高中数学经典解题技巧和方法_平面向量

合集下载

高中数学第六章平面向量及其应用考点题型与解题方法(带答案)

高中数学第六章平面向量及其应用考点题型与解题方法(带答案)

高中数学第六章平面向量及其应用考点题型与解题方法单选题1、在△ABC 中,若AB⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ <0,则△ABC -定是( ) A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形 答案:C分析:根据向量的数量积的运算公式,求得cosA <0,得到A 为钝角,即可求解. 由向量的数量积的运算公式,可得AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =|AB ⃗⃗⃗⃗⃗ |⋅|AC ⃗⃗⃗⃗⃗ |cosA <0,即cosA <0, 因为A ∈(0,π),所以A 为钝角,所以△ABC -定是钝角三角形. 故选:C.2、已知a ,b ⃗ 是不共线的向量,OA ⃗⃗⃗⃗⃗ =λa +μb ⃗ ,OB ⃗⃗⃗⃗⃗ =3a −2b ⃗ ,OC ⃗⃗⃗⃗⃗ =2a −3b ⃗ ,若A,B,C 三点共线,则实数λ,µ满足( )A .λ=μ−5B .λ=μ+5C .λ=μ−1D .λ=μ+1 答案:B解析:根据向量的线性运算方法,分别求得AB ⃗⃗⃗⃗⃗ =(3−λ)a −(2+μ)b ⃗ ,BC ⃗⃗⃗⃗⃗ =−a −b ⃗ ; 再由AB⃗⃗⃗⃗⃗ //BC ⃗⃗⃗⃗⃗ ,得到3−λ=−(2+μ),即可求解. 由OA ⃗⃗⃗⃗⃗ =λa +μb ⃗ ,OB ⃗⃗⃗⃗⃗ =3a −2b ⃗ ,OC ⃗⃗⃗⃗⃗ =2a −3b⃗ , 可得AB ⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ =(3−λ)a −(2+μ)b ⃗ ,BC ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ −OB ⃗⃗⃗⃗⃗ =−a −b ⃗ ; 若A,B,C 三点共线,则AB ⃗⃗⃗⃗⃗ //BC ⃗⃗⃗⃗⃗ ,可得3−λ=−(2+μ),化简得λ=μ+5. 故选:B.3、在△ABC 中,角A,B,C 的对边分别为a,b,c ,且B =π3,b =3,a =√3,则c =( ). A .√3B .2√3C .3−√3D .3 答案:B分析:利用余弦定理可构造方程直接求得结果.在△ABC 中,由余弦定理得:b 2=a 2+c 2−2accosB =3+c 2−√3c =9,即c 2−√3c −6=0,解得:c =−√3(舍),∴c =2√3.c故选:B.4、已知非零向量a →与b →共线,下列说法不正确的是( ) A .a →=b →或a →=−b →B .a →与b →平行C .a →与b →方向相同或相反D .存在实数λ,使得a →=λb →答案:A分析:根据向量共线的概念,以及向量共线定理,逐项判断,即可得出结果. 非零向量a →与b →共线,对于A ,a →=λb →,λ≠0,故A 错误;对于B ,∵向量a →与b →共线,∴向量a →与b →平行,故B 正确; 对于C ,∵向量a →与b →共线,∴a →与b →方向相同或相反,故C 正确; 对于D ,∵a →与b →共线,∴存在实数λ,使得a →=λb →,故D 正确. 故选:A.5、已知向量a =(−1,m ),b ⃗ =(m +1,2),且a ⊥b ⃗ ,则m =( ) A .2B .−2C .1D .−1 答案:C分析:由向量垂直的坐标表示计算.由题意得a ⋅b ⃗ =−m −1+2m =0,解得m =1 故选:C .6、已知f (x )=sin (ωx +π6)+cosωx (ω>0),将f (x )图象上的横坐标伸长到原来的2倍(纵坐标不变时),得到g (x )的图象.g (x )的部分图象如图所示(D 、C 分别为函数的最高点和最低点):其中CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =|AD ⃗⃗⃗⃗⃗⃗ |22,则ω=( )A .π4B .π2C .πD .2π 答案:C分析:先求出g (x )的解析式,再利用CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =|AD ⃗⃗⃗⃗⃗⃗ |22得到cos∠ACB =12,进而求出|AB |=2,所以T =2×2=4,ω=π 由f (x )=√32sinωx +32cosωx =√3sin (ωx +π3),∴g (x )=√3sin (12ωx +π3),因为D 、C 分别为函数的最高点和最低点,所以DA =AC =CB ,由CA⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =|AD ⃗⃗⃗⃗⃗⃗ |22,即|CA ⃗⃗⃗⃗⃗ |2⋅cos∠ACB =|AD |22∴cos∠ACB =12,∴△ACB 为正三角形,又△ABC 的高为√3, ∴|AB |=2 ∴T =2×2=4, ∴即2π12ω=4πω=4,∴ω=π, 故选:C .7、某人先向东走3km ,位移记为a →,接着再向北走3km ,位移记为b →,则a →+b →表示( ) A .向东南走3√2km B .向东北走3√2km C .向东南走3√3km D .向东北走3√3km 答案:B分析:由向量的加法进行求解.由题意和向量的加法,得a →+b →表示先向东走3km ,再向北走3km,即向东北走3√2km.故选:B.8、在锐角△ABC中,角A,B,C的对边分别为a,b,c,S为△ABC的面积,且2S=a2−(b−c)2,则2b2+c2bc 的取值范围为()A.(4315,5915)B.[2√2,4315)C.[2√2,5915)D.[2√2,+∞)答案:C分析:根据余弦定理和△ABC的面积公式,结合题意求出sinA、cosA的值,再用C表示B,求出bc =sinBsinC的取值范围,即可求出2b2+c2bc的取值范围.解:在△ABC中,由余弦定理得a2=b2+c2−2bccosA,且△ABC的面积S=12bcsinA,由2S=a2−(b−c)2,得bcsinA=2bc−2bccosA,化简得sinA+2cosA=2,又A∈(0,π2),sin2A+cos2A=1,联立得5sin2A−4sinA=0,解得或sinA=0(舍去),所以bc =sinBsinC=sin(A+C)sinC=sinAcosC+cosAsinCsinC=45tanC+35,因为△ABC为锐角三角形,所以0<C<π2,B=π−A−C<π2,所以π2−A<C<π2,所以tanC>tan(π2−A)=1tanA=34,所以1tanC∈(0,43),所以bc∈(35,53),设bc =t,其中t∈(35,53),所以2b2+c2bc=2bc+cb=2t+1t=2(t+12t),由对勾函数单调性知y=2t+1t 在(35,√22)上单调递减,在(√22,53)上单调递增,当t=√22时,y=2√2;当t=35时,y=4315;当t=53时,y=5915;所以y∈[2√2,5915),即2b2+c2bc的取值范围是[2√2,5915).故选:C.小提示:关键点点睛:由2b2+c2bc =2bc+cb,所以本题的解题关键点是根据已知及bc=sinBsinC=sin(A+C)sinC=4 sin5AsinAcosC+cosAsinCsinC=45tanC+35求出bc的取值范围.多选题9、等边三角形ABC 中,BD →=DC →,EC →=2AE →,AD 与BE 交于F ,则下列结论正确的是( ) A .AD →=12(AB →+AC →)B .BE →=23BC →+13BA →C .AF →=12AD →D .BF →=12BA →+13BC →答案:AC分析:可画出图形,根据条件可得出D 为边BC 的中点,从而得出选项A 正确; 由EC →=2AE →可得出AE →=13AC →,进而可得出BE →=13BC →+23BA →,从而得出选择B 错误;可设AF →=12AD →,进而得出AF →=λ2AB →+3λ2AE →,从而得出λ=12,进而得出选项C 正确;由AF →=12AD →即可得出BF →=12BA →+14BC →,从而得出选项D 错误. 如图,∵BD →=DC →,∴D 为BC 的中点,∴AD →=12(AB →+AC →),∴A 正确; ∵EC →=2AE →,∴AE →=13AC →=13(BC →−BA →),∴BE →=BA →+AE →=BA →+13(BC →−BA →)=13BC →+23BA →,∴ B 错误;设AF →=λAD →=λ2AB →+λ2AC →=λ2AB →+3λ2AE →,且B ,F ,E 三点共线,∴λ2+3λ2=1,解得λ=12,∴AF →=12AD →,∴C 正确;BF →=BA →+AF →=BA →+12AD →=BA →+12(BD →−BA →)=BA →+14BC →−12BA →=12BA →+14BC →,∴D 错误. 故选:AC10、已知△ABC 是边长为2的等边三角形,D ,E 分别是AC,AB 上的点,且AE ⃗⃗⃗⃗⃗ =EB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ =2DC ⃗⃗⃗⃗⃗ ,BD 与CE 交于点O ,则( )A .OC ⃗⃗⃗⃗⃗ +EO ⃗⃗⃗⃗⃗ =0⃗B .AB⃗⃗⃗⃗⃗ ⋅CE ⃗⃗⃗⃗⃗ =0 C .|OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ |=√3D .ED ⃗⃗⃗⃗⃗ 在BC ⃗⃗⃗⃗⃗ 方向上的投影为76 答案:BD解析:可证明EO =CE ,结合平面向量线性运算法则可判断A ;由AB⃗⃗⃗⃗⃗ ⊥CE ⃗⃗⃗⃗⃗ 结合平面向量数量积的定义可判断B ;建立直角坐标系,由平面向量线性运算及模的坐标表示可判断C ;由投影的计算公式可判断D. 因为△ABC 是边长为2的等边三角形,AE⃗⃗⃗⃗⃗ =EB ⃗⃗⃗⃗⃗ , 所以E 为AB 的中点,且CE ⊥AB ,以E 为原点如图建立直角坐标系,则E (0,0),A (−1,0),B (1,0),C(0,√3),由AD ⃗⃗⃗⃗⃗ =2DC ⃗⃗⃗⃗⃗ 可得AD ⃗⃗⃗⃗⃗ =23AC ⃗⃗⃗⃗⃗ =(23,2√33),则D (−13,2√33), 取BD 的中点G ,连接GE ,易得GE//AD 且GE =12AD =DC , 所以△CDO ≌△EGO ,EO =CO ,则O (0,√32), 对于A ,OC⃗⃗⃗⃗⃗ +EO ⃗⃗⃗⃗⃗ =EC ⃗⃗⃗⃗⃗ ≠0⃗ ,故A 错误;对于B ,由AB ⃗⃗⃗⃗⃗ ⊥CE ⃗⃗⃗⃗⃗ 可得AB⃗⃗⃗⃗⃗ ⋅CE ⃗⃗⃗⃗⃗ =0,故B 正确; 对于C ,OA ⃗⃗⃗⃗⃗ =(−1,−√32),OB ⃗⃗⃗⃗⃗ =(1,−√32),OC ⃗⃗⃗⃗⃗ =(0,√32),OD ⃗⃗⃗⃗⃗⃗ =(−13,√36), 所以OA⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ =(−13,−√33),所以|OA ⃗⃗⃗⃗⃗ +OB⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ |=23,故C 错误; 对于D ,BC⃗⃗⃗⃗⃗ =(−1,√3),ED ⃗⃗⃗⃗⃗ =(−13,2√33), 所以ED ⃗⃗⃗⃗⃗ 在BC ⃗⃗⃗⃗⃗ 方向上的投影为BC ⃗⃗⃗⃗⃗ ⋅ED ⃗⃗⃗⃗⃗⃗ |BC⃗⃗⃗⃗⃗ |=13+22=76,故D 正确.故选:BD.小提示:关键点点睛:建立合理的平面直角坐标系是解题关键. 11、下列说法中错误的是( ). A .若a //b ⃗ ,b ⃗ //c ,c //d ,则a //d B .若|a |=|b ⃗ |且a //b ⃗ ,则a =b⃗ C .若a ,b ⃗ 非零向量且|a +b ⃗ |=|a −b ⃗ |,则a ⊥b ⃗ D .若a //b ⃗ ,则有且只有一个实数λ,使得a =λb ⃗ 答案:ABD分析:对于题中所给的条件与结论需要考虑周全,可以得出结论. A 选项,当b ⃗ ,c 中至少有一个0⃗ 时,a 与d 可能不平行,故A 错误; B 选项,由|a |=|b ⃗ |且a //b ⃗ ,可得a =b ⃗ 或a =−b⃗ ,故B 错误; C 选项,|a +b ⃗ |=|a −b ⃗ |,根据数量积规则,则两边平方化简可得a ⋅b ⃗ =0, ∴a ⊥b⃗ ,故C 正确; D 选项,根据向量共线基本定理可知当a ,b⃗ 都为非零向量时成立, a 为零向量时也成立(λ=0) ,若b ⃗ =0⃗ 时,λ 不存在,但b ⃗ //a (零向量与所有的向量共线),故D 错误; 故选:ABD.12、下列说法错误的是( )A .若a //b ⃗ ,则存在唯一实数λ使得a =λb⃗ B .两个非零向量a ,b ⃗ ,若|a −b ⃗ |=|a |+|b ⃗ |,则a 与b⃗ 共线且反向C .已知a =(1,2),b ⃗ =(1,1),且a 与a +λb ⃗ 的夹角为锐角,则实数λ的取值范围是(−53,+∞) D .在△ABC 中,BC ⃗⃗⃗⃗⃗ ⋅CA ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ ,则△ABC 为等腰三角形 答案:AC分析:若a =b ⃗ =0⃗ 可判断A ;将已知条件两边平方再进行数量积运算可判断B ;求出a +λb ⃗ 的坐标,根据a ⋅(a +λb ⃗ )>0且a 与a +λb ⃗ 不共线求出λ的取值范围可判断C ;取AC 的中点D ,根据向量的线性运算可得CA ⃗⃗⃗⃗⃗ ⋅BD⃗⃗⃗⃗⃗⃗ =0可判断D ,进而可得正确选项. 对于A :若a =b ⃗ =0⃗ 满足a //b⃗ ,则实数λ不唯一,故选项A 错误; 对于B :两个非零向量a ,b ⃗ ,若|a −b ⃗ |=|a |+|b ⃗ |,则(a −b ⃗ )2=(|a |+|b⃗ |)2, 所以a 2+b ⃗ 2−2a ⋅b ⃗ =|a |2+|b ⃗ |2+2|a ||b ⃗ |,可得2a ⋅b ⃗ =2|a ||b ⃗ |⋅cos 〈a ⋅b ⃗ 〉=−2|a ||b ⃗ |,cos 〈a ⋅b ⃗ 〉=−1,因为0≤〈a ⋅b ⃗ 〉≤π,所以〈a ⋅b ⃗ 〉=π,所以a 与b⃗ 共线且反向,故选项B 正确; 对于C :已知a =(1,2),b ⃗ =(1,1),所以a +λb ⃗ =(1+λ,2+λ),若a 与a +λb ⃗ 的夹角为锐角,则a ⋅(a +λb ⃗ )=1+λ+2(2+λ)>0,解得:λ>−53,当λ=0时,a +λb ⃗ =a ,此时a 与a +λb ⃗ 的夹角为0,不符合题意,所以λ≠0,所以λ的取值范围是(−53,0)∪(0,+∞),故选项C 不正确;对于D :在△ABC 中,取AC 的中点D ,由BC⃗⃗⃗⃗⃗ ⋅CA ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ ,得CA ⃗⃗⃗⃗⃗ ⋅(BC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=CA ⃗⃗⃗⃗⃗ ⋅(BC ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ )=CA ⃗⃗⃗⃗⃗ ⋅2BD ⃗⃗⃗⃗⃗⃗ =0,故BD 垂直平分AC ,所以△ABC 为等腰三角形,故选项D 正确. 故选:AC .13、有下列说法,其中错误的说法为 A .若a //b ⃗ ,b ⃗ //c ,则a //cB .若2OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +3OC ⃗⃗⃗⃗⃗ =0,S ΔAOC ,S ΔABC 分别表示ΔAOC ,ΔABC 的面积,则S ΔAOC :S ΔABC =1:6 C .两个非零向量a ,b ⃗ ,若|a −b ⃗ |=|a |+|b ⃗ |,则a 与b ⃗ 共线且反向D .若a //b ⃗ ,则存在唯一实数λ使得a =λb ⃗ 答案:AD分析:对每一个选项逐一分析判断得解.A. 若a //b ⃗ ,b ⃗ //c ,则a //c ,如果a ,c 都是非零向量,b ⃗ =0⃗ ,显然满足已知条件,但是结论不一定成立,所以该选项是错误的;B. 如图,D,E 分别是AC,BC 的中点,2OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +3OC ⃗⃗⃗⃗⃗ =0⃗ ,∴2(OA ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ )+(OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ )=0⃗ ,∴4OD ⃗⃗⃗⃗⃗⃗ +2OE ⃗⃗⃗⃗⃗ =0⃗ ,∴OE ⃗⃗⃗⃗⃗ =−2OD ⃗⃗⃗⃗⃗⃗ , 所以OD =16AB,则S ΔAOC :S ΔABC =1:6,所以该选项是正确的;C. 两个非零向量a ,b ⃗ ,若|a −b ⃗ |=|a |+|b ⃗ |,则a 与b ⃗ 共线且反向,所以该选项是正确的;D. 若a //b ⃗ ,如果a 是非零向量,b ⃗ =0⃗ ,则不存在实数λ使得a =λb ⃗ ,所以该选项是错误的. 故选A,D小提示:本题主要考查平面向量的运算,考查向量的平行及性质,意在考查学生对这些知识的理解掌握水平,属于基础题. 填空题14、已知P ,Q 分别是四边形ABCD 的对角线AC 与BD 的中点,BC ⃗⃗⃗⃗⃗ =a ,DA ⃗⃗⃗⃗⃗ =b ⃗ ,且a ,b ⃗ 是不共线的向量,则向量PQ⃗⃗⃗⃗⃗ =___________. 答案:−12a −12b⃗ 分析:取AB 的中点E ,连接PE,QE ,然后利用向量的加法法则和三角形中位线定理求解. 如图,取AB 的中点E ,连接PE,QE ,因为P ,Q 分别是四边形ABCD 的对角线AC 与BD 的中点,BC ⃗⃗⃗⃗⃗ =a ,DA ⃗⃗⃗⃗⃗ =b⃗ 所以PE ⃗⃗⃗⃗⃗ =12CB ⃗⃗⃗⃗⃗ =−12a ,EQ ⃗⃗⃗⃗⃗ =12AD ⃗⃗⃗⃗⃗ =−12b ⃗ , 所以PQ ⃗⃗⃗⃗⃗ =PE ⃗⃗⃗⃗⃗ +EQ ⃗⃗⃗⃗⃗ =12CB ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗ =−12a −12b⃗ .所以答案是:−12a−12b⃗15、在△ABC中,若a=2,c=2√3,cosC=−12,M是BC的中点,则AM的长为____________.答案:√7分析:在△ABC中,由余弦定理求出b=2,进而,在△AMC中,由余弦定理可得AM.在△ABC中,由余弦定理c2=b2+a2−2abcosC得b2+2b−8=0,又b>0,所以b=2.在△AMC中,CA=b=2,CM=a2=1,由余弦定理得AM2=CA2+CM2−2CA⋅CM⋅cosC=22+12−2×2×1×(−12)=7,所以AM=√7.所以答案是:√7.16、在△ABC中,cos∠BAC=−13,AC=2,D是边BC上的点,且BD=2DC,AD=DC,则AB等于 ___.答案:3分析:运用余弦定理,通过解方程组进行求解即可.设DC=x,AB=y,因为BD=2DC,AD=DC,所以BC=3x,AD=DC=x,在△ADC中,由余弦定理可知:cosC=AC2+CD2−AD22AC⋅DC =4+x2−x24x=1x,在△ABC中,由余弦定理可知:cosC=AC2+CB2−AB22AC⋅BC =4+9x2−y212x,于是有4+9x2−y212x =1x⇒9x2−y2=8(1),在△ABC中,由余弦定理可知:cosA=AB2+CA2−CB22AB⋅AC =y2+4−9x24y=−13,⇒27x2−3y2−4y=12(2),把(1)代入(2)中得,y=3,所以答案是:3解答题17、记△ABC的内角A,B,C的对边分别为a,b,c﹐已知sinCsin(A−B)=sinBsin(C−A).(1)若A=2B,求C;(2)证明:2a2=b2+c2答案:(1)5π8;(2)证明见解析.分析:(1)根据题意可得,sinC=sin(C−A),再结合三角形内角和定理即可解出;(2)由题意利用两角差的正弦公式展开得sinC(sinAcosB−cosAsinB)=sinB(sinCcosA−cosCsinA),再根据正弦定理,余弦定理化简即可证出.(1)由A=2B,sinCsin(A−B)=sinBsin(C−A)可得,sinCsinB=sinBsin(C−A),而0<B<π2,所以sinB∈(0,1),即有sinC=sin(C−A)>0,而0<C<π,0<C−A<π,显然C≠C−A,所以,C+C−A=π,而A=2B,A+B+C=π,所以C=5π8.(2)由sinCsin(A−B)=sinBsin(C−A)可得,sinC(sinAcosB−cosAsinB)=sinB(sinCcosA−cosCsinA),再由正弦定理可得,accosB−bccosA=bccosA−abcosC,然后根据余弦定理可知,1 2(a2+c2−b2)−12(b2+c2−a2)=12(b2+c2−a2)−12(a2+b2−c2),化简得:2a2=b2+c2,故原等式成立.18、如图,有一景区的平面图是一个半圆形,其中O为圆心,直径AB的长为2km,C,D两点在半圆弧上,且BC=CD,设∠COB=θ;(1)当θ=π12时,求四边形ABCD的面积.(2)若要在景区内铺设一条由线段AB,BC,CD和DA组成的观光道路,则当θ为何值时,观光道路的总长l 最长,并求出l的最大值.答案:(1)√6−√24+14;(2)5分析:(1)把四边形ABCD分解为三个等腰三角形:△COB,△COD,△DOA,利用三角形的面积公式即得解;(2)利用θ表示(1)中三个等腰三角形的顶角,利用正弦定理分别表示BC,CD和DA,令t=sinθ2,转化为二次函数的最值问题,即得解.(1)连结,则∠COD=π12,∠AOD=5π6∴四边形ABCD的面积为2×12×1×1×sinπ12+12×1×1×sin5π6=√6−√24+14(2)由题意,在△BOC中,∠OBC=π−θ2,由正弦定理BC sinθ=OBsin(π−θ2)=1cosθ2∴BC=CD=sinθcosθ2=2sinθ2同理在△AOD中,∠OAD=θ,∠DOA=π−2θ,由正弦定理DAsin(π−2θ)=ODsinθ∴DA=sin2θsinθ=2cosθ∴l=2+4sin θ2+2cosθ=2+4sinθ2+2(1−2sin2θ2),0<θ<π2OD令t =sin θ2(0<t <√22) ∴l =2+4t +2(1−2t 2)=4+4t −4t 2=−4(t −12)2+5 ∴t =12时,即θ=π3,l 的最大值为5 小提示:本题考查了三角函数和解三角形综合实际应用问题,考查了学生综合分析,数学建模,转化划归,数学运算能力,属于较难题。

