《3.3.1 几何概型》教学设计
几何概型教学设计
3.3.1 几何概型一、教材分析本节内容是新教材必修3中第三章第三节的第一课时,是新增加的知识模块,对于概率部分来说,这是一个教学难点,如何循序渐进地引入新课,由易到难地提出问题,进而顺利地解决问题,是本节课的关键。
二、学生分析高一的学生已经具备了初步的数学建模的意识,而前一节的学习使学生能够把一些实际问题转化为古典概型,并对概率的意义有了较深刻的理解,在此基础上,通过类比,观察,推断,归纳过渡到几何概型应该是水到渠成,顺理成章,能够有效地提高学生的直觉思维能力,分析问题,解决问题的能力。
三、教学目标1、 知识与技能(1)正确理解几何概型的概念;(2)掌握几何概型的概率公式:P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A ; (3)会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型;(4)能将实际问题通过数学建模后转化为几何概型,进而解决问题。
2、 过程与方法(1)发现法教学,通过师生共同探究,体会数学知识的形成,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)类比法教学,通过与古典概型的类比与对比,让学生感触到知识的层进与推陈出新,提高学生发现问题,分析问题的能力,并达到温故而知新的目的。
3、 情感态度与价值观:本节课的主要特点是生活案例多,学习时要积极探求如何构建数学模型,体会数学不是远离生活高不可攀的,更体会学习数学的重要与快乐。
四 重点与难点1、重点:几何概型的概念、公式及应用;2、难点:几何概型的应用五、学法与教学用具1、通过对本节知识的探究与学习,感知用图形解决概率问题的方法,掌握数学思想与逻辑推理的数学方法;2、教学用具:幻灯片,计算机及多媒体教学.六、教学过程1、 课堂导入:在古典概型中,成功地解决了某一类问题的概率,不过,在概率论发展的早期,人们就已经注意到只考虑那种仅有有限个等可能结果的随机试验是不够的,还必须考虑有无限多个试验结果的情况。
《3.3.1几何概型》教学设计
《3一.教材分析几何概型是人教版《一般高中课程标准实验教科书·数学(A版)》必修3第三章第三节的内容。
几何概型是概率必修章节的收尾篇,共有两个课时,本节为第一课时。
本节课是继古典概型之后学习的另一类等可能概型,是古典概型的拓广,起到了承上的作用。
在选修模块的系列2中还将连续学习概率的其他内容,因此,本课内容也起到了启下的作用。
教材第一以生活中的转盘游戏为例,对该问题进行抽象、建模转化为数学问题,总结归纳出几何概率模型的概念,并在此基础上得到几何概型的概率运算公式。
然后教材又给出一个例题,加深对概念和公式的明白得及应用。
这节内容中的例题既通俗易明白,又具有代表性,有利于教师的教和学生的学。
二.学情分析在知识上,差不多有初中学习过的统计概率作为基础,又有了学习古典概型的经历,这为学习几何概型在知识和方法上做好了预备。
在能力上,学生差不多具备了一定的形象思维和抽象思维能力,有一定的分析和解决问题的能力。
关于进入高中一个学期的学生来说,逻辑思维初步形成,不够严谨,容易对几何概型的概念明白得不清。
在古典概型向几何概型过渡的过程中,有些困难。
在探究问题和应用数学知识解决实际问题等方面进展不够均衡,有待加强。
但只要引导得当,明白得几何概型,是切实可行的。
三.教学目标知识与技能:通过实例,学生能够明白得几何概型的概念及其与古典概型的联系和区别;把握古典概型的概率公式并能解决实际问题。
过程与方法:学生通过对实际问题的抽象、建模的过程,体会数学知识的形成,能应用数学知识来解决实际问题。
情感、态度价值观:通过实际应用让学生体会到数学在现实生活中的价值增强学生学习数学的自信心,提高学习数学的爱好。
四.教学重点、难点重点:正确明白得几何概型的定义、特点;把握几何概型概率的运算公式,会用公式运算几何概率。
难点:将实际问题转化为几何概型并能从实际问题的背景中找几何度量。
五.教学策略教学顺序:情境引入→概念形成→实际应用→课堂反馈→归纳小结→布置作业。
《3.3.1几何概型》教学案
《3.3.1几何概型》教学案一、教材分析这部分是新增加的内容.介绍几何概型主要是为了更广泛地满足随机模拟的需要,但是对几何概型的要求仅限于初步体会几何概型的意义,所以教科书中选的例题都是比较简单的.随机模拟部分是本节的重点内容.几何概型是另一类等可能概型,它与古典概型的区别在于试验的结果不是有限个,利用几何概型可以很容易举出概率为0的事件不是不可能事件的例子,概率为1的事件不是必然事件的例子.利用古典概型产生的随机数是取整数值的随机数,是离散型随机变量的一个样本;利用几何概型产生的随机数是取值在一个区间的随机数,是连续型随机变量的一个样本.比如[0,1]区间上的均匀随机数,是服从[0,1]区间上均匀分布的随机变量的一个样本.随机模拟中的统计思想是用频率估计概率.本节的教学需要一些实物模型为教具,如教科书中的转盘模型、例3中的随机撒豆子的模型等.教学中应当注意让学生实际动手操作,以使学生相信模拟结果的真实性,然后再通过计算机或计算器产生均匀随机数进行模拟试验,得到模拟的结果.在这个过程中,要让学生体会结果的随机性与规律性,体会随着试验次数的增加,结果的精度会越来越高. 随机数的产生与随机模拟的教学中要充分使用信息技术,让学生亲自动手产生随机数,进行模拟活动.几何概型也是一种概率模型,它与古典概型的区别是试验的可能结果不是有限个.它的特点是在一个区域内均匀分布,所以随机事件的概率大小与随机事件所在区域的形状、位置无关,只与该区域的大小有关.如果随机事件所在区域是一个单点,由于单点的长度、面积、体积均为0,则它出现的概率为0,但它不是不可能事件;如果一个随机事件所在区域是全部区域扣除一个单点,则它出现的概率为1,但它不是必然事件.均匀分布是一种常用的连续型分布,它来源于几何概型.由于没有讲随机变量的定义,教科书中均匀分布的定义仅是描述性的,不是严格的数学定义,要求学生体会如果X 落到[0,1]区间内任何一点是等可能的,则称X 为[0, 1]区间上的均匀随机数.二、教学目标1、 知识与技能:(1)正确理解几何概型的概念;(2)掌握几何概型的概率公式:P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A ; (3)会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型;2、过程与方法:(1)发现法教学,通过师生共同探究,体会数学知识的形成,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯.3、情感态度与价值观:本节课的主要特点是随机试验多,学习时养成勤学严谨的学习习惯.三、重点难点教学重点:理解几何概型的定义、特点,会用公式计算几何概率.教学难点:等可能性的判断与几何概型和古典概型的区别.四、课时安排1课时五、教学设计(一)导入新课思路1复习古典概型的两个基本特点:(1)所有的基本事件只有有限个;(2)每个基本事件发生都是等可能的.那么对于有无限多个试验结果的情况相应的概率应如何求呢?为此我们学习几何概型,教师板书本节课题几何概型.思路2下图中有两个转盘,甲、乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜.在两种情况下分别求甲获胜的概率是多少?为解决这个问题,我们学习几何概型.思路3在概率论发展的早期,人们就已经注意到只考虑那种仅有有限个等可能结果的随机试验是不够的,还必须考虑有无限多个试验结果的情况.例如一个人到单位的时间可能是8:00至9:00之间的任何一个时刻;往一个方格中投一个石子,石子可能落在方格中的任何一点……这些试验可能出现的结果都是无限多个.这就是我们要学习的几何概型.(二)推进新课、新知探究、提出问题(1)随意抛掷一枚均匀硬币两次,求两次出现相同面的概率?(2)试验1.取一根长度为3 m 的绳子,拉直后在任意位置剪断.问剪得两段的长都不小于1 m 的概率有多大?试验2.射箭比赛的箭靶涂有五个彩色得分环.从外向内为白色,黑色,蓝色,红色,靶心是金色.金色靶心叫“黄心”.奥运会的比赛靶面直径为122 cm ,靶心直径为12.2 cm .运动员在70 m 外射箭.假设射箭都能射中靶面内任何一点都是等可能的.问射中黄心的概率为多少?(3)问题(1)(2)中的基本事件有什么特点?两事件的本质区别是什么?(4)什么是几何概型?它有什么特点?(5)如何计算几何概型的概率?有什么样的公式?(6)古典概型和几何概型有什么区别和联系?活动:学生根据问题思考讨论,回顾古典概型的特点,把问题转化为学过的知识解决,教师引导学生比较概括.