基因工程知识点_超全
基因工程知识点总结

基因工程总结一.概念(1)原理:。
(2)优点:与杂交育种相比,;与诱变育种相比,。
(3)基因工程成功的原因:①成功拼接的原因:②成功表达的原因:二.基本工具1、两种酶:(1):作用特点:。
(2):E ·coli DNA 连接酶与T 4 DNA 连接酶的区别:2、一种运载体(1)条件:①;②;③具有特殊的标记基因(作用:)(2)种类:最常用;其他动植物病毒、三、操作程序(1):方法:①:不知道脱氧核苷酸序列②:已知目的基因两端一小段序列,便于③利用化学方法人工合成:知道全部序列,且基因比较小。
这种方法不需要模板。
(2)——基因工程的核心基因表达载体的组成:(3)生物种类常用方法受体细胞将目的基因插入到Ti 植物动物受精卵将含有目的基因的表+微生物原核细胞Ca 2处理细胞→感受态细胞→重组表达载体DNA 分子与感受态细胞混合→感受态细胞吸收DNA 分子质粒的T-DNA 上→农达载体提纯→取卵转化过程杆菌→导入植物细胞→整合到受体细胞染(受精卵)→显微注射→受精卵发育→获得色体的DNA 上→表达具有新性状的动物(4)①目的基因是否插入到转基因生物的染色体DNA 上:②是否转录:③是否翻译:④个体水平鉴定:抗虫、抗病接种实验易错点说明:1、切割目的基因和运载体的要求:用限制酶。
目的是:。
同种的含义是:同一种或相同两种,即单酶切或双酶切。
选择双酶切的原因是。
2、工具≠工具酶;运载体≠质粒。
3、启动子≠起始密码子,终止子≠终止密码子起始密码子和终止密码子位于mRNA上,分别控制翻译过程的启动和终止。
启动子:。
终止子:一段有特殊结构的DNA短片段,位于基因的尾端,作用是使转录过程停止。
4、基因探针的要求:①单链②有③5、农杆菌转化法中的“2”次导入:第一次:将含有目的基因的T—DNA的质粒导入农杆菌;第二次(非人工操作):将含有目的基因的T—DNA导入受体细胞并整合到植物细胞的染色体DNA上。
6、转化:。
高考生物《基因工程知识点》总汇

高考生物《基因工程知识点》总汇1、基因工程的先导是?艾弗里等人的工作证明了DNA可以从一种生物个体转移到另一种生物个体2、不同生物的基因为什么可以连接在一起?因为所有生物的DNA基本结构是相同的3、真核生物的基因为什么可以在原核生物体内表达?(或者原核生物的基因为什么可以在真核生物体内表达?)所有生物共用一套密码子4、基因工程育种的原理是什么?具有什么优点?原理:基因重组优点:打破了生殖隔离,定向改造生物的性状5、与DNA有关的酶的比较6、特定的核苷酸序列,并在特定的位点上进行切割7、限制酶不切割自身DNA的原因是什么?原核生物DNA分子中不存在该酶的识别序列或识别序列已经被修饰。
8、DNA连接酶可以连接什么样的末端?①同一种限制酶切割形成的相同的黏性末端②两种不同限制酶切割后形成的相同黏性末端③任意的两个平末端9、如何防止载体或目的基因的黏性末端自己连接即所谓“环化”?可用不同的限制酶分别处理含目的基因的DNA和载体,使目的基因两侧及载体上各自具有两个不同的黏性末端。
10、载体需具备的条件及其作用11、基因工程的基本操作步骤是哪四步?目的基因的获取;基因表达载体的构建;将目的基因导入受体细胞;目的基因的检测与鉴定12、目的基因的获取方法有哪些?三种方法都需要模板吗?①从基因文库中获取目的基因②利用PCR技术扩增目的基因③通过化学方法人工合成前两种需要模板,从基因文库中寻找目的基因时需要用DNA探针利用DNA分子杂交的方法找到目的基因;化学方法人工合成不需要模板,只要知道核苷酸序列就行,这是一个纯粹的化学反应13、CDNA文库和基因组文库的区别?cDNA是指以mRNA为模板,在逆转录酶的作用下形成的互补DNA。
以细胞的全部mRNA 逆转录合成的cDNA组成的重组克隆群体成为cDNA文库。
cDNA文库只包含表达的基因,并且逆转录得来的基因缺乏内含子和启动子、终止子等调控序列基因组文库指的是将某种生物的基因组DNA切割成一定大小的片段,并与合适的载体重组后导入宿主细胞,进行克隆得到的所有重组体内的基因组DNA片段的集合,它包含了该生物的所有基因。
基因工程主要知识点整理

第一章基因克隆基因工程的基本技术有哪些?答:对核算分子的分离、纯化、回收、分析和检测、切割、连接和修饰,以及序列测定、诱变、扩增和转移等基因操作技术。
构建基因文库一般使用什么作为载体?答:一般使用大肠杆菌作为载体克隆与亚克隆?答:克隆在一等程度上等同于基因的分离。
亚克隆是将目的基因所对应的小段的DNA片段找出来。
PCR对基因克隆有什么作用?答:现在基因克隆可以不用通过构建基因文库来实现,可以通过理性设计和PCR扩增获得大多数所需要的基因。
但是尽管如此,在不知道基因序列的情况下,如相互作用的基因,表达调控因子,新基因等,还需要构建基因文库来进行基因克隆。
第二章分子克隆工具酶限制与修饰系统?答:限制系统可以排除外来DNA。
限制的作用实际就是降解外源DNA,维护宿主稳定的保护机制。
甲基化是常见的修饰作用,宿主通过甲基化来达到识别自身遗传物质和外来遗传物质的作用。
并且能够保证自身的DNA不被降解。
使用最广泛的限制酶?答:EcoR I是应用最广泛的限制性内切酶限制性内切酶的命名?答:宿主属名第一字母、种名头两个字母、菌株号+序列号。
如:HindIII限制与修饰系统分类?答:至少可分为3类。
II类所占比例最大,其酶分子为内切酶与甲基化分子不在一起,识别位点为4-6bp的回文序列,切割位点为识别位点中或者靠近识别位点。
其限制反应与甲基化反应是分开的反应。
不需要ATP的参与。
限制酶识别的序列长度?结构?答:一般为4-6个bp,即每256和每4096个碱基中存在一个识别位点。
回文序列,不对称序列,多种不同序列,间断对称序列限制酶产生的末端?答:1、黏末端2、平末端3、非对称突出末端什么是同裂酶?分类?答:识别相同序列的限制酶称为同裂酶。
但他们的切割位点有可能不同。
分为:1、同位同切酶2、同位异切酶3、同工多位酶4、其他限制性内切酶的作用是什么?它的反酶是什么?答:什么是同尾酶?答:许多不同的限制酶切割DNA产生的末端是相通的,切实对称的,即他们可产生相同的黏性突出末端。
基因工程知识点总结归纳(更新版)

