武警院校招生统考-部队士兵考军校数学军考真题详解

合集下载

军校数学考试题库及答案

军校数学考试题库及答案

军校数学考试题库及答案1. 题目:求函数f(x) = 2x^3 - 3x^2 + 4x - 5在x=1处的导数值。

答案:首先求出函数f(x)的导数f'(x) = 6x^2 - 6x + 4。

然后将x=1代入f'(x)中,得到f'(1) = 6(1)^2 - 6(1) + 4 = 4。

2. 题目:解方程3x^2 - 5x + 2 = 0。

答案:使用求根公式,首先计算判别式Δ = b^2 - 4ac = (-5)^2 - 4(3)(2) = 25 - 24 = 1。

然后求解x = (-b ± √Δ) / 2a,得到x = (5 ± 1) / 6,即x1 = 1,x2 = 2/3。

3. 题目:计算定积分∫(0到1) (x^2 + 3x) dx。

答案:首先求出被积函数的原函数F(x) = (1/3)x^3 + (3/2)x^2 + C。

然后计算F(1) - F(0) = [(1/3)(1)^3 + (3/2)(1)^2] -[(1/3)(0)^3 + (3/2)(0)^2] = (1/3) + (3/2) = 11/6。

4. 题目:证明函数f(x) = x^2在区间(-∞, +∞)上是偶函数。

答案:根据偶函数的定义,若对于任意x∈(-∞, +∞),都有f(-x) = f(x),则f(x)是偶函数。

对于f(x) = x^2,我们有f(-x) = (-x)^2 = x^2 = f(x),因此f(x)是偶函数。

5. 题目:求极限lim(x→0) (sin(x) / x)。

答案:根据极限的性质,我们知道lim(x→0) (sin(x) / x) = 1。

这是因为当x趋近于0时,sin(x)与x的比值趋近于1。

6. 题目:计算二重积分∬(D) xy dA,其中D是由x^2 + y^2 ≤ 1定义的圆盘。

答案:首先将二重积分转换为极坐标形式,即∬(D) xy dA = ∫(0到2π) ∫(0到1) (r*cos(θ) * r*sin(θ)) * r dr dθ。

军考数学高中士兵考军校综合测试卷及答案

军考数学高中士兵考军校综合测试卷及答案

2021年军考-高中学历士兵考军校-数学综合测试卷一.选择题(共9小题)1.设集合2{|}M x x x ==,{|0}N x lgx =,则(M N =)A .[0,1]B .(0,1]C .[0,1)D .(-∞,1]2.函数221(2x y -=的单调递减区间为()A .(-∞,0]B.[0,)+∞C .(-∞D .,)+∞3.设02x π<<,则“2cos x x <”是“cos x x <”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.已知1t >,2log x t =,3log y t =,5log z t =,则()A .235x y z<<B .523z x y<<C .352y z x <<D .325y x z<<5.若关于x 的不等式3410x ax +-对任意[1x ∈-,1]都成立,则实数a 的取值范围是()A .[4-,3]-B .{3}-C .{3}D .[3,4]6.已知数列{}n a 为等差数列,n S 为其前n 项和,312S =,且1a ,2a ,6a 成等比数列,则10(a =)A .33B .28C .4D .4或287.一段1米长的绳子,将其截为3段,问这三段可以组成三角形的概率是()A .14B .12C .18D .138.2251lim 25n n n n →∞--+的值为()A .15-B .52-C .15D .529.已知圆22:(1)1M x y -+=,圆22:(1)1N x y ++=,直线1l ,2l 分别过圆心M ,N ,且1l 与圆M 相交于A ,B 两点,2l 与圆N 相交于C ,D 两点,点P 是椭圆22149x y +=上任意一点,则PA PB PC PD +的最小值为()A .7B .8C .9D .10二.填空题(共8小题)10.49log 43log 2547lg lg ++=.11.已知22sin 3α=,1cos()3αβ+=-,且α,(0,)2πβ∈,则sin β=.12.若函数3()2()f x x ax a R =--∈在(,0)-∞内有且只有一个零点,则()f x 在[1-,2]上的最小值为.13.从6个人挑选4个人去值班,每人值班一天,第一天安排1个人,第二天安排1个人,第三天安排2个人,则共有种安排情况.14.73(1)(1)x x -+的展开式中x 的系数是.15.设数列{}n a 的前n 项和n S 满足11(*)n n n n S S S S n N ++-=∈,且11a =,则n a =.16.已知函数()f x 对任意的x R ∈,都有11()()22f x f x +=-,函数(1)f x +是奇函数,当1122x-时,()2f x x =,则方程1()2f x =-在区间[3-,5]内的所有零点之和为.17.已知点O 为坐标原点,圆22:(1)1M x y -+=,圆22:(2)4N x y ++=,A ,B 分别为圆M 和圆N 上的动点,OAB ∆面积的最大值为.参考答案与解析一.选择题(共9小题)1.【解答】解:由2{|}{0M x x x ===,1},{|0}(0N x lgx ==,1],得{0MN =,1}(0⋃,1][0=,1].故选:A .2.【解答】解:令22t x =-,则1()2t y =,即有y 在t R ∈上递减,由于t 在[0x ∈,)+∞上递增,则由复合函数的单调性,可知,函数y 的单调减区间为:[0,)+∞.故选:B .3.【解答】解:由2x x =得0x =或1x =,作出函数cos y x =和2y x =和y x =的图象如图,则由图象可知当2cos x x <时,2B x x π<<,当cos x x <时,2A x x π<<,AB x x <,∴“2cos x x <”是“cos x x <”的充分不必要条件,故选:A .4.【解答】解:1t >,0lgt ∴>.又0235lg lg lg <<<,2202lgt x lg ∴=>,3303lgt y lg =>,505lgtz lg =>,∴5321225z lg x lg =>,可得52z x >.29138x lg y lg =>.可得23x y >.综上可得:325y x z <<.故选:D .5.【解答】解:令3()41f x x ax =+-,[1x ∈-,1].不等式3410x ax +-对任意[1x ∈-,1]都成立,即()0f x 对任意[1x ∈-,1]都成立,取4a =-,则3()441f x x x =--,此时11()022f -=>,排除A .取3a =,则3()431f x x x =+-,此时1()102f =>,排除CD .故选:B .6.【解答】解:设数列{}n a 为公差为d 的等差数列,当0d =时,312S =,即1312a =,即有1014a a ==;当0d ≠时,1a ,2a ,6a 成等比数列,可得2216a a a =,即2111()(5)a d a a d +=+,化为13d a =,311331212S a d a ∴=+==,11a ∴=,3d =,1019328a ∴=+⨯=.综上可得104a =或28.故选:D .7.【解答】解:设三段长分别为x ,y ,1x y --,则总样本空间为010101x y x y <<⎧⎪<<⎨⎪<+<⎩.其面积为12,能构成三角形的事件的空间为111x y x y x x y y y x y x +>--⎧⎪+-->⎨⎪+-->⎩,其面积为18,则这三段可以组成三角形的概率是118142p ==.故选:A.8.【解答】解:222215515limlim 152522n n n n n n n n→∞→∞--==-+-+.9.【解答】解:圆22:(1)1M x y -+=的圆心(1,0)M ,半径为1M r =;圆22:(1)1N x y ++=的圆心为(1,0)N -,半径为1N r =;所以22()()()1PA PB PM MA PM MB PM PM MA MB MA MB PM =++=+++=-,22()()()1PC PD PN NC PN ND PN PN NC ND NC ND PN =++=+++=-,P 为椭圆22149x y +=上的点,∴222221022()89y PA PB PC PD PM PN x y +=+-=+=+;由题意可知,33y -,21088189y ∴+,即PA PB PC PD +的最小值为8.故选:B .二.填空题(共8小题)10.【解答】解:原式71243115310072244log log lg -=++=-++=.故答案为:154.11.【解答】解:22sin 3α=,(0,2πα∈,1cos 3α∴==,α∴,(0,2πβ∈,(0,)αβπ∴+∈,又1cos()3αβ+=-,sin()3αβ∴+=.则11sin sin[()]sin()cos cos()sin ()33βαβααβααβα=+-=+-+=--⨯.故答案为:429.12.【解答】解:3()2()f x x ax a R =--∈,2()3(0)f x x a x ∴'=-<,①当0a 时,2()30f x x a '=->,函数()f x 在(,0)-∞上单调递增,又(0)20f =-<,()f x ∴在(,0)-∞上没有零点;②当0a >时,由2()30f x x a '=->,解得33x <或33x >(舍).()f x ∴在(,)3-∞上单调递增,在(3,0)上单调递减,而(0)20f =-<,要使()f x 在(,0)-∞内有且只有一个零点,3(()()20333f a ∴-=--⨯--=,解得3a =,3()32f x x x =--,2()333(1)(1)f x x x x '=-=+-,[1x ∈-,2],当(1,1)x ∈-时,()0f x '<,()f x 单调递减,当(1,2)x ∈时,()0f x '>,()f x 单调递增.又(1)0f -=,f (1)4=-,f (2)0=,()min f x f ∴=(1)4=-.故答案为:4-.13.【解答】解:根据题意,可得排法共有112654180C C C =种.故答案为:180.14.【解答】解:73(1)(1)x x -+的展开式中x 的系数可这样求得:第一个括号7(1)x -中提供x 时,第二个括号3(1)x +只能提供常数,此时展开式中x 的系数是:1637(1)17C -=;同理可求,第一个括号7(1)x -中提供常数时,第二个括号3(1)x +只能提供x ,此时展开式中x 的系数是7123(1)13C -=-,所以展开式中x 的系数是16371273(1)1(1)14C C -+-=.故答案为:4.15.【解答】解:数列{}n a 的前n 项和n S 满足11(*)n n n n S S S S n N ++-=∈,可得1111n n S S +-=,所以1{}n S 是等差数列,首项为1,公差为1,所以11(1)1nn n S =+-=,1n S n =,1111(1)n a n n n n -=-=--,2n ,(*)n N ∈,所以1,11,2(1)n n a n n n =⎧⎪=-⎨⎪-⎩,故答案为:1,11,2(1)n n n n =⎧⎪-⎨⎪-⎩.16.【解答】解:根据题意,因为函数(1)f x +是奇函数,所以函数(1)f x +的图象关于点(0,0)对称,把函数(1)f x +的图象向右平移1个单位可得函数()f x 的图象,即函数()f x 的图象关于点(1,0))对称,则(2)()f x f x -=-,又因为11()()22f x f x +=-,所以(1)()f x f x -=,从而(2)(1)f x f x -=--,再用x 替换1x -可得(1)()f x f x +=-,所以(2)(1)()f x f x f x +=-+=,即函数()f x 的周期为2,且图象关于直线12x =对称,如图所示,函数()f x 在区间[3-,5]内有8个零点,所有零点之和为12442⨯⨯=.故答案为:4.17.【解答】解:如图以OM 为直径画圆,延长BO 交新圆于E ,AO 交新圆于F 点,连接FE ,NF ,MF ,则MF 与OA 垂直,又MA MO =,F 为AO 的中点,由对称性可得OF OB =,由1sin 2ABO S OA OB AOB ∆=∠,1sin()2EAO S OE OB AOB π∆=-∠1sin 2OE OB AOB =∠,可得2ABO EAO EFO S S S ∆∆∆==,当EFO S ∆最大时,ABO S ∆最大,故转化为在半径为1的圆内接三角形OEF 的面积的最大值,由圆内接三角形A B C '''的面积1sin 2S a b C '''=,2sin a A ''=,2sin b B ''=,3sin sin sin 2sin sin sin 2()3A B C S A B C '+'+''''=,由()sin f x x =,[0x ∈,]π,为凸函数,可得sin sin sin 3sinsin 3332A B C A B C π'+'+''+'+'==,当且仅当3A B C π'''===时,取得等号,可得3sin sin sin 2()23A B C '+'+'=.即三角形OEF 的面积的最大值为.进而得到ABO S ∆最大值为3333242⨯=,故答案为:332。