高中数学平面向量中的常见问题解析

高中数学平面向量中的常见问题解析

高中数学平面向量中的常见问题解析在高中数学中,平面向量是一个重要的概念,也是许多学生在学习中遇到的难题。

本文将对高中数学平面向量中的常见问题进行解析,帮助学生更好地理解和应用该知识点。

一、向量的表示和运算在解析几何中,向量可以用有序数对表示。

例如,向量AB可以表示为向量→AB或者向量a,其中→AB=(x,y)或者a=(x,y)。

向量的运算包括加法、减法、数乘等。

向量的加法满足交换律和结合律,即若→AB+(→CD+→EF)=→AB+→CD+→EF。

二、向量的数量积向量的数量积也叫点积,用符号·表示。

数量积满足交换律和分配律,即→AB·→CD=→CD·→AB。

数量积的计算方法为:→AB·→CD=|→AB||→CD|cosθ,其中|→AB|和|→CD|分别表示向量→AB和→CD的模,θ表示两个向量的夹角。

三、向量的向量积向量的向量积也叫叉积,用符号×表示。

向量积的结果是一个向量,它的模长等于被乘向量的模与夹角的正弦乘积。

向量积的计算方法为:→AB×→CD=|→AB||→CD|sinθn,其中|→AB|和|→CD|分别表示向量→AB和→CD的模,θ表示两个向量的夹角,n为单位法向量。