基因工程绪论1、克隆(clone):作名词:含有目的基因的重组DNA分子或含有重组分子的无性繁殖。
作动词:基因的分离和重组的过程。
2、基因工程(gene engineering):体外将目的基因插入病毒、质粒、或其他载体分子中,构成遗传物质的新组合,并使之掺入到原先没有这些基因的宿主细胞内,且能稳定的遗传。
供体、受体和载体是基因工程的三大要素。
3、基因工程诞生的基础三大理论基础:40年代发现了生物的遗传物质是DNA;50年代弄清楚DNA 的双螺旋结构和半保留复制机理;60年代确定遗传信息的遗传方式。
以密码方式每三个核苷酸组成一个密码子代表一个氨基酸。
三大技术基础:限制性内切酶的发现;DNA连接酶的发现;载体的发现3、基因工程的技术路线:切:DNA片段的获得;接:DNA片段与载体的连接;转:外源DNA片段进出受体细胞;选:选择基因;表达:目的基因的表达;基因工程的工具酶1、限制性内切酶(restriction enzymes):主要是从原核生物中分离纯化出来的,是一类能识别双链DNA分子中某种特定核苷酸序列,并由此切割DNA双链的核酸内切酶。
2、限制酶的命名:属名(斜体)+种名+株系+序数3、II型限制性内切酶识别特定序列并在特定位点切割4、同裂酶:来源不同,其识别位点与切割位点均相同的限制酶。
5、同尾酶:来源不同,识别的靶序列不同,但产生相同的黏性末端的酶形成的新位点不能被原来的酶识别。
6、限制性内切酶的活性:在适当反应条件下,1小时内完全酶解1ug特定的DNA 底物,所需要的限制性内切酶的量为1个酶活力单位。
7、星号活性:改变反应条件,导致限制酶的专一性和酶活力的改变。
8、DNA连接酶的特点:具有双链特异性,不能连接两条单链DNA分子或闭合单链DNA,连接反应是吸能反应,最适反应温度是4至15度,最常用的是T4连接酶。
9、S1核酸酶:特异性降解单链DNA或RNA。
10、RNAH降解与DNA杂交的RNA,用于cDNA文库建立时除去RNA以进行第二链的合成。
基因工程知识点-超全

基因工程知识点-超全作者: 日期:基因工程一、基因工程的概念基因工程是指按照人们的愿望,进行严格的设计,并通过体外DNA重组和转基因等技术,赋予生物以新的遗传特性,从而创造出更符合人们需要的新的生物类型和生物产品。
由于基因工程是在DNA分子水平上进行设计和施工的额,因此又叫做DNA重组技术。
二、基因工程的基本工具1、限制性核酸内切酶-----“分子手术刀”2、DNA连接酶-----“分子缝合针”3、基因进入受体细胞的载体-----“分子运输车”1 . “分子手术刀”——限制性核酸内切酶(限制酶)(1 )存在:主要存在于原核生物中。
(2 )特性:特异性,一种限制酶只能识别一种特定的核苷酸序列,并且能在特定的切点上切割DNA 分子。
(3 )切割部位:磷酸二酯键(4 )作用:能够识别双链DNA 分子的某种特定核苷酸序列,并且使每一条链二酯键断开。
3中轴线两侧 将 DNA 的两产生的是黏性末端,而中轴线处切开切制 DIM A 呂卜于时产百匸存勺两种不冋木躺 <饰头表示酶旳切糊」位置)(5)识别序列的特点:呈现碱基互补对称「无论是奇数个碱基还是偶数个碱基, 都可以找到一条中心轴线血图冲轴线两侧的双链DNA 上的碱基是反向对称重复排列的。
如CGrr rrCG 以中心线为 CCAGG A轴、两侧碱基互补对称; 以为轴•两侧碱基互补GGTCC T对称。
中轴线(6 )切割后末端的种类: DNA分子经限制酶切割产生的 DNA片段末端通常有两种形式 黏性末端 和平末端 。
当限制酶 £■茫打H I : 4*rc(在G 与A C ;TT ! AAG 之冋坟J 割) ! tI I i I中轴线i iI ICdC J GGGSma 1| —(在G 亠ft : GE : ; CGC之冋切制>| 中铀线CTTA AAATTCGCde GGG GGGdCC在它识别序列的条链分别切开时, 当限制酶在它识别序列的 时,产生的则是平末端。
基因工程知识点总结

基因工程知识点总结基因工程是一门现代生物学领域的重要学科,它通过改造生物体的遗传物质,实现对生物体基因的精确操控和改良。
下面将对基因工程的相关知识点进行总结,以帮助读者更好地了解该领域的基本概念和技术应用。
一、基因工程的基本概念和原理基因工程是指通过人为手段修改生物体的基因组,以改变其性状和功能的技术。
其实现的基本原理包括基因定位、基因克隆和基因传递。
1. 基因定位:基因定位是指确定感兴趣的基因在基因组中的位置。
常用的方法有FISH(荧光原位杂交)和PCR(聚合酶链反应)等。
2. 基因克隆:基因克隆是指将感兴趣的基因从一个生物体中复制到另一个生物体中,使其在目标生物体中表达。
常用的方法有限制酶切、连接酶切和DNA合成等。
3. 基因传递:基因传递是指将经过克隆的基因导入到目标生物体中,并使其在目标生物体中稳定遗传。
常用的方法有基因枪、电穿孔和冷冻贮存等。
二、基因工程的应用领域基因工程技术在农业、医学和工业等领域有着广泛的应用,下面将分别介绍其主要应用领域。
1. 农业应用:基因工程技术在农业领域的应用主要包括转基因作物的培育和遗传改良。
通过导入特定基因,转基因作物可以获得抗病虫害、耐逆性或提高产量等特点,从而增加农作物的产量和质量。
2. 医学应用:基因工程技术在医学领域的应用主要包括基因诊断、基因治疗和生物药物的生产。
通过基因诊断,可以准确检测遗传病的基因突变,为疾病的早期预测和治疗提供依据。
基因治疗则通过修复或替代患者体内的异常基因,治疗遗传性疾病。
此外,基因工程技术还被用于生产重组蛋白和抗体等生物药物。
3. 工业应用:基因工程技术在工业领域的应用主要包括酶的生产和环境修复。
通过基因工程技术,可以大量生产具有特定功能的酶,用于工业生产和制药领域。
此外,基因工程技术还可以改造微生物,使其能够降解有机物污染物,用于环境修复和生物能源开发。
三、基因工程的伦理和安全问题尽管基因工程技术具有重要的应用前景,但也带来了一些伦理和安全问题。
基因工程知识点总结