2021年军考复习解放军武警(高中)士兵考军校数学综合测试卷附答案解析

2021年军考复习解放军武警(高中)士兵考军校数学综合测试卷附答案解析

则 a b 2 0 ,即 a b 2 ,即 a b 的取值范围是 [2 , ) ,故答案为: [2 , )
11.【详解】函数在 ( ,1] 上有意义,即 a4x 3x 2x 1 0 在 ( ,1] 恒成立,
即 a [(1 )x ( 2)x ( 3)x ] 在 ( ,1] 恒成立, 444
③当 x 1 时, f (x) log2 x , f (x 1) log2 (x 1) ,
不等式 f (x) f (x 1) ,即 log2 x log2 (x 1) ,它恒成立,故 x (1, ) 满足不等式.
综合①②③可得,不等式的解集为 ( 1 , ) ,故选: C . 2
9.【详解】 c 1 a b cos A ,由正弦定理可得 sin C 1 sin A sin B cos A ,
3
参考答案与试题解析
一.选择题(共 9 小题) 1.【详解】集合 A {x | x2 2x 8 0} {x | 2 x 4} , B {x | 1 x 5} ,
A B {x | 1 x 4} .故选: B .
2.【详解】 a2 2 是 a1 1 与 a3 3 的等比中项,设公比为 q(q 0) ,
8.【详解】 函数
f
(x)
lxo2g2
x, x 1, x
1 ,
1
①当 x 0 时, f (x) x2 1 , f (x 1) (x 1)2 1, 不等式 f (x) f (x 1) ,即 x2 1 (x 1)2 1 ,求得 1 x 0 .
2 ②当 x [0 ,1] 时,不等式 f (x) x2 1 , f (x 1) log2 (x 1) ,
C. (0,1)[2 , 3) D. (0,1)[2 , )

武警军考数学试题及答案

武警军考数学试题及答案

武警军考数学试题及答案一、选择题(每题3分,共30分)1. 已知函数f(x) = 2x^2 - 3x + 1,求f(1)的值。

A. 0B. 1C. 2D. 3答案:B2. 计算下列极限:lim(x→0) (sin(x)/x)。

A. 0B. 1C. πD. 2答案:B3. 若向量a = (3, -2),向量b = (-1, 4),则向量a与向量b的数量积为:A. -2B. 10C. -10D. 2答案:C4. 一个等差数列的首项为3,公差为2,求第5项的值。

A. 13B. 11C. 9D. 7答案:A5. 已知椭圆的方程为x^2/16 + y^2/9 = 1,求该椭圆的离心率。

A. 1/2B. 1/3C. √3/3D. √2/2答案:C6. 计算定积分∫(0到1) x^2 dx的值。

A. 1/3B. 1/2C. 1D. 2答案:A7. 函数y = ln(x)的反函数为:A. y = e^xB. y = ln(x)C. y = x^2D. y = √x答案:A8. 计算二项式(1 + x)^3的展开式中x^2的系数。

A. 3B. 6C. 1D. 0答案:B9. 已知双曲线的方程为x^2/9 - y^2/16 = 1,求该双曲线的渐近线方程。

A. y = ±4/3xB. y = ±2/3xC. y = ±4/3xD. y = ±2/3x答案:A10. 计算矩阵A = [1, 2; 3, 4]的行列式值。

A. -2B. 2C. -5D. 5答案:B二、填空题(每题3分,共15分)1. 已知函数f(x) = x^3 - 3x^2 + 2,求f'(x)的值。

答案:3x^2 - 6x2. 计算定积分∫(0到π/2) sin(x) dx的值。

答案:13. 已知向量a = (1, 2),向量b = (3, 4),则向量a与向量b的叉积为:答案:-24. 一个等比数列的首项为2,公比为3,求第3项的值。

军校数学考试题库及答案

军校数学考试题库及答案

军校数学考试题库及答案一、选择题(每题3分,共30分)1. 以下哪个选项是二次方程的解?A. x = 2B. x = -2C. x = 1D. x = 3答案:A2. 函数f(x) = 2x + 3的反函数是?A. f^(-1)(x) = (x - 3) / 2B. f^(-1)(x) = (x + 3) / 2C. f^(-1)(x) = 2x - 3D. f^(-1)(x) = x / 2 + 3答案:A3. 圆的面积公式是什么?A. A = πr^2B. A = 2πrC. A = πrD. A = 4πr^2答案:A4. 以下哪个选项是向量(3, -4)和向量(2, 6)的点积?A. 6B. -6C. 12D. -12答案:B5. 以下哪个选项是矩阵的行列式?A. det(A) = 3B. det(A) = -3C. det(A) = 5D. det(A) = -5答案:C6. 以下哪个选项是函数y = sin(x)的导数?A. dy/dx = cos(x)B. dy/dx = sin(x)C. dy/dx = -sin(x)D. dy/dx = -cos(x)答案:A7. 以下哪个选项是等差数列的通项公式?A. a_n = a_1 + (n - 1)dB. a_n = a_1 - (n - 1)dC. a_n = a_1 + ndD. a_n = a_1 - nd答案:A8. 以下哪个选项是复数z = 3 + 4i的模?A. |z| = 5B. |z| = √(3^2 + 4^2)C. |z| = √(3^2 - 4^2)D. |z| = √(4^2 - 3^2)答案:B9. 以下哪个选项是二项式定理的展开式?A. (x + y)^n = Σ C_n^k * x^(n-k) * y^kB. (x + y)^n = Σ C_n^k * x^k * y^(n-k)C. (x + y)^n = Σ C_n^k * x^(n-k) * y^(n-k)D. (x + y)^n = Σ C_n^k * x^(n-k) * y^k答案:B10. 以下哪个选项是曲线y = x^2在点(1, 1)处的切线方程?A. y = 2x - 1B. y = 2x + 1C. y = -2x + 3D. y = -2x - 1答案:A二、填空题(每题4分,共20分)11. 已知函数f(x) = x^3 - 3x^2 + 2,求f'(x) = ______。

部队士兵考军校数学综合练习测试卷及答案

部队士兵考军校数学综合练习测试卷及答案

每题仅 1 人作答,则不同的题目分配方案种数为( )
A.24
B.30
C.36
D.42
第 1页(共 5页)
8.记 Sn 为等差数列{an} 的前 n 项和,已知 a2 0 , a6 8 ,则 S10 (
)
A.66
B.68
C.70
D.80
9.设奇函数
f
(x) 对任意的 x1 ,x2
( ,0)(x1
第 3页(共 5页)
所以 a2 b2 的最小值为 5. 故选: C . 7.【解答】解:根据题意,分 2 步进行分析:
①将 4 道题分为 3 组,有 C42=6 种分组方法,
②将三组题目安排给 3 人作答,有 A33=6 种情况,
则有 6×6=36 种分配方案, 故选:C.
8.【解答】解:等差数列{an} 中, a2 0 , a6 8 ,
)
A.充要条件
B.充分不必要条件
C.必要不充分条件
D.既不充分也不必要条件
4.已知 a=20.3,b=0.60.3,c=log0.60.3,则( )
A.a>b函数 y x2 x 6 1 的定义域为 (
)
x 1
A.[2 , 3]
B.[2 ,1) (1 , 3]
f (x) f (x) 0 2 f (x) 0 x f (x) 0 ,
x
x
则有 x (2021 , 0) (0 , 2021) ,
故选: D . 10.【解答】解:将函数 f (x) cos x 图象上所有点的横坐标都缩短到原来的 1 ,可
2
得 y cos 2x 的图象,
再向左平移
x2 ) ,有
f (x2 ) f (x1) x2 x1

