绝对值知识点及练习
初一数学绝对值知识点与经典例题
![初一数学绝对值知识点与经典例题](https://img.taocdn.com/s3/m/e32bfbf5c9d376eeaeaad1f34693daef5ef71377.png)
初一数学绝对值知识点与经典例题绝对值的性质及化简【绝对值的几何意义】数字a的绝对值是数字轴上代表数字a的点与原点a之间的距离的绝对值记作a.(距离具有非负性)[绝对值的代数意义]正数的绝对值就是它本身;负数的绝对值是它的对立面;0的绝对值是0.注:① 取绝对值也是一种操作。
运算符号是“|”,求一个数的绝对值是根据性质去掉绝对值符号.② 绝对值的本质:一个正数的绝对值就是它本身;负数的绝对值是它的相位反数;0的绝对值是0.③ 绝对值为非负,取绝对值的结果始终为正或0④任何一个有理数都是由两部分组成:符号和它的绝对值,如:?5符号是负绝对值是5【求字母a的绝对值】? a(a?0)?a(a?0)?a(a?0)?①A.0(a?0)②A.③A.?a(a?0)?a(a?0)????a(a?0)?利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小.绝对值非负性:|a|≥0如果几个非负数之和为0,那么这些非负数必须为0,例如:如果a?BC0,那么a?0,b?0,c?0【绝对值的其它重要性质】(1)任何数字的绝对值不小于该数字或该数字的相反数字,即a?a,且a??a;(2)如果是?b、然后是a?B还是a??b、(3)ab?A.B222aa(b?0);?bb(4)|a|?|a|?a;(5)||a|-|b||≤|a±b|≤|a|+|b|a的几何意义:在数字轴上,它表示从该数字的点到原点的距离a?b的几何意义:在数轴上,表示数a.b对应数轴上两点间的距离.[消除绝对值符号]基本步骤:在区域之间找到零点,确定正负,并消除符号。
[绝对值不等式](1)解绝对值不等式必须设法化去式中的绝对值符号,转化为一般代数输入要解决的问题;(2)证明绝对值不等式主要有两种方法:a)去掉绝对值符号,将其转化为一般不等式证明:元素交换法、讨论法和平方法;b)利用不等式:|a |-|b | Q | a+b | Q | a |+| b |,该方法用于对绝对值中的公式进行除法和组合、加减项,以及将要证明的公式与已知公式连接起来。
(完整版)绝对值有理数比较大小知识点及习题
![(完整版)绝对值有理数比较大小知识点及习题](https://img.taocdn.com/s3/m/31181e1583d049649b66589f.png)
第三讲:绝对值、有理数比较大小1、 绝对值:一般地,在数轴上表示数a 的点到原点的距离叫做a 的绝对值;(|a|≥0)2、 一个正数的绝对值是其本身;一个负数的绝对值是其相反数;0的绝对值是0;3、 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 4、0a 1a a>⇔= ; 0a 1a a <⇔-=;5、 有理数的比较:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序。
即左边的数小于右边的数;(①正数大于0,0大于负数,正数大于负数;②两个负数,其绝对值大的反而小;)一、填空题1、一个正数的绝对值是____,一个负数的绝对值是____,0的绝对值是___2、绝对值小于3的整数有___个,它们是________。
3、用“>”或“<”号填空。
-3__-4, -(-4)__-|-5|, -65__-76 4、若a +|a |=0,则a __0,若a -|a |=0,则a __0。
5、已知|a |=73,|b |=209,且b < a ,则a =___,b =___。
6、若|a -2|+|b +1|=0,则a +b =___。
7、绝对值最小的有理数是___,绝对值等于它本身的数是______,绝对值等于它的相反数的数是______。
8、绝对值小于2的整数有___个,绝对值不大于3的非负整数是_______。
9、一个数的倒数的绝对值是21,则这个数是____。
10、-31的相反数是___,-31的绝对值是___,-31的倒数是___。
11、有理数m ,n 在数轴上的位置如图,二、选择题1、-|-2|的倒数是( )A 、2B 、21C 、-21 D 、-2 2、若|a |=-a ,则a 一定是( )A 、正数B 、负数C 、非正数D 、非负数3、代数式|x -2|+3的最小值是( )A 、0B 、2C 、3D 、54、若|a |=|b |,则a 与b 的关系是( )A 、a =bB 、a =-bC 、a =b 或a =-bD 、不能确定5、下面说法中正确的有( )个①互为相反数的两个数的绝对值相等;②一个数的绝对值是一个正数;③一个数的绝对值的相反数一定是负数;④只有负数的绝对值是它的相反数。
七年级数学上册绝对值专题练习汇总
![七年级数学上册绝对值专题练习汇总](https://img.taocdn.com/s3/m/d2c78c98ba4cf7ec4afe04a1b0717fd5370cb201.png)
七年级数学上册绝对值专题练习汇总绝对值是七年级数学上册中的一个重要概念,它在数学运算和问题解决中起着关键作用。
为了帮助同学们更好地掌握绝对值的相关知识,以下是对绝对值的详细介绍以及一系列的专题练习。
一、绝对值的定义绝对值是指一个数在数轴上所对应点到原点的距离,用“||”来表示。
例如,数字 5 的绝对值写作“|5|”,其值为 5;数字-5 的绝对值写作“|-5|”,其值也为 5。
也就是说,正数的绝对值是它本身,负数的绝对值是它的相反数,0 的绝对值是 0。
二、绝对值的性质1、绝对值具有非负性,即任何数的绝对值总是大于或等于 0。
2、互为相反数的两个数的绝对值相等。
三、绝对值的运算1、若|a| = a,则a ≥ 0;若|a| = a,则a ≤ 0。
2、绝对值的加减运算:当两个数同号时,绝对值相加,符号不变;当两个数异号时,绝对值相减,取绝对值较大的数的符号。
四、绝对值方程例如,|x| = 3,则 x = ±3;|x 2| = 5,则 x 2 = ±5,解得 x =7 或 x =-3。
五、绝对值不等式1、若|x| < a(a > 0),则 a < x < a。
2、若|x| > a(a > 0),则 x < a 或 x > a。
接下来,让我们通过一些具体的练习题来巩固对绝对值的理解和应用。
练习一:基础概念理解1、下列说法正确的是()A 绝对值等于它本身的数是正数B 绝对值等于它的相反数的数是负数C 绝对值相等的两个数一定相等D 绝对值相等的两个数一定互为相反数或相等2、若|x| = x,则 x 是()A 正数B 负数C 非正数D 非负数练习二:简单计算1、计算:| 3 |+| 5 |=2、计算:| 7 || 2 |=练习三:方程求解1、解方程:| 2x 1 |= 52、已知| x + 3 |= 2,求 x 的值。
练习四:不等式求解1、解不等式:| x 1 |< 32、解不等式:| 2x + 1 |> 5练习五:实际应用1、某工厂生产的零件尺寸误差不能超过 ±05mm,若生产的零件尺寸为 x mm,用绝对值表示其尺寸误差不超过 ±05mm 为。
绝对值知识点经典例题练习
![绝对值知识点经典例题练习](https://img.taocdn.com/s3/m/ed3bfccf6529647d27285270.png)
绝对值【知识要点】一、绝对值的概念1.定义:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值.数a 的绝对值记作:a ; 读作:a 的绝对值.2.绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.3.绝对值的几何意义:a 的几何意义:在数轴上,表示a 的点离原点的距离.离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小.4.绝对值的性质:(1)绝对值是非负数,即0≥a ;(2)互为相反数的数绝对值相等,即a a -=;(3)反之,若两个数绝对值相等,那么这两个数相等或互为相反数, 即若b a =,则b a =或b a -=;(4)若0=+y x ,则0=x ,0=y .二、绝对值的求法绝对值是一种运算,这个运算符号是“”,求一个数的绝对值就是想办法去掉绝对值符号,对于任意有理数a ,有 (1)(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩(2)⎩⎨⎧<-≥=)0()0(a a a a a (3)⎩⎨⎧≤->=)0()0 (a a a a a 【典型例题】例1. 求下列各数的绝对值.(1)8- (2)3.0- (3)313- (4)0例2.(1)一个数的绝对值是3,则这个数是(2)一个数的绝对值是0,则这个数是(3)有没有一个数的绝对值是-4? 思考:①a 与0的大小关系②有没有绝对值最小的数?例3.(1)5=a ,则=a ;(2)若2m -=,求m 的值;(3)若a b =,则a b 与的关系是什么?例4.(1)写出绝对值不大于3的所有整数 .(2)写出绝对值小于5.2而又大于2.1的所有整数 .例5. 化简:(1)()=---3 ;(2) ()=-+--32 ;(3)=-14.3π ;例6. 化简:(1)若2>a ,则=-2a ;(2)若x<0,则x = ;(3)若1≤a ,则1-a = .【初试锋芒】1.31-的绝对值是 ; 的绝对值是31. 2. 一个正数的绝对值为8,这个数是 ;一个负数的绝对值为8,这个数是 .3. 的绝对值是它本身; 的绝对值是它的相反数.4. 若0>a ,则=a ;若0<a ,则=a ;若0=a ,则=a .6.试写出:绝对值小于5的所有负整数 *7.对任意有理数a ,式子1a -,1a +,1a -+,1a +中,取值不能为0的是 *8.绝对值小于2011的所有整数之和是9.已知一组数;4,-3,21-,+5.1,214-,0,-2.2.在这组数中: (1)绝对值最大的数为 ;绝对值最小的数为 .(2)相反数最大的数为 ;相反数最小的数为 .10.下列等式中,成立的是( ) A. 33±=+ B. ()33--=- C. 33±=± D. 3131=--11.下列计算中,错误的是( ) A. 1257=-+- B. 04.03.034.0=--- C. 535154=-- D. 311312213=--- 12.如果两个数的绝对值相等,那么这两个数必满足( )A. 相等B. 都是0C. 互为相反数D. 相等或互为相反数13.下列各式中,不正确的是( ) A. 01.001.0->- B. 001.001.0->- C. ⎪⎭⎫ ⎝⎛--<--3131 D. 2.32.3->-- 14.下列判断正确的是( )A. 若b a =,则b a =B. 若b a =,则b a =C. 若b a <,则b a <D. 若b a >,则b a >* 15.指出下列各式中的a 是什么数.(1)a a = (2) a a -= (3)a a =-* 16.若,053=-++y x 求y x ,的值.* 17. 当31<≤-x 时,求31-++x x 的值.* 18.有理数a ,b ,c 在数轴上位置如下图所示,化简:|b-1|-|a-c|-|1-c|.【大显身手】1.求出下列各数的绝对值.(1)15.0 (2)3- (3)313- (4)0 (5)π-2.写出绝对值小于3.5的所有整数3.下列各组数中,互为相反数的是( ) A.21-与21 B.32-与32- C.23-与32 D.1-与()1-- 4.下列各式:①33+=-; ②5.15.1-=-; ③11-=-a a ; ④1=a ,则1=a ; ⑤⎪⎭⎫ ⎝⎛--=-2323 其中正确的个数有( ) A. 1 B. 2 C. 3 D. 45.下列说法正确的是( )A. 如果两个数的绝对值相等,则这两个数必相等B. 如果两个数不相等,那么它们的绝对值肯定不相等C. 在()()2,2,2,2-------中有两个负数D. 若()[]7,7--=-+-=b a ,则b a ,互为相反数6. 某司机在东西走向的路上(取东向为正)开车接送乘客,早晨从A 地出发,到晚上送 走最后一名乘客为止,他一天行驶路程记录如下(单位:km ):1416203015510+--+--+,,,,,,(1)若该车每千米耗油0.03L ,则这辆车今天共耗油多少升?(2) 根据记录情况,你能否知道该车送完最后一名乘客时,它在A 地的什么方向? 距A 地多远?。
绝对值练习题(经典,绝对绝对实用)
![绝对值练习题(经典,绝对绝对实用)](https://img.taocdn.com/s3/m/fa29ccae650e52ea5418981f.png)
1. 已知点 M,N,P,Q 在数轴上的位置如图所示,则其中表示的数的绝对值最大的点是( )
A.M
B.N
C.P
D.Q
2.一个数的绝对值是 5,则这个数是(
)
A.±5
B.5
C.-5
D.25
3.若 x 为实数,则|x|-x 的值一定是( )
A.正数
B.非正数
C.非负数
D.负数
4.如图,若 A 是实数 a 在数轴上对应的点,则对于 a,-a,1 的大小关系表示正确的是(
7.下列式子中成立的是(
)
A.-|-5|> 4
B.-3<|-3|[来源:] C.-|-4|=4
D.|-
5.5|<5
8.下列说法不正确 的是(
)
A.两个有理数,绝对值大的数离原点远 B.两个有理数,其中较大的在右边
C.两个负有理数,其中较大的离原点近 D.两个有理数,其中较大的离原点远
9. 若|x|=5,|y|=2,且 x<y,则 x=
,y=
.