四、平面向量的应用平面向量在几何中有广泛的应用。

常见的问题包括:向量共线、向量垂直、向量平行和向量的投影等。

1. 向量共线问题若两个向量的方向相同或者相反,则它们是共线的。

可以通过判断两个向量的比例关系来确定它们是否共线。

2. 向量垂直问题若两个向量的数量积为零,则它们是垂直的。

可以通过计算两个向量的数量积来判断它们是否垂直。

3. 向量平行问题若两个向量的方向相同或者相反,则它们是平行的。

可以通过判断两个向量的比例关系来确定它们是否平行。

4. 向量的投影问题向量的投影表示一个向量在另一个向量上的投影长度。

可以通过计算向量的数量积和模长来求解向量的投影。

五、解题技巧和注意事项在解决高中数学平面向量中的问题时,有一些技巧和注意事项可以帮助学生更好地理解和应用知识点。

高中数学平面向量知识点总结及常见题型

高中数学平面向量知识点总结及常见题型

平面向量一.向量的基本概念与基本运算 1向量的概念:①向量:既有大小又有方向的量向量一般用c b a,,……来表示,或用有向线段的起点与终点的大写字母表示,如:AB 几何表示法 AB ,a;坐标表示法),(y x yj xi a =+=向量的大小即向量的模长度,记作|AB |即向量的大小,记作|a|向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a=0⇔|a|= 由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行共线的问题中务必看清楚是否有“非零向量”这个条件.注意与0的区别 ③单位向量:模为1个单位长度的向量向量0a 为单位向量⇔|0a|=1④平行向量共线向量:方向相同或相反的非零向量任意一组平行向量都可以移到同一直线上方向相同或相反的向量,称为平行向量记作a ∥b行任意的平移即自由向量,平行向量总可以平移到同一直线上,故平行向量也称为共线向量⑤相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为b a=大小相等,方向相同),(),(2211y x y x =⎩⎨⎧==⇔2121y y x x2向量加法求两个向量和的运算叫做向量的加法设,AB a BC b ==,则a+b =AB BC +=AC1a a a=+=+00;2向量加法满足交换律与结合律; 向量加法有“三角形法则”与“平行四边形法则”:1用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量2 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则.向量加法的三角形法则可推广至多个向量相加:AB BC CD PQ QR AR +++++=,但这时必须“首尾相连”.3向量的减法① 相反向量:与a 长度相等、方向相反的向量,叫做a的相反向量记作a-,零向量的相反向量仍是零向量关于相反向量有: i )(a --=a; ii a +a -=a -+a =0 ; iii 若a 、b是互为相反向量,则a =b -,b =a -,a +b =0②向量减法:向量a 加上b 的相反向量叫做a 与b的差,记作:)(b a b a-+=-求两个向量差的运算,叫做向量的减法③作图法:b a -可以表示为从b 的终点指向a 的终点的向量a 、b有共同起点 4实数与向量的积:①实数λ与向量a 的积是一个向量,记作λa,它的长度与方向规定如下:Ⅰa a⋅=λλ;Ⅱ当0>λ时,λa 的方向与a 的方向相同;当0<λ时,λa 的方向与a的方向相反;当0=λ时,0=a λ,方向是任意的②数乘向量满足交换律、结合律与分配律 5两个向量共线定理:向量b 与非零向量a共线⇔有且只有一个实数λ,使得b =a λ 6平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21,λλ使:2211e e a λλ+=,其中不共线的向量21,e e叫做表示这一平面内所有向量的一组基底 7 特别注意:1向量的加法与减法是互逆运算2相等向量与平行向量有区别,向量平行是向量相等的必要条件3向量平行与直线平行有区别,直线平行不包括共线即重合,而向量平行则包括共线重合的情况4向量的坐标与表示该向量的有向线条的始点、终点的具体位置无关,只与其相对位置有关二.平面向量的坐标表示 1平面向量的坐标表示:在直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量,i j 作为基底由平面向量的基本定理知,该平面内的任一向量a 可表示成a xi yj =+,由于a 与数对x,y 是一一对应的,因此把x,y 叫做向量a 的坐标,记作a =x,y,其中x 叫作a 在x 轴上的坐标,y 叫做在y 轴上的坐标1相等的向量坐标相同,坐标相同的向量是相等的向量2向量的坐标与表示该向量的有向线段的始点、终点的具体位置无关,只与其相对位置有关2平面向量的坐标运算:(1)若()()1122,,,a x y b x y ==,则()1212,a b x x y y ±=±± (2)若()()2211,,,y x B y x A ,则()2121,AB x x y y =-- (3)若a =x,y,则λa =λx, λy(4)若()()1122,,,a x y b x y ==,则1221//0a b x y x y ⇔-= (5)若()()1122,,,a x y b x y ==,则1212a b x x y y ⋅=⋅+⋅若a b ⊥,则02121=⋅+⋅y y x x3,数与向量的乘积,向量的数量内积及其各运算的坐标表示和性质12(a b x x +=+AB BC AC +=12(a b x x -=-)(b a b a-+=- AB BA =-OB OA AB -=a a)()(λμμλ=12a b x x •=+三.平面向量的数量积 1两个向量的数量积:已知两个非零向量a 与b ,它们的夹角为θ,则a ·b =︱a ︱·︱b ︱cos θ叫做a 与b 的数量积或内积 规定00a ⋅=2向量的投影:︱b ︱cos θ=||a ba ⋅∈R,称为向量b 在a 方向上的投影投影的绝对值称为射影3数量积的几何意义:a ·b 等于a 的长度与b 在a 方向上的投影的乘积 4向量的模与平方的关系:22||a a a a ⋅== 5乘法公式成立:()()2222a b a b a b a b +⋅-=-=-;()2222a ba ab b ±=±⋅+222a a b b =±⋅+6平面向量数量积的运算律: ①交换律成立:a b b a ⋅=⋅②对实数的结合律成立:()()()()a b a b a b R λλλλ⋅=⋅=⋅∈ ③分配律成立:()a b c a c b c ±⋅=⋅±⋅()c a b =⋅± 特别注意:1结合律不成立:()()a b c a b c ⋅⋅≠⋅⋅; 2消去律不成立a b a c⋅=⋅不能得到b c =⋅3a b ⋅=0不能得到a =0或b =0 7两个向量的数量积的坐标运算:已知两个向量1122(,),(,)a x y b x y ==,则a ·b =1212x x y y +8向量的夹角:已知两个非零向量a 与b ,作OA =a , OB =b ,则∠AOB=θ001800≤≤θ叫做向量a 与b 的夹角cos θ=cos ,a b a b a b•<>=•=222221212121y x y x y y x x +⋅++当且仅当两个非零向量a 与b 同方向时,θ=00,当且仅当a 与b 反方向时θ=1800,同时0与其它任何非零向量之间不谈夹角这一问题9垂直:如果a 与b 的夹角为900则称a 与b 垂直,记作a ⊥b 10两个非零向量垂直的充要条件:a ⊥b ⇔a ·b=O ⇔2121=+y y x x 平面向量数量积的性质题型1.基本概念判断正误:1共线向量就是在同一条直线上的向量.2若两个向量不相等,则它们的终点不可能是同一点. 3与已知向量共线的单位向量是唯一的. 4四边形ABCD 是平行四边形的条件是AB CD =. 5若AB CD =,则A 、B 、C 、D 四点构成平行四边形. 6因为向量就是有向线段,所以数轴是向量. 7若a 与b 共线, b 与c 共线,则a 与c 共线. 8若ma mb =,则a b =. 9若ma na =,则m n =.10若a 与b 不共线,则a 与b 都不是零向量. 11若||||a b a b ⋅=⋅,则//a b . 12若||||a b a b +=-,则a b ⊥. 题型2.向量的加减运算1.设a 表示“向东走8km ”, b 表示“向北走6km ”,则||a b += .2.化简()()AB MB BO BC OM ++++= .3.已知||5OA =,||3OB =,则||AB 的最大值和最小值分别为 、 .4.已知AC AB AD为与的和向量,且,AC a BD b ==,则AB = ,AD = .5.已知点C 在线段AB 上,且35AC AB =,则AC = BC ,AB = BC . 题型3.向量的数乘运算1.计算:13()2()a b a b +-+= 22(253)3(232)a b c a b c +---+-=2.已知(1,4),(3,8)a b =-=-,则132a b -= .题型4.作图法球向量的和已知向量,a b ,如下图,请做出向量132a b +和322a b -.a b题型5.根据图形由已知向量求未知向量1.已知在ABC ∆中,D 是BC 的中点,请用向量AB AC ,表示AD . 2.在平行四边形ABCD 中,已知,AC a BD b ==,求AB AD 和.题型6.向量的坐标运算1.已知(4,5)AB =,(2,3)A ,则点B 的坐标是 .2.已知(3,5)PQ =--,(3,7)P ,则点Q 的坐标是 .3.若物体受三个力1(1,2)F =,2(2,3)F =-,3(1,4)F =--,则合力的坐标为 .4.已知(3,4)a =-,(5,2)b =,求a b +,a b -,32a b -.5.已知(1,2),(3,2)A B ,向量(2,32)a x x y =+--与AB 相等,求,x y 的值.6.已知(2,3)AB =,(,)BC m n =,(1,4)CD =-,则DA = .7.已知O 是坐标原点,(2,1),(4,8)A B --,且30AB BC +=,求OC 的坐标.题型7.判断两个向量能否作为一组基底1.已知12,e e 是平面内的一组基底,判断下列每组向量是否能构成一组基底: A.1212e e e e +-和 B.1221326e e e e --和4 C.122133e e e e +-和 D.221e e e -和2.已知(3,4)a =,能与a 构成基底的是A.34(,)55B.43(,)55C.34(,)55--D.4(1,)3--题型8.结合三角函数求向量坐标1.已知O 是坐标原点,点A 在第二象限,||2OA =,150xOA ∠=,求OA 的坐标.2.已知O 是原点,点A 在第一象限,||43OA =60xOA ∠=,求OA 的坐标.题型9.求数量积1.已知||3,||4a b ==,且a 与b 的夹角为60,求1a b ⋅,2()a a b ⋅+,31()2a b b -⋅,4(2)(3)a b a b -⋅+.2.已知(2,6),(8,10)a b =-=-,求1||,||a b ,2a b ⋅,3(2)a a b ⋅+, 4(2)(3)a b a b -⋅+.题型10.求向量的夹角1.已知||8,||3a b ==,12a b ⋅=,求a 与b 的夹角.2.已知(3,1),(23,2)a b ==-,求a 与b 的夹角.3.已知(1,0)A ,(0,1)B ,(2,5)C ,求cos BAC ∠. 题型11.求向量的模1.已知||3,||4a b ==,且a 与b 的夹角为60,求1||a b +,2|23|a b -.2.已知(2,6),(8,10)a b =-=-,求1||,||a b ,5||a b +,61||2a b -.3.已知||1||2a b ==,,|32|3a b -=,求|3|a b +.题型12.求单位向量 与a 平行的单位向量:||a e a =± 1.与(12,5)a =平行的单位向量是 .2.与1(1,)2m =-平行的单位向量是 . 题型13.向量的平行与垂直1.已知(6,2)a =,(3,)b m =-,当m 为何值时,1//a b 2a b ⊥2.已知(1,2)a =,(3,2)b =-,1k 为何值时,向量ka b +与3a b -垂直 2k 为何值时,向量ka b +与3a b -平行3.已知a 是非零向量,a b a c ⋅=⋅,且b c ≠,求证:()a b c ⊥-.题型14.三点共线问题1.已知(0,2)A -,(2,2)B ,(3,4)C ,求证:,,A B C 三点共线.2.设2(5),28,3()2AB a b BC a b CD a b =+=-+=-,求证:A B D 、、三点共线. 3.已知2,56,72AB a b BC a b CD a b =+=-+=-,则一定共线的三点是 .4.已知(1,3)A -,(8,1)B -,若点(21,2)C a a -+在直线AB 上,求a 的值.5.已知四个点的坐标(0,0)O ,(3,4)A ,(1,2)B -,(1,1)C ,是否存在常数t ,使OA tOB OC +=成立题型15.判断多边形的形状1.若3AB e =,5CD e =-,且||||AD BC =,则四边形的形状是 .2.已知(1,0)A ,(4,3)B ,(2,4)C ,(0,2)D ,证明四边形ABCD 是梯形.3.已知(2,1)A -,(6,3)B -,(0,5)C ,求证:ABC ∆是直角三角形.4.在平面直角坐标系内,(1,8),(4,1),(1,3)OA OB OC =-=-=,求证:ABC ∆是等腰直角三角形.题型16.平面向量的综合应用1.已知(1,0)a =,(2,1)b =,当k 为何值时,向量ka b -与3a b +平行2.已知(3,5)a =,且a b ⊥,||2b =,求b 的坐标.3.已知a b 与同向,(1,2)b =,则10a b ⋅=,求a 的坐标.3.已知(1,2)a =,(3,1)b =,(5,4)c =,则c = a + b .4.已知(5,10)a =,(3,4)b =--,(5,0)c =,请将用向量,a b 表示向量c .5.已知(,3)a m =,(2,1)b =-,1若a 与b 的夹角为钝角,求m 的范围; 2若a 与b 的夹角为锐角,求m 的范围.6.已知(6,2)a =,(3,)b m =-,当m 为何值时,1a 与b 的夹角为钝角 2a 与b 的夹角为锐角7.已知梯形ABCD 的顶点坐标分别为(1,2)A -,(3,4)B ,(2,1)D ,且//AB DC ,2AB CD =,求点C 的坐标.8.已知平行四边形ABCD 的三个顶点的坐标分别为(2,1)A ,(1,3)B -,(3,4)C ,求第四个顶点D 的坐标.9.一航船以5km/h 的速度向垂直于对岸方向行驶,航船实际航行方向与水流方向成30角,求水流速度与船的实际速度.10.已知ABC ∆三个顶点的坐标分别为(3,4)A ,(0,0)B ,(,0)C c ,1若0AB AC ⋅=,求c 的值;2若5c =,求sin A 的值.备用1.已知||3,||4,||5a b a b ==+=,求||a b -和向量,a b 的夹角.2.已知x a b =+,2y a b =+,且||||1a b ==,a b ⊥,求,x y 的夹角的余弦.1.已知(1,3),(2,1)a b ==--,则(32)(25)a b a b +⋅-= .4.已知两向量(3,4),(2,1)a b ==-,求当a xb a b +-与垂直时的x 的值.5.已知两向量(1,3),(2,)a b λ==,a b 与的夹角θ为锐角,求λ的范围. 变式:若(,2),(3,5)a b λ==-,a b 与的夹角θ为钝角,求λ的取值范围. 选择、填空题的特殊方法:1.代入验证法例:已知向量(1,1),(1,1),(1,2)a b c ==-=--,则c = A.1322a b -- B.1322a b -+ C.3122a b - D.3122a b -+ 2.排除法例:已知M 是ABC ∆的重心,则下列向量与AB 共线的是A.AM MB BC ++B.3AM AC +C.AB BC AC ++D.AM BM CM ++。

高中数学必备技巧平面向量的共线与垂直性质

高中数学必备技巧平面向量的共线与垂直性质

高中数学必备技巧平面向量的共线与垂直性质高中数学必备技巧:平面向量的共线与垂直性质在高中数学学习中,平面向量是一个重要的概念,它能够帮助我们更好地理解空间中的几何问题。

平面向量不仅有方向和大小,还有一些特殊的性质,其中包括共线与垂直性质。

本文将重点介绍平面向量的共线与垂直性质,并提供一些解题技巧。

一、共线性质1. 定义:设有两个非零向量a和b,如果存在实数k,使得a=kb,那么我们称向量a和b共线。

2. 共线判定:有两种判定方式可以确定向量的共线性:a) 坐标判定法:设向量a的坐标表示为(a₁, a₂),向量b的坐标表示为(b₁, b₂),则向量a和b共线的充要条件是a₁/b₁ = a₂/b₂。

b) 分向量判定法:设向量a的两个分向量为a₁和a₂,向量b的两个分向量为b₁和b₂,则向量a和b共线的充要条件是a₁/b₁ =a₂/b₂。

3. 共线向量的性质:如果向量a和b共线,则存在实数k,使得a=k(b₁, b₂)。

这意味着共线的向量具有相同的方向(平行或反平行)。

解题技巧:a) 确定向量的坐标或分向量,并利用坐标判定法或分向量判定法来判断是否共线。

b) 如果两向量的坐标或分向量比例相等,则可直接判断它们共线。

二、垂直性质1. 定义:设有两个非零向量a和b,如果a·b = 0,即它们的数量积为零,那么我们称向量a和b垂直。

2. 垂直判定:有两种判定方式可以确定向量的垂直性:a) 坐标判定法:设向量a的坐标表示为(a₁, a₂),向量b的坐标表示为(b₁, b₂),则向量a和b垂直的充要条件是a₁b₁ + a₂b₂ = 0。

b) 分向量判定法:设向量a的两个分向量为a₁和a₂,向量b的两个分向量为b₁和b₂,则向量a和b垂直的充要条件是a₁b₁ +a₂b₂ = 0。

3. 垂直向量的性质:如果向量a和b垂直,则它们的夹角为90°。

具体而言,如果向量a的坐标表示为(a₁, a₂),向量b的坐标表示为(b₁, b₂),则向量a和b垂直的充要条件是a₁b₁ + a₂b₂ = 0。

高二数学向量与平面的关系与求解方法

高二数学向量与平面的关系与求解方法

高二数学向量与平面的关系与求解方法高二数学:向量与平面的关系与求解方法向量与平面是高中数学中的重要概念,它们之间存在着密切的关系,并且在解题中有着广泛的应用。

本文将介绍向量与平面的关系以及求解方法,帮助同学们更好地掌握这一知识点。

一、向量与平面的定义在数学中,向量是由大小和方向所决定的有向线段,通常用有向线段的起点和终点表示。

而平面是由无数条在同一平面上的直线构成的集合。

二、向量与平面的关系1. 向量的共面性向量与平面的关系可以通过向量的共面性来进行判断。

若三个向量共面,则它们在同一平面上;若两个向量共线,则它们在同一直线上。

2. 平面的法向量平面可以由一条法线和过该点的任意向量来确定。

这条法线被称为平面的法向量,它垂直于平面上的任意一条线。

3. 向量的投影在平面上,向量可以进行投影。

向量的投影是指:将一个向量沿着平面的法线方向做垂直投影,得到一个新的向量,称为该向量在平面上的投影。

三、向量与平面的求解方法1. 平面方程的求解平面的方程一般可以表示为Ax+By+Cz+D=0的形式,其中A、B、C为平面的法向量的分量,D为常数。

通过已知点和法向量可以求解平面的方程。

2. 向量的投影已知一个向量a,其在平面上的投影向量记作a',那么a与其投影向量a'的关系为:a=a'+b,其中b为向量在平面上的垂直分量。

3. 向量的线性相关性若向量a与法向量n线性无关,则a不在平面上;若向量a与法向量n线性相关,则a在平面上。

4. 平面的交点如果已知两个平面的方程,可以解方程组求解它们的交点。

在解方程组时,需要仔细分析多种情况,例如平面交于一点、交于一直线或平面重合等情况。

四、向量与平面的应用向量与平面的关系在数学的几何、物理等多个领域中都有广泛的应用。

1. 几何中的平面在几何学中,我们经常需要研究平面上的图形。

向量与平面的关系帮助我们描述并求解平面上的各种几何问题。

2. 物理中的力学在力学中,向量与平面的关系有助于我们研究物体的受力情况。

高中数学平面向量模长解题技巧

高中数学平面向量模长解题技巧

高中数学平面向量模长解题技巧引言:在高中数学中,平面向量是一个重要的概念,涉及到平面几何、解析几何以及物理等多个领域。

而平面向量的模长是其中一个基本的概念,它代表了向量的长度或大小。

本文将介绍一些高中数学中常见的平面向量模长解题技巧,帮助学生更好地理解和应用这一概念。

一、模长的定义和性质模长是平面向量的一个重要性质,它可以通过向量的坐标表示或几何方法求解。

对于一个平面向量$\vec{AB}$,其模长记作$|\vec{AB}|$或$AB$,表示向量的长度或大小。

模长的计算公式为:$$|\vec{AB}|=\sqrt{(x_B-x_A)^2+(y_B-y_A)^2}$$其中$(x_A,y_A)$和$(x_B,y_B)$分别是向量起点$A$和终点$B$的坐标。

模长具有以下性质:1. 非负性:模长始终大于等于零,即$|\vec{AB}|\geq 0$。

2. 零向量的模长为零:对于零向量$\vec{0}$,其模长为$|\vec{0}|=0$。

3. 向量的模长与方向无关:向量的模长与其方向无关,只与向量的起点和终点有关。

二、模长解题技巧1. 利用坐标计算模长当向量的起点和终点的坐标已知时,可以直接利用模长的计算公式求解。

例如,已知向量$\vec{AB}$的起点$A(2,3)$和终点$B(5,7)$,求向量$\vec{AB}$的模长。

解答:根据模长的计算公式,可得:$$|\vec{AB}|=\sqrt{(5-2)^2+(7-3)^2}=\sqrt{9+16}=\sqrt{25}=5$$因此,向量$\vec{AB}$的模长为5。

2. 利用几何性质计算模长在某些情况下,可以利用几何性质来计算向量的模长。

例如,已知三角形$ABC$的顶点$A(1,2)$、$B(4,6)$和$C(7,2)$,求向量$\vec{AB}$和$\vec{AC}$的模长。

解答:根据模长的定义,可以利用两点之间的距离公式求解。

首先计算向量$\vec{AB}$的模长:$$|\vec{AB}|=\sqrt{(4-1)^2+(6-2)^2}=\sqrt{9+16}=\sqrt{25}=5$$然后计算向量$\vec{AC}$的模长:$$|\vec{AC}|=\sqrt{(7-1)^2+(2-2)^2}=\sqrt{36}=6$$因此,向量$\vec{AB}$的模长为5,向量$\vec{AC}$的模长为6。