军考真题数学【完整版】

军考真题数学【完整版】

2017年军考真题士兵高中数学试题关键词:军考真题,德方军考,大学生士兵考军校,军考数学,军考资料 一、单项选择(每小题4分,共36分).1. 设集合A={y|y=2x ,x ∈R},B={x|x 2﹣1<0},则A ∪B=( )A .(﹣1,1)B .(0,1)C .(﹣1,+∞)D .(0,+∞)2. 已知函数f (x )=a x +log a x (a >0且a ≠1)在[1,2]上的最大值与最小值之和为(log a 2)+6,则a 的值为( )A .B .C .2D .43. 设a b 、是向量,则||=||a b 是|+|=|-|a b a b 的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 4.已知421353=2,4,25a b c ==,则( )A .b<a<cB .a<b<cC .b<c<aD . c<a<b 5. 设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( )A .B .C .D .6. 设数列{a n }是首项为a 1、公差为-1的等差数列,S n 为其前n 项和,若S 1,S 2,S 4成等比数列,则a 1=( )A .2B .C .﹣2D .﹣7. 袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( )A .B .C .D .18. 已知A ,B ,C 点在球O 的球面上,∠BAC=90°,AB=AC=2.球心O 到平面ABC 的距离为1,则球O 的表面积为( )A .12πB .16πC .36πD .20π9. 已知2017ln f x x x =+()(),0'2018f x =(),则0x =( ) A. 2e B.1 C. ln 2 D. e二、填空题(每小题4分,共32分)10. 设向量,,且,则m=.12. 已知A、B为双曲线E的左右顶点,点M在E上,△ABM为等腰三角形,且顶角为120°,则E的离心率为.13. 已知函数f(x)=,则f(f())= .14. 在的展开式中x7的项的系数是.15. 我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架“歼﹣15”飞机准备着舰,如果甲、乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么不同的着舰方法数是_______。

武警士兵考军校军考模拟题:数学部分(六)

武警士兵考军校军考模拟题:数学部分(六)

武警士兵考军校军考模拟题:数学部分(六)武警士兵考军校军考模拟题:数学部分(六)关键词:武警考军校军考模拟题京忠教育军考数学武警考试资料x2y231(2021-21)(12分)已知椭圆C:2?2?1(a?b?0)的离心率是,直线l:y?x?2ab3与原点为圆心,以椭圆C的短半轴长为半径的圆相切. (1)求椭圆C的方程;(2)设椭圆C的左焦点为F1,右焦点F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直于l1于点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹方程.x2y2??1一个焦点的最短弦长为 2(2021-14)过椭圆43x2y2??1,3(2021-7)已知椭圆E的方程为左焦点为F1,如果椭圆E上的一点P到F1的259距离为2,M是线段PF1的中点,O为坐标原点,则OM= () A.4 B.2 C.223 D.8 24(2021-12)以双曲线x?4y?4的中心为顶点,右焦点为焦点的抛物线方程是 5(2021-14)抛物线的顶点坐标在坐标原点,焦点是椭圆x?2y?8的一个焦点,则此抛物线的焦点到准线的距离为6(2021-13)顶点在原点,准线方程是x=2的抛物线的方程是7(2021-20)(11分)已知双曲线16x?9y?144,F1,F2是两个焦点,点P在双曲线上,且满足PF1PF2的值. 1?PF2?32,求?F2222x2y2?1过点(?32,2),则该双曲线的焦点为 8(2021-15)若双曲线2?a49(2021-22)(13分)双曲线C的中心在坐标原点,顶点为A(0,2),A点关于一条渐近线的对称点为B(2,0),斜率为2且过点B的直线L交双曲线C与M,N两点. (1)求双曲线C的方程;(2)计算MN的值.10(2021-10)已知以原点为中心的双曲线的一条准线方程为x?5,离心率e?5,则5该曲线的标准方程为()x2?y2?1 A.4x?y?1 B.422y2?1 C.x?4y?1D.x?4222x2y2x2y2611(2021-8)已知双曲线2?2?1(a?b?0)的离心率是,则椭圆2?2?1的离abab2心率是() A.1223 B. C. D. 23222x2y212(2021-15)已知抛物线y?8x的准线过双曲线2?2?1(a?0,b?0)的一个焦点,ab且双曲线的离心率为2,则该双曲线的方程为213(2021-22)(12分)抛物线与直线y?4x与直线y?2x?k相交,截得的弦长为35,求k的值.x2y2314(2021-21)(12分)已知椭圆C:2?2?1(a?b?0)的离心率是,直线l:y?x?2ab3与原点为圆心,以椭圆C的短半轴长为半径的圆相切. (1)求椭圆C的方程;(2)设椭圆C的左焦点为F1,右焦点F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直于l1于点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹方程.15(2021-22)(13分)双曲线C的中心在坐标原点,顶点为A(0,2),A点关于一条渐近线的对称点为B(2,0),斜率为2且过点B的直线L交双曲线C与M,N两点. (1)求双曲线C的方程;(2)计算MN的值.16(2021-21)14分)已知椭圆C经过点A(1,),两焦点坐标分别为(?1,0),(1,0). (1)求椭圆C的方程;(2)E,F是椭圆上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值.32x2y25217(2021-22)(13分)已知椭圆2?2?1(a?b?0)点P(a,a)在椭圆上.ab52(1)求椭圆的离心率;(2)设点A为椭圆的左顶点,O为坐标原点,若点Q在椭圆上且满足AQ?AO,求直线OQ的斜率.18(2021-5)百米决赛有6 名运动员A、B、C、D、E、F参赛,每个运动员的速度都不同,则远动员A比运动员F先到终点的比赛结果共() A.360种 B.240种 C.120种 D.48种19(2021-4)用数字1,2,3,4,5组成没有重复数字的数,则可以组成的六位数的个数为() A.720 B.240 C.120 D.60020(2021-6)甲、乙、丙三位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则这三位同学不同的选修方案共有() A.48种 B.36种 C.96种 D.192种21(2021-8)名士兵拍成一排,其中甲乙两个必须排在一起的不同排法有() A.720种 B.360种 C.240种 D.120种22(2021-6)如果把4名干部分配到3个中队,每个中队至少要分配一名干部,那么不同的分配方法有() A.45种 B.36种 C.27种 D.9种23(2021-6)从4名男生和3名女生中选出3人,分别从事三项不同的工作,若这3人中至少有1名女生的选派方法有() A.108种 B.186种 C.216种 D.270种24(2021-7)在50件产品中有4件次品,从中任意抽取5件,至少有3件事次品的抽法共有()A.5种B.4140种C.96种D.4186种25(2021-7)我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架舰载机准备看舰,如果甲,乙二机必须相邻,丙,丁不能相邻,那么不同的着舰方法有() A.24种 B.18种 C.12种 D.48种 26(2021-11)过(a?b)20的展开式中第4r项与第r+2项的系数相等,则r= 27(2021-12)在(x?18)的展开式中,x5的系数为 2x28(2021-12)在(2x?18)的展开式中,常数项为3xn29(2021-13)已知(1?2n)的展开式中,二项式系数和为64,则它的二项展开式的中间项是30(2021-13)(2x?31(2021-13)(x?3110)的展开式中,常数项是 22x13x)18的展开式中含x15的项的系数为 12x32(2021-14)在(x?)8的展开式中常数项为33(2021-14)(x?110)的展开式中,x4的系数为 2x34(2021-21)(10分)已知8支球队中有3支弱队,以抽签的方式将8支球队分为A,B两组,每组4支,求:(1)3支弱队分在同一组的概率; (2)A组中至少有两支弱队的概率.35(2021-22)(13分)甲、乙、丙三位毕业生,同时应聘一个用人单位,其中甲被选中的概率是231,乙被选中的概率是,丙被选中的概率是,各自是否被选中相互独立. 543(1)求三人都被选中的概率;(2)求只有两人被选中的概率.36(2021-17)(10分)已知一个口袋中有大小、质地相同的8个球,其中有4个红球和4个黑球,现在从中任取4个球. (1)求取出的球的颜色相同的概率;(2)若取出的红球数不少于黑球数,则可获得奖品,求获得奖品的概率.37(2021-20)(10分)甲乙两人各射击一次,击中目标的概率分别是击是否击中目标之间相互独立,每人各次射击是否击中相互独立. (1)求甲射击4次,至少有1次击中目标的概率;23和,假设两人射34(2)求两人射击4次,甲恰好击中目标2次,且乙恰好击中目标3次的概率.38(2021-18)(12分)某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰,已知选手甲能正确回答第一、二、三、四轮问题的概率分别为4321,,,,且各轮问题能否正确回答互不影响. 5555(1)求选手甲进入第四轮才被淘汰的概率;(2)求选手甲至多进入第三轮考核的概率.39(2021-20)(14分)已知在3支不同编号的枪中有2支已经试射校正过,1支未经试射校正,某射手若使用其中校正过的枪,每次射击击中目标的概率为每次射击击中目标的概率为4,若使用没有校正的枪,51,假设没几是否击中之间相互没有影响. 5(1)若该射手用这2支已经校正过的枪各射击一次,求目标被击中的概率;(2)若该射手用这3支枪各射击一次,求目标至多被射中一次的概率.40(2021-16)(10分)战士小张考政治、语文、数学、外语4门课程,各课程考试成绩之间相互独立,其各门课程合格的概率分别为(1)求小张一门都不合格的概率;(2)求小张恰好有三门课程合格的概率.41(2021-20)(10分)袋中有大小相同的6个球,其中有4个红球,2个白球. (1)若任取3个球,求至少有一个白球的概率;(2)若有放回的取球3次,求恰好有1个白球的概率.4231,,,. 5342感谢您的阅读,祝您生活愉快。