讨论结果:(1)硬币落地后会出现四种结果:分别记作(正,正)、(正,反)、(反,正)、(反,反).每种结果出现的概率相等,P (正,正)=P (正,反)=P (反,正)=P (反,反)=1/4.两次出现相同面的概率为214141=+. (2)经分析,第一个试验,从每一个位置剪断都是一个基本事件,剪断位置可以是长度为3 m 的绳子上的任意一点.第二个试验中,射中靶面上每一点都是一个基本事件,这一点可以是靶面直径为122 cm 的大圆内的任意一点.在这两个问题中,基本事件有无限多个,虽然类似于古典概型的“等可能性”,但是显然不能用古典概型的方法求解.考虑第一个问题,如右图,记“剪得两段的长都不小于1 m ”为事件A .把绳子三等分,于是当剪断位置处在中间一段上时,事件A 发生.由于中间一段的长度等于绳长的31, 于是事件A 发生的概率P (A )=31. 第二个问题,如右图,记“射中黄心”为事件B ,由于中靶心随机地落在面积为41×π×1222 cm 2的大圆内,而当中靶点落在面积为41×π×12.22 cm 2的黄心内时,事件B 发生,于是事件B 发生的概率P (B )=22122412.1241⨯⨯⨯⨯ππ=0.01.(3)硬币落地后会出现四种结果(正,正)、(正,反)、(反,正)、(反,反)是等可能的,绳子从每一个位置剪断都是一个基本事件,剪断位置可以是长度为3 m 的绳子上的任意一点,也是等可能的,射中靶面内任何一点都是等可能的,但是硬币落地后只出现四种结果,是有限的;而剪断绳子的点和射中靶面的点是无限的;即一个基本事件是有限的,而另一个基本事件是无限的.(4)几何概型.对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中的每一个点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型.如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型(geometric models of probability ),简称几何概型.几何概型的基本特点:a .试验中所有可能出现的结果(基本事件)有无限多个;b .每个基本事件出现的可能性相等.(5)几何概型的概率公式:P (A )=)()(面积或体积的区域长度试验的全部结果所构成面积或体积的区域长度构成事件A . (6)古典概型和几何概型的联系是每个基本事件的发生都是等可能的;区别是古典概型的基本事件是有限的,而几何概型的基本事件是无限的,另外两种概型的概率计算公式的含义也不同.(三)应用示例思路1例1 判断下列试验中事件A 发生的概率是古典概型,还是几何概型.(1)抛掷两颗骰子,求出现两个“4点”的概率;(2)如下图所示,图中有一个转盘,甲、乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜,求甲获胜的概率.活动:学生紧紧抓住古典概型和几何概型的区别和联系,然后判断.解:(1)抛掷两颗骰子,出现的可能结果有6×6=36种,且它们都是等可能的,因此属于古典概型;(2)游戏中指针指向B区域时有无限多个结果,而且不难发现“指针落在阴影部分”,概率可以用阴影部分的面积与总面积的比来衡量,即与区域长度有关,因此属于几何概型.点评:本题考查的是几何概型与古典概型的特点,古典概型具有有限性和等可能性.而几何概型则是在试验中出现无限多个结果,且与事件的区域长度有关.例2某人午休醒来,发觉表停了,他打开收音机想听电台整点报时,求他等待的时间短于10分钟的概率.活动:学生分析,教师引导,假设他在0—60之间的任一时刻,打开收音机是等可能的,但0—60之间有无数个时刻,不能用古典概型的公式来计算随机事件发生的概率,因为他在0—60之间的任一时刻打开收音机是等可能的,所以他在哪个时间段打开收音机的概率只与该时间段的长度有关,而与该时间段的位置无关,这符合几何概型的条件,所以可用几何概型的概率计算公式计算.解:记“等待的时间小于10分钟”为事件A,打开收音机的时刻位于[50,60]时间段内则事件A发生.由几何概型的求概率公式得P(A)=(60-50)/60=1/6,即“等待报时的时间不超过10分钟”的概率为1/6.打开收音机的时刻X是随机的,可以是0—60之间的任何时刻,且是等可能的.我们称X 服从[0,60]上的均匀分布,X称为[0,60]上的均匀随机数.变式训练某路公共汽车5分钟一班准时到达某车站,求任一人在该车站等车时间少于3分钟的概率(假定车到来后每人都能上).解:可以认为人在任一时刻到站是等可能的.设上一班车离站时刻为a,则某人到站的一切可能时刻为Ω=(a,a+5),记A g={等车时间少于3分钟},则他到站的时刻只能为g=(a+2,a+5)中的任一时刻,故P (A g )=53=Ω的长度的长度g . 点评:通过实例初步体会几何概型的意义.思路2例1 某人欲从某车站乘车出差,已知该站发往各站的客车均每小时一班,求此人等车时间不多于20分钟的概率.活动:假设他在0—60分钟之间任何一个时刻到车站等车是等可能的,但在0到60分钟之间有无穷多个时刻,不能用古典概型公式计算随机事件发生的概率.可以通过几何概型的求概率公式得到事件发生的概率.因为客车每小时一班,他在0到60分钟之间任何一个时刻到站等车是等可能的,所以他在哪个时间段到站等车的概率只与该时间段的长度有关,而与该时间段的位置无关,这符合几何概型的条件.解:设A ={等待的时间不多于10分钟},我们所关心的事件A 恰好是到站等车的时刻位于[40,60]这一时间段内,因此由几何概型的概率公式,得P (A )=(60-40)/60=1/3.即此人等车时间不多于10分钟的概率为1/3.点评:在本例中,到站等车的时刻X 是随机的,可以是0到60之间的任何一刻,并且是等可能的,我们称X 服从[0,60]上的均匀分布,X 为[0,60]上的均匀随机数.变式训练在1万平方千米的海域中有40平方千米的大陆架储藏着石油,假设在海域中任意一点钻探,钻到油层面的概率是多少?分析:石油在1万平方千米的海域大陆架的分布可以看作是随机的,而40平方千米可看作构成事件的区域面积,由几何概型公式可以求得概率.解:记“钻到油层面”为事件A ,则P (A )=0.004.答:钻到油层面的概率是0.004.例2 小明家的晚报在下午5:30—6:30之间任何一个时间随机地被送到,小明一家人在下午6:00—7:00之间的任何一个时间随机地开始晚餐.则晚报在晚餐开始之前被送到的概率是多少?活动:学生读题,设法利用几何概型公式求得概率.解:建立平面直角坐标系,如右图中x =6,x =7,y =5.5,y =6.5围成一个正方形区域G .设晚餐在x (6≤x ≤7)时开始,晚报在y (5.5≤y ≤6.5)时被送到,这个结果与平面上的点(x ,y )对应.于是试验的所有可能结果就与G 中的所有点一一对应.由题意知,每一个试验结果出现的可能性是相同的,因此,试验属于几何概型.晚报在晚餐开始之前被送到,当且仅当y <x ,因此图中的阴影区域g 就表示“晚报在晚餐开始之前被送到”.容易求得g 的面积为87,G 的面积为1.由几何概型的概率公式,“晚报在晚餐开始之前被送到”的概率为P (A )=87 的面积的面积G g . 变式训练 在1升高产小麦种子中混入了一种带麦锈病的种子,从中随机取出10毫升,则取出的种子中含有麦锈病的种子的概率是多少?分析:病种子在这1升中的分布可以看作是随机的,取得的10毫升种子可视作构成事件的区域,1升种子可视作试验的所有结果构成的区域,可用“体积比”公式计算其概率.解:取出10毫升种子,其中“含有病种子”这一事件记为A ,则P (A )=0.01.所以取出的种子中含有麦锈病的种子的概率是0.01.(四)知能训练1.已知地铁列车每10 min 一班,在车站停1 min ,求乘客到达站台立即乘上车的概率. 解:由几何概型知,所求事件A 的概率为P (A )=111.2.两根相距6 m 的木杆上系一根绳子,并在绳子上挂一盏灯,求灯与两端距离都大于2 m 的概率.解:记“灯与两端距离都大于2 m ”为事件A ,则P (A )=62=31.3.在500 mL 的水中有一个草履虫,现从中随机取出2 mL 水样放到显微镜下观察,则发现草履虫的概率是( )A .0.5B .0.4C .0.004D .不能确定解析:由于取水样的随机性,所求事件A :“在取出2 mL 的水样中有草履虫”的概率等于水样的体积与总体积之比5002=0.004. 答案:C4.平面上画了一些彼此相距2a 的平行线,把一枚半径r <a 的硬币任意掷在这个平面上,求硬币不与任何一条平行线相碰的概率.