新教材 人教A版高中数学必修第二册 第六章 平面向量及其应用 知识点汇总及解题规律方法提炼

新教材 人教A版高中数学必修第二册 第六章 平面向量及其应用 知识点汇总及解题规律方法提炼

6.1 平面向量的概念1.向量的概念及表示(1)概念:既有大小又有方向的量. (2)有向线段①定义:具有方向的线段. ②三个要素:起点、方向、长度.③表示:在有向线段的终点处画上箭头表示它的方向.以A 为起点、B 为终点的有向线段记作AB→.④长度:线段AB 的长度也叫做有向线段AB →的长度,记作|AB →|.(3)向量的表示■名师点拨(1)判断一个量是否为向量,就要看它是否具备大小和方向两个因素. (2)用有向线段表示向量时,要注意AB →的方向是由点A 指向点B ,点A 是向量的起点,点B 是向量的终点.2.向量的有关概念(1)向量的模(长度):向量AB →的大小,称为向量AB →的长度(或称模),记作|AB →|.(2)零向量:长度为0的向量,记作0.(3)单位向量:长度等于1个单位长度的向量. 3.两个向量间的关系(1)平行向量:方向相同或相反的非零向量,也叫做共线向量.若a ,b 是平行向量,记作a ∥b .规定:零向量与任意向量平行,即对任意向量a ,都有0∥a .(2)相等向量:长度相等且方向相同的向量,若a ,b 是相等向量,记作a =b .■名师点拨(1)平行向量也称为共线向量,两个概念没有区别. (2)共线向量所在直线可以平行,与平面几何中的共线不同. (3)平行向量可以共线,与平面几何中的直线平行不同.典型例题1向量的相关概念给出下列命题:①若AB→=DC →,则A ,B ,C ,D 四点是平行四边形的四个顶点; ②在▱ABCD 中,一定有AB →=DC →;③若a =b ,b =c ,则a =c .其中所有正确命题的序号为________.【解析】 AB→=DC →,A ,B ,C ,D 四点可能在同一条直线上,故①不正确;在▱ABCD 中,|AB→|=|DC →|,AB →与DC →平行且方向相同,故AB →=DC →,故②正确;a=b ,则|a |=|b |,且a 与b 的方向相同;b =c ,则|b |=|c |,且b 与c 的方向相同,则a 与c 长度相等且方向相同,故a =c ,故③正确.【答案】 ②③(1)判断一个量是否为向量的两个关键条件 ①有大小;②有方向.两个条件缺一不可. (2)理解零向量和单位向量应注意的问题①零向量的方向是任意的,所有的零向量都相等; ②单位向量不一定相等,易忽略向量的方向. 典型例题2向量的表示在如图所示的坐标纸上(每个小方格的边长为1),用直尺和圆规画出下列向量:(1)OA→,使|OA →|=42,点A 在点O 北偏东45°方向上; (2)AB→,使|AB →|=4,点B 在点A 正东方向上; (3)BC→,使|BC →|=6,点C 在点B 北偏东30°方向上. 【解】 (1)由于点A 在点O 北偏东45°方向上,所以在坐标纸上点A 距点O 的横向小方格数与纵向小方格数相等.又|OA→|=42,小方格的边长为1,所以点A 距点O 的横向小方格数与纵向小方格数都为4,于是点A 的位置可以确定,画出向量OA→,如图所示.(2)由于点B 在点A 正东方向上,且|AB→|=4,所以在坐标纸上点B 距点A 的横向小方格数为4,纵向小方格数为0,于是点B 的位置可以确定,画出向量AB →,如图所示.(3)由于点C 在点B 北偏东30°方向上,且|BC→|=6,依据勾股定理可得,在坐标纸上点C 距点B 的横向小方格数为3,纵向小方格数为33≈5.2,于是点C 的位置可以确定,画出向量BC→,如图所示.用有向线段表示向量的步骤典型例题3共线向量与相等向量如图所示,O 是正六边形ABCDEF 的中心,且OA→=a ,OB →=b ,在每两点所确定的向量中.(1)与a 的长度相等、方向相反的向量有哪些? (2)与a 共线的向量有哪些?【解】 (1)与a 的长度相等、方向相反的向量有OD→,BC →,AO →,FE →.(2)与a 共线的向量有EF→,BC →,OD →,FE →,CB →,DO →,AO →,DA →,AD →.1.[变条件、变问法]本例中若OC →=c ,其他条件不变,试分别写出与a ,b ,c 相等的向量.解:与a 相等的向量有EF →,DO →,CB →;与b 相等的向量有DC →,EO →,F A →;与c 相等的向量有FO→,ED →,AB →. 2.[变问法]本例条件不变,与AD→共线的向量有哪些?解:与AD→共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,OA →.共线向量与相等向量的判断(1)如果两个向量所在的直线平行或重合,那么这两个向量是共线向量. (2)共线向量不一定是相等向量,但相等向量一定是共线向量.(3)非零向量的共线具有传递性,即向量a ,b ,c 为非零向量,若a ∥b ,b ∥c ,则可推出a ∥c .[注意]对于共线向量所在直线的位置关系的判断,要注意直线平行或重合两种情况.6.2.1向量的加法运算1.向量加法的定义及运算法则(1)两个法则的使用条件不同.三角形法则适用于任意两个非零向量求和,平行四边形法则只适用于两个不共线的向量求和.(2)在使用三角形法则时,应注意“首尾连接”;在使用平行四边形法则时应注意范围的限制及和向量与两向量起点相同.(3)位移的合成可以看作向量加法三角形法则的物理模型.力的合成可以看作向量加法平行四边形法则的物理模型.2.|a +b |,|a |,|b |之间的关系一般地,|a +b |≤|a |+|b |,当且仅当a ,b 方向相同时等号成立. 3.向量加法的运算律交换律 a +b =b +a 结合律 (a +b )+c =a +(b +c )典型例题1平面向量的加法及其几何意义如图,已知向量a ,b ,c ,求作和向量a +b +c .【解】 法一:可先作a +c ,再作(a +c )+b ,即a +b +c .如图,首先在平面内任取一点O ,作向量OA→=a ,接着作向量AB →=c ,则得向量OB→=a +c ,然后作向量BC →=b ,则向量OC →=a +b +c 为所求.法二:三个向量不共线,用平行四边形法则来作.如图,(1)在平面内任取一点O ,作OA→=a ,OB →=b ;(2)作平行四边形AOBC ,则OC →=a +b ;(3)再作向量OD→=c ;(4)作平行四边形CODE ,则OE→=OC →+c =a +b +c .OE →即为所求.(1)应用三角形法则求向量和的基本步骤①平移向量使之“首尾相接”,即第一个向量的终点与第二个向量的起点重合;②以第一个向量的起点为起点,并以第二个向量的终点为终点的向量,即为两个向量的和.(2)应用平行四边形法则求向量和的基本步骤 ①平移两个不共线的向量使之共起点; ②以这两个已知向量为邻边作平行四边形;③平行四边形中,与两向量共起点的对角线表示的向量为两个向量的和. 典型例题2平面向量的加法运算化简: (1)BC→+AB →; (2)DB→+CD →+BC →; (3)AB →+DF →+CD →+BC →+F A →.【解】 (1)BC →+AB →=AB →+BC →=AC →. (2)DB→+CD →+BC → =BC→+CD →+DB → =(BC→+CD →)+DB → =BD→+DB →=0. (3)AB →+DF →+CD →+BC →+F A →=AB →+BC →+CD →+DF →+F A → =AC →+CD →+DF →+F A → =AD →+DF →+F A →=AF →+F A →=0.向量加法运算中化简的两种方法(1)代数法:借助向量加法的交换律和结合律,将向量转化为“首尾相接”,向量的和即为第一个向量的起点指向最后一个向量终点的向量.(2)几何法:通过作图,根据三角形法则或平行四边形法则化简. 典型例题3向量加法的实际应用某人在静水中游泳,速度为43千米/小时,他在水流速度为4千米/小时的河中游泳.若他垂直游向河对岸,则他实际沿什么方向前进?实际前进的速度大小为多少?【解】 如图,设此人游泳的速度为OB→,水流的速度为OA →,以OA→,OB →为邻边作▱OACB ,则此人的实际速度为OA →+OB →=OC →. 由勾股定理知|OC→|=8,且在Rt △ACO 中,∠COA =60°,故此人沿与河岸成60°的夹角顺着水流的方向前进,速度大小为8千米/小时.应用向量解决平面几何和物理学问题的基本步骤(1)表示:用向量表示有关量,将所要解答的问题转化为向量问题. (2)运算:应用向量加法的平行四边形法则和三角形法则,将相关向量进行运算,解答向量问题.(3)还原:根据向量的运算结果,结合向量共线、相等等概念回答原问题.6.2.2 向量的减法运算1.相反向量(1)定义:与a 长度相等,方向相反的向量,叫做a 的相反向差,记作-a ,并且规定,零向量的相反向量仍是零向量.(2)结论①-(-a )=a ,a +(-a )=(-a )+a =0;②如果a 与b 互为相反向量,那么a =-b ,b =-a ,a +b =0. ■名师点拨相反向量与相等向量一样,从“长度”和“方向”两方面进行定义,相反向量必为平行向量.2.向量的减法(1)向量a 加上b 的相反向量,叫做a 与b 的差,即a -b =a +(-b ).求两个向量差的运算叫做向量的减法.(2)作法:在平面内任取一点O ,作OA →=a ,OB →=b ,则向量BA →=a -b ,如图所示.(3)几何意义:a -b 可以表示为从向量b 的终点指向向量a 的终点的向量. ■名师点拨(1)减去一个向量相当于加上这个向量的相反向量.(2)在用三角形法则作向量减法时,只要记住“连接向量终点,箭头指向被减向量”即可.(3)对于任意两个向量a ,b ,都有||a |-|b ||≤|a +b |≤|a |+|b |. 典型例题1向量的减法运算化简下列各式: (1)(AB→+MB →)+(-OB →-MO →); (2)AB→-AD →-DC →.【解】 (1)法一:原式=AB →+MB →+BO →+OM →=(AB →+BO →)+(OM →+MB →)=AO →+OB→=AB →. 法二:原式=AB→+MB →+BO →+OM →=AB →+(MB →+BO →)+OM →=AB →+MO →+OM →=AB →+0 =AB→. (2)法一:原式=DB→-DC →=CB →.法二:原式=AB→-(AD →+DC →)=AB →-AC →=CB →.向量减法运算的常用方法典型例题2向量的减法及其几何意义如图,已知向量a ,b ,c 不共线,求作向量a +b -c . 【解】 法一:如图①,在平面内任取一点O ,作OA →=a ,OB →=b ,OC→=c ,连接BC , 则CB→=b -c . 过点A 作AD 綊BC ,连接OD , 则AD→=b -c , 所以OD→=OA →+AD →=a +b -c . 法二:如图②,在平面内任取一点O ,作OA →=a ,AB →=b ,连接OB ,则OB →=a +b ,再作OC →=c ,连接CB ,则CB→=a +b -c . 法三:如图③,在平面内任取一点O ,作OA →=a ,AB →=b ,连接OB , 则OB→=a +b ,再作CB →=c ,连接OC , 则OC→=a +b -c .求作两个向量的差向量的两种思路(1)可以转化为向量的加法来进行,如a -b ,可以先作-b ,然后作a +(-b )即可.(2)可以直接用向量减法的三角形法则,即把两向量的起点重合,则差向量为连接两个向量的终点,指向被减向量的终点的向量. 典型例题3用已知向量表示其他向量如图所示,四边形ACDE 是平行四边形,点B 是该平行四边形外一点,且AB→=a ,AC →=b ,AE →=c ,试用向量a ,b ,c 表示向量CD →,BC →,BD →.【解】 因为四边形ACDE 是平行四边形, 所以CD→=AE →=c ,BC →=AC →-AB →=b -a , 故BD→=BC →+CD →=b -a +c .用已知向量表示其他向量的三个关注点(1)搞清楚图形中的相等向量、相反向量、共线向量以及构成三角形的三个向量之间的关系,确定已知向量与被表示向量的转化渠道.(2)注意综合应用向量加法、减法的几何意义以及向量加法的结合律、交换律来分析解决问题.(3)注意在封闭图形中利用向量加法的多边形法则. 例如,在四边形ABCD 中,AB →+BC →+CD →+DA →=0.6.2.3 向量的数乘运算1.向量的数乘的定义一般地,规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,它的长度与方向规定如下:(1)|λa |=|λ||a |.(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0.■名师点拨λ是实数,a 是向量,它们的积λa 仍然是向量.实数与向量可以相乘,但是不能相加减,如λ+a ,λ-a 均没有意义.2.向量数乘的运算律 设λ,μ为实数,那么: (1)λ(μa )=(λμ)a . (2)(λ+μ)a =λa +μa . (3)λ(a +b )=λa +λb .3.向量的线性运算及向量共线定理(1)向量的加、减、数乘运算统称为向量的线性运算.对于任意向量a ,b ,以及任意实数λ,μ1,μ2,恒有λ(μ1a ±μ2b )=λμ1a ±λμ2b .(2)向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使b =λa . ■名师点拨若将定理中的条件a ≠0去掉,即当a =0时,显然a 与b 共线. (1)若b ≠0,则不存在实数λ,使b =λa . (2)若b =0,则对任意实数λ,都有b =λa . 典型例题1向量的线性运算(1)计算:①4(a +b )-3(a -b )-8a ; ②(5a -4b +c )-2(3a -2b +c ); ③23⎣⎢⎡⎦⎥⎤(4a -3b )+13b -14(6a -7b ).(2)设向量a =3i +2j ,b =2i -j ,求⎝ ⎛⎭⎪⎫13a -b -⎝ ⎛⎭⎪⎫a -23b +(2b -a ).【解】 (1)①原式=4a +4b -3a +3b -8a =-7a +7b .②原式=5a -4b +c -6a +4b -2c =-a -c .③原式=23⎝ ⎛⎭⎪⎫4a -3b +13b -32a +74b=23⎝ ⎛⎭⎪⎫52a -1112b=53a -1118b .(2)原式=13a -b -a +23b +2b -a =⎝ ⎛⎭⎪⎫13-1-1a +⎝ ⎛⎭⎪⎫-1+23+2b =-53a +53b =-53(3i +2j )+53(2i -j ) =⎝ ⎛⎭⎪⎫-5+103i +⎝ ⎛⎭⎪⎫-103-53j =-53i -5j .向量线性运算的基本方法(1)类比方法:向量的数乘运算可类似于代数多项式的运算.例如,实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在数与向量的乘积中同样适用,但是在这里的“同类项”“公因式”指向量,实数看作是向量的系数.(2)方程方法:向量也可以通过列方程来解,把所求向量当作未知数,利用代数方程的方法求解,同时在运算过程中要多注意观察,恰当运用运算律,简化运算.典型例题2向量共线定理及其应用已知非零向量e 1,e 2不共线.(1)如果AB →=e 1+e 2,BC →=2e 1+8e 2,CD →=3(e 1-e 2),求证:A 、B 、D 三点共线;(2)欲使k e 1+e 2和e 1+k e 2共线,试确定实数k 的值.【解】 (1)证明:因为AB →=e 1+e 2,BD →=BC →+CD →=2e 1+8e 2+3e 1-3e 2=5(e 1+e 2)=5AB→. 所以AB→,BD →共线,且有公共点B , 所以A 、B 、D 三点共线. (2)因为k e 1+e 2与e 1+k e 2共线,所以存在实数λ,使k e 1+e 2=λ(e 1+k e 2), 则(k -λ)e 1=(λk -1)e 2,由于e 1与e 2不共线,只能有⎩⎨⎧k -λ=0,λk -1=0,所以k =±1.向量共线定理的应用(1)若b =λa (a ≠0),且b 与a 所在的直线无公共点,则这两条直线平行. (2)若b =λa (a ≠0),且b 与a 所在的直线有公共点,则这两条直线重合.例如,若AB→=λAC →,则AB →与AC →共线,又AB →与AC →有公共点A ,从而A ,B ,C 三点共线,这是证明三点共线的重要方法. 典型例题3用已知向量表示其他向量如图,ABCD 是一个梯形,AB→∥CD →且|AB →|=2|CD →|,M ,N 分别是DC ,AB 的中点,已知AB →=e 1,AD →=e 2,试用e 1,e 2表示下列向量.(1)AC→=________;(2)MN →=________.【解析】 因为AB →∥CD →,|AB →|=2|CD →|,所以AB→=2DC →,DC →=12AB →. (1)AC →=AD →+DC →=e 2+12e 1. (2)MN→=MD →+DA →+AN → =-12DC →-AD →+12AB → =-14e 1-e 2+12e 1=14e 1-e 2. 【答案】 (1)e 2+12e 1 (2)14e 1-e 2[变条件]在本例中,若条件改为BC →=e 1,AD →=e 2,试用e 1,e 2表示向量MN →.解:因为MN→=MD →+DA →+AN →, MN→=MC →+CB →+BN →, 所以2MN→=(MD →+MC →)+DA →+CB →+(AN →+BN →).又因为M ,N 分别是DC ,AB 的中点, 所以MD→+MC →=0,AN →+BN →=0. 所以2MN→=DA →+CB →,所以MN →=12(-AD →-BC →)=-12e 2-12e 1.用已知向量表示其他向量的两种方法(1)直接法(2)方程法当直接表示比较困难时,可以首先利用三角形法则和平行四边形法则建立关于所求向量和已知向量的等量关系,然后解关于所求向量的方程.6.2.4 向量的数量积1.两向量的夹角(1)定义:已知两个非零向量a ,b ,O 是平面上的任意一点,作OA →=a ,OB →=b ,则∠AOB =θ(0≤θ≤π)叫做向量a 与b 的夹角.(2)特例:①当θ=0时,向量a 与b 同向; ②当θ=π2时,向量a 与b 垂直,记作a ⊥b ; ③当θ=π时,向量a 与b 反向. ■名师点拨按照向量夹角的定义,只有两个向量的起点重合时所对应的角才是两向量的夹角,如图所示,∠BAC 不是向量CA →与AB →的夹角.作AD →=CA →,则∠BAD 才是向量CA →与AB →的夹角.2.向量的数量积已知两个非零向量a 与b ,它们的夹角为θ,把数量|a ||b |cos__θ叫做向量a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos__θ.规定零向量与任一向量的数量积为0. ■名师点拨(1)两向量的数量积,其结果是数量,而不是向量,它的值等于两向量的模与两向量夹角余弦值的乘积,其符号由夹角的余弦值来决定.(2)两个向量的数量积记作a ·b ,千万不能写成a ×b 的形式. 3.投影向量如图(1),设a ,b 是两个非零向量,AB→=a ,CD →=b ,我们考虑如下变换:过AB →的起点A 和终点B ,分别作CD →所在直线的垂线,垂足分别为A 1,B 1,得到A 1B 1→,我们称上述变换为向量a 向向量b投影(project),A 1B 1→叫做向量a 在向量b 上的投影向量.如图(2),在平面内任取一点O ,作OM→=a ,ON →=b ,过点M作直线ON 的垂线,垂足为M 1,则OM 1→就是向量a 在向量b 上的投影向量.(2)若与b 方向相同的单位向量为e ,a 与b 的夹角为θ,则OM 1→=|a |cos θ e .■名师点拨当θ=0时,OM 1→=|a |e ;当θ=π2时,OM 1→=0;当θ∈⎣⎢⎡⎭⎪⎫0,π2时,OM 1→与b 方向相同;当θ∈⎝ ⎛⎦⎥⎤π2,π时,OM 1→与b 方向相反;当θ=π时,OM 1→=-|a |e .4.向量数量积的性质设a ,b 是非零向量,它们的夹角是θ,e 是与b 方向相同的单位向量,则 (1)a ·e =e ·a =|a |cos θ. (2)a ⊥b ⇔a·b =0.(3)当a 与b 同向时,a·b =|a ||b |;当a 与b 反向时,a·b =-|a ||b |.特别地,a·a =|a |2或|a |=a·a . (4)|a·b |≤|a ||b |. ■名师点拨对于性质(2),可以用来解决有关垂直的问题,即若要证明某两个非零向量垂直,只需判定它们的数量积为0即可;若两个非零向量的数量积为0,则它们互相垂直.5.向量数量积的运算律 (1)a·b =b·a (交换律).(2)(λa )·b =λ(a·b )=a ·(λb )(结合律). (3)(a +b )·c =a·c +b·c (分配律). ■名师点拨(1)向量的数量积不满足消去律;若a ,b ,c 均为非零向量,且a·c =b·c ,但得不到a =b .(2)(a·b )·c ≠a·(b·c ),因为a·b ,b·c 是数量积,是实数,不是向量,所以(a·b )·c与向量c 共线,a·(b·c )与向量a 共线,因此,(a·b )·c =a·(b·c )在一般情况下不成立.(3)(a ±b )2=a 2±2a ·b +b 2. 典型例题1平面向量的数量积运算(1)已知|a |=6,|b |=4,a 与b 的夹角为60°,求(a +2b )·(a +3b ).