武警部队院校招生统考士兵本科及士官高等职业技术教育《数学》模拟试题及详解(一)

武警部队院校招生统考士兵本科及士官高等职业技术教育《数学》模拟试题及详解(一)

D.63 种
【答案】B
【解析】解法 1:2 人中有 1 名女生的选法有
种;2 人都是女生的选法

种,上述两类选法均符合题意,故所有选法种数共有
种;
解法 2:从 10 名学生中选 2 名有
种选法,选出的 2 人都是男生的选法有
种,故所求选法有
种.
7.已知 a.b、c 为三条丌重合的直线,下面有三个结论:①若 a⊥b,a⊥c,则 b∥c; ②若 a⊥b,a⊥c,则 b⊥c;③若 a∥b,b⊥c,则 a⊥c.其中正确的个数为( ).
3



0

a

1

,则( ).
【答案】C
【解析】由对数运算法则
函数
是减函数,
,而 0<a<1, .
4.关亍 x 的丌等式 A.{x∣5a<x<-a}
的解集是( ).
B.{x∣-a<x<5a}
C.{x∣x>-a 或 x<5a}
D.{x∣x>5a 或 x<-a}
【答案】C 【解析】原丌等式化简为(x+a)(x-5a)>0,又 a<0,则 5a<-a,所以丌等式 的解为:x>-a 或 x<5a.
圣才电子书 十万种考研考证电子书、题库视频学习平台

即第一象限中双曲线的渐近线不椭圆 C 的交点坐标为
.所以四边形的面
积为
所以 b2=5.所以椭圆方程为

二、填空题(本大题包括 5 小题,每小题 5 分,共 】[3,+∞)
9.经过点 P(1,4)且不两条坐标轴围成的三角形面积等亍1的直线方程是( ). A.2x-y+2=0 B.8x-y-4=0 C.3x-y+1=0或2x-y+2=0 D.2x-y+2=0或8x-y-4=0 【答案】D

军考真题数学【完整版】doc

军考真题数学【完整版】doc

军考真题数学【完整版】.doc 军考真题数学【完整版】军考是一项严格的选拔考试,其中数学科目是考生们必须要面对的难关之一。

为了帮助考生更好地应对数学考试,我们为大家准备了一套军考数学完整版真题。

一、选择题1.若a + b = c,且a、b、c均为正整数,则下列哪个选项是正确的? A. a= b + c B. b = a + c C. c = a + b D. a = b - c2.某公司在2019年1月1日的账上有720万元,到2019年12月31日,账上的金额增加到1200万元。

则该公司在2019年的平均每月增加金额是多少?A. 40万元B. 60万元C. 80万元D. 100万元3.若x = 2,y = 3,则下列哪个选项是正确的? A. x + y = 6 B. x - y =1 C. xy = 6 D. x/y = 2/34.若一个圆的半径为r,则其直径是多少? A. r B. 2r C. 3r D. 4r5.若a = 2^2 + 3^2,b = 4^2 + 5^2,则下列哪个选项是正确的? A. a > bB. a < bC. a = bD. 无法比较二、填空题1.一辆汽车从A地到B地,全程共1000公里。

第一个100公里的路程行驶时间为2小时,第二个100公里的路程行驶时间为2.5小时,以此类推。

若一直以相同的速度行驶,到达B地需要多少小时?答:20小时2.若x = 1/2 + 1/3 + 1/4 + 1/5,则x的值是多少?答:47/603.若a、b是正整数,且满足a/b = 5/6,则a和b的最大公约数是多少?答:54.若一个长方形的长是2x,宽是3x,且面积为48,则x的值是多少?答:25.若x + y = 10,且xy = 16,则x和y的值分别是多少?答:4和6三、计算题1.已知正整数a、b、c满足a + b = 15,b + c = 18,c + a = 21。

2o18年军考数学试题题及答案

2o18年军考数学试题题及答案

2o18年军考数学试题题及答案在2018年的军事院校招生考试中,数学科目的试题涵盖了多个知识点,旨在测试考生的数学基础和解决问题的能力。

以下是部分试题及其答案,供参考:1. 已知函数f(x)=2x^2-4x+3,求函数的最小值。

答案:函数f(x)的最小值出现在x=1处,此时f(1)=2(1)^2-4(1)+3=1。

2. 计算定积分∫(0到1) x^2 dx。

答案:根据定积分的性质,∫(0到1) x^2 dx = (1/3)x^3 | (0到1) = (1/3)(1)^3 - (1/3)(0)^3 = 1/3。

3. 求极限lim(x→0) (sin(x)/x)。

答案:根据极限的性质,lim(x→0) (sin(x)/x) = 1。

4. 已知矩阵A=[1 2; 3 4],求矩阵A的行列式。

答案:矩阵A的行列式为|A| = (1)(4) - (2)(3) = 4 - 6 = -2。

5. 已知直线l的方程为y=2x+1,求直线l与x轴的交点坐标。

答案:直线l与x轴的交点坐标为(-1/2, 0)。

6. 计算二项式(a+b)^5的展开式中含a^3b^2的项的系数。

答案:根据二项式定理,含a^3b^2的项的系数为C(5,2) = 10。

7. 已知抛物线C的方程为y^2=4x,求抛物线C的焦点坐标。

答案:抛物线C的焦点坐标为(1, 0)。

8. 求函数y=ln(x)的反函数。

答案:函数y=ln(x)的反函数为y=e^x。

9. 计算复数z=1+i的模。

答案:复数z=1+i的模为|z| = √(1^2 + 1^2) = √2。

10. 已知等比数列{a_n}的首项a_1=2,公比q=3,求前n项和S_n。

答案:等比数列{a_n}的前n项和S_n = a_1(1-q^n)/(1-q) = 2(1-3^n)/(1-3) = (3^n - 1)/2。

这些题目和答案展示了2018年军考数学试题的多样性和深度,考生需要具备扎实的数学知识和灵活的解题技巧。

军考数学专题复习测试卷及答案

军考数学专题复习测试卷及答案

2022年军考数学专项复习测试卷解三角形1.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,已知sin 22sin cos cos c B b B C A +=.(Ⅰ)求角A ;(Ⅱ)若4a =,求BC 边上的中线AD 长度的取值范围.2.如图:在ABC ∆中,22223b ac ac =+-,点D 在线段AC 上,且2AD DC =.(1)用向量BA ,BC 表示BD ;(2)若2AB =,433BD =,求BC 的长;(3)若2AC =,求DBC ∆的面积最大值.3.设ABC ∆中角A ,B ,C 所对的边为a ,b ,c ,BE 为ABC ∠的角平分线,且sin sin sin sin A C a b A ABC c--=+∠.(1)求ABC ∠的大小;(2)若2AC =且ABC ∆的面积为32,求BE 的值.4.在ABC ∆中,a ,b ,c 分别为内角A ,B ,C 的对边,已知2sin cos sin A B C =,且边BC 上的中线长为4.(1)证明:A B =;(2)求ABC ∆面积的最大值.5.在锐角三角形ABC 中,角A 、B 、C 的对边分别为a ,b ,c ,已知26cos ()cos 52A A π++=.(1)求A ;(2)若2a =,求22b c +的取值范围.参考答案与详解1.【解答】解:(Ⅰ)因为sin 22sin cos cos c B b B C A +=,所以2sin cos 2sin cos cos c B B b B C A +=,由正弦定理可得2sin sin cos 2sin sin cos cos C B B B B C B A +=,因为sin 0B ≠,所以sin A A =,可得tan A =,又(0,)A π∈,所以3A π=.(Ⅱ)由(Ⅰ)可得3A π=,所以22162cos b c bc A bc +-==,因为0bc >,所以22160b c +->,由基本不等式可得2222162b c b c ++- ,所以2232b c + ,故221632b c <+ ,设ADB θ∠=,则222()cos 2a c AD a AD θ=+-⋅⋅,222()cos()2a b AD a AD πθ=+-⋅⋅-,所以222222a AD b c =+-,所以2412AD < ,所以(2AD ∈,.2.【解答】解:(1)2212()3333BD BA AD BA AC BA BC BA BA BC =+=+=+-=+ .(2)22223b ac ac =+- ,22223a cb ac ∴+-=,由余弦定理知,222213cos 223ac a c b B ac ac +-===,由(1)知,1233BD BA BC =+ ,222212144||()||||||cos ||33999BD BA BC BA BA BC B BC ∴=+=+⋅+ ,∴216141442||||39939BC BC =⨯+⨯⨯⨯+ ,即23||2||330BC BC +-= ,解得||3BC = 或113-(舍负),BC ∴的长为3.(3) 1cos ,(0,)3B B π=∈,∴22sin 3B =,由222222224423333b ac ac a c ac ac ac ac =+-⇒=+--= ,3ac ∴,当且仅当a c ==时,取等号,2AD DC = ,∴11111222sin 33323233BDC ABC S S ac B ∆∆==⨯⨯⨯= ,DBC ∴∆的面积最大值为3.3.【解答】解:(1)因为sin sin sin sin A C a b A ABC c --=+∠,可得:a c a b a b c --=+,整理得:222a cb ac +-=,即222122a cb ac +-=,所以:1cos 2ABC ∠=,又(0,)ABC π∠∈,所以:3ABC π∠=,(2)AC BC BA =- ,平方可得:224a c ac =+-,1sin 2ac B ==,可得:2ac =,所以226a c +=,所以222()210a c a c ac +=++=,所以:a c +=又由:ABC BAD BCD S S S ∆∆∆=+()BE a c =+,所以:3305BE a c ==+.4.【解答】证明:(1)因为2sin cos sin sin()sin cos sin cos A B C A B A B B A ==+=+,所以sin cos sin cos 0A B B A -=,即sin()0A B -=,所以A B =;解(2):由(1)a b =,取BC 的中点D ,ABD ∆中,由余弦定理得,222()2cos 22a a c AD AD ADB =+-⋅∠,ACD ∆中,由余弦定理得,222(2()cos 22a ab AD AD ADC =+-⋅∠,因为ADB ADC π∠+∠=,两式相加得,222222a c b AD +=+,即22264a c +=,由2032c <<,226420a c =->,1128322433ABC c S ∆==⨯= ,所以ABC ∆面积的最大值323.5.【解答】解:(1)因为26cos ()cos 52A A π++=,所以26sin cos 5A A +=,整理可得26cos cos 10A A --=,解得1cos 2A =,或13-,又(0,)2A π∈,所以1cos 2A =,可得3A π=.(2)由正弦定理可得sin sin sin a b c A B C ===,可得b B =,c C =,可得22221616161cos 21cos 2168sin sin ()(cos 2cos 2)3332233B C b c B C B C --+=+=+=-+,因为3A π=,可得4223C B π=-,所以22168416811681168[cos 2cos(2)](cos 2cos 22)(cos 22)cos(2)333332332333b c B B B B B B B B ππ+=-+-=--=-=-+,又022032B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,可得62B ππ<<,可得22(33B ππ+∈,4)3π,可得cos(2[13B π+∈-,1)2-,所以2216820cos(2)(3333b c B π+=-+∈,8].。