10.画一条数轴,在数轴上表示下列各数,并把这些数由大到小用“>”号连接起来. 3.5,3.5 的相反数,-1 ,绝对值等于 3 的数,最大的负整数. 2
11. 比较下列各对数的大小: (1)-(-3)和|-2|;
(2)-(-4)和|-4|;
+0.031[ -0.037 +0.018 -0.021 +0.042
(1)哪些产品是符合要求的? (2)符合要求的产品中哪个质量最好?用绝对值的知识加以说明.
2
)
A.a<1<-a
B.a<-a<1
C.1<-a<a
D.-a<a<1
七年级数学上册有理数《绝对值》知识点讲解及压轴题专题练习
![七年级数学上册有理数《绝对值》知识点讲解及压轴题专题练习](https://img.taocdn.com/s3/m/80775eb94431b90d6d85c713.png)
七年级数学上册有理数《绝对值》知识点讲解及压轴题专题练习一、知识点概要1、 取绝对值的符号法则: (0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩2、 绝对值的基本性质:①非负性 ②ab a b =• ③(0)a a b b b=≠ ④222a a a == ⑤a b a b +≤+ ⑥a b a b a b -≤-≤+3、 绝对值的几何意义: 从数轴上看,a 表示数学a 的点到原点的距离;a-二、分类经典例题解析 (一) 去绝对值符号化简例1:已知m m =-,化简12m m ---所得的结果是()A 、1-B 、1C 、23m -D 、32m - 例2:已知0a b c <<<,化简式子2a b a b c a b c -++--+- 例3:已知a b c abc x a b c abc=+++,且a 、b 、c 都不等于0,求x 的所有可能的值。
(变式训练)(1)、如果a 、b 、c 是非零有理数,且0a b c ++=,那么a b c abc a b c abc+++的所有可能的值为( )A 、0B 、1或—1C 、2或—2D 、0或—2(2)、有理数a 、b 、c 均不为零,且0a b c ++=,设a b c x b c c a a b =+++++,试求代数式19992002x x -+的值。
例4:化简:① 21x - ② 13x x -+-(分析:零点讨论法)(二) 利用绝对值的几何意义解题例1、如图,已知数轴上点A 、B 、C 所对应的数a 、b 、c 都不为零,且C 是AB 的中点,如果2220a b a c b c a b c +--+--+-=,试确定原点O 的大致位置。
例2:如图,在数轴上有六个点,且AB=BC=CD=DE=EF ,则与点C 所表示的数最接近的整数是( )A 、—1B 、0C 、1D 、2例3:非零整数m 、n ,满足50m n +-=,所有这样的整数组(m ,n )共有: 组 变式训练:若a 、b 、c 为整数,且19991a bc a -+-=,求c a a b b c -+-+-的值b ac B 11-5F E D C B A例4:点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为∣AB|=|a-b|. ①数轴上表示2和5两点之间的距离是_ _.②数轴上表示-2和-5的两点A 和B 之间的距离是_ _.③数轴上表示1和-3的两点A 和B 之间的距离是_ _.④数轴上表示X 和-1的两点A 和B 之间的距离是(x+1),如果|AB|=2,那么 X 为 ⑤当代数式|x+1|+|x-2|取最小值时,相应的x 的取值范围是_ .最小值为 探究性学习:(一)、某公共汽车运营线路AB 段上有A 、D 、C 、B 四个汽车站,如图现在要在AB 段上修建一个加油站M ,为了使加油站选址合理,要求A 、B 、C 、D 四个汽车站到加油站M 的路程总和最小,试分析加油站M 在何处选址最好?(二)、如果某公共汽车运营线路上有A 、B 、C 、D 、E 五个汽车站(从左至右依次排列),上述问题中加油站建在何处最好?(三)、如果某公共汽车运营线路上有A 、B 、C 、D 、E---- ;共n 个汽车站(从左至右依次排列),上述问题中加油站建在何处最好?D CB A(四)、根据以上结论,求12......616617x x x x -+-++-+-的最小值。
七年级绝对值知识点及提高训练
![七年级绝对值知识点及提高训练](https://img.taocdn.com/s3/m/1dfe011cfe00bed5b9f3f90f76c66137ee064f7a.png)
绝对值1、绝对值的意义:数轴上表示数a 的点与原点的距离,就是数a 的绝对值,记为:a 。
如:10和-10的绝对值都是10,即 ,1010,1010=-=显然00=。
例1 求541,312,32,31--的绝对值。
例2 一个数的绝对值是7, 求这个数。
2、有理数的绝对值的求法:(1) 一个正数的绝对值是它本身(2) 一个负数的绝对值是它的相反数(3) 0的绝对值是0即 ⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a 也就是任何有理数的绝对值都是非负数在求用字母表示的数的绝对值时,首先应判断这个数是正数、是零还是负数,再根据定义分类求绝对值。
3、绝对值的几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离。
借助数轴,使学生看到两个负数,绝对值大的反而小,从而引出4、 有理数大小的比较(1) 正数大于0, 0大于负数,正数大于负数;(2) 两个负数,绝对值大的反而小例3 比较下列各对数的大小:-(-1)和-(+2) 218-和73- -(-0.3)和31-例4 判断下列结论是否正确,并说明为什么:(1) 若b a =, 则a=b(2) 若b a >, 则a>b例5 把下列各数用“> ”连接起来:43,0,2.4,7.0,32,215--例6 已知有理数a 、b 、c 在数轴上的位置如图,化简c b a ++.思考:1、若01=-+b a ,求a, b.2、填空: (1) 若a a =,则a 0. (2) 若,a a -=则a 0.(3) 若,0=+a a 则a 0. (4) 若1-=a a,则a 0. 提高训练1、 在数轴上表示数 a 的点到原点的距离为5,则 3-a =2、 数轴上有两点A 、B ,如果点 A 对应的数是 -5,且A 、B 两点的距离为4,则点B 对应的数是3、 有理数a 、b 、c在数轴上的位置如图所示,化简=----+-+c c a b b a 11?4、 如图:在工作流水线上,A 、B 、C 、D 处各有1名工人,且AB=BC=CD=2 ,现在工作流水线上放一个工具箱,使4个工人到工具箱的距离之和最短,判断工具箱应放的位置?并说明理由5、 如图:数轴上标出若干个点,每相邻两点相距1个单位,点A 、B 、C 、D 对应的数分别是整数a 、b 、c 、d , 且d -2a = 10 ,那么数轴的原点应是哪个点?并说明理由第5题第4题第3题D C B A 10c b a A B6、 如图:数轴上有6个点 ,且AB=BC=CD=DE=EF ,则点E 表示的数最接近的整数是多少?第6题13- 4AB C D E F7、 在数轴上,点 A 、B 分别表示21-和61 ,则线段AB 的中点所表示的数是多少?8、 数轴上有两点A 、B ,如果点 A 与原点的距离为3,且A 、B 两点的距离为4,则满足条件的点B 与原点的距离的和多少?9、b a --9 有最 值,其值为10、 3++b a 有最 值,其值为11、若033=-+-x x , 则 x 的取值范围为12、若()()01=+-x x x , 则 x 的取值范围为 13、若a a -= ,则=---a a 2114、若2-<x ,则=+-x 11 15、若3-<x ,则=+-+x 12316、若b a b a -=+ ,则=ab17、若 b a b a +=-,则a 、b 应满足的关系是18、若0>abc ,0=++c b a ,则=+++++cb a b ac a c b19、若0≠abc ,则c c b b a a ++= ;=+++abcabc c c b b a a20、若5=x ,3=y ,且x y y x -=- ,则()=++y x y x。
绝对值练习题及答案
![绝对值练习题及答案](https://img.taocdn.com/s3/m/f3b5adee64ce0508763231126edb6f1afe007174.png)
绝对值练习题及答案一、选择题1. 绝对值的定义是:对于任意实数x,其绝对值表示为|x|,满足以下哪个条件?A. x ≥ 0B. x ≤ 0C. x > 0D. x < 0答案:A2. 计算绝对值 |-5| 的结果是多少?A. 5B. -5C. 0D. 1答案:A3. 如果 |x - 3| = 4,那么 x 的可能值是:A. -1B. 7C. 1D. 3答案:B, C二、填空题4. 绝对值 |-8| 等于 _______。
答案:85. 如果 |x + 2| = 3,那么 x 的值可以是 _______ 或 _______。
答案:1,-56. 绝对值不等式 |x - 4| < 2 的解集是 _______。
答案:2 < x < 6三、解答题7. 解绝对值方程 |x - 5| = 6。
解:由绝对值的定义,我们有 x - 5 = 6 或 x - 5 = -6。
解得 x = 11 或 x = -1。
8. 已知 |3x + 1| = 8,求 x 的值。
解:由绝对值的定义,我们有 3x + 1 = 8 或 3x + 1 = -8。
解得 x = 7/3 或 x = -3。
9. 证明:对于任意实数 a 和 b,有|a + b| ≤ |a| + |b|。
证明:考虑 a 和 b 的正负情况,我们可以将问题分为四种情况:- 当a ≥ 0 且 b ≥ 0 时,|a + b| = a + b = |a| + |b|。
- 当a ≥ 0 且 b < 0 时,|a + b| = a - |b| ≤ |a| + |b|。
- 当 a < 0 且b ≥ 0 时,|a + b| = |b| - a ≤ |a| + |b|。
- 当 a < 0 且 b < 0 时,|a + b| = -(a + b) = |a| + |b|。
综上,对于任意实数 a 和 b,都有|a + b| ≤ |a| + |b| 成立。
绝对值知识讲解及经典例题
![绝对值知识讲解及经典例题](https://img.taocdn.com/s3/m/a48bfc6531b765ce050814b3.png)