基因工程知识点总结基因工程,这个在现代生物学中熠熠生辉的领域,正以惊人的速度改变着我们的生活和对生命的认知。
它就像是一把神奇的钥匙,开启了无数未知的大门,为解决人类面临的诸多问题带来了前所未有的希望和可能。
一、基因工程的定义与基本原理基因工程,简单来说,就是按照人们的意愿,将一种生物的基因在体外进行切割、拼接和重组,然后导入另一种生物的细胞内,使之稳定遗传并表达出相应产物的技术。
其基本原理基于三个重要的步骤:首先是获取目的基因,这就像是在茫茫基因海洋中找到我们想要的那一颗珍珠;其次是构建基因表达载体,相当于给这颗珍珠打造一个合适的盒子,使其能够安全、有效地传递;最后是将重组 DNA 分子导入受体细胞,并使其在受体细胞中稳定存在和表达。
二、获取目的基因的方法1、从基因文库中获取基因文库就像是一个巨大的基因仓库,里面存储着各种各样的基因。
我们可以根据已知的信息,从这个文库中筛选出我们需要的目的基因。
2、利用 PCR 技术扩增目的基因PCR 技术就像是一个基因的复印机,能够以极少量的基因片段为模板,快速大量地复制出我们想要的基因。
3、人工合成法如果已知目的基因的核苷酸序列,或者其氨基酸序列,我们可以通过化学方法直接人工合成目的基因。
三、基因表达载体的构建基因表达载体是基因工程的核心部分,它就像是一辆专门运输基因的列车,需要具备多个关键组件。
1、启动子启动子是基因表达的“开关”,它能够控制基因在何时何地开始表达。
2、终止子终止子则是基因表达的“刹车”,告诉基因在何处停止表达。
3、标记基因标记基因就像是一个个小标签,帮助我们筛选出成功导入目的基因的受体细胞。
4、目的基因这是我们最终想要表达的基因片段。
四、将目的基因导入受体细胞1、导入植物细胞(1)农杆菌转化法农杆菌就像是一个天然的基因运输工具,能够将其携带的基因转移到植物细胞中。
(2)基因枪法通过高速的微粒将目的基因直接打入植物细胞。
(3)花粉管通道法利用花粉管通道将目的基因导入植物的受精卵中。
生物学知识点 基因工程

生物学知识点基因工程基因工程是生物学中的一个重要分支,它涉及到对基因的操作和改造,以达到改良生物体的目的。
本文将介绍基因工程的基本概念、技术方法以及应用领域。
一、基因工程的概念与原理基因工程是指通过对生物体的基因进行人为的操作和改造,以达到改良生物体的目的的一门学科。
其基本原理是利用现代分子生物学的技术手段,对生物体的基因进行剪接、克隆、转移等操作,从而实现对生物体特性的调控和改变。
基因工程的核心技术是基因重组技术,即将不同生物体的基因进行重组,形成新的基因组合,然后将其导入目标生物体中,使其表达出新的特性。
基因重组技术主要包括以下几个步骤:1. DNA提取:从生物体中提取出含有目标基因的DNA片段。
2. 基因剪接:利用限制酶将目标基因与载体DNA进行剪接,形成重组DNA。
3. 转化:将重组DNA导入到宿主细胞中,使其表达出目标基因。
4. 选择与筛选:通过选择性培养基或标记基因等方法,筛选出带有目标基因的转基因细胞或生物体。
5. 鉴定与分析:对转基因细胞或生物体进行鉴定和分析,确认其是否成功表达目标基因。
二、基因工程的应用领域1. 农业领域:基因工程在农业领域的应用十分广泛。
通过基因工程技术,可以改良农作物的抗病性、耐逆性和产量等性状,提高农作物的品质和产量。
例如,转基因水稻可以提高抗虫性和耐盐碱性,转基因玉米可以提高抗除草剂和杂草的能力。
2. 医学领域:基因工程在医学领域的应用主要包括基因治疗和基因诊断。
基因治疗是指利用基因工程技术,将正常的基因导入到患者体内,以治疗遗传性疾病或其他疾病。
基因诊断是指通过对患者的基因进行检测和分析,以确定患者是否携带某种疾病的遗传基因。
3. 环境保护领域:基因工程可以应用于环境污染治理和生物修复。
通过基因工程技术,可以改造微生物,使其具有降解有机污染物的能力,从而实现对环境污染物的清除和修复。
4. 工业领域:基因工程在工业领域的应用主要包括生物制药和生物能源。
基因工程必备知识点

第四步:
1.首先要检测转基因生物的染色体DNA上 是否插入了目的基因,方法是采用 。
2.其次还要检测目的基因是否转录出了mRNA,方法是采用
3.最后检测目的基因是否翻译成蛋白质, 方法是从转基因生物中提取 ,用相 应的 进行 。 4.有时还需进行 的鉴定,如 。
。
(四)蛋白质工程的概念 蛋白质工程是指以 作为基础,通过 ,对现有蛋白质进 行 ,制造一种 ,以满足人类的生产和生活的需求。(基因 工程在原则上只能生产 的蛋白质)
三.“分子运输车”——运载体(质粒) (1)载体具备的条件: ①能在受体细胞中复制并稳定保存。 ②具有一至多个限制酶切点,供外源DNA片段插入。 ③具有标记基因,供重组DNA的鉴定和选择。 (2)最常用的载体是-质粒,它是一种裸露 的、结构简单的、独立于细菌DNA之外, 并具有自我复制能力的双链环状DNA分子。 (3)其它载体:噬菌体的衍生物、动植物 病毒。
如果前面的知识点你都记住的话,不妨把答案填在这些空格里面,牢牢 地掌握这些知识点吧! 基因工程是指按照人们的愿望,进行严格的设计,通过 和 ,赋予 生物以 ,创造出 。基因工程是在 水平上进行设计和施工的,又 叫做 。
1.“分子手术刀”—— (1)来源:主要是从
中分离纯化出来的。
(2)功能:能够识别双链DNA分子的某种 的核苷酸序列,并且使每一条链中 部位的两个核苷酸之间的 断 开,因此具有 性。 (3)经限制酶切割产生的DNA片段末端通 常有两种形式: 和 。 2.“分子缝合针”—— (1)E· DNA连接酶和T4-DNA连接酶的比较: coli ①相同点:都缝合 。 ②不同点:E· DNA连接酶只能将双链 coli DNA片段互补的 之间的磷酸二酯键 连接起来;而T4-DNA连接酶能缝合 , 但连接平末端的效率较 。 (2) DNA连接酶与DNA聚合酶的比较: ----------- DNA聚合酶只能将 加到已有的 ----------核苷酸片段的末端,形成 。 DNA连接酶是连接 的末端,形成 。
基因工程知识点总结