2023年年武警部队院校招生统一考数学试题

2023年年武警部队院校招生统一考数学试题

201*年武警部队院校招生统一考数学试题201*年武警部队院校招生统一考数学试题密:号封考线内不要答题:名姓201*年武警部队院校招生统一考试数学试题(本试卷共三大题,总分值150分,考试时间150分钟)一、选择题:本大题共8小题,每题5分,共40分。

在每题给出的四个选项中,只有一个符合题目要求的,把该项的写在题后的括号内。

1.已知集合M=x|2x2,xR,N=x|x1,xR,则M∩N等于()A.(1,2)B.(-2,1)C.D.(-∞,2)2.sin585°的值为()A.222B.C.232D.323.设Sn是等差数列an的前n项和,已知a23,a611,则S7等于()A.13B.35C.49D.634.抛物线x24y的焦点坐标是()A.(0,1)B.(1,0)C.(0,-1)D.(-1,0)5.a,b,cR,以下命题正确的选项是()A.aba2b2B.abacbcC.abacbcD.ab11ab6.已知向量a(1,2),b(x,4),若a∥b,则ab等于()A.-10B.-6C.0D.67.双曲线y29x2161的准线方程是()A169916x5Bx5Cy5Dy5.高三(一)班学生要安排毕业晚会的4个音乐节目,2个舞蹈节目和1个曲艺节目的演第1页(共2页)出挨次,要求两个舞蹈节目不连排,则不同排法的种数是()A.1800B.3600C.4320D.5040二、填空题:本大题共7小题,每题5分,共35分,把答案填在题中横线上。

9.sin33cos27cos33sin27.10.过点A(2,3)且平行于直线x2y30的直线方程为____________.11.甲、乙两个人投篮,他们投进蓝的概率分别为25,12现甲、乙两人各投篮1次则两个人都投进的概率是12.在长方体ABCDA1B1C1D1中,已知AB3,AA1=1,则异面直线BA1与CC1所成的角为_____________.13.i是虚数单位,5i2i=D1C1A1B1 14.函数f(x)x1x1的定义域是DC15.正方体的内切球与外接球的半径之比为AB三、解答题:本大题共6小题,共75分,解同意写出文字说明,证明过程或演算步骤。

军队院校招收士兵学员文化科目统考 军考命题走向 数学第一章 集合

军队院校招收士兵学员文化科目统考 军考命题走向 数学第一章 集合

第一章集合〖分析与总结〗一、真题走向二、教学标准与重点总结1、近9年考查过的是交集、并集、补集和充要条件,均为第一章第一节“集合”和第二节“简易逻辑”的内容。

2、近9年考查难度为高、中、低档都有,而且主要是直接考查。

3、近9年真题只有小题,题号位置均为选择题和填空题的前半部分。

4、在教学过程中,建议重点学习第一章第一节“集合”和第二节“简易逻辑”的相关内容,其它内容一般掌握即可。

〖军考真题〗1.(2008军考真题选择1)已知集合{|10R}P x x x x =-∈≥(),,1{|0R}1Q x x x =>∈-,,则P Q 等于( )A .∅B .{|1R}x x x ∈≥,C .{|1R}x x x >∈,D .{|10R}x x x x <∈≥或,2.(2008军考真题选择4)设ππ22αβ∈-,(,),那么“αβ<”是“tan tan αβ<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件3.(2009军考真题选择1)设R 为实数集,若A 为全体正实数的集合,{2112}B =--,,,,则下列结论正确的是( ) A .{21}A B =-- ,B .0A B =-∞R ()(,)ðC .0A B =+∞ (,)D .{21}A B =--R (),ð 4.(2009军考真题选择3)条件||p x x =:,条件2q x x -≥:,则p 是q 的( ) A .充分不必要条件 B .必要不充分C .充要条件D .既不充分也不必要条件5.(2010军考真题选择1)若集合{|23}A x x =-≤≤,{|1Q x x =<-或4}x >,则A B = ( )A .{|3x x ≤或4}x >B .{|13}x x -<≤C .{|34}x x <≤D .{|21}x x -<-≤ 6.(2010军考真题选择3)0a <是方程2210ax x ++=至少有一个负根的( ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件 7.(2011军考真题填空2)若{R |||3}{R |21}x A x x B x =∈<=∈>,,则A B = . 8.(2012军考真题选择1)设全集5={|0}x U x ∈Z ≤≤,集合{13}A =,,{|B y y x ==,}x A ∈,则集合U U AB = ()()痧( ) A .{0245},,, B .{045},,C .{245},,D .{45},9.(2012军考真题选择2)设a 、b 都是实数,则“22lg 1lg 1a b +<+()()”是“a b <”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件10.(2013军考真题选择1)已知集合{|10R}P x x x x =-∈≥(),,1{|0R}1Q x x x =>∈-,, 则P Q 等于( )A .∅B .{|1R}x x x ∈≥,C .{|1R}x x x >∈,D .{|1x x ≥或0R}x x <∈, 11.(2013军考真题选择2)已知0A B C ≠ ,则“A 、B 、C 三者符号相同”是“方程22Ax By C +=表示椭圆”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件12.(2014军考真题选择1)已知集合{101}P =-,,,{|}Q x x ab a b P a b ==∈≠,,且,则 P Q 等于( )A .{01},B .{10}-,C .{101}-,,D .{11}-,13.(2014军考真题选择3)“12x >且22x >”是“124x x +>且124x x >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要14.(2015军考真题选择1)设集合2{5log 3}P a =+,(),集合{}Q a b =,,若{2}P Q = ,则P Q = ( )A .{124},,B .{125},,C .{123},,D .{235},,15.(2015军考真题选择3)“k h =”是“直线2y x =+与圆222x k y h -+-=()()相切”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件16.(2016军考真题选择1)已知集合1{R |||2}{R |25}2x A x x B x =∈<=∈<< ,,则A B = ( )A .{R |22}x x ∈-<<B .{R |12}x x ∈-<<C .2{R |2log 5}x x ∈-<<D .2{R |1log 5}x x ∈-<< 17.(2016军考真题选择3)已知集合{1}{123}A a B ==,,,,,则“3a =”是“A B ⊆”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件〖真题详解〗1.【答案】C【详解】由10x x -≥(),得1x ≥或0x ≤;由101x >-,得1x >,即Q P ⊆, 得{|1R}P Q Q x x x ==>∈ ,.【点评】本题考查解不等式和集合的运算(详见《军考突破》中1-1-10、6-3-1). 2.【答案】C 【详解】函数tan y x =在区间ππ22-(,)上是增函数,αβ<tan tan αβ⇔<. 【点评】本题考查的是正切函数的单调性以及充要条件的判定(详见《军考突破》中4-3-3、1-2-3). 3.【答案】D【详解】∵{|0}A x x =>,0{|}A x x =R ≤ð,∴{21}A B =--R (),I ð. 【点评】本题考查集合的交、并、补运算.(详见《军考突破》中1-1-10、1-1-11、1-1-12) 4.【答案】A 【详解】p :||0x x x =⇔≥;q :20x x x -⇔≥≥或1x -≤,∴p q ⇒,q /⇒p . 【点评】本题涉及不等式的化简,重点考查充要条件的判定.(详见《军考突破》中1-2-3) 5.【答案】D【详解】{|21}A B x x =-<- ≤.034211-2-4-3-【点评】本题考查集合的交集运算.(详见《军考突破》中1-1-10) 6.【答案】B【详解】0a <时,用根与系数的关系定理可知方程2210ax x ++=有一个负根,一个正根.0a =时,方程2210ax x ++=有一个负根12x =-.这就表明0a <是方程2210ax x ++=有一个负根的充分非必要条件.【点评】要注意考虑特殊情况,这是做选择题的首选方法,本题也可分析出方程至少有一个负根的充要条件,但是作为选择题不是最好的方法.(详见《军考突破》中2-2-3) 7.【答案】{|03}x x <<【详解】{|33}{|0}A x x B x x =-<<=>,,所以{|03}A B x x =<< .【点评】本题涉及绝对值不等式、指数不等式的解法,重点考查集合的交集运算(详见《军考突破》中1-1-10、6-3-1、6-3-4). 8.【答案】D【详解】{012345}{13}{02}U A B ,,,,,,,,,=== ∴{0245}{1345}U U A B ,,,,,,,==痧∴{45}U U AB ()(),=痧. 【点评】本题考查集合的交、补运算.(详见《军考突破》中1-1-10、1-1-12) 9.【答案】D【详解】先化简2222111111||||ga gb a b a b +<+⇔+<+⇔<()() 又||||a b <不能推出a b <,a b <不能推出||||a b <.【点评】本题涉及对数的运算,重点考查充要条件.(详见《军考突破》中1-2-3) 10.【答案】C【详解】{|1P x x =≥或0R}x x ∈≤,,{|1R}Q x x x =>∈,,则{|1R }P Q x x x =>∈ ,. 【点评】考查集合的交集运算,涉及一元二次不等式以及分式不等式解法(详见《军考突破》中1-1-10、6-3-1). 11.【答案】C 【详解】“方程22Ax By C +=表示椭圆”⇔“A 、B 、C 三者符号相同,且A B ≠”,所以“A 、B 、C 三者符号相同”⇐“方程22Ax By C +=表示椭圆”,而“A 、B 、C 三者符号相同”/⇒“方程22Ax By C +=表示椭圆”, 故“A 、B 、C 三者符号相同”是“方程22Ax By C +=表示椭圆”的必要不充分条件. 【点评】考查命题充分性必要性的判定,涉及椭圆的标准方程(详见《军考突破》中1-2-3、8-1-4). 12.【答案】C【详解】{10}Q =-,,则{101}P Q =- ,,. 【点评】考查集合的并集运算(详见《军考突破》中1-1-11).13.【答案】A【详解】充分性显然成立,若15x =,212x =,满足124x x +>且124x x >,但不满足12x >且22x >,故必要性不成立.【点评】考查命题的充分性和必要性的判断(详见《军考突破》中1-2-3). 14.【答案】B【详解】据题设2log 321a a +=⇔=()∴2b = {52}{12}P Q ==,,,,∴{125}P Q = ,,【点评】考查集合的并集运算(详见《军考突破》中1-1-11).15.【答案】A【详解】直线2y x =+与圆222x k y h -+-=()()相切⇔圆心到直线的距离等于半径,即|2|2k h =-+=所以k h =或40k h -+=.【点评】考查命题的充分性和必要性的判断(详见《军考突破》中1-2-3). 16.【答案】B【详解】∵{R |||2}={22}A x x x x =∈<-<< ,1{R |25}2x B x =∈<< 2log 51{222}x x -=<< 2{1log 5}x x =-<<,∴A B = {R |12}x x ∈-<< .【点评】本题考查集合的交集运算.(详见《军考突破》中1-1-10) 17.【答案】A【详解】∵3a A B =⇒⊆,但3/A B a ⊆⇒=,所以“3a =”是“A B ⊆”的充分不必要条件.【点评】考查命题的充分性和必要性的判断(详见《军考突破》中1-2-3).。