第三讲绝对值【例2】若|a+1|=3,则a-3的值为().A.-1 B.-7 C.-7或-1 D.2或-4【解析】(方法1)因为|a+1|=3,由绝对值的几何意义可得,数轴上表示数(a+1)的点与原点的距离是3.故a+1=±3.所以a=3-1=2或a=-3-1=-4.所以a-3=2-3=-1或-4-3=-7.故选C.(方法2)由|a+1|=3,得|a-3+4|=3.所以a-3+4=±3.将a-3看作一个整体,得a-3=-3+4=-1或a-3=-3-4=-7.故选C.【答案】C.【例3】若|a|=2,|b|=6,a>0>b,则a+b=________.【解析】由|a|=2,a>0可得a=2.由|b|=6,b<0可得b=-6.所以a+b=2+(-6)=-4.【答案】-4.知识点2 有理数比较大小(1)利用有理数的性质比较大小①法则:正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小.②比较两个负数大小的步骤:a.分别求出这两个负数的绝对值;b.比较这两个绝对值的大小;c.根据“两个负数,绝对值大的反而小”作出正确判断.(2)利用数轴比较大小数轴上不同的两个点表示的数,左边的点表示的数总比右边的点表示的数小.【注意】比较两个数大小时,在比较两个数的绝对值的大小后,不要忘记比较问题中原数的大小.【例5】在,0,-2,,2这五个数中,最小的数为().A.0 B.C.-2 D.【解析】(方法一)正数大于负数;两个负数比较大小,绝对值大的反而小.由此可得-2最小.(方法二)把这几个数在数轴上表示出来,然后根据最左边的点所对应的数最小得出结论.【答案】C.【例6】把表示下列各数的点画在数轴上,再按从小到大的顺序,用“<”号把这些数连接起来:2,-0.5,0,1.5,-2.5.【解析】先把数2,-0.5,0,1.5,-2.5分别在数轴上表示出来,然后根据数轴上左边的点表示的数小于右边的点表示的数得出结论.【答案】由数轴可得,-2.5<-0.5<0<1.5<2 .【例7】已知a>0,b>0,且|a|>|b|,则a,-a,b,-b的大小关系是_______(用“<”号连接).【解析】由a>0,b>0,且|a|>|b|,可以得到a>b>0.由此再得到-a<-b<0,所以a,-a,b,-b的大小关系是-a<-b<b<a.【答案】-a<-b<b<a.2.一个数的绝对值越小,则该数在数轴上所对应的点,离原点越_____.3.-32的绝对值是_____. 4.绝对值最小的数是_____.5.绝对值等于5的数是_____,它们互为_____.6.若b <0且a =|b |,则a 与b 的关系是______.7.一个数大于另一个数的绝对值,则这两个数的和一定_____0(填“>”或“<”).8.如果|a |>a ,那么a 是_____.9.绝对值大于2.5小于7.2的所有负整数为_____.10.将下列各数由小到大排列顺序是_____.-32,51 ,|-21|,0,|-5.1| 11.如果-|a |=|a |,那么a =_____.12.已知|a |+|b |+|c |=0,则a =_____,b =_____,c =_____.13.比较大小(填写“>”或“<”号)(1)-53_____|-21|(2)|-51|_____0(3)|-56|_____|-34| 14.计算 (1)|-2|×(-2)=_____ (2)|-21|×5.2=_____ (3)|-21|-21=_____ (4)-3-|-5.3|=_____ 15.任何一个有理数的绝对值一定( )A.大于0B.小于0C.不大于0D.不小于016.若a >0,b <0,且|a |<|b |,则a +b 一定是( )A.正数B.负数C.非负数D.非正数17.下列说法正确的是( )A.一个有理数的绝对值一定大于它本身B.只有正数的绝对值等于它本身C.负数的绝对值是它的相反数D.一个数的绝对值是它的相反数,则这个数一定是负数18.下列结论正确的是( )A.若|x |=|y |,则x =-yB.若x =-y ,则|x |=|y |C.若|a |<|b |,则a <bD.若a <b ,则|a |<|b |19.某班举办“迎七一”知识竞赛,规定答对一题得10分,不答得0分,答错一题扣10分,今有甲、乙、丙、丁四名同学所得分数,分别为+50,+20,0,-30,请问哪个同学分数最高,哪个最低,为什么?最高分高出最低分多少?1.在数轴上看,零一切负数,零一切正数;两个数,右边的数左边的数,原点左侧的点所代表的数越向左越,即离原点越远,表示的数越,所以两个负数比较大小,绝对值大的反而。
绝对值(基础篇)(专项练习)七年级数学上册基础知识专项讲练(苏科版)
![绝对值(基础篇)(专项练习)七年级数学上册基础知识专项讲练(苏科版)](https://img.taocdn.com/s3/m/29f9f31f590216fc700abb68a98271fe910eafcf.png)
绝对值(基础篇)(专项练习)一、单选题【知识点一】绝对值的意义 1.1||5-的值是( )A .5-B .15-C .15D .52.数轴上表示-3的点到原点的距离是( ) A .-3B .3C 3D .133.在15-,0,9-,(6)--四个数中,是正数的有( ) A .0个B .1个C .2个D .3个【知识点二】求一个数的绝对值 4.|﹣2|的相反数为( ) A .2B .﹣2C .12D .12-5.下列各组数中相等的是()A .2-与()2--B .2-与2-C .2-与2--D .2-与26.在数222018,0,0.2,, 2.010*******----⋅⋅⋅中,非正数有( ) A .1个B .2个C .3个D .4个【知识点三】化简绝对值7.如图,点A ,B ,C 在数轴上,若B ,C 两点表示的数互为相反数,点A 表示的数为a ,则|a ﹣1|的结果为( )A .a ﹣1B .1﹣aC .﹣a ﹣1D .无法确定8.设x 为一个有理数,若x x =,则x 必定是( ) A .负数B .正数C .非负数D .零9.如图,在数轴上,点A 、B 分别表示a 、b ,且a +b =0,若6a b -=,则点A 表示的数为( )A .﹣3B .0C .3D .﹣6【知识点四】绝对值非负性的应用10.若0a b +=,则a 与b 的大小关系是( ) A .a 与b 不相等 B .a 与b 互为相反数 C .a 与b 互为倒数 D .0a b11.设x 为有理数,若||x x >,则( ) A .x 为正数B .x 为负数C .x 为非正数D .x 为非负数 12.若()33a a -=--,则a 的取值范围是 ( ) A .3a ≥B .3a >C .3a ≤D .3a <【知识点五】绝对值方程13.数轴上点A 和点B 表示的数分别为-8和4,把点B 向左移动x 个单位长度,可以使点A 到点B 的距离是2,则x 的值等于( )A .10B .6或10C .16D .14或1014.数轴上表示﹣1的点到表示x 的距离为3,则x 表示的数为( ) A .2 B .﹣2C .﹣4D .2或﹣415.已知1|3|a=-,则a 的值是( ) A .3B .-3C .13D .13+或13-【知识点六】绝对值的其他应用16.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,一批零件超过规定长度记为正数,短于规定长度记为负数,越接近规定长度质量越好.检查其中四个,结果如下:第一个为0.05mm ,第二个为﹣0.02mm ,第三个为﹣0.04mm ,第四个为0.03mm ,则这四个零件中质量最好的是( )A .第一个B .第二个C .第三个D .第四个17.若有理数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A .b a >-B .a b >-C .ab b <D .a b <18.比赛用乒乓球的质量有严格的规定,但实际生产的乒乓球的质量可能会有一些偏差.以下检验记录(“+”表示超出标准质量,“-”表示不足标准质量)中,质量最接近标准质量乒乓球是( )编号 1 2 3 4 偏差/g +0.01 -0.02-0.03+0.04 A .1号B .2号C .3号D .4号【知识点七】有理数大小比较19.下面的实数比较大小正确的是( ). A .03<-B .23<-C .23-<-D .13-<20.下表是2020年部分国家的GDP 比上一年的增长率,其中增长率最低的国家是( ). 中国美国 埃及 日本 2.3%3.49%-3.57%5.81%-A .中国B .美国C .埃及D .日本21.已知a 、b 所表示的数如图所示,下列结论正确的有( )个①a >0;①b <a ;①b <a ;①11a a +=--;①2b +>2a -- A .1B .2C .3D .4【知识点八】有理数大小比较的实际应用22.2021年1月某日零点,北京、上海、深圳、长春的气温分别是﹣4①、5①、20①、﹣18①,当时这四个城市中,气温最低的是( )A .北京B .上海C .深圳D .长春23.几种气体的液化温度(标准大气压)如下表:其中液化温度最低的气体是( ) 气体氢气氮气氦气氧气液化温度① ﹣253 ﹣195.8 ﹣268 -183A .氦气B .氮气C .氢气D .氧气24.已知a a =-,且1a a>,若数轴上的四个点M ,N ,P ,Q 中的一个能表示数a ,则这个点是( )A .MB .NC .PD .Q二、填空题【知识点一】绝对值的意义 25.若5x =,则x =______.26.当式子23b -+取最小值时,b =______,最小值是______. 27.绝对值等于它自己的数是________. 【知识点二】求一个数的绝对值28.数轴上到原点的距离等于8的点表示的数是______. 29.计算:3.14π-=_______(结果保留π).30.(1)如果一个数的绝对值等于2021,那么这个数是______; (2)若217x +-=,则x =______. 【知识点三】化简绝对值31.已知有理数 a 、b 表示的点在数轴上的位置如图所示,化简|a +1|+|1-b |=____.32.有理数a ,b ,c 在数轴上的位置如图所示,则|a +c |-|a -b |+|b +c |=__________.33.若|a ﹣3|=3﹣a ,则a 的取值范围是______. 【知识点四】绝对值非负性的应用 34.若2a b =-+,则ab =______.35.若有理数,m n 满足640m n ++-=,则mn =_____. 36.当|m +7|-5的值最小时,m =_____. 【知识点五】绝对值方程 37.若2x =,则x =_________.38.在数轴上,与原点的距离是3个单位长度的点表示的数是 _____. 39.若|x +3|﹣|x ﹣5|=8,则x 的取值范围是 ______. 【知识点六】绝对值的其他应用40.数轴上点A 表示的数是x ,点B 表示的数是2,则|x -2|表示A ,B 点两间的距离,若记|5||3|y x x =-++,则y 的最小值为__________.41.若9a,则a =__.42.绝对值小于227的整数..有_______________. 【知识点七】有理数大小比较43.用“>、=、<”符号填空:45-______78-.44.比较大小:215--____________ 1.4--();45.比较大小:如果0x y <<,那么x ______y . 【知识点八】有理数大小比较的实际应用 46.32-与它的相反数之间的整数有_______个.47.已知0a >,0b <,0a b +>,则a ,b ,a -,b -由小到大的排序是________. 48.对于有理数x ,我们规定[x]表示不大于x 的最大整数,例如[1.2]=1,[3]=3,[﹣2.5]=﹣3.则①[8.9]=_____;①[﹣7.9]=_____.三、解答题49.将下列各数填在的集合里.-3.8,-10,4.3,16,-|-35|,-15,0.整数集合:{ ... } 分数集合:{ ...}正数集合:{ ... } 负数集合:{ ...}50.某公司8天内货品进出仓库的吨数记录有10次,数据如下:(“+”表示进库,“-”表示出库,单位:吨)38+,25-,36-,55+,45-,47+,32+,54-,43+,23-.(1)经过这8天,仓库里的货品在增加了还是减少了?增加或减少了多少?(2)如果进出库的装卸费都是8元/吨,那么求出这8天中进出货品需要付的装卸费是多少?51.(1)画出数轴并表示下列有理数:﹣2,﹣2.5,0,92,﹣13,3,并用“<”号连接起来.(2)已知:有理数a 、b 、c 在数轴上的位置如图所示,化简|c |﹣|a |+|﹣b |+|﹣a |.52.如图,已知数轴上点A 表示的数为a ,B 表示的数为b ,且a 、b 满足23(9)0a b ++-=. (1)写出数轴上点A 表示的数是 ,点B 表示的数是 ;(2)点P 、Q 为数轴上的两个动点,点P 从点A 出发以每秒3个单位长度的速度沿数轴向右匀速运动,点Q 同时从点B 出发以每秒2个单位长度的速度沿数轴向左匀速运动.