基因工程知识点总结一、基因工程的概念基因工程,又称基因拼接技术或 DNA 重组技术,是指按照人们的愿望,进行严格的设计,并通过体外 DNA 重组和转基因等技术,赋予生物以新的遗传特性,从而创造出更符合人们需要的新的生物类型和生物产品。
简单来说,基因工程就是在分子水平上对基因进行操作的复杂技术。
二、基因工程的工具(一)“分子手术刀”——限制性核酸内切酶(限制酶)1、来源:主要从原核生物中分离纯化出来。
2、特点:能够识别双链 DNA 分子的某种特定核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开。
3、作用结果:产生黏性末端或平末端。
(二)“分子缝合针”——DNA 连接酶1、分类:E·coli DNA 连接酶和 T4DNA 连接酶。
2、作用:将两个具有相同末端的 DNA 片段连接起来。
(三)“分子运输车”——载体1、作用:将目的基因送入受体细胞。
2、具备条件:能在受体细胞中复制并稳定保存。
具有一至多个限制酶切点,供外源 DNA 片段插入。
具有标记基因,便于筛选。
3、种类:质粒、λ噬菌体的衍生物、动植物病毒等。
其中质粒是基因工程中最常用的载体。
三、基因工程的基本操作程序(一)目的基因的获取1、从基因文库中获取基因文库包括基因组文库和部分基因文库(如 cDNA 文库)。
基因组文库包含了一种生物的全部基因;cDNA 文库只包含了一种生物的部分基因,是由 mRNA 反转录得到的 DNA 组成。
2、利用 PCR 技术扩增目的基因PCR 是一项在生物体外复制特定 DNA 片段的核酸合成技术。
原理:DNA 双链复制。
条件:模板 DNA、引物、四种脱氧核苷酸、热稳定 DNA 聚合酶(Taq 酶)等。
3、人工合成如果基因比较小,核苷酸序列又已知,可以通过 DNA 合成仪用化学方法直接人工合成。
(二)基因表达载体的构建(核心步骤)1、目的:使目的基因在受体细胞中稳定存在,并且可以遗传给下一代,同时使目的基因能够表达和发挥作用。
基因工程知识点全

第一章基因工程概述1•什么是基因工程,基因工程的基本流程?基因工程(Genetic engineering )原称遗传工程。
从狭义上讲,基因工程是指将一种或多种生物体(供体)的基因与载体在体外进行拼接重组,然后转入另一种生物体(受体)内,使之按照人们的意愿遗传并表达出新的性状。
因此,供体、受体和载体称为基因工程的三大要素。
1. 分离目的基因2•限制酶切目的基因与载体3. 目的基因和载体DNA在体外连接4•将重组DNA分子转入合适的宿主细胞,进行扩增培养5. 选择、筛选含目的基因的克隆6. 培养、观察目的基因的表达第二章基因工程的载体和工具酶1. 基因工程载体必须满足哪些基本条件?具有对受体细胞的可转移性或亲和性。
具有与特定受体细胞相适应的复制位点或整合位点。
具有多种单一的核酸内切酶识别切割位点。
具有合适的筛选标记。
分子量小,拷贝数多。
具有安全性。
2. 质粒载体有什么特征,有哪些主要类型?1、自主复制性2、可扩增性3、可转移性4、不相容性主要类型有1.克隆质粒2.测序质粒3.整合质粒4.穿梭质粒5.探针质粒6.表达质粒3. 质粒的构建(1)删除不必要的DNA区域,尽量缩小质粒的分子量,以提高外源DNA片段的装载量。
一般来说,大于20Kb的质粒很难导入受体细胞,而且极不稳定。
(2)灭活某些质粒的编码基因,如促进质粒在细菌种间转移的mob基因,杜绝重组质粒扩散污染环境,保证DNA重组实验的安全,同时灭活那些对质粒复制产生负调控效应的基因,提高质粒的拷贝数(3 )加入易于识别的选择标记基因,最好是双重或多重标记,便于检测含有重组质粒的受体细胞。
(4)在选择性标记基因内引入具有多种限制性内切酶识别及切割位点的DNA序列,即多克隆接头(Polylinker ),便于多种外源基因的重组,同时删除重复的酶切位点,使其单一化,以便环状质粒分子经酶处理后,只在一处断裂,保证外源基因的准确插入。
(5 )根据外源基因克隆的不同要求,分别加装特殊的基因表达调控元件。
生物基因工程知识点

生物基因工程知识点1. 基因工程定义基因工程,又称遗传工程,是指通过人工手段对生物体的基因进行改造,以实现对生物体性状的改变和新品种的培育。
它包括基因克隆、基因转移、基因编辑等多个技术环节。
2. 基因克隆基因克隆是指将特定的基因片段从供体生物体中提取出来,并在体外进行复制和扩增的过程。
这一过程通常涉及限制性内切酶、DNA连接酶和载体等分子生物学工具。
3. 基因转移基因转移是将克隆的基因片段导入到受体细胞中,使其成为受体细胞基因组的一部分,并能够表达出新的性状。
常用的基因转移方法包括质粒介导、病毒载体和基因枪等。
4. 基因编辑基因编辑是指对生物体基因组中的特定位点进行精确的添加、删除或替换。
CRISPR-Cas9是目前最流行的基因编辑技术,它允许科学家在细胞中进行特定DNA序列的编辑。
5. 转基因生物转基因生物是指通过基因工程技术改变了基因组的生物。
这些生物可能会展现出抗虫、抗病、抗旱等特性,或者提高营养价值。
6. 伦理和法律问题基因工程的发展引发了一系列伦理和法律问题,包括生物安全、生物多样性保护、知识产权和公众接受度等。
各国政府和国际组织都在制定相关法规以确保基因工程的安全和合理应用。
7. 基因工程的应用基因工程在农业、医学、工业生产和环境保护等多个领域都有广泛应用。
例如,在医学领域,基因工程被用于生产重组蛋白药物;在农业领域,用于培育抗病虫害的转基因作物。
8. 安全性评估由于基因工程可能对环境和人类健康产生影响,因此对转基因生物的安全性评估至关重要。
这包括对转基因生物的环境影响、长期食用安全性等进行系统的研究和评估。
9. 未来发展趋势基因工程的未来发展趋势包括提高基因编辑的精确性和效率、发展新的基因工程技术、加强跨学科研究以及推动基因工程在全球范围内的合理应用和监管。
10. 公众教育和沟通鉴于基因工程的复杂性和伦理问题,公众教育和沟通显得尤为重要。
科学家和政策制定者需要与公众进行有效沟通,提高公众对基因工程的理解,促进科学决策的制定。
基因工程笔记总结