(2)如图,在▱ABCD 中,|AB →|=4,|AD →|=3,∠DAB =60°,求:①AD→·BC →;②AB →·DA →. 【解】 (1)(a +2b )·(a +3b ) =a·a +5a·b +6b·b =|a |2+5a·b +6|b |2=|a |2+5|a ||b |cos 60°+6|b |2=62+5×6×4×cos 60°+6×42=192. (2)①因为AD→∥BC →,且方向相同,所以AD→与BC →的夹角是0°, 所以AD→·BC →=|AD →||BC →|·cos 0°=3×3×1=9. ②因为AB→与AD →的夹角为60°,所以AB→与DA →的夹角为120°, 所以AB→·DA →=|AB →||DA →|·cos 120° =4×3×⎝ ⎛⎭⎪⎫-12=-6.[变问法]若本例(2)的条件不变,求AC →·BD →.解:因为AC→=AB →+AD →,BD →=AD →-AB →,所以AC→·BD →=(AB →+AD →)·(AD →-AB →) =AD→2-AB →2=9-16=-7.向量数量积的求法(1)求两个向量的数量积,首先确定两个向量的模及向量的夹角,其中准确求出两向量的夹角是求数量积的关键.(2)根据数量积的运算律,向量的加、减与数量积的混合运算类似于多项式的乘法运算.典型例题2向量模的有关计算(1)已知平面向量a与b的夹角为60°,|a|=2,|b|=1,则|a+2b|=()A.3B.23C.4 D.12(2)向量a,b满足|a|=1,|a-b|=32,a与b的夹角为60°,则|b|=()A.13 B.12C.15 D.14【解析】(1)|a+2b|=(a+2b)2=a2+4a·b+4b2=|a|2+4|a||b|cos 60°+4|b|2=4+4×2×1×12+4=2 3.(2)由题意得|a-b|2=|a|2+|b|2-2|a||b|·cos 60°=34,即1+|b|2-|b|=34,解得|b|=12.【答案】(1)B(2)B求向量的模的常见思路及方法(1)求模问题一般转化为求模的平方,与向量数量积联系,并灵活应用a2=|a|2,勿忘记开方.(2)a·a=a2=|a|2或|a|=a2,可以实现实数运算与向量运算的相互转化.典型例题3向量的夹角与垂直命题角度一:求两向量的夹角(1)已知|a |=6,|b |=4,(a +2b )·(a -3b )=-72,则a 与b 的夹角为________;(2)(2019·高考全国卷Ⅰ改编)已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为______.【解析】 (1)设a 与b 的夹角为θ,(a +2b )·(a -3b )=a ·a -3a ·b +2b ·a -6b ·b =|a |2-a ·b -6|b |2 =|a |2-|a ||b |cos θ-6|b |2=62-6×4×cos θ-6×42=-72, 所以24cos θ=36+72-96=12, 所以cos θ=12.又因为θ∈[]0,π,所以θ=π3.(2)设a 与b 的夹角为θ,由(a -b )⊥b ,得(a -b )·b =0,所以a ·b =b 2,所以cos θ=b 2|a ||b |.又因为|a |=2|b |,所以cos θ=|b |22|b |2=12.又因为θ∈[0,π],所以θ=π3. 【答案】 (1)π3 (2)π3 命题角度二:证明两向量垂直已知a ,b 是非零向量,当a +t b (t ∈R )的模取最小值时,求证:b ⊥(a+t b ).【证明】 因为|a +t b |=(a +t b )2=a 2+t 2b 2+2t a ·b =|b |2t 2+2a ·b t +|a |2,所以当t =-2a ·b 2|b |2=-a·b|b |2时,|a +t b |有最小值. 此时b ·(a +t b )=b·a +t b 2=a·b +⎝ ⎛⎭⎪⎫-a·b |b |2·|b |2=a·b-a·b=0.所以b⊥(a+t b).命题角度三:利用夹角和垂直求参数(1)已知a⊥b,|a|=2,|b|=3且向量3a+2b与k a-b互相垂直,则k 的值为()A.-32B.32C.±32D.1(2)已知a,b,c为单位向量,且满足3a+λb+7c=0,a与b的夹角为π3,则实数λ=________.【解析】(1)因为3a+2b与k a-b互相垂直,所以(3a+2b)·(k a-b)=0,所以3k a2+(2k-3)a·b-2b2=0.因为a⊥b,所以a·b=0,又|a|=2,|b|=3,所以12k-18=0,k=3 2.(2)由3a+λb+7c=0,可得7c=-(3a+λb),即49c2=9a2+λ2b2+6λa·b,而a,b,c为单位向量,则a2=b2=c2=1,则49=9+λ2+6λcos π3,即λ2+3λ-40=0,解得λ=-8或λ=5.【答案】(1)B(2)-8或5求向量a与b夹角的思路(1)求向量a与b夹角的关键是计算a·b及|a||b|,在此基础上结合数量积的定义或性质计算cos θ=a·b|a||b|,最后借助θ∈[0,π],求出θ的值.(2)在个别含有|a|,|b|与a·b的等量关系中,常利用消元思想计算cos θ的值.6.3.1 平面向量基本定理平面向量基本定理(1)e 1,e 2是同一平面内的两个不共线的向量,{e 1,e 2}的选取不唯一,即一个平面可以有多个基底.(2)基底{e 1,e 2}确定后,实数λ1,λ2是唯一确定的. 典型例题1平面向量基本定理的理解设e 1,e 2是不共线的两个向量,给出下列四组向量:①e 1与e 1+e 2;②e 1-2e 2与e 2-2e 1;③e 1-2e 2与4e 2-2e 1;④e 1+e 2与e 1-e 2.其中,不能作为平面内所有向量的一组基底的是________(写出满足条件的序号).【解析】 ①设e 1+e 2=λe 1,则⎩⎨⎧λ=1,1=0,无解,所以e 1+e 2与e 1不共线,即e 1与e 1+e 2能作为一组基底. ②设e 1-2e 2=λ(e 2-2e 1),则(1+2λ)e 1-(2+λ)e 2=0,则⎩⎨⎧1+2λ=0,2+λ=0,无解,所以e 1-2e 2与e 2-2e 1不共线,即e 1-2e 2与e 2-2e 1能作为一组基底.③因为e 1-2e 2=-12(4e 2-2e 1), 所以e 1-2e 2与4e 2-2e 1共线,即e 1-2e 2与4e 2-2e 1不能作为一组基底.④设e 1+e 2=λ(e 1-e 2),则(1-λ)e 1+(1+λ)e 2=0,则⎩⎨⎧1-λ=0,1+λ=0,无解,所以e 1+e 2与e 1-e 2不共线,即e 1+e 2与e 1-e 2能作为一组基底.【答案】 ③对基底的理解(1)两个向量能否作为一个基底,关键是看这两个向量是否共线.若共线,则不能作基底,反之,则可作基底.(2)一个平面的基底一旦确定,那么平面上任意一个向量都可以用这个基底唯一线性表示出来.设向量a 与b 是平面内两个不共线的向量,若x 1a +y 1b =x 2a +y 2b ,则⎩⎨⎧x 1=x 2,y 1=y 2.[提醒] 一个平面的基底不是唯一的,同一个向量用不同的基底表示,表达式不一样. 典型例题2用基底表示平面向量如图所示,在▱ABCD 中,点E ,F 分别为BC ,DC 边上的中点,DE与BF 交于点G ,若AB→=a ,AD →=b ,试用基底{a ,b }表示向量DE →,BF →.【解】 DE →=DA →+AB →+BE →=-AD→+AB →+12BC → =-AD→+AB →+12AD →=a -12b . BF→=BA →+AD →+DF →=-AB →+AD →+12AB →=b -12a .1.[变问法]本例条件不变,试用基底{a ,b }表示AG →.解:由平面几何知识知BG =23BF , 故AG→=AB →+BG →=AB →+23BF → =a +23⎝ ⎛⎭⎪⎫b -12a =a +23b -13a =23a +23b .2.[变条件]若将本例中的向量“AB →,AD →”换为“CE →,CF →”,即若CE →=a ,CF →=b ,试用基底{a ,b }表示向量DE→,BF →. 解:DE→=DC →+CE →=2FC →+CE →=-2CF →+CE →=-2b +a . BF→=BC →+CF →=2EC →+CF → =-2CE→+CF →=-2a +b .用基底表示向量的两种方法(1)运用向量的线性运算法则对待求向量不断进行转化,直至用基底表示为止.(2)通过列向量方程或方程组的形式,利用基底表示向量的唯一性求解. 典型例题3平面向量基本定理的应用如图,在△ABC 中,点M 是BC 的中点,点N 在AC 上,且AN =2NC ,AM 与BN 相交于点P ,求AP ∶PM 与BP ∶PN .【解】 设BM →=e 1,CN →=e 2,则AM →=AC →+CM →=-3e 2-e 1,BN →=BC →+CN →=2e 1+e 2. 因为A ,P ,M 和B ,P ,N 分别共线,所以存在实数λ,μ使得AP →=λAM →=-λe 1-3λe 2,BP →=μBN →=2μe 1+μe 2. 故BA →=BP →+P A →=BP →-AP →=(λ+2μ)e 1+(3λ+μ)e 2. 而BA →=BC →+CA →=2e 1+3e 2,由平面向量基本定理, 得⎩⎨⎧λ+2μ=2,3λ+μ=3,解得⎩⎪⎨⎪⎧λ=45,μ=35.所以AP→=45AM →,BP →=35BN →, 所以AP ∶PM =4∶1,BP ∶PN =3∶2.1.[变问法]在本例条件下,若CM→=a ,CN →=b ,试用a ,b 表示CP →.解:由本例解析知BP ∶PN =3∶2,则NP→=25NB →,CP→=CN →+NP →=CN →+25NB →=b +25(CB →-CN →) =b +45a -25b =35b +45a .2.[变条件]若本例中的点N 为AC 的中点,其他条件不变,求AP ∶PM 与BP ∶PN .解:如图,设BM →=e 1,CN →=e 2,则AM →=AC →+CM →=-2e 2-e 1,BN →=BC →+CN →=2e 1+e 2. 因为A ,P ,M 和B ,P ,N 分别共线,所以存在实数λ,μ使得AP →=λAM →=-λe 1-2λe 2, BP →=μBN →=2μe 1+μe 2. 故BA →=BP →+P A →=BP →-AP →=(λ+2μ)e 1+(2λ+μ)e 2. 而BA →=BC →+CA →=2e 1+2e 2,由平面向量基本定理, 得⎩⎨⎧λ+2μ=2,2λ+μ=2,解得⎩⎪⎨⎪⎧λ=23,μ=23.所以AP→=23AM →,BP →=23BN →, 所以AP ∶PM =2,BP ∶PN =2.若直接利用基底表示向量比较困难,可设出目标向量并建立其与基底之间满足的二元关系式,然后利用已知条件及相关结论,从不同方向和角度表示出目标向量(一般需建立两个不同的向量表达式),再根据待定系数法确定系数,建立方程或方程组,解方程或方程组即得.6.3.2 平面向量的正交分解及坐标表示 6.3.3 平面向量加、减运算的坐标表示 6.3.4 平面向量数乘运算的坐标表示第1课时 平面向量的分解及加、减、数乘运算的坐标表示1.平面向量坐标的相关概念■名师点拨(1)平面向量的正交分解实质上是平面向量基本定理的一种应用形式,只是两个基向量e 1和e 2互相垂直.(2)由向量坐标的定义知,两向量相等的充要条件是它们的横、纵坐标对应相等,即a =b ⇔x 1=x 2且y 1=y 2,其中a =(x 1,y 1),b =(x 2,y 2).2.平面向量的坐标运算(1)若a =(x 1,y 1),b =(x 2,y 2),λ∈R ,则 ①a +b =(x 1+x 2,y 1+y 2); ②a -b =(x 1-x 2,y 1-y 2); ③λa =(λx 1,λy 1).(2)一个向量的坐标等于表示此向量的有向线段的终点坐标减去起点坐标. ■名师点拨(1)向量的坐标只与起点、终点的相对位置有关,而与它们的具体位置无关. (2)已知向量AB →的起点A (x 1,y 1),终点B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1). 典型例题1平面向量的坐标表示已知O 是坐标原点,点A 在第一象限,|OA →|=43,∠xOA =60°,(1)求向量OA→的坐标;(2)若B (3,-1),求BA→的坐标.【解】 (1)设点A (x ,y ),则x =|OA →|cos 60°=43cos 60°=23,y =|OA →|sin60°=43sin 60°=6,即A (23,6),所以OA→=(23,6). (2)BA→=(23,6)-(3,-1)=(3,7).求点和向量坐标的常用方法(1)求一个点的坐标,可以转化为求该点相对于坐标原点的位置的坐标. (2)求一个向量的坐标时,可以首先求出这个向量的始点坐标和终点坐标,再运用终点坐标减去始点坐标得到该向量的坐标. 典型例题2平面向量的坐标运算(1)已知向量a =(5,2),b =(-4,-3),若c 满足3a -2b +c =0,则A .(-23,-12)B .(23,12)C .(7,0)D .(-7,0)(2)已知A (-2,4),B (3,-1),C (-3,-4),且CM →=3 CA →,CN →=2 CB →,求点M ,N 的坐标.【解】 (1)选A.因为a =(5,2),b =(-4,-3),且c 满足3a -2b +c =0,所以c =2b -3a =2(-4,-3)-3(5,2)=(-8-15,-6-6)=(-23,-12).(2)法一:因为A (-2,4),B (3,-1),C (-3,-4), 所以CA→=(-2,4)-(-3,-4)=(1,8), CB→=(3,-1)-(-3,-4)=(6,3). 因为CM→=3 CA →,CN →=2 CB →, 所以CM→=3(1,8)=(3,24),CN →=2(6,3)=(12,6). 设M (x 1,y 1),N (x 2,y 2),所以CM →=(x 1+3,y 1+4)=(3,24), CN →=(x 2+3,y 2+4)=(12,6), 所以⎩⎨⎧x 1+3=3,y 1+4=24,⎩⎨⎧x 2+3=12,y 2+4=6.解得⎩⎨⎧x 1=0,y 1=20,⎩⎨⎧x 2=9,y 2=2.所以M (0,20),N (9,2).法二:设O 为坐标原点,则由CM→=3 CA →,CN →=2 CB →, 可得OM→-OC →=3(OA →-OC →),ON →-OC →=2(OB →-OC →), 所以OM→=3 OA →-2 OC →,ON →=2 OB →-OC →. 所以OM→=3(-2,4)-2(-3,-4)=(0,20), ON→=2(3,-1)-(-3,-4)=(9,2). 所以M (0,20),N (9,2).平面向量坐标(线性)运算的方法(1)若已知向量的坐标,则直接应用两个向量和、差及向量数乘的运算法则(2)若已知有向线段两端点的坐标,则必须先求出向量的坐标,然后再进行向量的坐标运算.(3)向量的线性坐标运算可类比数的运算进行. 典型例题3向量坐标运算的综合应用已知点O (0,0),A (1,2),B (4,5),及OP→=OA →+tAB →.(1)t 为何值时,点P 在x 轴上?点P 在y 轴上?点P 在第二象限? (2)四边形OABP 能为平行四边形吗?若能,求出t 的值;若不能,请说明理由.【解】 (1)OP→=OA →+tAB →=(1,2)+t (3,3)=(1+3t ,2+3t ).若点P 在x 轴上,则2+3t =0,所以t =-23. 若点P 在y 轴上,则1+3t =0,所以t =-13. 若点P 在第二象限,则⎩⎨⎧1+3t <0,2+3t >0,所以-23<t <-13.(2)OA→=(1,2),PB →=(3-3t ,3-3t ).若四边形OABP 为平行四边形, 则OA →=PB →,所以⎩⎨⎧3-3t =1,3-3t =2,该方程组无解.故四边形OABP 不能为平行四边形.[变问法]若保持本例条件不变,问t 为何值时,B 为线段AP 的中点? 解:由OP→=OA →+tAB →,得AP →=tAB →.所以当t =2时,AP→=2AB →,B 为线段AP 的中点.向量中含参数问题的求解策略(1)向量的坐标含有两个量:横坐标和纵坐标,如果纵坐标或横坐标是一个变量,则表示向量的点的坐标的位置会随之改变.(2)解答这类由参数决定点的位置的题目,关键是列出满足条件的含参数的方程(组),解这个方程(组),就能达到解题的目的.第2课时 两向量共线的充要条件及应用两向量共线的充要条件设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.则a ,b (b ≠0)共线的充要条件是x 1y 2-x 2y 1=0.■名师点拨(1)两个向量共线的坐标表示还可以写成x 1x 2=y 1y 2(x 2≠0,y 2≠0),即两个不平行于坐标轴的共线向量的对应坐标成比例.(2)当a ≠0,b =0时,a ∥b ,此时x 1y 2-x 2y 1=0也成立,即对任意向量a ,b 都有x 1y 2-x 2y 1=0⇔a ∥b . 典型例题1向量共线的判定(1)已知向量a =(1,-2),b =(3,4).若(3a -b )∥(a +k b ),则k =________.(2)已知A (-1,-1),B (1,3),C (2,5),判断AB →与AC →是否共线?如果共线,它们的方向相同还是相反?【解】 (1)3a -b =(0,-10),a +k b =(1+3k ,-2+4k ), 因为(3a -b )∥(a +k b ),所以0-(-10-30k )=0, 所以k =-13.故填-13.(2)因为AB→=(1-(-1),3-(-1))=(2,4),AC→=(2-(-1),5-(-1))=(3,6), 因为2×6-3×4=0,所以AB→∥AC →,所以AB →与AC →共线.又AB →=23AC →,所以AB →与AC →的方向相同.[变问法]若本例(1)条件不变,判断向量(3a -b )与(a +k b )是反向还是同向? 解:由向量(3a -b )与(a +k b )共线,得k =-13, 所以3a -b =(3,-6)-(3,4)=(0,-10), a +k b =a -13b =(1,-2)-13(3,4) =⎝ ⎛⎭⎪⎫0,-103=13(0,-10), 所以向量(3a -b )与(a +k b )同向.向量共线的判定方法典型例题2三点共线问题(1)已知OA→=(3,4),OB →=(7,12),OC →=(9,16),求证:点A ,B ,C 共线;(2)设向量OA →=(k ,12),OB →=(4,5),OC →=(10,k ),求当k 为何值时,A ,B ,C 三点共线.【解】 (1)证明:由题意知AB→=OB →-OA →=(4,8),AC→=OC →-OA →=(6,12),所以AC →=32AB →, 即AB→与AC →共线. 又因为AB→与AC →有公共点A ,所以点A ,B ,C 共线.(2)法一:因为A ,B ,C 三点共线,即AB →与AC →共线,所以存在实数λ(λ∈R ),使得AB→=λAC →.因为AB →=OB →-OA →=(4-k ,-7),AC →=OC →-OA →=(10-k ,k -12), 所以(4-k ,-7)=λ(10-k ,k -12), 即⎩⎨⎧4-k =λ(10-k ),-7=λ(k -12),解得k =-2或k =11. 所以当k =-2或k =11时,A ,B ,C 三点共线. 法二:由已知得AB→与AC →共线,因为AB→=OB →-OA →=(4-k ,-7),AC →=OC →-OA →=(10-k ,k -12), 所以(4-k )(k -12)+7(10-k )=0, 所以k 2-9k -22=0,解得k =-2或k =11. 所以当k =-2或k =11时,A ,B ,C 三点共线.判断向量(或三点)共线的三个步骤典型例题3向量共线的应用如图所示,在△AOB 中,A (0,5),O (0,0),B (4,3),OC→=14OA →,OD →=12OB →,AD 与BC 相交于点M ,求点M 的坐标. 【解】 因为OC →=14OA →=14(0,5)=⎝ ⎛⎭⎪⎫0,54, 所以C ⎝ ⎛⎭⎪⎫0,54. 因为OD →=12OB →=12(4,3)=⎝ ⎛⎭⎪⎫2,32, 所以D ⎝ ⎛⎭⎪⎫2,32.设M (x ,y ),则AM→=(x ,y -5),AD →=⎝ ⎛⎭⎪⎫2-0,32-5=⎝ ⎛⎭⎪⎫2,-72.因为AM→∥AD →, 所以-72x -2(y -5)=0, 即7x +4y =20.①又CM →=⎝ ⎛⎭⎪⎫x ,y -54,CB →=⎝ ⎛⎭⎪⎫4,74,因为CM →∥CB →,所以74x -4⎝ ⎛⎭⎪⎫y -54=0,即7x -16y =-20.②联立①②解得x =127,y =2,故点M 的坐标为⎝ ⎛⎭⎪⎫127,2.应用向量共线的坐标表示求解几何问题的步骤1.平面向量数量积的坐标表示已知a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2. 即两个向量的数量积等于它们对应坐标的乘积的和. ■名师点拨公式a ·b =|a ||b |cos 〈a ,b 〉与a ·b =x 1x 2+y 1y 2都是用来求两向量的数量积的,没有本质区别,只是书写形式上的差异,两者可以相互推导.2.两个公式、一个充要条件(1)向量的模长公式:若a =(x ,y ),则|a |(2)向量的夹角公式:设a ,b 都是非零向量,a =(x 1,y 1),b =(x 2,y 2),θ是。