设运动时间为t (t >0)秒.①写出点P 表示的数是 ,点Q 表示的数是 (用含t 的式子表示); ①若AP +BQ =2PQ ,求时间t 的值?53.我们知道,||a 表示数a 到原点的距离,这是绝对值的几何意义.进一步地,数轴上两个点A 、B ,分别用a ,b 表示,那么A ,B 两点之间的距离为||AB a b =-,利用此结论,回答以下问题:(1)数轴上表示2和5的两点之间的距离是_______;数轴上表示-2和-5的两点之间的距离是_______;数轴上表示1和-3的两点之间的距离是_______;(2)数轴上表示x 和-1的两点A ,B 之间的距离是______,如果||2AB =,那么x 的值为______;(3)求|1||2|x x +++的最小值是_______.参考答案1.C 【分析】首先思考绝对值的性质,再根据负数的绝对值等于它的相反数的得出答案. 解:11||55-=.故选:C.【点拨】本题主要考查了绝对值的判断,掌握绝对值的性质是解题的关键.即正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.2.B【分析】由题意可知表示-3的点与原点的距离是-3的绝对值以此分析即可.解:在数轴上表示-3的点与原点的距离是|-3|=3.故选:B.【点拨】本题考查有理数与数轴,熟记数轴的特点以及绝对值的几何意义是解题的关键.3.C【分析】根据绝对值的意义,多重符号的化简,计算判断即可;解:-15是负数;0不是正数也不是负数;|-9|=9是正数;-(-6)=6是正数;①正数有两个,故选:C.【点拨】本题考查了正负数的判断:需将符号化为最简,即数字前最多只有一个符号时,看是否有负号“-”,如果有“-”就是负数,否则是正数;绝对值(数轴上表示数a的点与原点的距离,记作│a│;正数的绝对值是它本身,零的绝对值是零,负数的绝对值是它的相反数);多重符号的化简:若一个数前有多重符号,则看该数前面的符号中,符号“-”的个数来决定,奇数个符号则该数为负数,偶数个符号则该数为正数;掌握相关概念是解题关键.4.B【分析】先根据绝对值的意义求出﹣2的绝对值,再根据相反数的定义写出它的相反数即可.解:|﹣2|=2,2的相反数是﹣2,所以|﹣2|的相反数是﹣2故选:B.【点拨】本题考查求绝对值,求相反数,熟练掌握这些知识点是解题关键.5.C【分析】根据相反数与绝对值的意义,先化简各数,然后比较即可求解 解:A. ()2--2=与2-不相等,故该选项不符合题意;B. 2-=2与2-不相等,故该选项不符合题意;C. 2--2=-与2-相等,故该选项符合题意;D. 22=与2-不相等,故该选项不符合题意; 故选C【点拨】本题考查了相反数与绝对值的意义,掌握相反数与绝对值的意义是解题的关键. 6.D 【分析】非正数是指负数和零,根据非正数的意义即可完成解答. 解:非正数有:−2018,0,2--=-2, 2.010010001-这四个数故选:D【点拨】本题考查了非正数的含义,即负数和零,绝对值的计算,理解非正数的意义是关键.7.B 【分析】由B ,C 两点表示的数互为相反数,先确定原点,再根据a 的范围化简绝对值. 解:①B ,C 两点表示的数互为相反数,①B 、C 到原点的距离相等,原点位置如图,由图可知:点A 在原点左侧,a <0, ①|a ﹣1|=(1)1a a --=-. 故选:B .【点拨】本题考查数轴上点表示的数和化简绝对值,解题的关键是确定原点位置. 8.C 【分析】根据绝对值的性质即可得答案.解:①x x =,①0x ≥,①x 必定是非负数. 故选:C .【点拨】本题主要考查绝对值的性质,需要熟练掌握并灵活运用. 9.A 【分析】根据相反数的性质,由a +b =0,得a <0,b >0,b =﹣a ,故a b -=b +(﹣a )=6.进而推断出a =﹣3.解:①a +b =0,①a =﹣b ,即a 与b 互为相反数, 又①|a ﹣b |=6, ①b ﹣a =6, ①2b =6, ①b =3,①a =﹣3,即点A 表示的数为﹣3. 故选A .【点拨】本题主要考查相反数的性质,熟练掌握相反数的性质是解决本题的关键. 10.D 【分析】根据绝对值的非负性求解即可得. 解:①0a b +=且0a ≥,0b ≥,①0a b ==, ①0a b , 故选:D .【点拨】题目主要考查绝对值的非负性,理解绝对值的非负性是解题关键. 11.B 【分析】根据0x ≥,若要满足||x x >,则0x <,由此即可得到答案解:根据绝对值的非负性可知:0x ≥,若要满足||x x >,则0x <,即x 必为负数. 故选B .【点拨】本题主要考查了绝对值的非负性,解题的关键在于能够熟练掌握绝对值的非负性.12.C【分析】根据绝对值的性质得到30a -≤,计算即可.解:①()33a a -=--,①30a -≤,①3a ≤,故选:C .【点拨】此题考查绝对值的性质:任意数的绝对值都是非负数,熟记性质是解题的关键. 13.D【分析】点B 向左移动x 个单位长度后对应的数为:4x -,再利用2,AB = 列绝对值方程,再解方程即可.解: 点B 向左移动x 个单位长度后对应的数为:4x -, 48122,AB x x122x 或122,x解得:10x =或14,x =故选D【点拨】本题考查的是数轴上两点之间的距离,绝对值方程的应用,掌握“数轴上两点之间的距离公式”是解本题的关键.14.D【分析】根据数轴上两点的距离得:|x ﹣(﹣1)|=3,解方程可得答案.解:由题意得:|x ﹣(﹣1)|=3,①|x +1|=3,①x +1=±3,①x =2或﹣4.故选:D .【点拨】本题考查了绝对值的意义,理解数轴上两点之间的距离的意义是解题的关键.15.D 【分析】先计算出3-,然后根据绝对值的定义求解即可. 解:①133a =-=, ①13a=±, ①13a =±, 故选:D .【点拨】本题考查绝对值方程的求解,理解绝对值的定义是解题关键.16.B【分析】此题是理解误差的大小,无论正负,绝对值最小的零件质量最好,反之,绝对值最大的零件质量最差.解:∵|﹣0.02|<|0.03|<|﹣0.04|<|0.05|,∴质量最好的零件是第二个.故选:B .【点拨】此题考查的知识点是正数负数和绝对值,明确绝对值最大的零件与规定长度偏差最大是解题的关键.17.C【分析】由题意知212a b <-<<<,进而判断各选项即可.解:①212a b <-<<<①2a b ->>故选项A 错误,不符合要求;2b a ->->故选项B 错误,不符合要求;0ab b <<故选项C 正确,符合要求;2a b >>故选项D 错误,不符合要求;故选C .【点拨】本题考查了有理数的大小比较.解题的关键在于确定有理数的取值范围. 18.A【分析】根据绝对值最小的与标准的质量的差距最小,可得答案.解:|0.01|0.01+=,|0.02|0.02-=,|0.03|0.03-=,|0.04|0.04+=,0.040.030.020.01>>>,绝对值越小越接近标准.所以最接近标准质量是1号乒乓球.故选:A .【点拨】本题考查了绝对值,解题的关键是掌握利用了绝对值越小越接近标准. 19.D【分析】有理数大小比较的法则:①正数都大于0;①负数都小于0;①正数大于一切负数;①两个负数,绝对值大的其值反而小,据此逐项判断即可.解:①0>-3,①选项A 不符合题意;①2>-3,①选项B 不符合题意;①-2>-3,①选项C 不符合题意;①-1<3,①选项D 符合题意.故选:D .【点拨】此题主要考查了有理数大小比较的方法,解答此题的关键是要明确:①正数都大于0;①负数都小于0;①正数大于一切负数;①两个负数,绝对值大的其值反而小.20.D【分析】根据正负数的意义以及有理数大小的比较可知:日本的增长率最低.解:由题意可知: 5.81 3.49 2.3 3.57%<%<%<%--,①增长率最低的国家是日本,故选:D .【点拨】本题考查正负数的意义和有理数大小的比较,解题的关键是掌握正负数的意义,会比较有理数大小.21.C【分析】根据数轴和绝对值的定义以及有理数的大小比较的方法分别对每一项进行分析即可. 解:如图所示:b <-2<a <-1<0<1,|b |>|a |,①结论①错误;结论①正确;结论①错误;①a +1<0①|a +1|=-a -1,结论①正确;|2+b |表示b 与-2之间的距离,|-2-a |表示a 与-2的距离,结合图意可得①|2+b |>|-2-a |,故结论①正确.故选:C .【点拨】此题主要考查了有理数的比较大小,以及数轴和绝对值的性质,解题的关键是正确去掉绝对值.22.D【分析】根据有理数的大小比较法则,正数大于0,0大于负数,两个负数相比,绝对值大的反而小,进行求解即可. 解:①18=1844->-=,①184-<-①20>5>﹣4>﹣18,①-18最小,①最低气温是-18①,即长春的温度最低,故选D .【点拨】本题主要考查了有理数比较大小,熟知有理数比较大小的法则是解题的关键.23.A【分析】先液化温度从低到高排序,然后找出最低温度即可.解:①-268①<-253①<-195.8①<-183①,①液化温度最低的气体是氦气.故选A .【点拨】本题考查有理数比较大小,掌握比较有理数大小的方法是解题关键. 24.B【分析】 根据题意及数轴可直接进行求解.解:由a a =-,且1a a>,可得10a -<<,由数轴可知a 表示的数为点N , 故选B .【点拨】本题主要考查绝对值、数轴及有理数的大小比较,熟练掌握数轴、绝对值的意义及有理数的大小比较是解题的关键.25.5或-5【分析】由绝对值的意义即可求得,绝对值意义:在数轴上,一个数到原点的距离叫做该数的绝对值.解:5x =表示到原点距离等于5的数,数轴上到原点距离为5的数有两个:5或者-5, ①当5x =时,x =5或者-5.故答案为:5或-5.【点拨】本题考查了绝对值的意义,若a 为正数,则满足|x |=a 的x 有两个值±a ,掌握绝对值意义是解题关键.26. 2 3【分析】利用绝对值的非负性即可解答;解:①|b -2|≥0,①当b =2时,23b -+取得最小值3,故答案为:2,3;【点拨】本题考查了绝对值的性质;掌握其性质是解题关键.27.非负数【分析】根据0和正数的绝对值等于本身,负数的绝对值等于它的相反数,进而得出答案. 解:绝对值等于它自己的数是非负数.故答案为:非负数.【点拨】此题主要考查了绝对值,正确掌握绝对值的定义是解题关键.28.8或-8【分析】设这个点表示的数为a ,根据数轴上到原点的距离等于8,可得8a = ,求解即可得出答案.解:设这个点表示的数为a数轴上到原点的距离等于8∴ 8a =解得 8a = 或8-故答案为:8或-8.【点拨】本题考查了绝对值的几何意义,即一般地,数轴上表示a 的点到原点的距离叫做数a 的绝对值.29. 3.14π-##3.14π-【分析】根据求绝对值法则即可求解.解:①3.14π-<0,①3.14π-=-(3.14π-)= 3.14π-,故答案是: 3.14π-.【点拨】本题主要考查绝对值饿的意义,掌握负数的绝对值等于它的相反数是解题的关键.30. 2021或2021- 6或10-【分析】(1)由绝对值的含义可直接得到答案; (2)把217x +-=化为2+8,x = 结合88,±= 从而可得答案. 解:(1)一个数的绝对值等于2021,∴ 这个数的2021或2021.-(2)由|2|17x +-=得,|2|8x +=.即28x +=或28x +=-,所以6x =或10-故答案为:(1)2021或2021.-(2)6或10-【点拨】本题考查的是绝对值的含义,解绝对值方程,掌握绝对值的方程的解法是解题的关键.31.a +b【分析】根据图示,可知有理数a ,b 的取值范围b >1, a >-1,然后根据它们的取值范围去绝对值并求出原式的值.解:根据图示知:b >1,a >-1,①|a +1|+|1-b |=a +1+b -1=a +b .