2021年解放军武警士兵考军校-军考数学压轴题专项复习测试卷及答案

2021年解放军武警士兵考军校-军考数学压轴题专项复习测试卷及答案

综合压轴题测试1.在ABC ∆中,a ,b ,c 是角A ,B ,C 所对的边,sin sin sin()B C A C -=-.(1)求角A ;(2)若a =,且ABC ∆的面积是,求b c +的值.2.已知函数()f x =的定义域为R .(1)求实数m 的取值范围;(2)若m 的最大值为n ,当正数a ,b 满足2132n a b a b+=++时,求74a b +的最小值.3.设{}n a 是一个公差不为零的等差数列,其前n 项和为n S ,已知990S =,且1a ,2a ,4a 成等比数列.(1)求数列{}n a 的通项公式;(2)设11n n n b a a +=,求数列{}n b 的前n 项和n T .4.甲、乙两人进行定点投篮游戏,投篮者若投中则继续投篮,否则由对方投篮,第一次由甲投篮已知每次投篮甲、乙命中的概率分别为12、23;(1)求第3次由乙投篮的概率;(2)求前4次投篮中各投篮两次的概率.5.已知函数()log a f x x =,22()21g x m x mx =-+,若1b a >>,且f (b )15()2f b +=,b a a b =.(1)求a 与b 的值;(2)当[0x ∈,1]时,函数()g x 的图象与()(1)h x f x m =++的图象仅有一个交点,求正实数m 的取值范围.6.已知椭圆2222:1(0)x y C a b a b +=>>的短轴长为2,A ,B 分别是椭圆的右顶点和下顶点.(1)求椭圆C 的标准方程;(2)已知P 是椭圆C 内一点,直线AP 与BP 的斜率之积为12-,直线AP 、BP 分别交椭圆于M ,N 两点,记PAB ∆,PMN ∆的面积分别为PAB S ∆,PMN S ∆.①若M ,N 两点关于y 轴对称,求直线PA 的斜率;②证明:PAB PMN S S ∆∆=.7.如图,四棱柱1111ABCD A B C D -的底面ABCD 是平行四边形,且1AB =,2BC =,60ABC ∠=︒,E 为BC 的中点,1AA ⊥平面ABCD ,1A D 与1AD 交于O .(Ⅰ)证明://OE 平面11CDD C ;(Ⅱ)证明:平面1A AE ⊥平面1A DE ;(Ⅲ)若1DE A E =,试求异面直线AE 与1A D所成角的余弦值.参考答案与解析1.【详解】(1)在ABC ∆中,sin sin()B A C =+,sin()sin sin()A C C A C ∴+-=-,即sin cos cos sin sin sin cos cos sin A C A C C A C A C +-=-2cos sin sin 0A C C ∴=≠,∴1cos 2A =,∴3A π=.(2)1sin 2ABC S bc A ∆==,12bc ∴=,由余弦定理得2222222cos ()3a b c bc A b c bc b c bc =+-=+-=+-,22()348b c a bc ∴+=+=,∴b c +=.2.【详解】(1)因为函数的定义域为R ,所以|1||3|0x x m ++--恒成立,设函数()|1||3|g x x x =++-,则m 不大于函数()g x 的最小值,又|1||3||(1)(3)|4x x x x ++-+--=,即()g x 的最小值为4,所以4m .(2)由(1)知4n =,所以21(622)()1213274()(74)4324a b a b a b a ba b a b a b a b +++++++=++=++5132519()24223424a b a b a b a b ++=+++⨯=++,当且仅当23a b a b +=+,即3210b a ==时,等号成立.所以74a b +的最小值为94.3.【详解】(1)设等差数列{}n a 的公差为(0)d d ≠,则21a a d =+,413a a d =+,由1a ,2a ,4a 成等比数列,可得2214a a a =,即2111()(3)a d a a d +=+,整理,可得1a d =.由91989902S a d ⨯=+=,可得12a d ==,1(1)2n a a n d n ∴=+-=.(2)由于2n a n =,所以1111()4(1)41n b n n n n ==-++,从而1111111111[()()()(412233414144n n n T n n n n =-+-+-+⋯+-=⨯=+++,即数列{}n b 的前n 项和为44n n T n =+.4.【详解】(1)由题意得第三次有乙投篮包含两种情况:①第一次甲中第二次甲不中;②第一次甲不中,第二次乙中.∴第3次由乙投篮的概率:111127(1)(1)222312p =-+-⨯=.(2)前4次投篮中各投篮两次包含三种情况:①第一次甲中,第二次甲不中,第三次乙中;②第一次甲不中,第二次乙不中,第三次甲不中;③第一次甲不中,第二次乙中,第三次乙不中.∴前4次投篮中各投篮两次的概率:211212112213(1)(1)(1)(1)(1(1)22323223336p =⨯-⨯+-⨯-⨯-+-⨯⨯-=.5.【详解】(1)()log a f x x =,(1)a >,若b a >,且15()()2f b f b +=,可得1,22a logb =或,因为1b a >>,所以log 1a b >,所以log 2a b =,即2a b =,因为b aa b =所以22()a a a a =,所以22a a =,解之得2a =,4b =.(2)因为m 为正数,222()21(1)g x m x mx mx =-+=-为二次函数,在区间1(0,)m 为减函数,在区间1(,)m +∞为增函数,函数2log (1)y x m =++为增函数,分两种情况讨论:①当01m <时,11m,在区间[0,1]上,2(1)y mx =-为减函数,值域为2[(1)m -,1],函数2log (1)y x m =++为增函数,值域为[m ,1]m +,此时两个函数图象有一个交点,符合题意;②当1m >,得11m <,在区间1(0,)m 上,2(1)y mx =-为减函数,在区间1(,1)m 为增函数,函数2log (1)y x m =++为增函数,值域为[m ,1]m +,若两个函数图象有一个交点,则有2(1)1m m -+,解之得0m 或3m ,因为m 为正数,则3m ;综上m 的取值范围为(0,1][3 ,)+∞.6.【详解】(1)椭圆2222:1(0)x y C a b a b +=>>的短轴长为2,22b ∴=,即1b =,22c e a ==,可得22a =,∴椭圆的方程为2212x y +=,(2)①解:设直线PA 的斜率为k ,则直线PA 的方程为(y k x =-,联立22(22y k x x y ⎧=-⎪⎨+=⎪⎩,消去y 并整理得,2222(12)420k x x k +-+-=,解得1x =,22222212x k =+22222(12M k ∴+,222)12k -+.直线PA ,PB 的斜率乘积为12-,∴直线PB 的方程112y x k=--,联立2211222y x k x y ⎧=--⎪⎨⎪+=⎩,消去y 并整理得22(12)40k x kx ++=,解得10x =,22412k x k -=+,24(12k N k -∴+,221212k k -+.M ,N 关于y 轴对称,∴222222401212k k k --+=++,即2210k --=,解得222k =.当22k +=时,由12(2y y x ⎧=⎪⎪⎨+⎪=-⎪⎩,解得(2P,1)2+-,在椭圆C 外,不满足题意.∴直线PA 的斜率为222-,(3)由(2)可知22222(12M k -+,222)12k -+,24(12k N k -+,2212)12k k -+,A ,0),(0,1)B -,∴直线MB的方程为21y =-,2t =,由(112y k x y x k ⎧=⎪⎨=--⎪⎩,解得2222212P k x k -=+,222212p k y k =-+,22222222222222(1)(1)(()1212(12)k k k k k k PA k k k -+++=-+=+++2222222222222(1)(14)()(1)1212(12)k k k PB k k k -++=+-=+++2222242(12)(1)(14)()(12)k k k PA PB k -+++222222222222222(2)2(1)(1)(12)(12)(12)k k k PM k k k --++-+-=+=+++2222222222222224)(122)(1)(14)(12)(12)(12)k k k k k PN k k k -+-+++=+=+++2222242(12)(1)(14)()(12)k k k PM PN k -++∴=+ PA PB PM PN ∴= ,又APB MPN ∠=∠11sin sin 22PAB PMN S PA PB APB S PM PN MPN ∆∆∴=∠==∠ 7.【详解】(Ⅰ)取AD 的中点H ,连接OE ,EH ,则OH 是△1AD D 的中位线,则1//OH D D ,则正方形ABCD 中,//EH CD ,则平面//OHE 平面11C D DC ,OE ⊂ 平面OEH ,//OE ∴平面11CDD C ;(Ⅱ)依题意,12BE EC BC AB CD ====,ABE ∴∆是正三角形,60AEB ∠=︒,又CDE ∆ 中,1(180)302CED CDE ECD ∠=∠=︒-∠=︒,18090AED CED AEB ∴∠=︒-∠-∠=︒,即DE AE ⊥,1AA ⊥ 平面ABCD ,DE ⊆平面ABCD ,1DE AA ∴⊥.1AA AE A = ,DE ∴⊥平面1A AE ,DE ⊆ 平面1A DE ,∴平面1A AE ⊥平面1A DE .(Ⅲ)取1BB 的中点F ,连接EF 、AF ,连接1B C , △1BB C 中,EF 是中位线,1//EF B C ∴11////A B AB CD ,11A B AB CD ==,∴四边形ABCD 是平行四边形,可得11//B C A D 1//EF A D ∴,可得AEF ∠(或其补角)是异面直线AE 与1A D 所成的角.CDE ∆ 中,DE =,CD =,1A E =,1AE AB ==1A A ∴=,由此可得22BF =,AF EF ===,2226cos 26AE EF AF AEF AE EF +-∴∠== ,即异面直线AE 与1A D 所成角的余弦值为6.。