解:把“硬币不与任一条平行线相碰”的事件记为事件A ,为了确定硬币的位置,由硬币中心O 向靠得最近的平行线引垂线OM ,垂足为M ,如右图所示,这样线段OM 长度(记作O M )的取值范围就是[0,a ],只有当r <OM ≤a 时硬币不与平行线相碰,所以所求事件A 的概率就是P (A )=ar a a a r -=的长度的长度],0[],(.(五)拓展提升1.约会问题两人相约8点到9点在某地会面,先到者等候另一人20分钟,过时就可离去,试求这两人能会面的概率.解:因为两人谁也没有讲好确切的时间,故样本点由两个数(甲、乙两人各自到达的时刻)组成.以8点钟作为计算时间的起点,设甲、乙各在第x 分钟和第y 分钟到达,则样本空间为Ω:{(x ,y )|0≤x ≤60,0≤y ≤60},画成图为一正方形.以x ,y 分别表示两人的到达时刻,则两人能会面的充要条件为|x -y |≤20.这是一个几何概率问题,可能的结果全体是边长为60的正方形里的点,能会面的点的区域用阴影标出(如下图).所求概率为P =95604060222=-=的面积的面积G g .2.(蒲丰(Buffon )投针问题)平面上画很多平行线,间距为a .向此平面投掷长为l (l <a )的针,求此针与任一平行线相交的概率.解:以针的任一位置为样本点,它可以由两个数决定:针的中点与最接近的平行线之间的距离x ,针与平行线的交角φ(见下图左).样本空间为Ω:{(φ,x ),0≤φ≤π,0≤x ≤a /2},为一矩形.针与平行线相交的充要条件是g :x ≤2l sinφ(见下图右).所求概率是P =的面积的面积Ωg ππφφπa l a d l 22/sin )2/(0=∙∙=⎰.注:因为概率P 可以用多次重复试验的频率来近似,由此可以得到π的近似值.方法是重复投针N 次,(或一次投针若干枚,总计N 枚),统计与平行线相交的次数n ,则P ≈n /N .又因a 与l 都可精确测量,故从2l /aπ≈n /N ,可解得π≈2lN /an .历史上有不少人做过这个试验.做得最好的一位投掷了3 408次,算得π≈3.141 592 9,其精确度已经达到小数点后第六位.设计一个随机试验,通过大量重复试验得到某种结果,以确定我们感兴趣的某个量,由此而发展的蒙特卡洛(Monte -Carlo )方法为这种计算提供了一种途径.(六)课堂小结几何概型是区别于古典概型的又一概率模型,使用几何概型的概率计算公式时,一定要注意其适用条件:每个事件发生的概率只与构成该事件区域的长度成比例.(七)作业课本习题3.3A 组1、2、3.。
教学设计6:3.3.1 几何概型
3.3.1几何概型[课标解读]1.理解几何概型的定义及特点.(重点)2.掌握几何概型的计算方法和求解步骤,准确地把实际问题转化为几何概型问题.(难点)3.与长度、角度有关的几何概型问题.(易混点)知识点几何概型[提出问题]每逢节假日,各大型商场竞相出招,吸引顾客,其中某商场设立了一个可以自由转动的转盘,规定顾客消费100元以上,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准①、②或③区域,顾客就可以分别获得100元、50元、20元的购物券(转盘被等分成20个扇形),一位顾客消费了120元.问题1:这位顾客获得100元购物券的概率与什么因素有关?提示:与标注①的小扇形个数多少(面积大小)有关.问题2:在该实例试验中,试验结果有多少个?其发生的概率相等吗?提示:试验结果有无穷多个,但每个试验结果发生的概率相等.问题3:如可计算该顾客获得100元购物券的概率?提示:用标注①的扇形面积除以圆的面积.[导入新知]1.几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.2.几何概型的特点(1)试验中所有可能出现的结果(基本事件)有无限多个.(2)每个基本事件出现的可能性相等.3.几何概型概率公式在几何概型中,事件A的概率的计算公式为:P(A)=构成事件A的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).[化解疑难]理解几何概型应关注三点(1)几何概型中,每个基本事件在一个区域内均匀分布,所以随机事件概率的大小与随机事件所在区域的形状、位置无关,只与区域的大小有关.(2)如果随机事件所在区域是一个单点,由于单点的长度、面积、体积均为0,则它出现的概率为0,但不是不可能事件.(3)如果一个随机事件所在的区域是全部区域扣除一个单点,则它出现的概率为1,但不是必然事件.题型一与长度有关的几何概型[例1] (1)在区间[-1,2]上随机取一个数x ,则|x |≤1的概率为________.【解析】∵区间[-1,2]的长度为3,由|x |≤1得x ∈[-1,1],而区间[-1,1]的长度为2,x 取每个值为随机的,∴在[-1,2]上取一个数x ,|x |≤1的概率P =23.【答案】23(2)某汽车站每隔15 min 有一辆汽车到达,乘客到达车站的时刻是任意的,求一位乘客到达车站后等车时间超过10 min 的概率.解 设上一辆车于时刻T 1到达,而下一辆车于时刻T 2到达,则线段T 1T 2的长度为15,设T 是线段T 1T 2上的点,且T 1T =5,T 2T =10,如图所示.记“等车时间超过10 min”为事件A ,则当乘客到达车站的时刻t 落在线段T 1T 上(不含端点)时,事件A 发生.∴P (A )=T 1T 的长度T 1T 2的长度=515=13,即该乘客等车时间超过10 min 的概率是13.[类题通法]1.几何概型概率问题的一般步骤(1)选择适当的观察角度(一定要注意观察角度的等可能性); (2)把基本事件转化为与之对应的区域D ; (3)把所求随机事件A 转化为与之对应的区域I ; (4)利用概率公式计算.2.与长度有关的几何概型问题的计算公式如果试验的结果构成的区域的几何度量可用长度表示,则其概率的计算公式为: P (A )=构成事件A 的区域长度试验的全部结果所构成的区域长度.[活学活用]一个路口的红灯亮的时间为30秒,黄灯亮的时间为5秒,绿灯亮的时间为40秒,当你到达路口时,看见下列三种情况的概率各是多少?(1)红灯亮; (2)黄灯亮;(3)不是红灯亮.解 在75秒内,每一时刻到达路口亮灯的时间是等可能的,属于几何概型.(1)P =红灯亮的时间全部时间=3030+40+5=25.(2)P =黄灯亮的时间全部时间=575=115.(3)P =不是红灯亮的时间全部时间=黄灯亮或绿灯亮的时间全部时间=4575=35,或P =1-P (红灯亮)=1-25=35.题型二与面积有关的几何概型[例2] (1)有四个游戏盘,如果撒一粒黄豆落在阴影部分,则可中奖,小明希望中奖,他应 当选择的游戏盘为( )(2)ABCD 为长方形,AB =2,BC =1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( )A .π4B .1-π4C .π8D .1-π8【解析】(1)根据几何概型的面积比,A 中中奖概率为38,B 游戏盘的中奖概率为13,C 游戏盘的中奖概率为(2r )2-πr 2(2r )2=4-π4,D 游戏盘的中奖概率为r 2πr 2=1π,故A 游戏盘的中奖概率最大.(2)长方形面积为2,以O 为圆心,1为半径作圆,在矩形内部的部分(半圆)面积为π2,因此取到的点到O 的距离小于1的概率为π2÷2=π4,取到的点到O 的距离大于1的概率为1-π4.【答案】(1)A (2)B[类题通法]1.与面积有关的几何概型的概率公式如果试验的结果所构成的区域的几何度量可用面积表示,则其概率的计算公式为:试验的全部结果所构成的区域面积2.解与面积相关的几何概型问题的三个关键点(1)根据题意确认是否是与面积有关的几何概型问题;(2)找出或构造出随机事件对应的几何图形,利用图形的几何特征计算相关面积; (3)套用公式,从而求得随机事件的概率. [活学活用]在平面直角坐标系xOy 中,设M 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向M 中随机投一点,则所投的点落入E 中的概率是________.【解析】如图,区域M 表示边长为4的正方形ABCD 的内部(含边界),区域E 表示单位圆及其内部,因此P =π×124×4=π16.【答案】π16题型三与角度有关的几何概率[例3] 在等腰直角三角形ABC 中,过直角顶点C 在∠ACB 内部任意作一条射线CM ,与线段AB 交于点M .求AM <AC 的概率.解 如图,在AB 上取AC ′=AC ,连接CC ′,则∠ACC ′=180°-45°2=67.5°.设A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫在∠ACB 内部任意作一条射线CM ,与线段AB 交于点M ,AM <AC ,则所有可能结果的区域角度为90°,事件A 的区域角度为67.5°,∴P (A )=67.5°90°=34.