故答案为:a +b .【点拨】本题主要考查了关于数轴的知识以及有理数大小的比较,正确去掉绝对值是解题的关键.32.22a c +【分析】根据数轴上点的位置确定a +c ,a -b ,b +c 的符号,再根据绝对值的性质化简即可. 解:①c >b >0>a ,且|c |>|a |,①a +c >0,a -b <0,b +c >0,①|a +c |-|a -b |+|b +c |=a +c +a -b +b +c=2a +2c ,故答案为:2a +2c .【点拨】本题主要考查了绝对值的化简,关键是要根据数轴上各点的位置确定各式子的符号.33.a ≤3【分析】根据|a |=﹣a 时,a ≤0,因此|a ﹣3|=3﹣a ,则a ﹣3≤0,即可求得a 的取值范围. 解:①|a ﹣3|=3﹣a ,①a ﹣3≤0,解得:a ≤3.故答案为:3a ≤【点拨】此题考查绝对值性质,熟知绝对值的性质即可解答:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.34.0【分析】根据非负性求出a ,b 的值,然后代入求值即可. 解:20a b ++=,0,20a b ∴=+=,0,2a b ∴==-,()020ab ∴=⨯-=,故答案为:0.【点拨】本题考查了绝对值的非负性,熟练掌握绝对值的非负性是解决本题的关键.. 35.-24【分析】根据绝对值的非负性,解得m 、n 的值,再计算mn .解:由题意得,6=04=0m n +-,6,4∴=-=m n∴=-⨯-64=24mn故答案为:-24.【点拨】本题考查有理数的乘法,涉及绝对值的非负性,是重要考点,掌握相关知识是解题关键.36.﹣7【分析】根据绝对值的非负性以及相反数的意义分析求解即可.解:①| m+7|≥0,①|m+7|﹣5≥﹣5,①当|m+7|=0,即m+7=0时,|m+7|-5的值取得最小值,最小值为﹣5,①m+7=0,①m=﹣7,故答案为:﹣7.【点拨】本题考查绝对值的非负性以及相反数的意义,理解|a|≥0是解题关键.37.2±【分析】根据绝对值的意义可直接进行求解.解:绝对值是2的数是2±,x=±,①2故答案为:2±.【点拨】本题主要考查了绝对值的定义,正确理解其定义是解题的关键.38.3±【分析】设这个数为x,根据绝对值的几何意义得出|x|=3,进而可求得答案.解:设这个数为x,由题意知|x|=3,解得:x=±3,故答案为:±3.【点拨】本题考查绝对值的几何意义、解绝对值方程,熟知绝对值的几何意义是数轴上表示的点到原点的距离是解答的关键.39.x ≥5【分析】根据绝对值的性质,要化简绝对值,可以就x ≥5,3<x <5,x ≤3三种情况进行分析. 解:①当x ≥5时,原式可化为:x +3-(x ﹣5)=8,恒成立;①当3<x <5时,原式可化为:x +3+x -5=8,此时x =5,不在3<x <5之间舍去; ①当x ≤3时,原式可化为:﹣x -3+x -5=8,即-8=8,等式不成立,无解.综上所述,则x ≥5.故答案为x ≥5.【点拨】此题主要是能够根据x 的取值范围进行分情况化简绝对值,然后根据等式是否成立进行判断.40.8【分析】进行分类,去绝对值符号,然后研究最小值.解:当3x ≤-时,(5)(3)22y x x x =---+=-+,当3x =-,8y =为最小值;当35x -<<时,(5)(3)8y x x =--++=,当5x ≥时,(5)(3)22y x x x =-++=-,当5x =,8y =为最小值;故y 的最小值为8,故答案为:8.【点拨】本题考查了去绝对值符号、数轴上两点间的距离,解题的关键是去绝对值符号. 41.±9【分析】 根据绝对值的代数意义进行解答即可. 解:①9a ,①|a |=9,①a =±9.故答案为:±9.【点拨】本题主要考查了绝对值,熟练掌握绝对值的代数意义是解答此题的关键.42.-3,-2,-1,0,1,2,3【分析】 先将227化为137,再根据绝对值的意义即可求解. 解:因为221=377, 所以绝对值小于227的整数有-3,-2,-1,0,1,2,3. 故答案为:-3,-2,-1,0,1,2,3【点拨】本题考查了绝对值的意义,能准确估算出227的大小,熟知绝对值的意义是解题关键.43.>【分析】根据两个负数比较大小其绝对值越大值越小进行求解即可. 解:①7735443288405540-==>-==, ①7485-<-, 故答案为:>.【点拨】本题主要考查了有理数比较大小,熟知有理数比较大小的方法是解题的关键.44.<【分析】分别化简绝对值和多重符号,进而根据正数大于负数即可判断大小. 解:()2211 1.4 1.455--=---=, 1.4215∴<----() 故答案为:<【点拨】本题考查了有理数的大小比较,化简绝对值和多重符号,掌握以上知识是解题的关键.45.>【分析】根据两个负数大小的比较方法,两个负数比较大小时,绝对值大的反而小,绝对值小的反而大,据此即可解答.解:①0x y <<, ①>x y ,故答案为:>.【点拨】本题考查了两个负数大小的比较方法,理解和掌握两个负数大小的比较方法是解决本题的关键.46.3【分析】写出32-的相反数,然后找到32-与它的相反数之间的整数即可得到答案. 解:32-的相反数为32, 32-与32之间的整数为1-,0,1共3个, 故答案为:3.【点拨】本题考查了相反数的定义,有理数的大小比较法则的应用,难度不大.47.−a <b <−b <a【分析】先根据a >0,b <0,a +b <0可判断出−b >a ,b <−a <0,再根据有理数比较大小的法则进行比较即可.解:①a >0,b <0,a +b >0,①|a|>|b|,①a >−b >0,−a <b <0①−a <b <−b <a .故答案为:−a <b <−b <a .【点拨】本题考查的是有理数比较大小的法则,能根据已知条件判断出−b >a ,b <−a <0是解答此题的关键.48. 8 -8解:试题分析:根据规定[x]表示不大于x 的最大整数,可得答案.解:① [8.9]=8;①[﹣7.9]=﹣8;故答案为8,﹣8.考点:有理数大小比较.49.见分析【分析】根据整数,分数,正数,负数的意义进行判断即可.解:-|-35|=-35,整数集合:{-10,16,-15,0.... }分数集合:{-3.8,4.3,-|-35 |,...}正数集合:{4.3,16,... }负数集合:{-3.8,-10,-|-35|,-15,...} .【点拨】本题考查了绝对值、有理数的分类,理解绝对值的意义是正确解答的前提.50.(1)仓库里的货品增加了32吨(2)3184元【分析】(1)将每次的进出库的吨数记录相加即可得8天的总进出库的吨数.(2)因为进出库的装卸费都是8元/吨,故将每天进出库的吨数记录的绝对值相加可得十次装卸的总吨数,所得装卸总吨数再乘以装卸费即为总装卸费.(1)3825365545473254432332+--+-++-+-=(吨),①320>,①仓库里的货品增加了32吨.(2)38253655454732544323398+++++++++=(吨),39883184⨯=(元)【点拨】本题考查了正负数和绝对值的应用,搞清楚吨数变化和装卸吨数两个概念是解题的关键.51.(1)数轴上表示见分析,192.520332-<-<-<<<;(2)c﹣b【分析】(1)先在数轴上表示出各个数,再比较大小即可;(2)根据数轴得出b <a <0<c ,再去掉绝对值符号,再合并同类项即可.解:(1),192.520332-<-<-<<<; (2)从数轴可知:b <a <0<c ,所以|c |﹣|a |+|﹣b |+|﹣a |=c ﹣(﹣a )+(﹣b )+(﹣a )=c +a ﹣b ﹣a=c ﹣b .【点拨】本题考查了在数轴上表示有理数,借助数轴比较有理数的大小,根据数轴上的点表示的数确定数的符号,化简绝对值式子;理解数轴的意义及掌握绝对值的含义是本题的关键.52.(1)-3,9;(2)①-3+3t ,9-2t ;①85或245 【分析】(1)根据绝对值和平方的非负性,即可求解;(2)根据题意得:3,2AP t BQ t == ,①再由数轴上两点间的距离,即可求解;①分两种情况讨论:当点P 在点Q 在左侧时,当点P 在点Q 在右侧时,即可求解.解:(1)①23(9)0a b ++-=.①30,90a b +=-= ,解得:3,9a b =-= ,①数轴上点A 表示的数是-3,点B 表示的数是9;(2)根据题意得:3,2AP t BQ t == ,①①点P 表示的数是-3+3t ,点Q 表示的数是9-2t ;①当点P 在点Q 在左侧时,()()9233125PQ t t t =---+=- ,①AP +BQ =2PQ ,①()322125t t t +=- ,解得:85t = ; 当点P 在点Q 在右侧时,()()3392125PQ t t t =-+--=-+,①AP +BQ =2PQ ,①()322125t t t +=-+ ,解得:245t = , 综上所述,时间t 的值为85或245 . 【点拨】本题主要考查了数轴上两点间的距离,绝对值和平方的非负性,解题的关键是利用数形结合和分类讨论思想解决问题.53.(1)3,3,4;(2)|1|x +,3-或1;(3)1.【分析】(1)根据题意及绝对值的几何意义解题,数轴上两点间的距离即是两点表示的数的差的绝对值;(2)根据绝对值的几何意义解题,数轴上的点x 与-1的距离即求x 与-1 的差的绝对值,如果||2AB =,则点x 可能在-1的右侧距离-1是2个单位长度,或者点x 可能是在-1的左侧距离-1是2个单位长度,据此解题;(3)将|1||2|x x +++变形成两数差的绝对值形式()()12x x --+--,再根据绝对值的几何意义解题即可. 解:(1)数轴上,A 、B 两点之间的距离为||AB a b =-,∴数轴上表示2和5的两点之间的距离为|25|3-=,数轴上表示-2和-5的两点之间的距离为|2(5)|3---=,数轴上表示1和-3的两点之间的距离为|1(3)|4--=,故答案为:3,3,4;(2)数轴上表示x 和-1的两点之间的距离为|(1)|1x x --=+,如果||2AB =,则12x +=,12x ∴+=±,1x ∴=或3x =-故答案为:3-或1; (3)|1||2|(1)(2)x x x x +++=--+--,其表示的几何意义是:数轴上表示的点x 到-1和-2之间的距离和,当12x -≤≤时,代数式|1||2|121x x x x +++=--++=,则最小值为1,故答案为:1.【点拨】本题考查数轴、绝对值等知识,是重要考点,难度较易,掌握相关知识是解题关键.。
初一数学绝对值知识点与经典例题
![初一数学绝对值知识点与经典例题](https://img.taocdn.com/s3/m/e1c7db26c4da50e2524de518964bcf84b9d52d9b.png)
初一数学绝对值知识点与经典例题绝对值的性质及化简绝对值有几何意义和代数意义。
在数轴上,一个数a的绝对值就是表示数a的点与原点的距离,记作|a|。
而在代数意义上,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.绝对值的运算符号是“| |”,取绝对值就是去掉绝对值符号。
绝对值具有非负性,取绝对值的结果总是正数或0.任何一个有理数都是由符号和绝对值组成,如-5符号是负号,绝对值是5.我们可以通过比较两个负有理数的绝对值的大小来利用绝对值。
两个负数,绝对值大的反而小。
绝对值非负性是|a|≥0.如果若干个非负数的和为0,则这若干个非负数都必为0,如a+b+c=0,则a=b=c=0.除此之外,绝对值还有其他重要性质。
任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即a≥|a|,且|a|≥|-a|。
若a=b,则a=±b。
ab=|a|·|b|,a²=|a|²。