武警军考数学试题及答案

武警军考数学试题及答案

武警军考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2B. √2C. 0.5D. 3.14答案:B2. 函数y=x^2+2x+1的图像是一个:A. 直线B. 抛物线C. 双曲线D. 圆答案:B3. 以下哪个表达式等价于a^2-2ab+b^2?A. (a-b)^2B. (a+b)^2C. a^2-b^2D. a^2+2ab+b^2答案:A4. 已知集合A={1,2,3},B={2,3,4},求A∩B的元素个数。

A. 1B. 2C. 3D. 4答案:B5. 若sinθ=1/2,且θ在第一象限,则cosθ的值为:A. √3/2B. -√3/2C. 1/2D. -1/2答案:A6. 等差数列{an}中,a1=2,公差d=3,则a5的值为:A. 14B. 17C. 20D. 23答案:A7. 函数f(x)=3x-2的反函数为:A. f^(-1)(x)=(x+2)/3B. f^(-1)(x)=(x-2)/3C. f^(-1)(x)=3x+2D. f^(-1)(x)=3x-2答案:A8. 已知向量a=(1,2),b=(2,3),则向量a·b的值为:A. 5B. 6C. 7D. 8答案:B9. 抛物线y=x^2-4x+3的顶点坐标为:A. (2,-1)B. (2,1)C. (-2,-1)D. (-2,1)答案:A10. 以下哪个函数是奇函数?A. f(x)=x^2B. f(x)=x^3C. f(x)=x^2+1D. f(x)=x^3-1答案:B二、填空题(每题4分,共20分)11. 圆的方程为x^2+y^2=9,其半径为________。