[类题通法]与角度有关的几何概型概率的求法(1)如果试验的所有结果构成的区域的几何度量可用角度表示,则其概率的计算公式为试验的全部结果构成的区域角度(2)解决此类问题的关键是事件A 在区域角度内是均匀的,进而判定事件的发生是等可能的. [活学活用]如图,在平面直角坐标系中,射线OT 为60°角的终边,在任意角集合中任取一个角,则该角终边落在∠xOT 内的概率是( )A.16B.23C.13D.160【解析】如图,∵在任意角集合中任取一个角,则该角终边落在∠xOT 内对应的角度为60度,而整个角集合对应的角度为圆周角,∴该角终边落在∠xOT 内的概率P =60360=16,故选A.【答案】A题型四与体积有关的几何概型[例4] (1)在一球内有一棱长为1的内接正方体,一点在球内运动,则此点落在正方体内部的概率为( )A.6πB.32πC.3πD.233π【解析】由题意可得正方体的体积为V 1=1.又球的直径是正方体的对角线,故球的半径R =32.球的体积V 2=43πR 3=32π.这是一个几何概型,则此点落在正方体内的概率为P =V 1V 2=132π=233π. 【答案】D(2)已知正方体ABCD -A 1B 1C 1D 1内有一个内切球O ,则在正方体ABCD -A 1B 1C 1D 1内任取点M ,点M 在球O 内的概率是________.【解析】设正方体的棱长为2.正方体ABCD A 1B 1C 1D 1的内切球O 的半径是其棱长的一半,其体积为V 1=43π×13=4π3.则点M 在球O 内的概率是4π323=π6.【答案】π6[类题通法]与体积有关的几何概型概率的求法如果试验的结果所构成的区域的几何度量可用体积表示,则其概率的计算公式为 P (A )=构成事件A 的区域体积试验的全部结果所构成的区域体积.[活学活用]有一个底面圆的半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,求点P 到点O 的距离大于1的概率.解 圆柱的体积V 圆柱=π×12×2=2π是试验的全部结果构成的区域体积.以O 为球心,1为半径且在圆柱内部的半球的体积V 半球=12×4π3×13=2π3,则构成事件A “P到点O 的距离大于1”的区域体积为2π-2π3=4π3,由几何概型的概率公式得P (A )=4π32π=23.多维探究 几何概型中的交汇性问题[典例] 设关于x 的一元二次方程x 2+2ax +b 2=0,若a 是从区间[0,3]上任取的一个数, b 是从区间[0,2]上任取的一个数,求上述方程有实根的概率.[解题指导] 设事件A 为“方程x 2+2ax +b 2=0”有实根. 则Δ=4a 2-4b 2≥0,即a 2≥b 2. 又∵a ≥0,b ≥0. ∴a ≥b .试验的全部结果所构成的区域为{(a ,b )|0≤a ≤3,0≤b ≤2},而构成事件A 的区域为{(a ,b )|0≤a ≤3,0≤b ≤2,a ≥b },即如图所示的阴影部分.所以,P (A )=3×2-12×223×2=23.[多维探究]几何概型与其他知识的交汇问题,以其新颖性、综合性而渐成为命题者的一个重要着眼点,本题是以方程的根为依托考查了与面积有关的几何概型的求法,另外,几何概型还常与集合、解析几何等问题相交汇命题,出现在试卷中. [角度一] 几何概型与集合的交汇问题已知集合M ={}x ,y |x +y ≤8,x ≥0,y ≥0,N ={}x ,y |x -3y ≥0,x ≤6,y ≥0,若向区域M 随机投一点,则点P 落入区域N 的概率为( )A.13 B.12C.38D.316【解析】根据题设中的集合的意义,在平面直角坐标系中分别画出区域M 和N ,可分别计算区域M 和N 的面积,进而求解.将集合M 和N 所表示的区域在直角坐标系中画出,如图,则区域M 的面积S =12×8×8=32,区域N 的面积S ′=12×6×2=6,所以点P 落入区域N 的概率为P =632=316,故选D.【答案】D[角度二] 几何概型与解析几何的交汇问题已知圆C :x 2+y 2=12,直线l :4x +3y =25. (1)求圆C 的圆心到直线l 的距离.(2)求圆C 上任意一点A 到直线l 的距离小于2的概率. 解 (1)由点到直线l 的距离公式可得d =2542+32=5. (2)由(1)可知圆心到直线l 的距离为5,要使圆上点到直线的距离小于2,设与圆相交且与直线l 平行的直线为l 1,其方程为4x +3y =15.则符合题意的点应在l 1:4x +3y =15与圆相交所得劣弧上,由半径为23,圆心到直线l 1的距离为3可知劣弧所对圆心角为π3.故所求概率为P =π32π=16.[随堂即时演练]1.下列概率模型中,几何概型的个数为( )①从区间[-10,10]内任取出一个数,求取到1的概率;②从区间[-10,10]内任取出一个数,求取到绝对值不大于1的数的概率; ③从区间[-10,10]内任取出一个整数,求取到大于1而小于2的数的概率;④向一个边长为4 cm 的正方形ABCD 内投一点P ,求点P 离中心不超过1 cm 的概率. A .1 B .2 C .3D .4【解析】①不是几何概型,虽然区间[-10,10]有无限多个点,但取到“1”只是一个数字,不能构成区域长度;②是几何概型,因为区间[-10,10]和[-1,1]上有无限多个数可取(满足无限性),且在这两个区间内每个数被取到的机会是相等的(满足等可能性);③不是几何概型,因为区间[-10,10]上的整数只有21个(是有限的),不满足无限性特征;④是几何概型,因为在边长为4 cm 的正方形和半径为1 cm 的圆内均有无数多个点,且这两个区域内的任何一个点都有相等可能被投到,故满足无限性和等可能性. 【答案】B2.如图所示,在一个边长为a ,b (a >b >0)的矩形内画一个梯形,梯形上、下底长分别为a 3与a2,高为b .向该矩形内随机地投一点,则所投的点落在梯形内部的概率为( )A.112B.14C.512D.712【解析】S 矩形=ab ,S 梯形=12(13a +12a )b =512ab .故所投的点在梯形内部的概率为P =S 梯形S 矩形=512abab =512.【答案】C3.方程x 2+x +n =0(n ∈(0,1))有实根的概率为________【解析】由于方程x 2+x +n =0(n ∈(0,1))有实根,∴Δ≥0,即1-4n ≥0,∴n ≤14,又n ∈(0,1),∴有实根的概率为P =141-0=14.【答案】144.在400毫升自来水中有一个大肠杆菌,今从中随机取出2毫升水样放到显微镜下观察,则发现大肠杆菌的概率为________.【解析】大肠杆菌在400毫升自来水中的位置是任意的,且结果有无限个,属于几何概型.设取出2毫升水样中有大肠杆菌为事件A ,则事件A 构成的区域体积是2毫升,全部试验结果构成的区域体积是400毫升,则P (A )=2400=0.005.【答案】0.0055.已知一只蚂蚁在边长为4的正三角形内爬行,求此蚂蚁到三角形三个顶点的距离均超过1的概率.解 设正三角形ABC 的边长为4,其面积为4 3.分别以A ,B ,C 为圆心,1为半径在△ABC 中作扇形,除去三个扇形剩下的部分即表示蚂蚁距三角形三个顶点的距离均超过1的区域,其面积为43-3×12×π3×12=43-π2,故所求概率P =43-π243=1- 3 π24.。
3.3.1几何概型教案
《3.3.1几何概型》教学设计一、教学目标1.知识与技能(1)正确理解几何概型的概念;(2)掌握几何概型的概率公式并能进行简单的计算与应用:P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A ; (3)会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型.2.过程与方法(1)通过经历提出问题、收集、处理数据和预测的过程,使学生将实际生活中的概率模型转化为应用数学来解决问题,发展学生的抽象思维和应用意识;(2)通过师生共同探究,体会数学知识的形成,学会应用几何概型来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力.3.情感态度与价值观(1)通过活动参与,使学生积极参与数学学习活动,让学生在数学活动中获得成功的体验,建立自信心;(2)通过对实例和习题的学习,使学生体验数学活动充满着探索与创造,激发学生学习数学的兴趣,并能从中感受数学的严谨性,形成实事求是的态度.二、教学重难点1.重点:几何概型概念的形成及其公式的应用.2.难点:几何概型的应用,如何把实际问题转化为几何概型.