高中数学向量题型和解题方法

高中数学向量题型和解题方法

高中数学向量题型和解题方法由于向量集数形于一体,是沟通代数、几何与三角函数的桥梁,因此关于向量问题的解题方法自然也就多彩多样,解决向量问题时我们应该从多个维度去思考,哪种方法简单,我们就选择哪种方法。

今天我们就从五个方面:利用基本定义求解、利用基底求解、利用坐标或建立坐标系求解、利用几何法求解、利用代数法求解等分别介绍平面向量的解题方法和策略。

只有掌握了所有的这些方法,对于向量的学习才会真正做到融会贯通。

一、利用基本定义求解为了提高和培养孩子的数学学习兴趣,可让孩子读读这本书:二、利用基底求解基底法就是指利用平面向量基本定理,将所求向量转化为已知的两个不共线向量来求解问题。

注意:如果图形中有向量垂直,我们就以互相垂直的向量作为基底。

三、利用坐标或建立坐标系求解利用坐标或建立坐标系求解就是建立适当的直角坐标系,将向量用坐标的形式表示出来,用函数与方程的思想求解。

实际上,坐标法具有天然的优势,有时能轻松解决较为复杂的问题,特别是后面我们要学习的向量在立体几何中的应用。

四、利用几何法求解几何法就是把向量问题利用平面几何的思想和方法,转化为几何问题。

这就需要我们对所学习的平面几何基本图形性质十分清楚。

我们学习到的基本平面图形主要有三角形、四边形、圆、椭圆、双曲线、抛物线等。

每种图形的基本定义、定理、性质甚至推论我们都要了如指掌,转化使用时才会得心应手。

五、利用代数法求解所谓代数法就是将题目中的已知条件和所求结论,利用代数的方法,通过代数运算解决问题。

比如我们学过的完全平方、基本不等式、函数解析式等,通过转化,在这里都会有很巧妙的应用。

以上就是高中数学向量题型和解题方法。

高中数学向量题型详解和解答技巧

高中数学向量题型详解和解答技巧

高中数学向量题型详解和解答技巧在高中数学中,向量是一个重要的概念,它不仅在几何中有着广泛的应用,而且在物理等其他学科中也具有重要的作用。

掌握好向量的性质和运算规则,对于解答数学题目至关重要。

本文将详细解析高中数学中的向量题型,并给出解答技巧,帮助读者更好地理解和掌握相关知识。

一、向量的基本概念和性质在开始解答向量题目之前,我们首先需要了解向量的基本概念和性质。

向量是有大小和方向的量,通常用有向线段来表示。

向量的大小叫做向量的模,通常用|AB| 或 ||AB|| 表示。

向量的方向可以用有向线段的方向来表示,也可以用角度来表示。

在向量的运算中,我们常常会用到向量的加法、减法和数量乘法。

向量的加法满足交换律和结合律,即 A+B=B+A,(A+B)+C=A+(B+C);向量的减法可以看作是加上一个相反向量,即 A-B=A+(-B);向量的数量乘法满足分配律,即k(A+B)=kA+kB,(k+l)A=kA+lA。

二、向量的坐标表示和运算在解答向量题目时,我们通常会用坐标表示向量。

对于平面上的向量,我们可以用两个有序实数表示,称为向量的坐标。

例如,向量 AB 的坐标可以表示为 (x2-x1, y2-y1)。

在进行向量的运算时,我们可以利用向量的坐标表示进行计算。

向量的加法和减法可以直接对应坐标的加法和减法,即 (x1, y1)+(x2, y2)=(x1+x2, y1+y2),(x1,y1)-(x2, y2)=(x1-x2, y1-y2)。

向量的数量乘法也可以直接对应坐标的数量乘法,即k(x, y)=(kx, ky)。

三、向量的共线和垂直性质在解答向量题目时,我们经常会遇到判断向量共线和垂直的情况。

两个向量共线的条件是它们的方向相同或相反,即向量 A=kB 或 A=-kB。

两个向量垂直的条件是它们的数量积为零,即 A·B=0。

根据共线和垂直的性质,我们可以解决一些与共线和垂直相关的题目。

例如,已知向量 A 和向量 B 的坐标分别为 (2, 3) 和 (-1, 2),求证向量 A 和向量 B 垂直。

高中数学平面向量夹角解题技巧

高中数学平面向量夹角解题技巧

高中数学平面向量夹角解题技巧在高中数学中,平面向量是一个重要的概念,涉及到很多与几何形状和方向相关的问题。

其中,夹角是平面向量的一个重要性质,解题时经常需要计算夹角的大小。

本文将介绍一些高中数学平面向量夹角解题的技巧,帮助学生更好地理解和应用这一概念。

一、夹角的定义和性质首先,我们来回顾一下夹角的定义和性质。

对于平面上的两个非零向量a和b,它们的夹角θ定义为:cosθ = (a·b) / (|a||b|)其中,a·b表示向量a和向量b的数量积,|a|和|b|分别表示向量a和向量b的模长。

夹角的取值范围是0°到180°。

夹角有一些重要的性质:1. 夹角θ的余弦值cosθ的绝对值等于两个向量的数量积除以两个向量的模长的乘积。

2. 如果两个向量的数量积为0,则它们的夹角为90°,即两个向量互相垂直。

3. 如果两个向量的数量积大于0,则它们的夹角为锐角;如果两个向量的数量积小于0,则它们的夹角为钝角。

二、夹角解题的基本思路在解题时,我们需要根据给定的条件,利用夹角的定义和性质来计算夹角的大小。

下面通过一些具体的例题来说明夹角解题的基本思路。

例题1:已知向量a = (3, 4)和向量b = (5, -12),求向量a和向量b的夹角。

解题思路:根据夹角的定义,我们需要计算向量a和向量b的数量积和模长。

首先计算数量积:a·b = 3×5 + 4×(-12) = -21然后计算模长:|a| = √(3^2 + 4^2) = 5|b| = √(5^2 + (-12)^2) = 13将数量积和模长代入夹角的定义公式,得到:cosθ = -21 / (5×13) = -21 / 65由于cosθ的值为负数,说明向量a和向量b的夹角为钝角。

我们可以通过反余弦函数求得夹角的大小:θ = arccos(-21 / 65) ≈ 102.95°所以,向量a和向量b的夹角约为102.95°。

平面向量最值问题解题方法

平面向量最值问题解题方法

平面向量最值问题解题方法平面向量最值问题是高中数学中的重要知识点,涉及面广,难度较大。

下面介绍一些平面向量最值问题的解题方法。

一、向量模长的最值问题1、向量模长最大值设向量a的模长为|a|,则向量a的模长最大值为|a|=√(a_x+a_y),其中a_x和a_y分别代表向量a在x轴和y轴上的分量。