基因工程笔记总结一、基因工程的概念。
基因工程是指按照人们的愿望,进行严格的设计,并通过体外DNA重组和转基因等技术,赋予生物以新的遗传特性,从而创造出更符合人们需要的新的生物类型和生物产品。
又称为DNA重组技术。
(一)基因工程的理论基础。
1. DNA是遗传物质。
- 肺炎双球菌的转化实验和噬菌体侵染细菌的实验证明了DNA是遗传物质,这为基因工程中对DNA的操作提供了理论依据。
2. DNA双螺旋结构和中心法则的确立。
- 沃森和克里克构建的DNA双螺旋结构模型,阐明了DNA的结构特点,为DNA的切割、连接等操作提供了可能。
- 中心法则揭示了遗传信息的传递规律,使得人们能够理解基因表达的过程,从而在基因工程中对目的基因的表达进行调控。
3. 遗传密码的破译。
- 遗传密码的破译使得人们能够根据蛋白质的氨基酸序列推测出相应的DNA序列,反之亦然,这有助于在基因工程中准确获取目的基因并预测其表达产物。
二、基因工程的基本工具。
1. “分子手术刀”——限制性核酸内切酶(限制酶)- 来源:主要从原核生物中分离纯化而来。
- 作用:识别双链DNA分子的某种特定核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开。
例如,EcoRI限制酶识别的序列是 - GAATTC -,在G和A之间切开。
- 结果:产生黏性末端(如EcoRI产生的是黏性末端)或平末端。
2. “分子缝合针”——DNA连接酶。
- 类型。
- E.coli DNA连接酶:来源于大肠杆菌,只能将双链DNA片段互补的黏性末端之间连接起来。
- T4 DNA连接酶:来源于T4噬菌体,既可以连接黏性末端,也可以连接平末端。
- 作用:恢复被限制酶切开的两个核苷酸之间的磷酸二酯键。
3. “分子运输车”——载体。
- 种类。
- 质粒:是一种裸露的、结构简单、独立于细菌拟核DNA之外,并具有自我复制能力的双链环状DNA分子,是基因工程最常用的载体。
- λ噬菌体的衍生物:经过改造后可作为基因工程的载体。
基因工程知识点

基因工程知识点一、基因工程的定义和发展历程基因工程是指利用现代生物技术手段,对生物体的基因进行修改、操纵和重组,以达到改良、创新或者创造新的生物体的目的。
其发展历程可以分为三个阶段:第一阶段是20世纪60年代至70年代初期,主要是基于限制性内切酶和DNA重组技术;第二阶段是70年代中期至80年代,主要是基于DNA测序技术和克隆载体技术;第三阶段则是80年代后期至今,主要是基于CRISPR/Cas9系统和合成生物学技术。
二、基因工程的应用领域1.医学领域:包括疾病诊断、治疗、预防等方面。
例如,利用基因工程技术可以制备人类胰岛素等药品。
2.农业领域:包括作物遗传改良、动物育种等方面。
例如,通过转基因技术可以使植物具有抗虫害、耐旱等特性。
3.环境保护领域:包括污染治理和资源利用等方面。
例如,利用微生物修复污染土壤等。
三、基因工程的主要技术1.基因克隆技术:包括PCR、限制性内切酶切割、DNA连接等技术。
2.CRISPR/Cas9系统:利用CRISPR RNA和Cas9蛋白对特定的DNA序列进行剪切和修复。
3.基因转移技术:包括农杆菌介导的转化、基因枪法等技术。
四、基因工程的道德和安全问题1.生命伦理问题:包括人类克隆、基因编辑等方面,涉及到人类尊严和自由意志等问题。
2.环境安全问题:转基因作物可能会对生态环境造成影响,需要进行严格的安全评估和监管。
3.生物安全问题:转基因生物可能会对人类健康造成潜在风险,需要进行严格的安全评估和监管。
五、未来发展趋势1.合成生物学技术将成为重要发展方向,可以实现对生物体系的精准控制和调节。
2.纳米技术将与基因工程相结合,开发出更加智能化的药物和治疗手段。
3.人工智能将在数据处理和分析方面发挥重要作用,帮助解决基因工程中的复杂问题。
六、结语基因工程技术是当代科技领域的重要分支之一,其应用领域广泛,但也存在一定的道德和安全问题。
在未来的发展中,需要加强监管和安全评估,确保其合理、安全、可持续发展。
基因工程知识点

基因工程知识点基因工程是一门关于生物基因的科学与技术,涉及到生物学、遗传学、分子生物学等多个学科领域。
通过对基因进行分析、修改和重组,基因工程可以改变生物体的遗传信息,从而创造出具有特定性状的新生物体或改良已有的生物体。
1. DNA的复制与修饰基因工程的第一步是对目标基因进行复制和修饰。
在DNA复制中,科学家可以使用聚合酶链反应(PCR)技术来大量复制目标基因。
然后,可以采用限制性内切酶来切割DNA片段,以便进行进一步的修改。
2. DNA的重组与合成基因工程的核心是对DNA分子进行重组和合成,以构建具有特定性状的基因组。
这可以通过DNA重组技术来实现。
该技术利用限制性内切酶将具有相同限制酶切位点的两个DNA分子进行剪切,并通过DNA连接酶将两个分子连接起来形成新的DNA分子。
3. 基因的转导与表达一旦目标基因经过修饰和重组,下一步是将其转导至宿主生物体。
这可以通过多种方法实现,其中最常用的是利用载体。
载体是一种能够稳定传递外源DNA到宿主细胞的工具,例如质粒、病毒等。
一旦外源基因进入宿主细胞,它们将会以不同的方式表达出来,例如转录成RNA、翻译成蛋白质等。
4. 基因工程在医学上的应用基因工程在医学领域有着广泛的应用。
例如,通过基因工程技术,可以合成大量的重组人胰岛素,用于治疗糖尿病。
另外,基因工程还可以用于生产重组疫苗,如乙型肝炎疫苗和人乳头瘤病毒疫苗等。
此外,基因工程还有助于研究遗传病的发病机制,并可能为这些疾病的治疗提供新的策略。
5. 基因工程在农业上的应用基因工程技术在农业领域的应用也非常广泛。
通过基因工程改良作物的抗虫性、抗病性和耐逆性,可以提高农作物的产量和品质,减少农药的使用。
例如,将一些具有抗虫性的基因导入到作物中,可以提高作物抵抗虫害的能力,从而减少农药的使用量。
总结基因工程作为一门复杂而又有前景的学科,为科学家们提供了许多改变生物体的机会。
通过对基因的分析、修改和重组,基因工程可以为人类的健康、农业的发展甚至整个生态环境带来深远的影响。
高中基因工程总结的知识点