三、教材分析学习几何概型之前学生学习了概率的统计定义以及古典概型的定义和计算公式,这些内容虽然可以帮助学生解决一些实际生活中的概率问题,可是古典概型的使用是有限的,它只能解决等可能事件只有有限个时的概率,而对于生活中同样也比较常见的无限个等可能事件的情况却束手无策.几何概型正是古典概型的拓展和延伸,这样才能使学生形成完整的知识网络体系,使数学学习更加紧密结合学生的实际生活,体现了学习数学的价值,同时又可以培养学生学习数学的兴趣和积极性.几何概型是将古典概型从点到线、面、体的拓展,是从有限到无限的延伸,这体现了知识的连续性和层次性,同时也为后续内容做好铺垫,因此本节内容在单元中起到了承上启下的作用. 例题的选择采用长度、面积、体积的三维梯度设计,便于学生对常见题型的归纳总结.四、教学过程1.创设情境,引入新课情境1:(幻灯片)“双旦节”活动细则:从12月20日起,凡在本超市当天购物累计满100元的顾客可以按照以下方案抽奖.方案1:同时掷两枚骰子一次,两枚骰子的点数之和等于7,即可获得价值50元的精美礼品一个.问题1:方案1中获得精美礼品的概率是多少?师生互动:教师以生活中的实例来创设情境,让学生去选择自己认为适合的方法. 学生通过独立思考、自主学习,计算方案获得奖品的概率. 引导学生复习古典概型的计算公式和两个特征.情境2:将抽奖方式换成转盘游戏,如图1所示,按照以下方式抽奖:方案2:随意转动转盘甲,转到蓝色区域,即可获得价值50元的精美礼品一个.问:如果让你来玩这个游戏,你获得奖品的概率?甲问题2:这个游戏中可不可以像上一个游戏一样,用古典概型的计算方法算出赢的概率呢?为什么?【设计意图】这两个情境不仅使学生复习了古典概型,更使学生加深对随机现象的理解,消除日常生活中的一些错误认识,体会用科学的方法去观察世界和认识世界,同时也为几何概型的引入做好铺垫. 采用启发式学习法,让学生自己去发现问题所在,这样可以激发学生学习数学的求知欲.2.初步探索,展示内涵探究1:(幻灯片)将一根长度为20 cm 的线绳AB ,从中任取一点剪断,求使剪开的两段线绳长度都不小于5 cm 的概率.问题1:同学们将用怎样的几何量来描述这个事件的基本事件空间呢?分析:可以用线段长度的比值来求这个概率,即记“剪开的两段线绳长度都不小于5 cm ”为事件W ,C 、D 分别为AB 的四等分点,如图2所示,虽然剪刀于每一个位置都是等可能的,可是基本事件是无限个,所以这个例子不属于古典概型.A C D B图2所以P (W )=212010==的长度的线段长度AB CD 【设计意图】教师提出问题,使学生通过合作交流的学习方式动手实践,在实践中探索解题的方法. 虽然学生没学过几何概型的计算公式,但是可以用与之相关的几何量—线段长度的比值来描述所求事件的概率. 借此为几何概型定义和特点的引出作铺垫.这与古典概型的解题思路是相同的. 只不过在古典概型中概率的比是个数的比,而对于这类题型,可以把线段看成是无限个点组成的集合,学生就更容易理解了.探究2:在情境2的转盘游戏中,指针落在蓝色区域的概率是如何计算的?你将用怎样的几何量来描述这个事件的基本事件空间呢?法1:利用红色区域所占的弧长的比值求解, P=21=整个圆的弧长红色区域的弧长 法2:利用红色区域所占的角度的比值求解,P=21=整个圆的圆周角红色区域的圆周角. 【设计意图】教师组织学生分组讨论,提高学生自主探究问题、解决问题的能力,使学生积极参与数学学习活动,在数学活动中获得成功的体验,建立自信心. 使学生体会几何概型与古典概型“比例解法”的相同之处,为归纳出几何概型的概念作铺垫. 通过学生的求解,发现指针落在红色区域的概率是相等的.变式探究:若将同样的圆像(图3)一样八等分,那么请同学们计算一下,转动转盘而指针落在在深色区域的概率.图3根据前面的比例关系,不难求出图2中,指针落在深色区域的概率同样也是21. 【设计意图】 这个例子说明利用比例关系求解概率的方法与几何图形的形状无关,只与几何度量的大小有关.探究3:四边形ABCD 为长方形,AB=2,BC=1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为多少? 记“取到的点到O 的距离大于1”为事件A ,则该事件发生的概率等于半圆面积与长方形总面积的比值,即422A )(ππ===的面积试验的全部结果所构成的区域面积构成事件A P 探究4:在一个器皿中装有500 ml 的水,水中有一只草履虫,现在从中随即取出2 ml 水样放到显微镜下观察,求发现草履虫的概率.分析:草履虫在水中的位置是任意的,因此虽然是等可能事件,可是草履虫的位置有无限多个,故也不属于古典概型.记“在取出的2 ml 水样中有草履虫”为事件E ,则该事件发生的概率等于取出水的体积与器皿中水的总体积的比值,即P(E)=004.05002=. 探究3中设计了三维空间的体积的实例让学生观察和分析,使学生体会事件的概率只与水这个几何量的体积比例有关,而与几何量的位置和形状无关. 变式探究:若将题设中的“器皿”改为“正方体器皿”或是“圆柱体水杯”,那么发现草履虫的概率是多少?为什么?概率仍然0.004.只要体积不变,概率就不变.(1)几何概型的定义:事件A 理解为区域的某一子区间A 的概率只与子区域A 的几何度量(长度、面积或体积)成正比,而与A 的位置和形状无关,满足以上条件的试验称为几何概型.(2)几何概型的概率公式:P(A)=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A ; (3)几何概型的特点:(1)试验中所有可能出现的结果(基本事件)有无限多个;(2)每个基本事件出现的可能性相等. BD C3.循序渐进,延伸拓展例1 一个路口的红绿灯,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为40秒。
人教版高中必修3(B版)3.3.1几何概型教学设计
人教版高中必修3(B版)3.3.1几何概型教学设计
一、教学目的
1.理解几何概型的概念和性质。
2.掌握分段讨论和间断函数的求解方法。
3.能够解决常见的几何问题,如角平分线、垂心、垂线等问题。
4.培养学生的逻辑思维和推理能力。
二、教学重点
1.了解几何概型的性质。
2.学会运用几何概型的思想解决几何问题。
三、教学难点
1.掌握分段讨论和间断函数的求解方法。
2.学会几何问题中常用的一些策略和方法。
四、教学资源
1.人教版高中数学(B版)教材。
2.电脑和投影仪。
3.黑板、彩色粉笔。
五、教学过程设计
1. 导入环节
引导学生回忆上一节学习的内容,如线段平分线、角平分线等概念,以及它们的性质和应用。
2. 理论讲解
1.讲解几何概型的概念和性质。
2.介绍分段讨论和间断函数的求解方法。
3.讲解如何运用几何概型的思想解决几何问题。
3. 练习环节
1.给学生提供一些几何问题,引导他们通过分析和运用几何概型的思想
来解决问题。
2.带着学生复习之前学过的几何知识,解决一些常见问题。
4. 总结反思
让学生回顾本节课学到的内容,提出问题、分享经验,帮助大家理解几何概型和解题思路。
同时告诉学生,几何问题虽然看似简单,但需要不断地练习和思考。
六、教学评价
1.在练习环节中观察学生的解题方法和策略,以及对几何概型的掌握程
度。
2.根据课堂互动、讨论和回答问题的表现,对学生进行评价。
3.希望学生课后主动做一些练习,加深对几何概型的理解和应用。
高中数学人教新课标B版必修3--《3.3.1 几何概型》教学设计
§3.3.1 几何概型教学设计教学内容:人教版《数学必修3》第三章第三节几何概型。
学情分析:学生学习了概率的含义以及古典概型的计算方式,对概率有了一定的了解,对概率的求法也有了一定的方法。
现在进行几何概型的学习,可以通过对比进行学习,通过分辨两种概型的区别与联系,可以达到学习几何概型的目的。
教学目标知识与技能目标1.初步体会几何概型及其基本特点;2.会运用几何概型的概率计算公式,求简单的几何概型的概率问题;3.让学生初步学会把一些实际问题化为几何概型;过程与方法目标1.通过游戏、案例分析,体会几何概型与古典概型的区别;会用类比的方法学习新知识,提高学生的解题分析能力;2.经历将一些实际问题转化为几何概型的过程,探求正确应用几何概型的概率计算公式解决问题的方法,增强几何概型在解决实际问题中的应用意识;情感、态度与价值观目标通过对几何概型的研究,感知生活中的数学,体会数学文化,培养学生的数学素养。
教学重点:初步体会几何概型,将求未知量的问题转化为几何概型求概率的问题教学难点:将求未知量的问题转化为几何概型求概率的问题,准确确定几何区域D 和与事件A 对应的区域d ,并求出它们的测度。
教学过程:一、复习引入古典概型的特点:(1)试验中所有可能出现的基本事件只有有限个.(2)每个基本事件出现的可能性相等.小试牛刀1、从区间[-10,10]上任取一个整数,求取到大于1小于5的数的概率. 思考:那么对于有无限多个试验结果的情况相应的概率应如果求呢? (设计意图:通过古典概型的特点以及概率公式的应用巩固,为后面的对比学习奠定基础,同时也引出的新的概率模型,增强学生的好奇心。