||a|-|b||≤|a±b|≤|a|+|b|。
要去掉绝对值符号,我们需要找零点,分区间,定正负,去符号。
解绝对值不等式必须化去式中的绝对值符号,转化为一般代数式类型来解。
证明绝对值不等式主要有两种方法:一是去掉绝对值符号转化为一般的不等式证明,包括换元法、讨论法、平方法;二是利用不等式:|a|-|b|≤|a+b|≤|a|+|b|,对绝对值内的式子进行分拆组合、添项减项,使要证的式子与已知的式子联系起来。
在考试中,我们需要掌握绝对值的必考题型。
例如,已知|x-2|+|y-3|=k,求x+y的值。
由绝对值的非负性可知x-2=±k,y-3=±k。
当x-2=k,y-3=k时,x+y=2k+6;当x-2=-k,y-3=-k 时,x+y=4.因此,x+y的值为2k+6或4.我们还需要掌握相反数等于它本身、倒数等于它本身的是±1,绝对值等于它本身的是非负数等知识点。
有理数-绝对值的概念知识点以及习题大全
![有理数-绝对值的概念知识点以及习题大全](https://img.taocdn.com/s3/m/6e8216ad998fcc22bcd10de2.png)
【有理数】➢ 绝对值相反数:只有符号不同的两个数叫做互为相反数。
(1)实数a 的相反数是 -a ; 0的相反数是0(2)a 和b 互为相反数⇔a+b=0像5与-5、-2.5与2.5等等符号不同、绝对值相等的两个数互为相反数,其中一个是另一个的相反数。
(3) 相反数的几何意义:表示互为相反数的两个点(除0外)分别在原点O 的两边,并且到原点的距离相等。
【基础练习】1. ______的相反数是它本身,_____的绝对值是它本身,_______的绝对值是它的相反数.2. 一个数的绝对值是32,那么这个数为______. 3. 已知a=-2,b=1,则b a -+得值为______4. 如果3-=a ,则______=-a ,______=a .5. 若︱m ︱=︱-2︱,则m =__________。
6. ______5=-;______312=-;______31.2=-;______=+π.7. 下列说法中正确的是( )A .a -一定是负数B .只有两个数相等时它们的绝对值才相等C .若a b =则a 与b 互为相反数D .若一个数小于它的绝对值,则这个数是负数8. 若m 是有理数,则|m|-m 一定是( )A.零B.非负数C. 正数 D 负数9. 如果22a a -=-,则a 的取值范围是( )A .a >OB .a ≥OC .a ≤OD .a <O10.给出下列说法:①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数;③不相等的两个数绝对值不相等;④绝对值相等的两数一定相等.其中正确的有( )A .0个B .1个C .2个D .3个11. 绝对值等于其相反数的数一定是( )A .负数B .正数C .负数或零D .正数或零12. 在数轴上,若点 A 和 点B 所表示的数互为相反数,点A 在数轴的右边,并且和原点的距离为2,那么点B 表示的数是( )A 、2B 、—2C 、2和—2D 、—3 13. 在数轴上,表示有理数的绝对值的点的位置在( )A 、原点的两旁B 、任何一点C 、原点的右边D 、原点及其右边 14. 绝对值最小的数是 ( )A .1B .-1C .0D .没有15. 求下列各数的绝对值0.5 2 -4 -30 0 -(-3) -∣-2.5∣16. 为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师。
1.2.4绝对值(含答案解析)
![1.2.4绝对值(含答案解析)](https://img.taocdn.com/s3/m/ffa6cb38dc36a32d7375a417866fb84ae45cc363.png)
1.2.4-1绝对值知识点一 绝对值的意义1.在数轴上,表示一个数的点__________叫做这个数的绝对值,用“| |”表示.-5到原点的距离是5,所以-5的绝对值是____,记做|-5|=50到原点的距离是0,所以0的绝对值是____,记做|0|=04到原点的距离是4,所以4的绝对值是_____,记做|4|=4【答案】 到原点的距离 5 0 4【解析】略2.a 的含义是:数轴上表示数a 的点与原点的距离.那么3-的含义是________;【答案】数轴上表示数3-的点到与原点的距离【解析】【分析】根据绝对值的几何意义进行解答即可.【详解】 解:3-的含义是:数轴上表示数3-的点到与原点的距离,的点到与原点的距离.故答案为:数轴上表示数3【点睛】本题考查了绝对值的几何意义,熟知绝对值代表的含义是解本题的关键.3.若|a|=a,则a是______【答案】非负数【解析】【分析】根据绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0即可解答.【详解】∵|a|=a,即一个数的绝对值等于它本身,∵a是非负数.故答案为:非负数.【点睛】此题考查了绝对值的性质:绝对值等于它本身的数是非负数;绝对值等于它的相反数的数是非正数.4.一个正数的绝对值是_______;若一个数的绝对值是它的相反数,则这个数是_______;_______的绝对值是零;绝对值最小的数是________.【答案】它本身非正数零零【解析】【分析】根据绝对值和相反数的定义进行求解即可.【详解】解:一个正数的绝对值是它本身;若一个数的绝对值是它的相反数,则这个数是非正数;零的绝对值是零;绝对值最小的数是零.故答案为:它本身;非正数;零;零;【点睛】本题主要考查了绝对值和相反数的定义,解题的关键在于能够熟练掌握相关定义进行求解.5.最大的负整数是_______,绝对值最小的数是_________,绝对值最小的正整数是_______.【答案】-101【解析】【分析】根据题意,最大的负整数是-1,绝对值最小的数是0,最小的正整数是1,即可写出答案.【详解】解:最大的负整数是-1,绝对值最小的数是0,最小的正整数是1.故答案为:-1,0,1.【点睛】本题考查了绝对值及有理数的知识,熟练掌握有理数的分类是解题的关键.知识点二求一个数的绝对值-的值为________.6.2022【答案】2022【解析】【分析】根据绝对值的意义化简即可.【详解】-=2022,解:2022故答案为:2022.【点睛】本题考查了绝对值(数轴上表示数a的点与原点的距离,记作│a│;正数的绝对值是它本身,零的绝对值是零,负数的绝对值是它的相反数.+-=_________.7.计算:35【答案】8【解析】【分析】根据负数的绝对值是它的相反数,可得负数的绝对值表示的数,根据有理数的减法,可得答案.【详解】+-=+=.解:35358故答案为:8.【点睛】本题考查了有理数的加法,先求绝对值,再求有理数的加法.8.数轴上点A表示的数是a,若|a|=3,则a的值是__________.【答案】±3【解析】【分析】根据绝对值的概念即可得答案.【详解】解:∵|±3|=3,∵a的值是±3,故答案为:±3.【点睛】本题考查了绝对值的概念,解题的关键是掌握正数的绝对值是它本身和负数的绝对值是它的相反数.9.a为绝对值小于2019的所有整数的和,则2a的值为_____.【答案】0【解析】【分析】首先判断出绝对值小于2019的所有整数有哪些,然后把它们相加,求出a的值是多少,进而求出2a的值为多少即可.【详解】解:绝对值小于2019的所有整数有:﹣2018、﹣2017、…、﹣1、0、1、…、2017、2018,它们的和是:a=(﹣2018+2018)+(﹣2017+2017)+…+(﹣1+1)+0=0,∵2a=0.故答案为:0【点睛】此题主要考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.10.已知a=﹣7,b=2,则|a|﹣|﹣b|=_____.【答案】5【解析】【分析】根据绝对值的意义代入计算即可.【详解】解:∵a =﹣7,b =2∵|a |﹣|﹣b |=|-7|-|-2|=7-2=5故答案为:5.【点睛】本题考查了绝对值的意义,掌握正数的绝对值是本身,负数的绝对值是它的相反数,零的绝对值是零是解题的关键.知识点三 绝对值的非负性的应用11.若320a b -+-=,求a 和b 的值.【答案】a=3,b=2【解析】【分析】根据非负数的性质,可得a -3=0,b -2=0,即可求出a 、b 的值.【详解】解:∵|a -3|+|b -2|=0,∵a -3=0,b -2=0,∵a=3,b=2.【点睛】本题考查非负数的性质,理解非负数的性质是解决问题的关键.12.已知有理数a ,b 满足∵3-a∵+∵b+13∵=0,求a ,b 的值. 【答案】a=3,b=13- 【解析】【分析】根据绝对值的非负性可得结果.【详解】解:∵∵3-a∵+∵b+13∵=0,∵3-a=0,b+13=0, ∵a=3,b=13-. 【点睛】本题考查了绝对值,掌握绝对值的非负性是解题的关键.13.若|3||4|0a b -+-=,求-a b 的值.【答案】-1【解析】【分析】利用绝对值的非负性求得a 、b ,再代入代数式求解.【详解】解:依题意:3a =, 4b =,∵341a b -=-=-.【点睛】本题考查绝对值的非负性,有理数的减法法则,熟练掌握基础知识即可.14.已知|x -3|+|y+2|=0,求x +y 的值【答案】1【解析】【分析】根据非负数的性质,可求出x 、y 的值,然后将x ,y 再代入计算.【详解】解:∵|x -3|+|y+2|=0,∵x -3=0,y+2=0,∵x=3,y=-2,∵x+y 的值为:3-2=1.【点睛】此题主要考查了绝对值的性质,根据题意得出x ,y 的值是解决问题的关键.知识点四 绝对值的行程应用15.某快递员骑车从快递公司出发,沿东西方向行驶,依次到达A 地、B 地、D 地、E 地. 将向东行驶的路程(单位:km )记为正,向西行驶的路程记为负,则该快递员行驶的各段路程依次对应为:2-,3-,+7,+1,7-,最后该快递员回到快递公司.(1)以快递公司为原点,用1个单位长度表示1km ,在如图所示的数轴上标出表示A 、B 、C 、D 、E 五个地方的位置;(2)求B 地与D 地之间的距离;(3)该快递员从公司出发直至回到该公司,一共骑行了______________km【答案】(1)见解析;(2)8km ;(3)24【解析】【分析】(1)根据数轴上点的表示方法分别表示出A 、B 、C 、D 、E 五个地方的位置即可;(2)用D 点所表示的数减去B 点表示的数求解即可;(3)分别求出2-,3-,+7,+1,7-,-4的绝对值,然后求和即可.【详解】(1)如图所示,(2)解:()358--=答:B 地与D 地相距8km .(3)23717423717424-+-+++++-+-=+++++=.【点睛】此题考查了数轴上点的表示和数轴上两点之间的距离,解题的关键是熟练掌握数轴上点的表示方法和数轴上两点之间的距离求解方法.16.一名足球守门员练习折返跑,从球门的位置出发,向前记作正数,返回记作负数,他的记录如下(单位:米):(1)守门员是否回到了原来的位置?(2)守门员离开球门的位置最远是多少?(3)守门员一共走了多少路程?【答案】(1)回到了原来的位置;(2)13米;(3)56米.【解析】【分析】(1)只需将所有数加起来,看其和是否为0即可;(2)计算每一次跑后的数据,绝对值最大的即为所求;(3)将所有绝对值相加即可.【详解】解:(1)根据题意得:6-5+9-10+13-9-4=0.答:回到了原来的位置.(2)第一次离开6米,第二次离开6-5=1米,第三次离开1+9=10米,第四次离开10-10=0米,第五次离开0+13=13米,第六次离开13-9=4米,第七次离开4-4=0米,则守门员离开守门的位置最远是13米;(3)总路程=+6+5+9+10++13+9+4-+--- =56米.故答案为(1)回到了原来的位置;(2)13米;(3)56米.