高中基因工程总结的知识点
一、基因工程
1、什么是基因工程
基因工程是指将一种生物体的基因插入另一种生物体,从而改变另一种生物体的性状,利用它们来改造和改变生物物种的一种技术。
2、基因工程的意义
基因工程可以帮助人们改善现有的农作物品种,以便获得更高的产量;同时也能够生产药物,如胰岛素,以治疗糖尿病等疾病。
3、基因工程的基本步骤
(1)获取基因序列:科学家首先获取目标基因的结构特征,以
及基因的排列顺序;
(2)构建基因组:科学家将基因拆分为多个碱基对,构建基因组;
(3)转化:将基因注入受体生物体,使之获得新的基因;
(4)表达:把插入的基因转录成mRNA,再转录成蛋白质,从而在受体生物体内表达出新的基因。
二、遗传工程
1、什么是遗传工程
遗传工程是通过改变某一物种的基因组结构而获得意想不到的
新突变,并利用这些突变来改良物种的一种技术。
2、遗传工程的意义
遗传工程可以帮助人们改良农作物品种,提高农作物的生长效率;
同时也可以用于育种,改良家禽种类,以提高食品的品质。
3、遗传工程的基本步骤
(1)获取基因:科学家首先获取和研究目标物种中的基因;
(2)基因分离:将基因拆分为多个碱基对,构建基因组;
(3)基因转移:将基因转移到另一物种中,进行基因转换;
(4)效果评估:使用遗传分析和实验测试,评估遗传工程所产生的效果。
基因工程知识点

专题1基因工程1.1 DNA 重组技术的根本工具1.基因工程又叫 DNA 重组技术,是指依据人们的梦想,进行严格的设计,并经过体外 DNA 重组和转基因等技术,给予生物以新的遗传特征,从而创建出更切合人们需要的新的生物种类和生物产品。
操作水平是 DNA 分子水平,操作环境是在体外。
2.“分子手术刀〞──限制性核酸内切酶。
这种酶主假如从原核生物中分离纯化出来的。
迄今已从近 300 种微生物中分离出了约 4000 种限制酶。
能够辨别双链 DNA分子的某种特定核苷酸序列;切开两个两个核苷酸之间的磷酸二酯键,形成黏性尾端或平尾端。
3.“分子缝合针〞──DNA 连结酶。
将切下来的 DNA片段拼接成新的 DNA分子,恢复被限制酶切开的磷酸二酯键。
种类: 1〕E.coli DNA连结酶:只好将双链 DNA片段互补的粘性尾端之间连结起来 2〕T4 DNA连结酶:既能够“缝合〞双链 DNA片段互补的粘性尾端,又可以“缝合〞双链 DNA片段的平尾端,但连结平尾端之间的效率比较低4.“分子运输车〞──基因进入受体细胞的载体。
作为载体的必需条件:能自我复制、有切割位点、有遗传标志基因等。
载体的种类:细菌质粒、λ噬菌体的衍生物、动植物病毒1.2 基因工程的根本操作程序1.基因工程的根本操作步骤主要包含:目的基因的获得;基因表达载体的建立;将目的基因导入受体细胞;目的基因的检测与判定。
2. 目的基因的获得方法:从基因文库中获得、利用 PCR 提取目的基因、人工合成法。
是一项在生物体外复制特定 DNA 片段的核酸合成技术。
原理 DNA 双链复制。
条件:模板 DNA ;RNA 引物;四种脱氧核苷酸;热稳固 DNA 聚合酶〔 Taq 酶〕。
方法: DNA受热变性解旋为单链、冷却后 RNA引物与单链相应互补序列联合、DNA聚合酶作用下延长合成互补链。
4.基因表达载体的功能:使目的基因在受体细胞中稳固存在;能够遗传给下一代;使目的基因能够表达和发挥作用。
基因工程复习知识点

质粒名称和大小、复制启动子、多克隆酶切位点MCS、选择标记基因16°C连接,37°C酶切凝胶电泳pH8.0带负电1.基因工程:又称遗传工程,是通指重组DNA技术的产业化设计和应用的流程。
强调基因克隆、载体构建、遗传转化、性状表达与产品提取及纯化等全部过程。
2.基因操作技术:利用遗传重组技术,在体外通过人工“剪切”和“拼接”等方法,将包含目的基因、特殊载体在内的各种必需元件的DNA分子经过改造和重组后,转入另一受体生物细胞内。
3.基因:DNA分子中含有特定遗传信息的一段核苷酸序列。
4.核酸:由许多核苷酸单位通过3,5-磷酸二酯键连接起来形成的不含侧链的具有方向性的长链状化合物。
5.顺反子(基因同义词):在反式构型中不能互补的各个突变型在染色体上所占的一个区域称为一个顺反子。
是一个必须保存完整才具有正常生理功能的遗传物质最小单位。
6.突变子(muton):突变单位,基因内部有许多突变位点,突变后产生变异的最小单位。
(最小的突变单位为1个碱基对bp)7.重组子(recon):重组单位,基因内部有多个重组单位,不能由重组分开的最小单位。
一个基因不是一个突变单位,也不是一个重组单位。
8.断裂基因(split gene):指基因内部被一个或更多不翻译的编码顺序即内含子所隔裂。
基因都可划分为转录区(转录起始点至转录终止子的区域)和调控区(位于转录起始点5’上游,包括核心启动子、上游启动元件及增强子等序列)结构基因并非都是连续的,原核生物基因是连续的,而真核生物的基因是断裂的9.内含子(intron):在成熟mRNA的片段中未反应出的DNA区段;10.外显子(extron/exon): DNA序列中被转录成为mRNA中的片段。
基因中能变成核苷酸序列的是外显子,内含子不能。
11.核小体(nucleosome):在真核生物中,双螺旋的DNA分子围绕一蛋白质八聚体进行盘绕,从而形成特殊的串珠状结构。
基因工程知识点全

第一章基因工程概述1、什么就是基因工程,基因工程得基本流程?基因工程(Genetic engineering)原称遗传工程。
从狭义上讲,基因工程就是指将一种或多种生物体(供体)得基因与载体在体外进行拼接重组,然后转入另一种生物体(受体)内,使之按照人们得意愿遗传并表达出新得性状。
因此,供体、受体与载体称为基因工程得三大要素。
1、分离目得基因2、限制酶切目得基因与载体3、目得基因与载体DNA在体外连接4、将重组DNA分子转入合适得宿主细胞,进行扩增培养5、选择、筛选含目得基因得克隆6、培养、观察目得基因得表达第二章基因工程得载体与工具酶1、基因工程载体必须满足哪些基本条件?➢具有对受体细胞得可转移性或亲与性。
➢具有与特定受体细胞相适应得复制位点或整合位点。
➢具有多种单一得核酸内切酶识别切割位点。
➢具有合适得筛选标记。
➢分子量小,拷贝数多。
➢具有安全性。
2、质粒载体有什么特征,有哪些主要类型?1、自主复制性2、可扩增性3、可转移性4、不相容性主要类型有1、克隆质粒2、测序质粒3、整合质粒4、穿梭质粒5、探针质粒6、表达质粒3、质粒得构建(1)删除不必要得 DNA 区域,尽量缩小质粒得分子量,以提高外源 DNA 片段得装载量。
一般来说,大于20Kb 得质粒很难导入受体细胞,而且极不稳定。
(2)灭活某些质粒得编码基因,如促进质粒在细菌种间转移得 mob 基因,杜绝重组质粒扩散污染环境,保证 DNA 重组实验得安全,同时灭活那些对质粒复制产生负调控效应得基因,提高质粒得拷贝数(3)加入易于识别得选择标记基因,最好就是双重或多重标记,便于检测含有重组质粒得受体细胞。
(4)在选择性标记基因内引入具有多种限制性内切酶识别及切割位点得 DNA序列,即多克隆接头(Polylinker),便于多种外源基因得重组,同时删除重复得酶切位点,使其单一化,以便环状质粒分子经酶处理后,只在一处断裂,保证外源基因得准确插入。
(5)根据外源基因克隆得不同要求,分别加装特殊得基因表达调控元件。
基因工程基础知识复习归纳