)(师生互动:学生回答并完成练习,师生共同总结)二、创设情景,引入新课探究实验11. 取一根长度为30cm 的绳子,拉直后在任意位置剪断,那么剪得两段的长度都不小于10cm 的概率有多大?探究实验22.射箭比赛的箭靶是涂有五个彩色的分环.从外向内为白色、黑色、蓝色、红色,靶心是金色,金色靶心叫“黄心”.奥运会的比赛靶面直径为122cm,靶心直径为12.2cm.运动员在70m 外射箭,假设每箭都能中靶,且射中靶面内任一点都是等可能的,那么射中黄心的概率是多少?()AP A包含基本事件的个数公式:基本事件的总数探究实验33、一只小蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中,始终保持与正方体的6各面的距离都大于1,则称其为“安全飞行”,求蜜蜂安全飞行的概率.由以上3个实验回答:(1)实验中的基本事件是什么:(2)每个基本事件发生是等可能的吗?(3)符合古典概型的特点吗?(设计意图:通过实验操作,让学生能直观感受几何概型的基本事件覆盖的区域)(师生互动:学生观察并回答问题,教师及时修正和确认答案)几何概型的定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.几何概型的特点:(1)试验中所有可能出现的结果(基本事件)有无限多个.(2)每个基本事件出现的可能性相等.思考:在几何概型中,如何求得某事件A的概率?在几何概型中,事件A的概率的计算公式如下:学生活动(分组讨论)求几何概型概率问题的步骤:1、判断实验的概率模型是否满足几何概型的两个特征;2、2、利用作图法描述基本事件对应的区域;3、3、把随机事件A转化为与之对应的区域d;4、4、利用几何概型概率公式计算。
3.3.1几何概型 优秀教学设计
3.3.1几何概型
(高中数学必修3第三章第3节第一课时)
一、教学重点与难点
重点:掌握几何概型的判断及几何概型中概率的计算公式。
难点:在几何概型中把实验的基本事件和随机事件与某一特定的几何区域及其子区域对应,确定适当的几何测度。
通过数学建模解决实际问题。
二、教学方法、教学手段
本节课采用以引导发现为主的教学方法,以观察对比、归纳启发式作为教学
模式,结合多媒体辅助教学。
(图1)
:若换成图2的转盘,中奖概率是多少
(蓝红区域面积比为3:2
(图2)
:再换成图3的转盘,中奖概率是多少呢
(图3)
中奖的概率与奖金所在区域的位置有关系吗?
若没有,那么中奖的概率与什么有关?
第1题图。
3.3.1 几何概型教案教案
3.3.1《几何概型》教学目标知识与技能目标:(1)通过对本节内容的学习,正确理解几何概型的意义、特点;掌握几何概型的概率公式:,会用公式计算几何概型。
(2)会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型;(3)通过解决具体问题的实例感受理解几何概型的概念,掌握基本事件等可能性的判断方法,逐步学会依据具体问题的实际背景分析问题、解决问题的能力。
感知用图形解决概率问题的方法,掌握数学思想与逻辑推理的数学方法。
过程与方法目标:(1)通过古典概型的例子,稍加变化后成为几何概型,从有限个等可能结果推广到无限个等可能结果,让学生经历概念的建造这一过程,感受数学的拓展过程。
(2)发现法教学,通过师生共同对“问题链”的探究,运用观察、类比、思考、探究、概括、归纳的方法和动手尝试相结合体会数学知识的形成的过程,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力。
(3)通过试验,感知应用数学解决问题的方法,自觉养成动手、动脑的良好习惯。
情感态度与价值观目标:本节课的主要特点是贴近生活,体会概率在生活中的重要作用,感知生活中的数学,激发学生提出问题和解决问题的勇气,培养积极探究的精神。
同时,随机试验多,学习时养成勤学严谨的思维习惯。
教学重点:理解几何概型的意义、特点,会用公式计算几何概率。
教学难点:等可能性的判断几何概型与古典概型的联系和区别。
教学过程师生活动设计意图(一)知识链接,复习提问老师:前面,我们共同研究了古典概型,请大家回忆:古典概型有哪些特点?学生:1.基本事件的个数为有限个;2.每一个基本事件发生的可能性都相等。
老师:古典概型的概率计算公式是什么形式?学生:。
老师:可见,求古典概型中事件A的概率,实际上就是要数清A所含的基本事件的个数与全部基本事件的个数,它们的比值就是这个事件的概率。
接下来,我们共同研究几个问题,看看它们还是不是古典概型。
温故而知新,通过复习旧知加强学生对以往知识的掌握,为后面总结古典概型与几何概型之间的区别与联系做好铺垫。
高中人教A版数学(必修3)3.3.1《几何概型》教案
高中人教A版数学(必修3)3.3.1《几何概型》教案一、教学目标知识与技能1.初步体会几何概型的概念;2.会区别古典概型与几何概型;3.会使用几何概型的概率公式计算简单的几何概率.过程与方法1.运用启发式和发现法教学,通过一系列的试验和问题,师生共同探究,让学生体会探索新知的过程,培养其逻辑推理能力;通过实际例子,让学生学会应用数学知识来解决问题,体会数学知识与现实世界的联系.2.通过游戏转盘的制作和两次模拟试验,让学生自己动手,培养学生自主学习的能力和创新能力.情感态度与价值观1.通过源于生活的丰富实例和多媒体教学培养学生的学习兴趣;2.通过类题对比与变式练习培养学生严密的逻辑思维习惯.二、教学重点、难点教学重点几何概型的概念教学难点简单的几何概率的计算三、教具与学具准备教具准备用来做游戏的两个转盘、多媒体学具准备两人一枚用来做游戏的同规格的钢针和一张画了一些等距平行线的大纸(钢针的长度等于两平行线间距离的一半)、两人一个用来做游戏的转盘(提前布置,让学生自己制作,为培养学生的创新能力转盘可随意制作)四、教学过程(一)课程引入(通过学生做“布丰投针试验”引入课题)让学生动手把钢针投到纸上,并记录投针的总次数N和针落到纸上与平行线中的某一条相交的次数n,计算针落到纸上与平行线中的某一条相交的频率及频率的倒数,师生共同(把学生分成8组,每做1分钟,每一小组先对实验总次数和针落到纸上与平行线中的某一条相交的总次数n作以汇总并把数据上报给老师,由老师利用多媒体现场完成全班数据的汇总)引导学生去发现问题—针落到纸上与平行线中的某一条相交的频率的倒数越来越接近于圆周率π.告诉学生,这就是简单化了的著名的“布丰投针试验”.向学生简单介绍一下“布丰投针试验”以及历史上几次有名的“布丰投针试验”(见下表),利用学生的好奇心激“布丰投针实验”是第一个用几何形式表达概率问题的例子,它所反映的一种概率模型我们称之为几何概型.“布丰投针试验”为什么能算出圆周率π的近似值呢?它的原理是什么?为了弄清这一问题,我们就来研究一下几何概型,请同学们阅读教材第129页和130页的内容,并拿出转盘,实际操作一下,验证你所得的频率与通过计算得到的概率是否相差不大. (二)新知讲解1.几何概型的概念对于一个随机试验,如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.例如:模型1. 在1升高产小麦种子中混入了一种带麦诱病的种子,从中随机取出10毫升,求取出的种子中含有麦诱病的种子的概率.模型2.取一根长度为3m的绳子,拉直后在任意位置剪断.求剪得两段的长都不小于1m 的概率.上面这两个模型都属于几何概型.2.几何概型的基本特点(1)试验中所有可能出现的结果(基本事件)有无限多个;(2)每个基本事件出现的可能性相等(实验结果在一个区域内均匀分布).3.几何概型与古典概型的联系与区别(1)联系:几何概型与古典概型中基本事件发生的可能性都是相等的,即满足等可能性.(2)区别:①古典概型中的基本事件有有限个,而几何概型则要求基本事件有无限个;②判断一个试验是否是古典概型即看它是否满足古典概型的两个特征,而对于几何概型,关键是看它是否具有几何概型的本质特征—能进行几何度量.思考1.随机事件A“从正整数中任取两个数,其和是偶数”是否是几何概型?(尽管这里事件A满足几何概型的两个特点:有无限多个基本事件且每个基本事件的出现是等可能的,但它不满足几何概型的本质特征—能进行几何度量.故事件A不是几何概型.)4.几何概型的概率公式在几何概型中,事件A的概率的计算公式如下:()AP A构成事件的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).思考2.通过对几何概型的学习,不难发现:概率为0的事件不一定是不可能事件;概率为1的事件也不一定是必然事件.试举例说明.