【点睛】本题考查了正数和负数的知识,解题关键是理解“正”和“负”的相对性,确定具有相反意义的量. 知识点五 绝对值的几何意义17.点A 、B 在数轴上分别表示有理数a 、b ,A 、B 两点之间的距离表示为AB ,在数轴上A 、B 两点之间的距离AB=|a -b|.请用上面的知识解答下面的问题:(1)数轴上表示1和5的两点之间的距离是_________,数轴上表示-2和-4的两点之间的距离是__________,数轴上表示1和-3的两点之间的距离是______;(2)数轴上表示x 和-1的两点A 和B 之间的距离是___________,如果|AB|=2,那么x 为_______; (3)取最小值是_____________.【答案】(1)4,2,4;(2)1x +,1或3-;(3)3.【解析】【详解】试题分析:(1)在数轴上A 、B 两点之间的距离AB=|a ﹣b|,依此即可求解;(2)在数轴上A 、B 两点之间的距离AB=|a ﹣b|,依此即可求解;(3)根据绝对值的性质去掉绝对值号,然后计算即可得解.试题解析:(1)|1﹣5|=4;|﹣2﹣(﹣4)|=2,|1﹣(﹣3)|=4;故答案为4,2,4;(2)|x ﹣(﹣1)|=|x+1|;由|AB|=2,得到:|x+1|=2,∵x=1或3-;故答案为1x +,1或3-; (3)当x <﹣1时,|x+1|+|x -2|=﹣x -1﹣x+2=﹣2x+1;当﹣1≤x≤2时,|x+1|+|x -2|=x+1﹣x+2=3;当x >2时,|x+1|+|x -2|=x+1+x -2=2x -1; 在数轴上12x x ++-的几何意义是:表示有理数x 的点到﹣1及到2的距离之和,所以当﹣1≤x≤2时,它的最小值为3.考点:1.绝对值;2.数轴.18.我们知道:()41--表示4与1-的差的绝对值,实际上也可以理解为4与1-两数在数轴上所对应的两点之间的距离;同理3x -也可以理解为x 与3两数在数轴上所对应的两点之间的距离.类似地,()5353+=--表示5、3-之间的距离.一般地,点A ,B 两点在数轴上表示有理数a b 、,那么A 、B 之间的距离可以表示为a b -.试探索:(1)若37x -=,则x =___________;(2)若A ,B 分别为数轴上的两点,A 点对应的数为2-,B 点对应的数为4.折叠数轴,使得A 点与B 点重合,则表示4-的点与表示__________的点重合;(3)计算:417x x -++=.【答案】(1)-4或10 (2)6;(3)-2或5【解析】【分析】(1)根据绝对值的性质,即可求解;(2)根据题意可得折叠处点对应的数为1 ,即可求解;(3)分三种情况讨论:当1x <-时,当14x -≤≤时,当4x ≥时, 即可求解.【详解】解:(1)37x -=,∵37x -=±,解得:10x =或-4;(2)∵A 点对应的数为2-,B 点对应的数为4,折叠数轴,使得A 点与B 点重合,∵折叠处点对应的数为2412, ∵表示4-的点与表示6的点重合;(3)解:①当1x <-时,()()417x x ⎡⎤--+-+=⎣⎦,解得:x =-2 ;②当14x -≤≤时,()()417x x ⎡⎤-+-+=⎣⎦,则57-=,无解 ;③当4x ≥时,()()417x x -++=,则x =5.【点睛】本题主要考查了数轴上两点间的距离,绝对值的几何意义,理解绝对值的几何意义,利用数形结合思想解答是解题的关键.。
(完整版)绝对值知识点
![(完整版)绝对值知识点](https://img.taocdn.com/s3/m/f3f59e3430126edb6f1aff00bed5b9f3f80f7255.png)
绝对值(一)【预习引领】两辆汽车从同一处O 出发 ,分别向东、西方行驶10km,抵达 A 、B 两处.( 1)它们的行驶路线同样吗?( 2)它们行驶行程的远近同样吗?答 : ( 1)不同样; (2) 同样 .【重点梳理】知识点一 :绝对值的意义1. 绝对值的几何意义:一般地,数轴上表示数 a 的点与原点的距离叫做数 a 的绝对值,记作 a ,读作: a 的绝对值 .例 1利用数轴求以下各数的绝对值.( 1) 2, 1, 3.5;5( 2)0; (3)5 , 3.2, 21.3答:(1)2 =2; 1 = 1; 3.5 =3.5;5 5(2)0 =0;(3)5 =5;3.2 =3.2;21 =21. 3 32. 绝对值的代数意义:一个正数的绝对值是它自己;一个负数的绝对值是它的相反数; 0 的绝对值是 0.例 2直接写出以下各数的绝对值 .6, 8, 3.9, 5,10,0,26 , 8, 3.9, 5 10,2答 :6 =6,8 =8,3.9 =3.9,5 =5; 10 =10; 0 =0;226 =6, 8 =8, 3.9 =3.9,5 = 5 ; 10 =10; 0 =0;2 2小结: ( 1)对任一个有理数,绝对值只好为正数或 0,不行能为负数,即a0 .( 2)两个互为相反数的绝对值,绝对值相等的两个数.( 3)绝对值为正数的有理数有类,它们 ;绝对值为 0 的有理数是.答 :(2) 相等 , 相等或互为相反数 .(3) 两,正数与负数; 0;例 3判断以下说法哪些是正确的:( 1)符号相反的数互为相反数;( 2)符号相反且绝对值相等的两个数互为相反数; ( 3)一个数的绝对值越大,表示它的点在数轴上越靠右; ( 4)不相等的两个数,其绝对值也不相等;( 5)绝对值最小的有理数是 0. 答案:( 2)( 5)知识点二:绝对值的求法a,a 0a0, a 0 a,a 0例 4 求以下各数的绝对值:6 1, 1 3 ,3,2.2 2 5答案: 611; 13 3 1 ;3 3; 2 =2;= 6 2 2 25 52例5 填空:( 1)绝对值小于 4 的正整数有 .( 2)绝对值大于 2 而小于 5 的全部整数是( 3)假如一个数的绝对值是13,那么这个数是..( 4)若xx ,则x 为数 .答案:( 1) 3,2, 1;( 2)± 3,± 4;( 3)± 13;( 4)负数与 0; 例 6 计算以下各式:⑴ 52⑵ 0.77 234答:( 1)原式 =5- 2=3;( 2)原式 =0.77 ÷ 2 3=0.28 ;4☆例 8 ⑴若 a b 0 ,则 a,b .⑵若 x 73 y 12 0,则 x, y.答案:( 1) 0,0;( 2) 7,4;【讲堂演练】1.5 1的绝对值是 , 0 的绝对值是,绝对值为 2 的数是.2 1.5 1, 0,± 2;2.2, 10 = ,1.5 =2 =,2.5=., 10, 2,- 2.5;3. ⑴一个数的绝对值和相反数都是它自己,这个数是;⑵绝对值小于 3.2 的整数有;⑶ 21的相反数是,绝对值是;3⑷ 使 x 5 建立的 x 的值是. 3.( 1) 0;( 2) 3, 2, 1, 0,- 1,- 2,- 3;( 3) 4. 在数轴上到数 3 所表示的点距离为 5 的点所表示的数是. 4.8 或- 2;5. 绝对值相等的两个数在数轴上对应的两点之间的距离为 6,则这两个数为.5.3 与- 3;6. 若 m0 ,则 m m = ; 若 m 0 ,则 m m =;若 m0 ,则 m m =.6. 2m , 0, 0;37. ( 2011 北京市, 1, 4 的绝对值是 ( )分)4A .4 B .4C .3 D .333 447.D8.( 2011 浙江丽水, 4,3 分)有四包真空小包装火腿,每包以标准克数(450 克 )为基数,超出的克数记作正数,不足的克数记作负数,以下数据是记录结果,此中表示实质克数 最靠近标准克数的是()A .+ 2B .- 3C .+ 3D .+48.Aa 1 ,则 a ()9. 若aA .是正数或负数;B .是正数;C .是有理数;D .是正整数 .9. B10. 计算以下各题 :⑴21 6;⑵2008 2008 .10.( 1)原式 =21+6=27;( 2)原式 =2008-2008=0;☆11.若x7 3 y 120 ,求x、 y 的值.11.由题意可知, x- 7=0,3y- 12=0,解得: x=7; y=4;12. 某摩托车配件厂生产一批圆形的橡胶垫,从中抽取 6 件进行比较,比标准直径长的毫米记作正数,比标准直径短的毫米记作负数,检查记录以下表:123456+0.4-+0.10--0.20.20.3(1)找出哪个些部件的质量相对好一些,用绝对值的知识加以解说.(2)若规定与标准直径相差不超出0.2mm 为合格品,则 6 件产品中有几件是不合格品?12.( 1)第 4 个;绝对值越小,说明此配件与标准配件越靠近;(2)第 1 个与第 5 个不合格,所以共有 2 件是不合格的产品;1.(2011浙江省舟山,1,3分)-【课后清点】6 的绝对值是()A .- 6B . 6 C.1D.-1 661. B2.一个有理数的相反数与自己的绝对值的和()A .可能是负数;C.必为非负数;B.必是正数;D.必为 0.2. C3.式子 3 等于()A .3B. 3 C.3 D .33. C4. 某运动员在东西走向的公路上练习跑步,跑步状况记录以下:(向东为正,单位:米)1000,- 1200, 1100,- 800, 1400,则该运动员跑步的总行程为()A .1500 米B. 5500 米C . 4500 米D . 3700 米4. B5.绝对值等于自己的数是()A .正数B .负数C .非负数D .非正数5. C6.以下结论中,正确的选项是 ()A . a 必定是正数B .a 和 a 必定不相等 C . a 和 a 互为相反数D .a 和 a 必定相等 6. C7.代数式 x3 3的最小值是()A . 0B . 2C.3D . 57. C8.以下结论中,正确的选项是()A . a 0B .若 ab ,则 a bC. aa D .若 a 、b 互为相反数,则1b8. B9. 若 a a ,则 a 为 数; 若 a a ,则 a 为 数 .9.非负数;非正数;10. 当 a4 时, a4 =.10. 4- a ;11. ( 2011 湖南常德, 1, 3 分) 2 ______. 11. 212. 若 x5 3 ,则 x = ; 若m4 ,则 m =;12. 8 或 2;4 或- 4;13.若 a 1 ,则 a 1 =, 2a 1 = ;若 a1 ,则 a 1 = ,a 1 = .13. a - 1, 2a - 1; 1- a , a - 1; 14. 若 a1b 10 ,则 a b = .14. 0; 15. 计算:⑴2293⑵3 174815.( 1)原式 = 229=24;( 2)原式 =3 17= 2 ;34 8 516. 已知 x 30 , y4 ,求 x 3 y .16. x 3 y =30- 3× 4=18;17. 已知 a2 b3 c4 0 ,求 a2b 3c 的值 .17.由题意可得, a=2, b=3, c=4,则 a 2b 3c =2+2× 3+3× 4=20;18. 正式的足球竞赛, 对所用足球的质量有严格规定,下边是 6 个足球的检测结果 . (用正数 记超出规定质量的克数,用负数记不足规定质量的克数)-25, +10,- 20, +30, +15,- 40请指出哪个足球的质量好一些,并用绝对值的知识说明原由 .18.第二个。
绝对值知识点及相关题
![绝对值知识点及相关题](https://img.taocdn.com/s3/m/21e9c527001ca300a6c30c22590102020640f27a.png)
绝对值:概念:在数轴上,表示数a 的点与原点的距离叫做这个数的绝对值,记作|a |。
|a -b | 表示数轴上点a 与点b 的距离。
性质:正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数。