基因工程复习归纳第一章绪论1.基因工程的定义:是指按照人们的愿望,经过严密的设计,将一种或多种生物体〔供体〕的基因与载体在体外进展拼接重组,然后转入另一种生物体〔受体/宿主〕内,使之按照人们的意愿稳定遗传、并表达出新的性状的技术。
2.基因工程概念的开展:遗传工程→DNA重组技术→分子/基因克隆〔Molecular/Gene→基因工程→基因操作。
应用领域以“基因工程〞、“DNA重组〞为主基因工程基因工程的历史性事件1973:Boyer和Cohen建立DNA重组技术1978:Genetech公司在大肠杆菌中表达出胰岛素1982:世界上第一个基因工程药物重组人胰岛素上市1988:PCR技术诞生1989:我国第一个基因工程药物rhIFNα1b上市2003: 世界上第一个基因治疗药物重组腺病毒-p53上市3.基因工程的三大关键元件基因〔供体〕:外源基因、目的基因载体:能将外源基因带入受体细胞,并能稳定遗传的DNA分子〔克隆载体、表达载体〕。
宿主〔受体〕:,能摄取外源DNA、并能使其稳定维持的细胞〔组织、器官或个体〕。
4.基因工程的根本步骤〔切、接、转、增、检〔大肠杆菌是中心角色〕〔1〕目的基因的获取:从复杂的生物基因组中,经过酶切消化或PCR扩增等步骤,别离出带有目的基因的DNA片断。
〔2〕重组体的制备:将目的基因的DNA片断插入到能自我复制并带有选择性标记〔抗菌素抗性〕的载体分子上。
〔3〕重组体的转化:将重组体〔载体〕转入适当的受体细胞中。
〔4〕克隆鉴定:摘要转化成功的细胞克隆〔含有目的基因〕。
〔5〕目的基因表达:使导入寄主细胞的目的基因表达出我们所需要的基因产物。
第二章 DNA重组克隆的单元操作一、用于核酸操作的工具酶1.限制性核酸内切酶(主要存在于原核细菌中,帮助细菌限制外来DNA的入侵)。
限制性核酸内切酶的功能与类型其中II型限制性核酸内切酶:切割位点专一,适于DNA重组,是DNA重组中最常用工具酶。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基因工程一、基因工程的概念基因工程是指按照人们的愿望,进行严格的设计,并通过体外DNA重组和转基因等技术,赋予生物以新的遗传特性,从而创造出更符合人们需要的新的生物类型和生物产品。
由于基因工程是在二、基因工程的基本工具1、限制性核酸切酶-----“分子手术刀”2、DNA连接酶-----“分子缝合针”3、基因进入受体细胞的载体-----“分子运输车”1.“分子手术刀”——限制性核酸内切酶(限制酶)(1)存在:主要存在于原核生物中。
(2)特性:特异性,一种限制酶只能识别一种特定的核苷酸序列,并且能在特定的切点上切割DNA分子。
(3)切割部位:磷酸二酯键(4)作用:能够识别双链DNA分子的某种特定核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开。
(5)识别序列的特点:(6)切割后末端的种类:DNA分子经限制酶切割产生的DNA片段末端通常有两种形式——黏性末端和平末端。
当限制酶在它识别序列的中轴线两侧将DNA的两条链分别切开时,产生的是黏性末端,而当限制酶在它识别序列的中轴线处切开时,产生的则是平末端。
2.“分子缝合针”——DNA连接酶(1)作用:将限制酶切割下来的DNA片段拼接成DNA分子。
相同点:都连接磷酸二酯键3.“分子运输车”——载体(1)载体具备的条件:①能在受体细胞中复制并稳定保存。
②具有一个至多个限制酶切点,供外源DNA片段插入。
③具有标记基因,供重组DNA的鉴定和选择。
(2)最常用的载体是质粒,它是一种裸露的、结构简单的、独立于细菌拟核之外,并具有自我复制能力的双链环状DNA分子。
(3)其他载体:λ噬菌体的衍生物、动植物病毒。
(4)载体的作用:①作为运载工具,将目的基因送入受体细胞。
②在受体细胞对目的基因进行大量复制。
【解题技巧】(1)限制酶是一类酶,而不是一种酶。
(2)限制酶的成分为蛋白质,其作用的发挥需要适宜的理化条件,高温、强酸或强碱均易使之变性失活。
(3)在切割目的基因和载体时要求用同一种限制酶,目的是产生相同的黏性末端。
(4)获取一个目的基因需限制酶剪切两次,共产生4个黏性末端或平末端。
(5)不同DNA分子用同一种限制酶切割产生的黏性末端都相同,同一个DNA分子用不同的限制酶切割,产生的黏性末端一般不相同。
(6)限制酶切割位点应位于标记基因之外,不能破坏标记基因,以便于进行检测。
(7)基因工程中的载体与细胞膜上物质运输的载体不同。
基因工程中的载体是DNA分子,能将目的基因导入受体细胞;膜载体是蛋白质,与细胞膜的通透性有关。
(8)基因工程中有3种工具,但工具酶只有2种。
例1.限制酶MunⅠ和限制酶Eco RⅠ的识别序列及切割位点分别是-C↓AATTG-和-G↓AATTC-。
如图表示四种质粒和目的基因,其中,箭头所指部位为限制酶的识别位点,质粒的阴影部分表示标记基因。
适于作为图示目的基因载体的质粒是()A限制酶的应用特点(1)在获取目的基因和切割载体时通常用同种限制酶,以获得相同的黏性末端。
但是如果用两种不同限制酶切割后形成的黏性末端相同时,在DNA连接酶的作用下目的基因与载体也可以连接起来。