(在几何概型中,如果随机事件所在区域的是一个单点,由于单点的长度、面积、体积均为0,则它出现的概率为0,但它不是不可能事件;如果一个随机事件所在区域是全部区域扣除一个单点,则它出现的概率为1,但它不是必然事件.)(三)例与练例1某人午觉醒来,发现表停了,他打开收音机,想听电台报时,求他等待时间不多于10分钟的概率.(分析及解答见教材第130~131页)练习1 在Rt △ABC 中,∠A =30°,在斜边AB 上等可能地取点M ,则AM AC <的概率为( )A.2 B .56 C .34 D .16解析:如图,在斜边AB 上取一点D 使得AD AC =.当点M 落在线段AD 上时,有AM AC <.故所求概率为cos302AD AC P AB AB ===︒=故选A. 点评:此处基本事件所“占据”的区域为线段,所求概率即为对应线段的长度之比.值得注意的是若将原题换一种说法则结论迥异.变式1 在Rt △ABC 中,∠A =30°,若过直角顶点C 作射线CM ,交线段AB 于M ,则AM AC <的概率为多少?解析:此时的概率应转化为ACD ∠与ACB ∠的度数之比,即为56.其原因是问题变为射线CM 在内等可能地选取.变式2 在长为10 的线段AB 上任取一点P ,并以线段AP 为边作正方形,这个正方形的面积介于25与49之间的概率是多少?解析:此题有一个典型错解,即把把所求概率转化成面积比,得出错解4925610025-=. 实则不然,此变式实质应为“长度型”几何概型.在线段AB 上取两点12,P P ,使得125,7.AP AP ==所以122PP =.由于点P 等可能地在线段AB 上取得,当点P 落在线段12PP 上时,所作正方形的面积即介于25与49之间.故所求概率为21105=. (四)作业教材第137页 习题3.3 A 组 1,2,3MAB CD思考题:“布丰投针试验”为什么能算出圆周率π的近似值?拓展题:什么是“贝特朗奇论”(可利用工具书以及电脑等多种手段查找)?通过思考题和拓展题培养学生自己动手解决问题的能力.五、课后反思总体效果不错,基本完成了教学目标.需要注意的是引入时应更简洁些,时间占用的稍多了点.。
3.3.1几何概型优秀教案
3.3.1几何概型教学目标:1. 知识与能力(1)正确理解几何概型的概念,会判别某种概型是古典概型还是几何概型;(2)理解、掌握几何概型的概率公式.2. 过程与方法(1)发现法教学,通过师生共同探究,体会数学知识的形成,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯.3. 情感、态度、价值观本节课的主要特点是随机试验多,学习时养成勤学严谨的学习习惯. 教学重点:几何概型的概念、公式及应用.教学难点:(1)几何概型的概念、公式及应用;(2)利用计算器或计算机产生均匀随机数并运用到概率的实际应用中.教学过程:一、创设情境:在概率论发展的早期,人们就已经注意到只考虑那种仅有有限个等可能结果的随机试验是不够的,还必须考虑有无限多个试验结果的情况。
例如一个人到单位的时间可能是8:00至9:00之间的任何一个时刻;往一个方格中投一个石子,石子可能落在方格中的任何一点上……这些试验可能出现的结果都是无限多个.二、新课:(一)基本概念:阅读136第一到第六行:思考:1、什么是几何概率模型?2、几何概型的特点是什么?3、几何概型的概率如何计算?小结:公式:P (A )= A 构成事件的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积). (二)例题分析:例1:判断下列试验中事件A 发生的概率是古典概型,还是几何概型.(1)抛掷两颗骰子,求出现两个“4点”的概率;(2)如课本P135图3.3-1中的(2)所示,图中有一个转盘,甲乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜,求甲获胜的概率.分析:本题考查的几何概型与古典概型的特点,古典概型具有有限性和等可能性.而几何概型则是在试验中出现无限多个结果,且与事件的区域长度有关. 例2:某人欲从某车站乘车出差,已知该站发往各站的客车均每小时一班,求此人等车时间不多于10分钟的概率.分析:假设他在0~60分钟之间任何一个时刻到车站等车是等可能的,但在0到60分钟之间有无穷多个时刻,不能用古典概型公式计算随机事件发生的概率. 可以通过几何概型的求概率公式得到事件发生的概率.因为客车每小时一班,他在0到60分钟之间任何一个时刻到站等车是等可能的,所以他在哪个时间段到站等车的概率只与该时间段的长度有关,而与该时间段的位置无关,这符合几何概型的条件.小结:在本例中,到站等车的时刻X 是随机的,可以是0到60之间的任何一刻,并且是等可能的,我们称X 服从[0,60]上的均匀分布,X 为[0,60]上的均匀随机数.(三)巩固练习:1.下列关于几何概型的说法错误的是( )A .几何概型也是古典概型中的一种B .几何概型中事件发生的概率与位置、形状无关C .几何概型中每一个结果的发生具有等可能性D .几何概型中在一次试验中出现的结果有无限个2.在区间[0,3]内任取一点,则此点所对应的实数大于1的概率为( )A .34B .23C .12D .133.面积为S 的ABC ∆,D 是BC 的中点,向ABC ∆内部投一点,那么点落在ABD ∆内的概率是( )A .13B .12C .14D .164.某公共汽车站每隔10分钟有一辆汽车到达,乘客到达车站的时刻是任意的,求乘客候车时间不超过6分钟的概率.(四)课堂小结:几何概型是区别于古典概型的又一概率模型,使用几何概型的概率计算公式时,一定要注意其适用条件:每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例.(五)课后习题:P142 习题3.3 A 组1,2,3 B 组1,2(六)教学反思:几何概型的教学可采取对比教学,让学生弄清它与古典概型的区别与联系.。
人教版高中必修3(B版)3.3.1几何概型课程设计
人教版高中必修3(B版)3.3.1几何概型课程设计一、课程背景几何概型是高中数学必修课程的重要内容之一,也是初中数学学习中重要的过渡环节。
在高中课程中,几何概型的学习不仅有利于学生形成立体思维,还有助于他们理解和掌握解决实际问题的几何方法。
本课程主要是以建立学生对几何概型基本概念和方法的认识为主要目的,同时也要在实际问题中应用所学几何知识并使学生形成科学的思维方法和逻辑思维能力。
二、教材分析本课程所使用的教材为人教版高中必修3(B版)。
该教材对几何概型的教学内容进行了比较详细的描述,包括基本概念、基本定理、平面几何、空间几何等内容。
在本课程的教学过程中,将会结合教材中的内容,进行教学和辅导。
三、课程目标本课程的主要目标是:1.让学生掌握几何概型的基本概念和术语。
2.让学生掌握几何概型的基本定理和证明方法。
3.培养学生观察、分析、解决几何问题的能力。
4.培养学生科学的思维方法和逻辑思维能力。
四、课程内容和教学方法本课程的主要内容包括:几何概型的基本概念和术语、基本定理和证明方法、平面几何与空间几何等内容。
在教学过程中,将会采用以下教学方法:1.讲解法。
通过讲解教材内容,引导学生理解概念和定理,并且让学生能够掌握证明方法。
2.实例法。
通过实际问题引出几何概型的相关知识,让学生在解决实际问题的过程中掌握几何知识。
3.讨论法。
通过讨论教材上的例题或是学生提出的问题,让学生积极参与,提高他们的思维能力和分析能力。
4.实验法。
通过实验让学生在实践中感性认识几何知识,提高他们的实际操作能力。
五、课程评估本课程的评估方式主要包括课堂测试、作业评定、实验报告、考试等。
其中,考试是本课程的重要评估方式,在考试中将会设置选择题、填空题、解答题等不同考试题型,从而全面考察学生掌握几何概型的情况。
除了考试,本课程也将充分重视学生的学习兴趣、思维习惯、合作精神等方面的培养,从而全面评估学生的学习成绩。
六、教学资源本课程的教学资源主要包括教师教学PPT、教材、讲义、练习册、作业、实验器材等。
高中数学必修三:3.3.1几何概型教学设计
课例名称精美句子1、善思则能“从无字句处读书”。
读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。
读大海,读出了它气势磅礴的豪情。
读石灰,读出了它粉身碎骨不变色的清白。
2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。
幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。
幸福是“零落成泥碾作尘,只有香如故”的圣洁。
幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。
幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。
幸福是“人生自古谁无死,留取丹心照汗青”的气节。
3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。
4、成功与失败种子,如果害怕埋没,那它永远不能发芽。
鲜花,如果害怕凋谢,那它永远不能开放。
矿石,如果害怕焚烧(熔炉),那它永远不能成钢(炼成金子)。
蜡烛,如果害怕熄灭(燃烧),那它永远不能发光。
航船,如果害怕风浪,那它永远不能到达彼岸。
5、墙角的花,当你孤芳自赏时,天地便小了。
井底的蛙,当你自我欢唱时,视野便窄了。
笼中的鸟,当你安于供养时,自由便没了。
山中的石!当你背靠群峰时,意志就坚了。
水中的萍!当你随波逐流后,根基就没了。
空中的鸟!当你展翅蓝天中,宇宙就大了。
空中的雁!当你离开队伍时,危险就大了。
地下的煤!你燃烧自己后,贡献就大了6、朋友是什么?朋友是快乐日子里的一把吉它,尽情地为你弹奏生活的愉悦;朋友是忧伤日子里的一股春风,轻轻地为你拂去心中的愁云。
朋友是成功道路上的一位良师,热情的将你引向阳光的地带;朋友是失败苦闷中的一盏明灯,默默地为你驱赶心灵的阴霾。
高中数学新人教版A版精品教案《3.3.1 几何概型》
几何概型教学设计【教材分析】1、“几何概型”这一节内容是安排在“古典概型”之后的第二类概率模型,是对古典概型内容的进一步拓展,是等可能事件的概念从有限向无限的延伸。
几何概型概念的引入过程就是问题解决的过程,以此为载体,提升学生发现问题、分析问题、解决问题的能力。
2.学习几何概型主要是为了更广泛地满足随机模拟的需要。
这充分体现了数学与实际生活的紧密关系:来源于生活,而又高于生活;同时说明了它在概率论中的重要作用,为高校的进一步学习奠定了基础。
【教学目标】知识与技能:1、初步体会几何概型的意义;2、会运用几何概型的概率计算公式,求简单的几何概型的概率问题;3、让学生初步学会把一些实际问题化为几何概型,并进行分析、解决。
过程和方法:1、问题和设问,体会几何概型与古典概型的区别;会用类比的方法学习新知识,并理解几何概型的概念。
2、通过将一些实际问题转化为几何概型的解题过程,学会应用几何概型的概率计算公式解决问题,增强几何概型在解决实际问题中的应用意识。
情感态度与价值观:1、通过解决具体问题,体会数学在生活中的重要作用;2、培养严谨的思维习惯。
【教学重点】理解几何概型的特点,利用几何概型的计算公式解决问题。
【教学难点】几何概型的判断和具有实际背景的随机事件与几何区域联系的建立;解题中准确确定几何区域D 和与事件A 对应的区域d ,并求出它们的测度【教学过程】一、回顾复习1、古典概型的特征(1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等2、公式基本事件的总数包含的基本事件的个数A A P )(二、提出问题: 问题1:取1根长为3m 的绳子,拉直后在任意位置剪断,那么剪得的两段长都不小于1m 的概率有多大?(1)试验中的基本事件是什么?从每一个位置剪断都是一个基本事件,剪断位置可以是长度为3m 的绳子上的任意一点.(2)每个基本事件的发生是等可能的吗?(3)符合古典概型的特点吗?问题2:下面是运动会射箭比赛的靶面,靶面半径为10cm ,黑心半径为1cm,现一人随机射箭,假设每靶都能中靶,且射中靶面内任一点都是等可能的,请问射中黑心的概率是多少?(1)试验中的基本事件是什么?射中靶面上每一点都是一个基本事件,这一点可以是靶面直径为10cm 的大圆内的任意一点.(2)每个基本事件的发生是等可能的吗?(3)符合古典概型的特点吗?问题3:在500ml的水中有一个草履虫,现从中随机取出2ml水样放到显微镜下观察,则发现草履虫的概率是多少?(1)试验中的基本事件是什么?微生物出现的每一个位置都是一个基本事件,微生物出现位置可以是500ml水中的任意一点.(2)每个基本事件的发生是等可能的吗?(3)符合古典概型的特点吗?设计意图:1、引导学生发现试验的结果是等可能的和无限的,归纳几何概型的特征;2、激励学生寻求解决问题的方法.三、几何概型1、归纳共同特征:(1)一次试验可能出现的结果有无限多个;(2) 每个结果的发生都具有等可能性.老师:对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一个点被取到的机会都一样;这里的区域可以是线段,平面图形,立体图形等.用这种方法处理随机试验,称为几何概型.老师:如何求解上述三个问题?同学们有好的解决方吗?问题1:1m1m3m学生分析:从每一个位置剪断都是一个基本事件,剪断位置可以是长度为3m 的绳子上的任意一点,机会是均等的,基本事件形成的集合是一线段,设事件A:剪得的两段长都不小于1m.则31)(=A P )(长度全部结果所构成的区域的区域长度构成事件A设计意图:让学生体会解决问题的实质就是将原来具有无限性的基本事件集合进行了度量,即一维空间时用长度度量.问题2:学生分析:射中靶面上每一点都是一个基本事件,这一点可以是靶面直径为10cm 的大圆内的任意一点,基本事件发生的可能性相等,基本事件形成的集合是整个靶面,设事件B :射中黑心01.0101)(22=⨯⨯=ππB P)(面积全部结果所构成的区域的区域面积构成事件B问题3:学生分析:草履虫出现的每一个位置都是一个基本事件,草履虫出现位置可以是500ml水中的任意一点,基本事件发生的可能性相等,基本事件形成的集合为500ml 的水,设事件C:2ml 的水样中发现草履虫25015002)(==C P)(体积全部结果所构成的区域的区域体积构成事件C设计意图:让学生意识到试验的结果均匀分布在几何区域内的任意一点,事件A 的概率只与事件A 构成的区域的面积或体积有关,与所在区域的位置、形状无关.让学生明确具有无限性基本事件集合,二维时用面积度量,三维时用体积度量.2、建构概念(1)定义如果每个事件发生的概率只与构成该区域的长度(面积或体积)成比例,则称这样的概率模型为几何概型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《3.3.1 几何概型》教学设计
一.教材分析
几何概型是人教版《普通高中课程标准实验教科书·数学(A版)》必修3第三章第三节的内容。
几何概型是概率必修章节的收尾篇,共有两个课时,本节为第一课时。
本节课是继古典概型之后学习的另一类等可能概型,是古典概型的拓广,起到了承上的作用。
在选修模块的系列2中还将继续学习概率的其他内容,因此,本课内容也起到了启下的作用。
教材首先以生活中的转盘游戏为例,对该问题进行抽象、建模转化为数学问题,总结归纳出几何概率模型的概念,并在此基础上得到几何概型的概率计算公式。
然后教材又给出一个例题,加深对概念和公式的理解及应用。
这节内容中的例题既通俗易懂,又具有代表性,有利于教师的教和学生的学。
二.学情分析
在知识上,已经有初中学习过的统计概率作为基础,又有了学习古典概型的经历,这为学习几何概型在知识和方法上做好了准备。
在能力上,学生已经具备了一定的形象思维和抽象思维能力,有一定的分析和解决问题的能力。
对于进入高中一个学期的学生来说,逻辑思维初步形成,不够严谨,容易对几何概型的概念理解不清。
在古典概型向几何概型过渡的过程中,有些困难。
在探究问题和应用数学知识解决实际问题等方面发展不够均衡,有待加强。
但只要引导得当,理解几何概型,是切实可行的。
三.教学目标
知识与技能:通过实例,学生能够理解几何概型的概念及其与古典概型的联系和区别;掌握古典概型的概率公式并能解决实际问题。
过程与方法:学生经过对实际问题的抽象、建模的过程,体会数学知识的形
成,能应用数学知识来解决实际问题。
情感、态度价值观:通过实际应用让学生体会到数学在现实生活中的价值增强学生学习数学的自信心,提高学习数学的兴趣。
四.教学重点、难点
重点:正确理解几何概型的定义、特点;掌握几何概型概率的计算公式,会用公式计算几何概率。
难点:将实际问题转化为几何概型并能从实际问题的背景中找几何度量。
五.教学策略
教学顺序:情境引入→概念形成→实际应用→课堂反馈→归纳小结→布置作业。
教学方法与手段:
1.本节课遵循引导发现、循序渐进的思路,采用问题探究式教学,让学生在观察分析、自主探索、合作交流的过程中构建几何概型的概念以及归纳出几何概型求概率的公式。
2.利用投影仪及计算机辅助教学。
六.教学过程
提出问题:
(1)若x的取值是区间[1,4]中的整数,任取一个x的值,求“取得值不小于2”的概率。
(2)若x的取值是区间[1,4]中的实数,任取一个x的值,求“取得值不小于2”的概率。
(3)如图,图中有一个转盘,甲乙两
人玩转盘游戏,规定当指针指向区域B时,甲获胜,否则已获胜,求甲获胜的概率。