答案:312. 向量a=(3,-1)与向量b=(2,4)垂直,则a·b=________。

答案:-213. 已知等比数列{bn}中,b1=2,公比q=3,则b3=________。

答案:1814. 函数f(x)=x^2-4x+4的最小值为________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二〇一五年武警部队院校招生统一考试士兵本科数学真题与详解一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知全集为R ,集合{|13}{0246}A x x B =-<=≤,,,,,则A B 等于( ) A .{02}, B .{102}-,, C .{|02}x x ≤≤ D .{|12}x x -≤≤ 2.在等比数列{}n a 中,已知31815243⋅⋅=a a a ,则3911=a a ( )A .3B .9C .27D .813.设232555322555a b c ===(),(),(),则、、a b c 的大小关系是( )A .>>b c aB .>>a b cC .>>c a bD .>>a c b4.不等式1021x x -+≤的解集是()A .11]2(,- B .11]2[,- C .112(-,)[,)∞-+∞D .112(-,][,)∞-+∞5.复数Z 满足12i Z i +=(),则复数Z 在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限6.一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为( )A .33!⨯B .333!⨯()C .43!()D .9! 7.若l 、m 、n 是互不相同的空间直线, α、β是不重合的平面,则下列命题中为真命题的是( )A .若α⊥l ,∥βl ,则β⊥aB .若β⊥a ,α⊂l ,则β⊥lC .若⊥l n ,⊥m n ,则∥l mD .若a β∥,α⊂l ,β⊂n ,则∥l n8. 将边长为a 的正方形ABCD 沿对角线AC 折起,使=BD a ,则三棱锥D -ABC 的体积为( )A .36aB .312aC 3D 39.过坐标原点且与点1)的距离都等于1的两条直线的夹角为( )A .090B .045C .030D .06010.已知点23A -(,)在抛物线2:2=C y px 的准线上,记C 的焦点为F ,则直线AF 的斜率为( )A .43-B . 1-C .34-D .12-二、填空题:本大题共5小题,每小题5分,共25分. 11.若函数2143()=-++kx f x kx kx 的定义域为R ,则实数k 的取值范围是_______.12.已知向量a 、b 满足0⋅=a b ,||1||2a b ==,,则|2|a b -= _______.13. 若[]sin 242θθππ∈=,,,则sin θ=_______. 14.在5611()()-+-x x 的展开式中,含3x 的项的系数是_______. 15.椭圆2244+=x y 长轴上一个顶点为A ,以A 为直角顶点作一个内接于椭圆的等腰直角三角形,该三角形的面积是_______.三、解答题:本大题共7小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分10分,(1)和(2)分别为6分和4分)已知函数21()=-x f x 的反函数为1()-f x ,4()log (31)=+g x x (1)用定义证明 1()-f x 在定义域上的单调性; (2)若1f x g x -≤()(),求x 的取值集合D . 17.(本小题满分10分,其中(1)和(2)各5分)在ABC △中,内角A B C ,,所对的边分别为a b c ,,,已知sin a c B C -,.(1)求cos A 的值; (2)求cos 26A π-()的值. 18.(本小题满分10分,其中(1)和(2)分别为4分和6分)已知{}n a 是递增的等差数列,24a a ,是方程2560-+=x x 的根. (1)求{}n a 的通项公式;(2)求数列{}2n na 的前n 项和. 19.(本小题满分10分,(1)和(2)分别为4分和6分)已知向量cos sin cos sin 0a b ααβββα==<<<π(,),(,),. (1)若||2-=a b ,求证:⊥a b ;(2)设01c =(,),若+=a b c ,求α和β的值.20.(本小题满分10分,(1)和(2)分别为4分和6分)骰子(六个面上分别标以数1,2,3,4,5,6)每抛掷一次,各个面上的概率均等.(1)连续抛掷2次,求向上的数之和为6的概率;(2)连续抛掷5次,求向上的数为奇数恰好出现3次的概率.21.(本小题满分12分,(1)和(2)分别为5分和7分)如图,在四棱锥-PDC底面ABCD,P ABCD中,底面ABCD是正方形,侧面⊥PD DC PDC E是PC的中点.=∠=,,90(1)求证:∥PA平面EDB;(2)若⊥PB平面EFD.EF PB于点F,求证⊥22.(本小题满分13分,其中(1)和(2)分别为5分和8分)双曲线C的中心在坐标原点,右焦点为0),渐近线为=y.(1)求双曲线C的标准方程;(2)设直线:1A B两点,则当k为何值时,以AB为直径的圆=+l y kx与双曲线C交于、过原点?〖答案与详解〗一、选择题 1.【答案】A【详解】集合{|13}{0246}A x x B =-<=≤,,,,,则=A B {02},. 【点评】考查集合的交集运算.(详见《军考突破》中1-1-10) 2.【答案】B【详解】根据等比数列性质,由31815243⋅⋅=a a a ,得5583=a ,83=a ,则329971197811119a a a a a a a a a ====(). 【点评】考查等比数列的性质.(详见《军考突破》中3-3-4) 3.【答案】D【详解】由25x y =()为减函数且3255>,得32552255b c =<=()(),再由250y x x =>()为增函数且3255>,得22553255a c =>=()(),所以、、a b c 的大小关系是>>a c b .另法:将232555322555a b c ===(),(),(),同时5次方,得5253523928245255125525a b c ======(),(),(),显然有55545208125125125a cb =>=>=, 则、、a bc 的大小关系是>>a c b . 【点评】考查函数的单调性.(详见《军考突破》中2-5-5) 4.【答案】A【详解】不等式1021x x -+≤的零点为112、-,用根轴法(零点分段法)如图:解集是11]2(,-. 【点评】考查分式不等式解法,涉及序轴标根法.(详见《军考突破》中6-3-1) 5.【答案】A【详解】复数Z 满足12i Z i +=(),即2222212222111121i i i i i i Z i i i i i --+=====+++--()()(),则复数Z 对应点为11(,),是在复平面内的一象限.【点评】考查复数的运算.(详见《军考突破》中9-2-3)6.【答案】C【详解】第一步,分别将每一家捆绑,有33!()种方法;第二步,再将三个全排列,有3!种方法.所以每家人坐在一起,则不同的做法为43!(). 【点评】考查排列问题的基本计算方法—捆绑法.((详见《军考突破》中7-1-4)中)7.【答案】A【详解】根据两平面垂直的判定定理,由α⊥l ,∥βl ,能够推出β⊥a .【点评】考查平面与平面垂直的判定.(详见《军考突破》中10-2-3). 8.【答案】D【详解】由题意,如图在三棱锥-D ABC 中,側棱长===DA DC BD a,====OA OB OC OD ,从而可知高为OD ,底面积212∆=ABC S a ,则三棱锥D-ABC 的体积为231132=⨯=V a .【点评】考查三棱锥的体积的求法.(详见《军考突破》中10-4-2)9.【答案】D【详解】如下图,过坐标原点且与点1的距离都等于1的两条直线的夹角为00223060∠=∠=⨯=AOB AOP .【点评】考查从圆外一点出发的圆的两条切线的夹角.(详见《军考突破》中11-2-3) 10.【答案】C 【详解】由题意,抛物线2:2=C y px 的准线方程为:2=-x ,所以C 的焦点为20F (,),直线AF 的斜率为033224k -==---().【点评】考查抛物线的准线方程与焦点坐标,以及过两点的斜率公式.(详见《军考突破》中12-3-3) 二、填空题 11.【答案】304k <≤ 【详解】∵函数2143()=-++kx f x kx kx 的定义域为R ,∴0=k 或204120k k k ≠⎧⎨∆=-<⎩(),∴304k <≤. 【点评】考查函数的定义域的求法.(详见《军考突破》中2-5-1) 12.【答案】【详解】∵向量a 、b 满足0⋅=a b ,||1,||2==a b ,∴22|2|4422-=+-⋅=a b a b a b . 【点评】考查向量模的求法.(详见《军考突破》中5-1-6) 13.【答案】34【详解】由[]sin 242θθππ∈=,,,∴sin cos sin cos θθθθ+=-=∴1113sin 2224θ====(((. 【点评】考查三角恒等式的应用变形.(详见《军考突破》中4-2-2)14.【答案】30-【详解】展开式中含有3x 的项为:333333356102030(-)(-)+=--=-C x C x x x x ,∴含3x 的项的系数为30-.【点评】考查二项展开式的通项.(详见《军考突破》中7-2-2) 15.【答案】1625【详解】如图,设等腰直角三角形∆AMN 的底边20MN t t =>(),则椭圆2244+=x y 上点N 的坐标为2t t -(,),从而有22244t t -+=(),解得45=t ,所以∆AMN 的面积是21625=t .【点评】考查椭圆的标准方程及顶点坐标,以及三角形的面积公式.(详见《军考突破》中12-1-4) 三、解答题 16.【详解】(1)函数21()=-x f x 的值域为1+∞(-,), 由21=-x y ,解得2log 1x y =+(),∴12log 11f x x x -=+>-()()(). 任取121-<<x x ,111122122221()log 1log 1log 1x f x f x x x x --+-=+-+=+()()(). ∵121-<<x x∴12011<+<+x x , ∴121011+<<+x x . ∴1221log 01+<+x x ,可得1112f x f x --<()(), 故1()-f x 在定义域1+∞(-,)上为单调增函数. (2)∵1f x g x -≤()(),即2log 1x +()4log 31x +≤(),即2log 1x +()4log 31x +≤() ∴210310131x x x x +>⎧⎪+>⎨⎪++⎩≤(),解之得01x ≤≤,∴x 的取值集合为[01],=D .【点评】考查反函数和函数的单调性及对数不等的解法.(详见《军考突破》中2-5-5,2-5-7,6-3-4) 17.【详解】(1)在ABC △中,由正弦定理sin sin =b cB C,及已知条件sin =B C可得=b又∵,-=a c ∴2=a c由余弦定理222222cos 2+-===b c a A bc . (2)在ABC △中,由(1)知cos =A,可得sin =A又221cos 22cos 114=-=-=-A A .sin 22sin cos 2===A A A ∴cos 2cos2cos sin 2sin 666A A A πππ-=⋅+⋅()1142=-=【点评】考查正弦定理与余弦定理.(详见《军考突破》中4-5-1、4-5-2) 18.【详解】 (1)方程2560-+=x x 的两根为1223x x ==, 由题意得2423a a ==,设等差数列{}n a 的公差为d ,则42122-==a a d ∴211222122n a a n d n n =+-=+-⨯=+()(). (2)设数列{}2nn a 的前n 项和为n S ,由(1)知1222++=n n n a n . 23134122222①+++=++++n n n n n S 34121341222222②++++=++++n n n n n S ①-②得3412131112242222()+++=++++-n n n n S 34123111242222()+++=++++-n n n 34123111242222()+++=++++-n n n 34123111242222()+++=++++-n n n ∴1422++=-n n n S . 【点评】考查由n S 求n a 和裂项相消法求数列的前n 项的和.(详见《军考突破》中3-4-1、3-4-7) 19.【详解】(1)由题意2||2-=a b ,即22()-=a b∴22-22⋅+=a a b b∵向量cos sin a αα=(,),cos sin b ββ=(,)0βα<<<π,.∴2222=||||11=2++=+a b a b ∴0⋅=a b ,∴⊥a b .(2)∵cos sin a b αα+=+(,)cos sin ββ=(,)cos cos sin sin αβαβ++=(,)01)(,∴cos cos 0sin sin 1αβαβ+=⎧⎨+=⎩∴cos cos sin sin 1αβαβ=-⎧⎨+=⎩∵0βα<<<π ∴1sin sin 2αβαβ=π-⎧⎪⎨==⎪⎩∴566αβππ==,. 【点评】考查向量平行及向量的数量积的运算.(详见《军考突破》中5-1-6、5-1-8)20.【详解】(1)设A 表示事件“抛掷2次,求向上的数之和为6”向上的数之和为6的结果有(1,5)、(2,4)、(3,3)、(4,2)、(5,1)5种 连续抛掷2次总的结果共有6×6=36种,∴5A 36()=P . (2)设B 表示事件“抛掷5次,求向上的数为奇数恰好出现3次”. 每次抛掷向上的数为奇数和偶数的概率都是12可看作5次独立重复试验中,事件“向上的数为奇数” 恰好出现3次. 则3325511105B 3C 1223216P P ==⨯⨯-==()()()(). ∴连续抛掷5次,向上的数为奇数恰好出现3次的概率为516. 【点评】考查独立重复试验的概率.(详见《军考突破》中8-1-6) 21.【详解】(1)在正方形ABCD 中,连接AC 交BD 于O ,连接EO. 因为ABCD 是正方形,所以O 为AC 的中点. 又因为E 为PC 的中点,所以EO//PA.∵⊄PA 平面EDB ,⊂EO 平面EDB ,∴∥PA 平面EDB .(2)∵平面⊥PDC 平面ABCD ,且平面PDC 平面=ABCD CD , 在平面ABCD 中,⊥BC DC∴⊥BC 平面PDC , 又∵⊂DE 平面PDC ,∴⊥BC DE又∵=PD DC ,E 是PC 的中点, ∴⊥PC DE在平面PBC 中,,=BC PC C∴⊥DE 平面PBC , ∴⊥PB DE又∵⊥EF PB ,且在平面EFD 中,,=DE EF E∴⊥PB 平面EFD .【点评】考查平面与平面平行和直线与平面垂直的判定.(详见《军考突破》中10-2-2、10-2-3) 22.【详解】(1)由题意可知bc a==,∵222+=a b c∴22113a b ==,,∴双曲线的标准方程为2231-=x y . (2)由22131=+⎧⎨-=⎩y kx x y得223220k x kx ---=()由230-≠k 且0∆>,得<k ≠k ,设1122A x y B x y (,),(,) ∵以AB 为直径的圆过原点, ∴⊥OA OB ,∴0⋅=OA OB ,即12120+=x x y y 又∵1212222233k x x x x k k +=-=--,∴2121212121111y y kx k x k x x k x x =++=+++=()()()∴22103+=-k ,解得1=±k .故当1=±k 时,以AB 为直径的圆过原点.【点评】考查双曲线的标准方程和直线与双曲线相交的问题.(详见《军考突破》中12-2-4、12-4-5)。

相关文档
最新文档