(2)为了防止载体或目的基因的黏性末端自己连接,可用不同的限制酶分别处理目的基因和载体,使目的基因两侧及载体上具有两个不同的黏性末端五种酶的比较作用底物作用部位形成产物黏性末端或平末端限制性切酶DNA分子磷酸二酯键DNA连接酶DNA片段磷酸二酯键重组DNA分子DNA聚合酶脱氧核苷酸磷酸二酯键子代DNADNA解旋酶DNA分子碱基对间的氢键脱氧核苷酸单链RNA聚合酶核糖核苷酸磷酸二酯键核糖核苷酸单链三、基因工程的操作步骤1、目的基因的获取2、基因表达载体的构建3、将目的基因导入受体细胞4、目的基因的检测与鉴定1、目的基因的获取获取目的基因的方法:(1)直接分离法从基因文库中获取目的基因将含有某种生物不同基因的许多DNA短片段,导入受体菌的群体中储存,各个受体菌分别含有这种生物的不同的基因,称为基因文库。
包括基因组文库和cDNA文库。
直接从基因组中获取目的基因最常用的方法是:“鸟枪法”。
(2)人工合成法化学合成法:片段较小,核苷酸序列已知的目的基因,直接利用DNA合成仪用化学方法合成,不需要模板。
反转录法:以RNA为模板,在逆转录酶作用下合成目的基因DNA(cDNA)。
(4)利用PCR技术扩增目的基因PCR技术:是一项在生物体外复制特定DNA片段的核酸合成技术。
由于PCR过程在高温下进行,因此需要使用热稳定的DNA聚合酶。
目的:通过指数式扩增获取大量的目的基因前提:要有一段已知目的基因的脱氧核苷酸序列,以便合成引物。
2.基因表达载体的构建——基因工程的核心(1)目的:使目的基因在受体细胞中稳定存在,并且可以遗传给下一代,同时使目的基因能够表达和发挥作用。
(3)基因表达载体的构建过程:3.将目的基因导入受体细胞目的基因进入受体细胞,并且在受体细胞维持稳定和表达的过程,称为转化。
转化的关键是目的基因整合到受体细胞染色体基因组中。
金榜P1854.目的基因的检测与鉴定转化过程将目的基因插入到Ti质粒的T-DNA上→农杆菌→导入植物细胞→整合到受体细胞的染色体DNA上→表达将含有目的基因的表达载体提纯→取卵(受精卵)→显微注射→受精卵发育→获得具有新性状的动物Ca2+处理细胞→感受态细胞→重组表达载体与感受态细胞混合→感受态细胞吸收DNA分子[误区警示](1)标记基因的作用——筛选、检测目的基因是否导入受体细胞,常见的有抗生素抗性基因、发光基因(表达产物为带颜色的物质)等。
(2)受体细胞常用植物受精卵或体细胞(经组织培养)、动物受精卵(一般不用体细胞)、微生物(大肠杆菌、酵母菌)等。
要合成糖蛋白、有生物活性的胰岛素则必须用真核生物酵母菌(需质网、高尔基体的加工、分泌);一般不用支原体,原因是它营寄生生活;一定不能用哺乳动物成熟的红细胞,原因是它无细胞核,不能合成蛋白质。
(3)基因表达载体中,启动子(DNA片段)≠起始密码子(RNA);终止子(DNA片段)≠终止密码子(RNA)。
基因表达载体的构建是最核心、最关键的一步,在体外进行。
(4)目的基因与载体的连接方式有多种,如目的基因-目的基因、目的基因-载体、载体-载体等。
例3.下列有关基因工程操作的叙述中,正确的是() AA.用同种限制酶切割载体与目的基因可获得相同的黏性末端B.以蛋白质的氨基酸序列为依据合成的目的基因与原基因的碱基序列相同C.检测到受体细胞含有目的基因就标志着基因工程操作的成功D.用含抗生素抗性基因的质粒作为载体是因为其抗性基因便于与外源基因连接例4 金榜P187 T2四、基因工程的应用与蛋白质工程1.乳腺生物反应器与工程菌生产药物的比较(1)含义:①乳腺生物反应器是指将外源基因在哺乳动物的乳腺中特异表达,利用动物的乳腺组织生产药物蛋白。
②工程菌是指用基因工程的方法,使外源基因得到高效表达的菌类细胞株系。
(2)两者区别:蛋白质工程是指以蛋白质分子的结构规律及其与生物功能的关系作为基础,通过基因修饰或基因合成,对现有蛋白质进行改造,或制造一种新的蛋白质,以满足人类的生产和生活的需求。
3、基因工程的应用:金榜P1894、基因治疗:(1)概念:指利用正常基因置换或弥补缺陷基因的治疗方法。
(2)方法:基因置换、基因修复、基因增补、基因失活等。
如:腺苷酸脱氨酶(ADA)基因缺陷症的基因治疗。
(3)基因治疗的途径体外基因治疗:先从病人的体获得某种细胞进行培养,然后在体外完成基因转移,再筛选成功转移的细胞扩增培养,最后重新输入患者体。
如腺苷酸脱氨酶基因的转移。
体基因治疗:用基因工程的方法,直接向人体组织细胞中转移基因的治病方法。
5、基因诊断(1)概念:又称DNA诊断,是采用基因检测的方法来判断患者是否出现了基因异常或携带病原体。
(2)方法:DNA分子杂交技术。
它的基因原理是:互补的DNA单链能够在一定条件下结合成双链,即能够杂交,这种结合是特异的,即严格按照碱基互补配对的原则进行。
当用一段已知基因的单链作探针(常用同位素、荧光分子等进行标记),与变性后的单链基因组DNA接触时,如果两者的碱基完成配对,互补地结合成双链,表明被测基因组DNA中含有已知的基因序列。
[误区警示](1)基因治疗后,缺陷基因没有改变。
基因治疗是把正常基因导入受体细胞中,以表达正常产物从而治疗疾病,对原来细胞中存在缺陷的基因没有清除或改变。
(2)对蛋白质分子进行改造,其本质是改变其基因组成。
如果对蛋白质直接改造,即使改造成功,被改造的蛋白质分子还是无法遗传。
(3)DNA分子作探针进行检测时应检测单链,即将待测双链DNA分子打开。
(4)青霉素是青霉菌产生的,不是通过基因工程产生的。
例5.下列关于蛋白质工程和基因工程的比较,不合理的是()A.基因工程原则上只能生产自然界已存在的蛋白质,而蛋白质工程可以对现有蛋白质进行改造,从而制造一种新的蛋白质B.蛋白质工程是在基因工程的基础上发展起来的,蛋白质工程最终还是要通过基因修饰或基因合成来完成C.当得到可以在-70℃条件下保存半年的干扰素后,在相关酶、氨基酸和适宜的温度、pH条件下,干扰素可以大量自我合成D.基因工程和蛋白质工程产生的变异都是可遗传的。