绝对值的化简:| a | =⎪⎩⎪⎨⎧<-=>),(),(),(0000a a a a a 或| a | =⎩⎨⎧<-≥时,当时,当00a a a a 例题:一、选择题1、-3的绝对值是( ) A .-3B .3C .±3D .31 答案:32、数轴上,表示数a 的点的绝对值是( )A .2B .-21C . 21D .-2答案:A解析:a = -2,|-2| = 2。
3、下列四个实数中,绝对值最小的数是( )A .-5B .- 2C .1D .4答案:C 解析:| -5| =5,|- 2| = 2,| 1| =1,|4| = 4,绝对值最小的是1。
4、下列各式不正确的是( )A .|-2| = 2B .-2 = -|-2|C .-(-2)= |-2|D .-|2| = |-2|答案:D解析:-|2| =-2,而 |-2|=2。
5、数轴上有A 、B 、C 、D 四个点,其中绝对值等于2的点是( )A .点AB .点BC .点CD .点D答案:A6、若实数a满足a-|-a| = 2a,则()A.a>0B.a <0C.a≥0D.a≤0答案:D解析:由题意,-|-a| = a,即|-a| = -a,说明- a≥0,即a ≤0。
7、|a|=1,|b|=4,且a b < 0,则a+b的值为()A.3B.-3C.±3D.±5答案:C解析:a b < 0,说明a、b一正一负。
当a = -1时,b = 4,a+b = 3;当a = 1时,b = -4,a+b = -3。
8、若|a| = a,|b| = -b,则a b的值不可能是()A.-2B.-1C.0D.1答案:D解析:由题意,a≥0,b≤0,则a b≤0,故不可能是1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝对值知识点及练习1、定义:(1)几何定义:一般地,数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|,读作“绝对值a”。
(2)代数定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.实数a的绝对值是:|a|①a为正数时,|a|=a(不变)②a为0时,|a|=0③a为负数时,|a|= -a(为a的绝对值)任何数的绝对值都大于或等于0,因为距离没有负的。
2、实数的绝对值具有以下性质:(1)|a|大于等于0(实数的绝对值是非负实数);(2)|-a|=|a|(互为相反数的两实数绝对值相等);(3)-|a|小于等于a小于等于|a|;(4)|a|>b可以推出a<-b或a>b,a<-b或a>b可以推出|a|>b;(5)|a·b|=|a|·|b|;(6)|a|/|b|=|a/b|(b≠0);(7)|a+b|小于等于|a|+|b|,当且仅当a、b同号时,等式成立;(8)|a-b|大于等于||a|-|b||,当且仅当a、b同号时,等式成立;(9)a属于R时,|a|的平方等于|a|的平方。
特别提醒:(1)绝对值具有非负性,即|a|≥0;(2)绝对值相等的两个数,它们相等或互为相反数;(3)0是绝对值最小的有理数。
3、利用绝对值比较大小(1)利用绝对值比较两个负数的大小两个负数比较大小,绝对值大的反而小.比较的具体步骤:①先求两个负数的绝对值;②比较绝对值的大小;③根据“两个负数,绝对值大的反而小”作出判断.(2)几个有理数的大小比较①同号两数,可以根据它们的绝对值来比较:a.两个正数,绝对值大的数较大;b.两个负数,绝对值大的反而小.②多个有理数的大小比较,需要先将它们按照正数、0、负数分类比较,然后利用各数的绝对值或借助于数轴来进一步比较.4、利用绝对值解决实际问题绝对值的产生来源于实际问题的需要,反过来又可以运用它解决一些实际问题,主要有以下两类:(1)判断物体或产品质量的好坏可以用绝对值判断物体或产品偏离标准的程度,绝对值越小,越接近标准,质量就越好.方法:①求每个数的绝对值;②比较所求绝对值的大小;③根据“绝对值越小,越接近标准”作出判断.(2)利用绝对值求距离路程问题中,当出现用“+”、“-”号表示的带方向的路程,求最后的总路程时,实际上就是求绝对值的和.方法:①求每个数的绝对值;②求所有数的绝对值的和;③写出答案.5、去绝对值符号的几种常用方法:(1)利用定义法去掉绝对值符号根据实数含绝对值的意义,即|x |=(0)(0)x x x x ≥⎧⎨-<⎩,有|x |<c (0)(0)c x c c c -<<>⎧⇔⎨∅≤⎩;|x |>c (0)0(0)(0)x c x c c x c x R c <->>⎧⎪⇔≠=⎨⎪∈<⎩或(2)利用不等式的性质去掉绝对值符号利用不等式的性质转化|x |<c 或|x |>c (c >0)来解,如|ax b +|>c (c >0)可为ax b +>c 或ax b +<-c ;|ax b +|<c 可化为-c <ax +b <c ,再由此求出原不等式的解集。
对于含绝对值的双向不等式应化为不等式组求解,也可利用结论“a ≤|x |≤b ⇔a ≤x ≤b 或-b ≤x ≤-a ”来求解,这是种典型的转化与化归的数学思想方法。
(3)利用平方法去掉绝对值符号对于两边都含有“单项”绝对值的不等式,利用|x |2=2x 可在两边脱去绝对值符号来解,这样解题要比按绝对值定义去讨论脱去绝对值符号解题更为简捷,解题时还要注意不等式两边变量与参变量的取值范围,如果没有明确不等式两边均为非负数,需要进行分类讨论,只有不等式两边均为非负数(式)时,才可以直接用两边平方去掉绝对值,尤其是解含参数不等式时更必须注意这一点。
(4)利用零点分段法去掉绝对值符号所谓零点分段法,是指:若数1x ,2x ,……,n x 分别使含有|x -1x |,|x -2x |,……,|x -n x |的代数式中相应绝对值为零,称1x ,2x ,……,n x 为相应绝对值的零点,零点1x ,2x ,……,n x 将数轴分为m +1段,利用绝对值的意义化去绝对值符号,得到代数式在各段上的简化式,从而化为不含绝对值符号的一般不等式来解,即令每项等于零,得到的值作为讨论的分区点,然后再分区间讨论绝对值不等式,最后应求出解集的并集。
零点分段法是解含绝对值符号的不等式的常用解法,这种方法主要体现了化归、分类讨论等数学思想方法,它可以把求解条理化、思路直观化。
(5)利用数形结合去掉绝对值符号解绝对值不等式有时要利用数形结合,利用绝对值的几何意义画出数轴,将绝对值转化为数轴上两点间的距离求解。
数形结合法较为形象、直观,可以使复杂问题简单化,此解法适用于||||x a x b m-+->或||||x a x b m-+-<(m为正常数)类型不等式。
对||||ax b cx d m+++>(或<m),当|a|≠|c|时一般不用。
1、对于形如︱a︱的一类问题只要根据绝对值的3个性质,判断出a的3种情况,便能快速去掉绝对值符号。
当a>0时,︱a︱=a (性质1,正数的绝对值是它本身) ;当a=0 时︱a︱=0 (性质2,0的绝对值是0) ;当a<0 时;︱a︱=–a (性质3,负数的绝对值是它的相反数) 。
2、对于形如︱a+b︱的一类问题我们只要把a+b看作是一个整体,判断出a+b的3种情况,根据绝对值的3个性质,便能快速去掉绝对值符号,正确进行化简。
当a+b>0时,︱a+b︱=a +b(性质1,正数的绝对值是它本身) ;当a+b=0 时,︱a+b︱=0 (性质2,0的绝对值是0) ;当a+b<0 时,︱a+b︱=–(a+b)=–a-b (性质3,负数的绝对值是它的相反数)3、对于形如︱a-b︱的一类问题同样,按上面的方法,我们仍然把a-b看作一个整体,判断出a-b 的3种情况,根据绝对值的3个性质,去掉绝对值符号。
但在去括号时最容易出现错误。
如何快速去掉绝对值符号,条件非常简单,只要你能判断出a与b的大小即可。
因为︱大-小︱=︱小-大︱=大-小,所以当a>b时,︱a-b︱=a-b,︱b-a︱=a-b.请记住口诀:无论是大减小,还是小减大,去掉绝对值,都是大减小。
4、对于数轴型的一类问题,根据3的口诀来化简,更快捷有效。
如︱a-b︱的一类问题,只要判断出a在b的右边,便可得到︱a-b︱=a-b,︱b-a︱=a-b。
5、对于绝对值号里有三个数或者三个以上数的运算万变不离其宗,还是把绝对值号里的式子看成一个整体,把它与0比较,大于0直接去绝对值号,小于0的整体前面加负号。
练习一、选择1、绝对值为4的有理数是()A. ±4 B. 4 C. -4 D. 22、两个数的绝对值相等,那么()A.这两个数一定是互为相反数;B.这两个数一定相等;C.这两个数一定是互为相反数或相等;D.这两个数没有一定的关系3、绝对值小于4的整数有()A.3个 B.5个 C.7个 D.8个4、绝对值与相反数都是它的本身()A.1个 B.2个 C.3个 D.不存在5、若m为有理数,且那么m是() A.非整数 B.非负数 C.负数 D.不为零的数6、下列说法中,错误的是()A、一个数的绝对值一定是正数B、互为相反数的两个数的绝对值相等C、绝对值最小的数是0D、绝对值等于它本身的数是非负数7、下列结论中,正确的有()①符号相反且绝对值相等的数互为相反数;②一个数的绝对值越大,表示它的点在数轴上离原点越远;③两个负数,绝对值大的它本身反而小;④正数大于一切负数;⑤在数轴上,右边的数总大于左边的数.A、2个B、3个C、4个D、5个8、一个数的绝对值是它本身,那么这个数是()(A)正数(B)正数或零(C)零(D)有理数9、如果一个数的绝对值是5.2,那么这个数是()(A)5.2 (B)-5.2 (C)5.2或-5.2 (D)以上都不对10、任何有理数的绝对值都是()(A)正数(B)负数(C)有理数(D)正数或零11、在-(-8),|-1|,-|0|,-0 .0001这四个有理数中,负数共有()(A)4个(B)3个(C)2个(D)1个12、在数轴上和表示-3的点的距离等于5的点所表示的数是()(A)-8 (B)2 (C)-8和2 (D)113、9与-1 3的绝对值的和是()(A)22 (B)-4 (C)4 (D)-2214、数-|-3 |的相反数是()(A)-3 (B)(C)3 (D)315、设a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,则a + b + c 等于()A -1 B 0 C 1 D 2二、填空(1)正数的绝对值是____,负数的绝对值是_____,零的绝对值是_____,绝对值等于1 的有理数是____________.(2)从数轴上看,一个数的绝对值就是表示这个数离开原点的_______.(3)49是___ ___的相反数,它是______的绝对值.(4)|-5|的相反数是________.(5)如果一个数的绝对值等于那么这个数是___________.(6)绝对值小于3.14的所有整数是________.(7)-3的绝对值是_______,绝对值是3的数是________.(8)一个数a在数轴上的对应点在原点的左侧,且,则︱a︱=__________.(9)绝对值最小的数是_____;最大的负整数是_____.(10)绝对值小于3的所有自然数是____.(11)一个有理数的相反数小于原数,这个数是____.(12)已知︱x︱-︱y︱=2,且y =-4,则x = ____。
(13)已知︱x︱=2 ,︱y︱=3,则x +y = ____。
(14)已知︱x +1 ︱与︱y -2︱互为相反数,则︱x ︱+︱y︱= ____。
(15)式子︱x +1 ︱的最小值是,这时,x值为____。
三、拓展提高:1.如果a ,b互为相反数,c, d 互为倒数,m 的绝对值为2,求式子a+b+ m-cd 的值。
2、.某司机在东西路上开车接送乘客,他早晨从A地出发,(去向东的方向正方向),到晚上送走最后一位客人为止,他一天行驶的的里程记录如下(单位:㎞)+10 ,— 5,—15 ,+ 30 ,—20 ,—16 ,+ 14(1)若该车每百公里耗油3 L ,则这车今天共耗油多少升?(2)据记录的情况,你能否知道该车送完最后一个乘客是,他在A地的什么方向?距A地多远?。