求出向量a的模长后,可以采用以下两种方法求出向量a的模长最大值:(1)对于a的分量a_x和a_y,分别求出它们的绝对值,即|a_x|和|a_y|,然后将它们代入|a|=√(a_x+a_y)中,求出|a|的最大值。

(2)根据勾股定理,可以得出|a|的最大值为向量a在x轴和y 轴上的分量的平方和的平方根,即|a|=√((a_x+a_y))。

2、向量模长最小值同样设向量a的模长为|a|,则向量a的模长最小值为|a|=√(a_x+a_y),其中a_x和a_y分别代表向量a在x轴和y轴上的分量。

求出向量a的模长后,可以采用以下两种方法求出向量a的模长最小值:(1)对于a的分量a_x和a_y,分别求出它们的绝对值,即|a_x|和|a_y|,然后将它们代入|a|=√(a_x+a_y)中,求出|a|的最小值。

(2)根据勾股定理,可以得出|a|的最小值为向量a在x轴和y 轴上的分量的平方差的平方根,即|a|=√((a_x-a_y))。

二、向量夹角的最值问题设向量a和向量b的夹角为θ,则向量a和向量b的夹角的最值为:1、夹角最大值当向量a和向量b的方向相反时,它们的夹角最大,此时θ=π。

2、夹角最小值当向量a和向量b的方向相同时,它们的夹角最小,此时θ=0。

三、向量和的模长的最值问题对于两个向量a和b,它们的和向量c=a+b。

则向量c的模长最值为:1、模长最大值当向量a和向量b的方向相同,且它们的模长相等时,它们的和向量c的模长最大,此时|c|=2|a|。

2、模长最小值当向量a和向量b的方向相反,且它们的模长相等时,它们的和向量c的模长最小,此时|c|=0。

平面向量5类解题技巧(“爪子定理”、系数和等和线、极化恒等式、奔驰定理与三角形四心问题)试题含答案

平面向量5类解题技巧(“爪子定理”、系数和等和线、极化恒等式、奔驰定理与三角形四心问题)试题含答案

平面向量5类解题技巧(“爪子定理”、系数和(等和线)、极化恒等式、奔驰定理与三角形四心问题、范围与最值问题)技法01“爪子定理”的应用及解题技巧“爪子定理”是平面向量基本定理的拓展,用“爪子定理”能更快速求解,需同学们重点学习掌握知识迁移形如AD =xAB +yAC 条件的应用(“爪子定理”)“爪”字型图及性质:(1)已知AB ,AC 为不共线的两个向量,则对于向量AD ,必存在x ,y ,使得AD =xAB +yAC 。

则B ,C ,D 三点共线⇔x +y =1当0<x +y <1,则D 与A 位于BC 同侧,且D 位于A 与BC 之间当x +y >1,则D 与A 位于BC 两侧x +y =1时,当x >0,y >0,则D 在线段BC 上;当xy <0,则D 在线段BC 延长线上(2)已知D 在线段BC 上,且BD :CD =m :n ,则AD =n m +n AB +m m +nAC1(全国·高考真题)设D 为△ABC 所在平面内一点,且BC =3CD ,则()A.AD =-13AB +43ACB.AD =13AB -43ACC.AD =43AB +13ACD.AD =43AB -13AC 2(2023江苏模拟)如图,在△ABC 中,AN =13NC ,P 是BN 上的一点,若AP =mAB +211AC ,则实数m 的值为()A.911 B.511 C.311 D.2111(2022·全国·统考高考真题)在△ABC 中,点D 在边AB 上,BD =2DA .记CA =m ,CD =n ,则CB =()A.3m -2nB.-2m +3nC.3m +2nD.2m +3n2(全国·高考真题)在△ABC 中,AB =c ,AC =b .若点D 满足BD =2DC ,则AD =()A.23b +13c B.53c -23b C.23b -13c D.13b +23c 3(2020·新高考全国1卷·统考高考真题)已知平行四边形ABCD ,点E ,F 分别是AB ,BC 的中点(如图所示),设AB =a ,AD =b ,则EF 等于()A.12a +bB.12a -bC.12b -aD.12a +b 4(全国·高考真题)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =()A.34AB -14AC B.14AB -34AC C.34AB +14AC D.14AB +34AC 5(江苏·高考真题)设D 、E 分别是ΔABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC . 若DE =λ1AB +λ2AC (λ1,λ2为实数),则λ1+λ2的值是技法02系数和(等和线)的应用及解题技巧近年,高考、模考中有关“系数和(等和线)定理”背景的试题层出不穷,学生在解决此类问题时,往往要通过建系或利用角度与数量积处理,结果因思路不清、解题繁琐,导致得分率不高,而向量三点共线定理与等和线巧妙地将代数问题转化为图形关系问题,将系数和的代数运算转化为距离的比例运算,数形结合思想得到了有效体现,同时也为相关问题的解决提供了新的思路,大家可以学以致用知识迁移如图,P 为ΔAOB 所在平面上一点,过O 作直线l ⎳AB ,由平面向量基本定理知:存在x ,y ∈R ,使得OP =xOA +yOB下面根据点P 的位置分几种情况来考虑系数和x +y 的值①若P ∈l 时,则射线OP 与l 无交点,由l ⎳AB 知,存在实数λ,使得OP =λAB 而AB =OB -OA ,所以OP =λOB -λOA ,于是x +y =λ-λ=0②若P ∉l 时,(i )如图1,当P 在l 右侧时,过P 作CD ⎳AB ,交射线OA ,OB 于C ,D 两点,则ΔOCD ∼ΔOAB ,不妨设ΔOCD 与ΔOAB 的相似比为k由P ,C ,D 三点共线可知:存在λ∈R 使得:OP =λOC +(1-λ)OD =kλOA +k (1-λ)OB所以x +y =kλ+k (1-λ)=k(ii )当P 在l 左侧时,射线OP 的反向延长线与AB 有交点,如图1作P 关于O 的对称点P ,由(i )的分析知:存在存在λ∈R 使得:OP =λOC +(1-λ)OD =kλOA +(1-λ)OB 所以OP =-kλOA +-(1-λ)OB于是x +y =-kλ+-k (1-λ)=-k 综合上面的讨论可知:图中OP 用OA ,OB 线性表示时,其系数和x +y 只与两三角形的相似比有关。

高中数学向量解题技巧必看

高中数学向量解题技巧必看

高中数学向量解题技巧必看各个科目都有自己的学习方法,但其实都是万变不离其中的,基本离不开背、记,运用,数学作为最烧脑的科目之一,也是一样的。

下面是小编给大家整理的一些高中数学向量解题技巧的学习资料,希望对大家有所帮助。

高二数学向量重点学习方法高二数学向量重点-向量公式:1.单位向量:单位向量a0=向量a/|向量a|2.P(x,y)那么向量OP=x向量i+y向量j|向量OP|=根号(x平方+y平方)3.P1(x1,y1)P2(x2,y2)那么向量P1P2={x2-x1,y2-y1}|向量P1P2|=根号[(x2-x1)平方+(y2-y1)平方]4.向量a={x1,x2}向量b={x2,y2}向量a.向量b=|向量a|.|向量b|.Cosα=x1x2+y1y2Cosα=向量a.向量b/|向量a|.|向量b|(x1x2+y1y2)=————————————————————根号(x1平方+y1平方).根号(x2平方+y2平方)5.空间向量:同上推论(提示:向量a={x,y,z})6.充要条件:如果向量a⊥向量b那么向量a.向量b=0如果向量a//向量b那么向量a.向量b=±|向量a|.|向量b|或者x1/x2=y1/y27.|向量a±向量b|平方=|向量a|平方+|向量b|平方±2向量a.向量b=(向量a±向量b)平方高二数学向量重点-三角函数公式:1.万能公式令tan(a/2)=tsina=2t/(1+t^2)cosa=(1-t^2)/(1+t^2)tana=2t/(1-t^2)2.辅助角公式asint+bcost=(a^2+b^2)^(1/2)sin(t+r)cosr=a/[(a^2+b^2)^(1/2)]sinr=b/[(a^2+b^2)^(1/2)]tanr=b/a3.三倍角公式sin(3a)=3sina-4(sina)^3cos(3a)=4(cosa)^3-3cosatan(3a)=[3tana-(tana)^3]/[1-3(tana^2)]4.积化和差sina.cosb=[sin(a+b)+sin(a-b)]/2cosa.sinb=[sin(a+b)-sin(a-b)]/2cosa.cosb=[cos(a+b)+cos(a-b)]/2sina.sinb=-[cos(a+b)-cos(a-b)]/25.积化和差sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]高考数学平面向量易错点分析1.数0有区别,0的模为数0,它不是没有方向,而是方向不定。

高中数学平面向量投影与垂直分解技巧

高中数学平面向量投影与垂直分解技巧

高中数学平面向量投影与垂直分解技巧在高中数学中,平面向量是一个重要的概念,它不仅在几何中有广泛的应用,还在物理和工程学中扮演着重要的角色。

平面向量的投影和垂直分解是解决问题的常用技巧,本文将介绍这两个技巧的应用和解题方法。

一、平面向量的投影投影是指将一个向量在某个方向上的分量。

在平面向量中,我们可以将一个向量投影到另一个向量上,以求得它在另一个向量上的分量。

举个例子,假设有两个向量a和b,我们想要求向量a在向量b上的投影。

首先,我们需要计算向量b的单位向量,记作u。

单位向量是指长度为1的向量,它的方向与原向量相同。

计算公式为u = b / |b|,其中|b|表示向量b的模。

接下来,我们可以使用向量的点乘来求向量a在向量b上的投影。

投影的计算公式为P = a · u,其中P表示向量a在向量b上的投影。

例如,假设有向量a(3, 4)和向量b(2, 1),我们可以先计算向量b的单位向量u(2/√5, 1/√5),然后计算投影P = a · u = (3, 4) · (2/√5, 1/√5) = (6/√5, 4/√5)。

投影的应用非常广泛,例如在力学中,我们可以将一个力向量分解为平行和垂直于某个方向的分量,以便更好地分析和计算。

二、平面向量的垂直分解垂直分解是指将一个向量分解为与另一个向量垂直的两个分量。

在平面向量中,我们可以将一个向量分解为与另一个向量垂直的两个分量,以求得它在两个方向上的分量。

举个例子,假设有两个向量a和b,我们想要将向量a分解为与向量b垂直的两个分量。

首先,我们需要计算向量b的单位向量,记作u。

接下来,我们可以使用向量的点乘和叉乘来求得两个分量。

垂直分解的计算公式为a = a1 + a2,其中a1表示向量a在向量b上的投影,a2表示向量a在与向量b垂直的方向上的分量。

投影的计算公式为a1 = a · u,分量的计算公式为a2 = a - a1。

平面向量的解题技巧

平面向量的解题技巧

平面向量的解题技巧
平面向量的解题技巧主要包括以下几个方面:
1. 理解平面向量的性质:平面向量有大小和方向,可以进行加减法、数乘等运算。

理解平面向量的性质是解题的基础。

2. 建立坐标系:建立一个适当的坐标系,可以方便地表示平面向量的位置和方向。

通常可以选择直角坐标系或极坐标系。

3. 平面向量的表示方法:平面向量可以用坐标表示,也可以用向量表示。

在解题时,灵活选择适当的表示方法,使问题变得简化。

4. 平面向量的运算法则:平面向量可以进行向量的加法、减法和数乘运算。

根据运算法则,可以进行组合运算,简化计算过程。

5. 理解平面向量的几何意义:平面向量可以表示平移、旋转和缩放等几何变换。

在解题时,可以把平面向量与几何问题相联系,更好地理解和解决问题。

6. 利用向量的性质解题:平面向量具有一些特殊的性质,如平行、垂直、共线等。

在解题时,可以利用这些性质将问题转化为已知的条件,从而更好地解决问题。

总之,平面向量的解题技巧在于灵活运用向量的定义、表示、
运算法则和几何性质,以及适当选择合适的坐标系和表示方法,从而解决平面向量相关的问题。

高中数学必备技巧平面向量的数量积与向量积

高中数学必备技巧平面向量的数量积与向量积

高中数学必备技巧平面向量的数量积与向量积高中数学必备技巧:平面向量的数量积与向量积高中的数学学习中,平面向量是一个重要而基础的概念。

平面向量的数量积和向量积在解决问题和计算过程中起着至关重要的作用。

本文将介绍平面向量的数量积和向量积以及它们的应用技巧。

一、平面向量的数量积1. 定义:对于平面内的两个向量 a 和 b,数量积(又称点积或内积)的结果是一个标量,记作 a·b。

具体计算公式为:a·b = |a| * |b| * cosθ其中,|a| 和 |b| 分别表示向量 a 和 b 的模长(即长度),θ 表示 a 和b 之间的夹角。

通过数量积,我们可以得到向量之间的夹角大小和它们的相互关系。

2. 性质:数量积具有以下几个重要的性质:(1)a·b = b·a (数量积满足交换律)(2)a·a = |a|^2 (向量的自身与自身的数量积等于它的模长的平方)(3)如果 a·b = 0,那么 a 和 b 互相垂直(数量积为零意味着两个向量垂直)(4)如果 a·b > 0,那么 a 和 b 夹角为锐角(数量积大于零意味着两个向量的夹角为锐角)(5)如果 a·b < 0,那么 a 和 b 夹角为钝角(数量积小于零意味着两个向量的夹角为钝角)这些性质可以在解决问题中起到指导作用,帮助我们判断向量之间的关系。

二、平面向量的向量积1. 定义:平面向量的向量积(又称叉积或外积)是平面内两个向量所确定的平行四边形的有向面积。

向量积的结果是一个向量,记作 a x b。

具体计算公式为:a xb = |a| * |b| * sinθ * n其中,|a| 和 |b| 分别表示向量 a 和 b 的模长,θ 表示 a 和 b 之间的夹角,n 表示与平面同一方向的单位向量。

通过向量积,我们可以得到一个新的向量,它与给定的两个向量都垂直,并符合右手定则。

快速解决平面向量题目的技巧

快速解决平面向量题目的技巧

快速解决平面向量题目的技巧解决平面向量题目的技巧在学习平面向量时,很多学生常常觉得题目难以解决,因为涉及到复杂的计算和概念。

然而,只要我们掌握一些解题技巧,就能够快速解决这类问题。

本文将介绍一些快速解决平面向量题目的技巧,帮助读者更好地掌握这一知识点。

一、向量的加减运算在解决平面向量题目时,向量的加减运算是非常基础也是重要的一步。

我们可以使用三角形法则或平行四边形法则来进行运算。

1. 三角形法则三角形法则适用于解决两个向量相加的问题。

即将两个向量的起点和终点相连接,构成一个三角形,那么连接起点和三角形的终点的向量就是所要求的向量。

例如,已知向量A的坐标为(Ax, Ay),向量B的坐标为(Bx, By),我们可以得到向量C的坐标为(Cx, Cy)。

其中,Cx = Ax + Bx,Cy = Ay + By。

2. 平行四边形法则平行四边形法则适用于解决两个向量相减的问题。

即将两个向量的起点相连,形成一个平行四边形,那么连接起点和平行四边形的对角线的向量就是所要求的向量。

例如,已知向量A的坐标为(Ax, Ay),向量B的坐标为(Bx, By),我们可以得到向量C的坐标为(Cx, Cy)。

其中,Cx = Ax - Bx,Cy = Ay - By。

二、向量的数量积和向量积除了向量的加减运算外,向量的数量积和向量积也是平面向量题目中常见的计算方法。

这两个概念在解决平面向量问题时非常重要。

1. 向量的数量积向量的数量积又称点积,表示为A·B。

计算公式为A·B=|A||B|cosθ,其中|A|和|B|分别表示向量A和向量B的模长,θ表示两个向量的夹角。

在解决平面向量问题时,我们可以通过计算两个向量的数量积来判断它们的关系,例如判断是否正交、平行或夹角大小等。

2. 向量的向量积向量的向量积又称叉积,表示为A×B。

计算公式为A×B=|A||B|sinθn,其中|A|和|B|分别表示向量A和向量B的模长,θ表示两个向量的夹角,n表示单位法向量。

解题技巧如何巧妙解决平面向量的模长与夹角问题

解题技巧如何巧妙解决平面向量的模长与夹角问题

解题技巧如何巧妙解决平面向量的模长与夹角问题在数学学科中,平面向量的模长与夹角是一个经常出现的问题。

解决这类问题,需要掌握一些巧妙的技巧和方法。

本文将介绍一些解题技巧,以帮助读者更好地解决平面向量的模长与夹角问题。

一、平面向量的模长计算技巧在计算平面向量的模长时,一些特殊的技巧可以大大简化计算过程。

首先,对于平面上的向量A(x1, y1)和B(x2, y2),其模长可以通过勾股定理来进行计算。

即模长|AB| = √((x2-x1)² + (y2-y1)²)。

通过这个公式,我们可以将平面上两点的坐标代入,得到向量的模长。

其次,如果两个向量的坐标给定为A(x1, y1)和B(x2, y2),我们要计算它们之间的距离,可以将两个向量相减,得到新的向量C(x2-x1, y2-y1),然后计算向量C的模长。

