12正确标号:4分;正确写出结论:2分。

相关文档
最新文档