即|AB| = |C| = √((x2-x1)² + (y2-y1)²)。

另外,如果两个向量的坐标给定为A(x1, y1)和B(x2, y2),我们要计算它们的模长平方和,可以使用平方差公式进行计算。

即|AB|² = (x2-x1)² + (y2-y1)²。

通过掌握这些计算技巧,我们可以更快速、准确地计算平面向量的模长。

二、平面向量的夹角计算技巧在计算平面向量的夹角时,可以运用一些几何和代数的技巧来解决。

首先,对于两个非零向量A和B,它们的夹角θ可以通过内积公式来计算。

即cosθ = (A·B) / (|A| |B|),其中(A·B)表示向量A和B的内积,|A|和|B|分别表示向量A和B的模长。

通过这个公式,我们可以得到夹角θ的值。

其次,如果两个向量A和B的坐标分别为A(x1, y1)和B(x2, y2),我们要计算它们之间的夹角θ,可以通过求解方程来进行计算。

具体来说,在平面上建立两个以A和B为起点,长度分别为|A|和|B|的向量。

高中数学向量数量积解题技巧

高中数学向量数量积解题技巧

高中数学向量数量积解题技巧高中数学中,向量数量积是一个重要的概念和技巧,在解题过程中经常会遇到。

正确理解和掌握向量数量积的性质和运算规律,可以帮助我们更好地解决相关问题。

本文将从几个常见的题型入手,介绍一些解题技巧和方法,帮助高中学生或他们的父母更好地理解和应用向量数量积。

一、平面向量的数量积在平面向量的数量积中,有一个重要的性质:向量的数量积等于两个向量的模长之积与它们夹角的余弦值的乘积。

即对于向量a和向量b,它们的数量积为a·b=|a||b|cosθ,其中θ为a和b之间的夹角。

举例说明:假设有两个向量a=(2, 3)和b=(4, 1),我们需要求解它们的数量积。

首先计算向量的模长,|a|=√(2^2+3^2)=√13,|b|=√(4^2+1^2)=√17。

然后计算夹角的余弦值,cosθ=(2×4+3×1)/(√13×√17)=11/(√13×√17)。

最后,将模长和夹角的余弦值代入公式a·b=|a||b|cosθ,即可得到结果。

二、向量的数量积与垂直关系在解决与向量垂直关系相关的问题时,我们可以利用向量数量积的性质来判断。

根据性质,两个向量垂直的充分必要条件是它们的数量积为0。

即若向量a·b=0,则向量a和向量b垂直。

举例说明:假设有两个向量a=(1, 2)和b=(2, -1),我们需要判断它们是否垂直。

计算向量的数量积,a·b=(1×2)+(2×(-1))=0。

由于数量积为0,可以得出结论,向量a和向量b垂直。

三、数量积与平行关系在解决与向量平行关系相关的问题时,我们同样可以利用向量数量积的性质。

根据性质,两个向量平行的充分必要条件是它们的夹角的余弦值等于1或-1。

即若向量a·b=|a||b|,则向量a和向量b平行。

举例说明:假设有两个向量a=(3, 4)和b=(6, 8),我们需要判断它们是否平行。

平面向量知识点总结

平面向量知识点总结

平面向量知识点总结平面向量是高中数学中的重要概念之一,是解决平面几何问题的数学工具。

本文将对平面向量的概念、运算、线性组合、共线与共面、平行与垂直、向量投影、平面的方程、向量积等知识点进行总结,并介绍一些相关的解题技巧。

一、概念1. 定义:平面向量是具有大小和方向的量,一般用有向线段表示。

2. 向量的模:向量的模表示向量的长度,用||AB||或 |AB| 表示。

3. 零向量:长度为零,没有方向的向量,记作0。

4. 平移:向量可以表示平面上的平移,即通过向量的起点和终点来表示移动的方向和距离。

二、运算1. 向量的加法:设有向线段AB和AC,以A为起点,AB的终点是B,AC的终点是C,则向量AB加上向量AC等于以A为起点,以C为终点的向量AD。

2. 向量的减法:向量的减法可以理解为向量加法的逆运算,即向量A减去向量B等于向量A加上向量B的相反向量。

3. 向量的数乘:向量的数乘是指用实数k乘以一个向量A,得到的结果是长度为k倍的向量,且方向与A相同(当k大于0)或相反(当k小于0)。

4. 向量的点乘:设A、B为两个向量,其夹角为θ,两个向量的点乘结果等于AB的模乘以BC的模乘以θ的余弦值,即A·B=|AB|×|BC|×cosθ。

三、线性组合线性组合是指对多个向量进行数乘和加法运算得到的结果。

对于向量a1、a2、...、an和实数k1、k2、...、kn,它们的线性组合可以表示为k1a1 + k2a2 + ... + knan。

四、共线与共面1. 共线:若两个向量的方向相同或相反,则它们是共线的;若两个向量的方向不同,则它们是不共线的。

2. 共面:若三个向量都在同一个平面内,则它们是共面的;若三个向量不在同一个平面内,则它们是不共面的。

五、平行与垂直1. 平行:若两个向量的方向相同或相反,则它们是平行的。

2. 垂直:若两个向量的点乘结果为0,则它们是垂直的。

即A·B=0,其中A和B为两个向量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学经典解题技巧:平面向量【编者按】平面向量是高中数学考试的必考容,而且是这几年考试解答题的必选,无论是期中、期末还是会考、高考,都是高中数学的必考容之一。

因此,马博士教育网数学频道编辑部特意针对这部分的容和题型总结归纳了具体的解题技巧和方法,希望能够帮助到高中的同学们,让同学们有更多、更好、更快的方法解决数学问题。

好了,下面就请同学们跟我们一起来探讨下平面向量的经典解题技巧。

首先,解答平面向量这方面的问题时,先要搞清楚以下几个方面的基本概念性问题,同学们应该先把基本概念和定理完全的吃透了、弄懂了才能更好的解决问题:1.平面向量的实际背景及基本概念(1)了解向量的实际背景。

(2)理解平面向量的概念,理解两个向量相等的含义。

(3)理解向量的几何意义。

2.向量的线性运算(1)掌握向量加法、减法的运算,并理解其几何意义。

(2)掌握向量数乘的运算及其几何意义,理解两个向量共线的含义。

(3)了解向量线性运算的性质及其几何意义。

3.平面向量的基本定理及坐标表示(1)了解平面向量的基本定理及其意义。

(2)掌握平面向量的正交分解及其坐标表示。

(3)会用坐标表示平面向量的加法、减法与数乘运算。

(4)理解用坐标表示的平面向量共线的条件。

4.平面向量的数量积(1)理解平面向量数量积的含义及其物理意义。

(2)了解平面向量的数量积与向量投影的关系。

(3)掌握数量积的坐标表达式,会进行平面向量数量积的运算。

(4)能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。

5. 向量的应用(1)会用向量方法解决某些简单的平面几何问题。

(2)会用向量方法解决简单的力学问题与其他一些实际问题。

好了,搞清楚平面向量的上述容之后,下面我们就看下针对这方面容的具体的解题技巧。

一、向量的有关概念及运算考情聚焦:1.向量的有关概念及运算,在近几年的高考中年年都会出现。

2.该类问题多数是单独命题,考查有关概念及其基本运算;有时作为一种数学工具,在解答题中与其他知识点交汇在一起考查。

3.多以选择、填空题的形式出现,有关会渗透在解答题中。

解题技巧:向量的有关概念及运算要注意以下几点:(1)正确理解相等向量、共线向量、相反向量、单位向量、零向量等基本概念,如有遗漏,则会出现错误。

(2)正确理解平面向量的运算律,一定要牢固掌握、理解深刻(3)用已知向量表示另外一些向量,是用向量解题的基础,除了用向量的加减法、实数与向量乘积外,还要充分利用平面几何的一些定理,充分联系其他知识。

例1:(2010·高考理科·T12)定义平面向量之间的一种运算“⊙”如下,对任意的a=(m,n),b p,q)=(,令a ⊙b mq np =-,下面说法错误的是( )A.若a 与b 共线,则a ⊙b 0=B. a ⊙b = b ⊙aC.对任意的R λ∈,有()a λ⊙b = (a λ⊙)bD. (a ⊙b )2222()a b a b +⋅=【命题立意】本题在平面向量的基础上,加以创新,属创新题型,考查平面向量的基础知识以及分析问题、解决问题的能力.【思路点拨】根据所给定义逐个验证.【规解答】选B ,若a 与b 共线,则有a ⊙b 0mq np =-=,故A 正确;因为b ⊙a pn qm =-,,而a ⊙b mq np =-,所以有a ⊙b ≠ b ⊙a ,故选项B 错误,故选B.【方法技巧】自定义型信息题1、基本特点:该类问题的特点是背景新颖,信息量大,是近几年高考的热点题型.2、基本对策:解答这类问题时,要通过联想类比,仔细分析题目中所提供的命题,找出其中的相似性和一致性二、与平面向量数量积有关的问题考情聚焦:1.与平面向量数量积有关的问题(如向量共线、垂直及夹角等问题)是高考考查的重点。

2.该类问题多数是单独命题,有时与其他知识交汇命题,考查学生分析问题、解决问题的能力。

3.多以选择题、填空题的形式出现,有时会渗透在解答题中。

解题技巧:与平面向量数量积有关的问题1.解决垂直问题:121200,a b a b x x y y a b ⊥⇔=⇔+=其中、均为非零向量。

这一条件不能忽视。

2.求长度问题:2||a a a =,特别地2211221212(,),(,),||()()A x y B x y AB x x y y =-+-则。

3.求夹角问题:求两非零向量夹角的依据121222221122cos(,).||||x x y y a b a b a b x y x y +==++例2:1.(2010·高考理科·T4)在Rt ABC ∆中,C ∠=90°AC=4,则AB AC ⋅等于( ) A 、-16 B 、-8 C 、8 D 、16【命题立意】以直角三角形为依托,考查平面向量的数量积,基底的选择和平面向量基本定理.【思路点拨】由于C ∠=90,因此选向量CA ,CB 为基底.【规解答】选D .AB AC ⋅=(CB-CA)·(-CA)=-CB ·CA+CA 2=16.【方法技巧】平面向量的考查常常有两条路:一是考查加减法,平行四边形法则和三角形法则,平面向量共线定理.二是考查数量积,平面向量基本定理,考查垂直,夹角和距离(长度).2. (2010·高考文科·T5)若向量a =(1,1),b =(2,5),c =(3,x)满足条件(8a —b )·c =30,则x=( )A .6B .5C .4D .3【命题立意】本题考察向量的坐标运算及向量的数量积运算.【思路点拨】 先算出8a b -,再由向量的数量积列出方程,从而求出.x【规解答】选C . 8a b -8(1,1)(2,5)(6,3)=-=,所以(8)(6,3)(3,)a b c x -⋅=⋅30=. 即:18330x +=,解得:4x = ,故选C .三、向量与三角函数的综合考情聚集:1.向量与三角函数相结合是高考的重要考查容,在近几年的高考中,年年都会出现。

2.这类问题一般比较综合,考查综合应用知识分析问题、解决问题的能力。

一般向量为具,考查三角恒等变换及三角函数的性质等。

3.多以解答题的形式出现。

例3.在直角坐标系)..20)(,sin (),0,8(),2,1(,R a ∈≤≤-=t t k B A xOy πθθ又点已知向量中(I )若OB AB OA AB 求向量且|,|||,=⊥a ;(II )若向量a 与向量AB 共线,当.,4sin ,4OB OA t k ⋅>求时取最大值为且θ【解析】(1)028sin ,),,8sin (=++-∴⊥-=t k AB t k AB θθa …………2分 又22)8sin (64|,|||t k AB OA +-=∴=θ解得sin sin ,k k t t θθ⎧⎧==⎪⎪⎪⎪⎨⎨⎪⎪==⎪⎪⎩⎩或 ………………4分40(55OB +∴=或40(55OB -=- …………6分 (II )16sin 2,+-=∴θk t AB 共线与向量a ………………8分kk k k t 32)4(sin 2sin )16sin 2(sin 2+--=+-=∴θθθθ kt k k k 32sin ,4sin ,140,4取最大值为时又θθ=∴<<∴> …………10分 )8,4(,6,8,432====OB k k πθ此时得由 (8,0)(4,8)32OA OB ∴⋅=⋅= ………………12分注:向量与三角函数的综合,实质上是借助向量的工具性。

(1)解决这类问题的基本思路方法是将向量转化为代数运算;(2)常用到向量的数乘、向量的代数运算,以及数形结合的思路。

例4.(2010·高考理科·T2)已知向量a ,b 满足0,1,2a b a b •===,则2a b -=( )A .0B ..4 D .8 【命题立意】本小题考查向量的基础知识、数量积的运算及性质,考查向量运算的几何意义,考查数形结合的思想方法. 【思路点拨】根据公式2a a =进行计算,或数形结合法,根据向量的 三角形法则、平行四边形法则求解.【规解答】选B (方法一)222242a b a ba ab b -=-=-⋅+2() ==(方法二)数形结合法:由条件0a b •=知,以向量a ,b 为邻边的平行四边形为矩形,又因为1,2a b ==,所以2=2a ,则2a b -是边长为2的正方形的一条对角线确定的向量,其长度为22,如图所示. 【方法技巧】方法一:灵活应用公式2a a =, 方法二:熟记向量0a b a b ⊥⇔•=及向量和的三角形法则例5.(2010·全国高考卷Ⅱ理科·T8)△ABC 中,点D 在边AB 上,CD 平分∠ACB ,若CB = a , CA = b , 1,2a b ==, 则CD =( )(A )13a + 23b (B )23a +13b (C )35a +45b (D )45a +35b 【命题立意】本题考查了平面向量基本定理及三角形法则的知识。

【思路点拨】运用平面向量三角形法则解决。

由角平分线性质知DB:AD= CB:CA =1:2这样可以用向量a , b 表示CD 。

【规解答】 选B ,由题意得AD:DB=AC ;CB=2:1,AD=32AB,所以CD =CA +AD =b +23AB =a +13b 【方法技巧】角平分线性质、平面向量基本定理及三角形法则 例6.(2010·高考文科·T13)已知平面向量,,1,2,(2),αβαβααβ==⊥-则2αβ+的值是 。

【命题立意】本题主要考察了平面向量的四则运算及其几何意义,属中档题。

【思路点拨】本题先把垂直关系转化为数量积为0,再利用向量求模公式求解。

【规解答】由题意可知()-20ααβ⋅=,结合2214αβ==,,解得12αβ⋅=, 所以2αβ+2=224442410ααββ+⋅+=++=,开方可知答案为10. 【答案】10【方法技巧】(1)0a b a b ⊥⇔⋅=;(2)||a a a =⋅。

相关文档
最新文档