土壤水,气,热的调节

合集下载

土壤学真题及答案

土壤学真题及答案

一、判断题(共10分每题2分,对的在题号前划√,错的在题号前划×)1、土壤形成是一个综合性的过程,它是物质的地质大循环和生物小循环矛盾统一的结果。

地面岩石的风化、风化产物的淋溶与搬运、堆积,进而产生成岩作用是地质大循环。

√2、土壤结构影响土壤水、肥、气、热的供应能力,从而在很大程度上反映了土壤肥力水平,是土壤的一种重要化学性质。

(物理性质)3、土壤液态水的流动是由于从一个土层到另一个土层中土壤水势的梯度而发生的流动的方向是较低的水势到较高的水势。

×4、吸附在土壤胶体表面的交换性致酸离子(H+和AI3+),交换性氢和铝离子只有转移到溶液中,转变成溶液中氢离子时,才会显示酸性,故称活性酸。

×潜性酸5、土壤中二氧化碳的含量比大气中的含量高。

√二、简答题(20分每题10分)1、土壤酸化的原因有哪些?在多雨的自然条件下,降水量大大超过蒸发量,土壤及其母质的淋溶作用非常强烈,土壤溶液中的盐基离子易于随渗滤水向下移动。

这时溶液中的H+取代土壤胶体上的金属离子,而为土壤所吸附,使土壤盐基饱和度下降,氢饱和度增加,引起土壤酸化,在交换过程中,土壤溶液中H+可以由下述途径补给。

(1水的解离。

水的解离常数虽然很小,但由于H+离子被土壤吸附而使其解离平衡受到破坏,所以将有新的H+离子释放出来。

(2碳酸解离。

土壤中的碳酸主要是二氧化碳溶于水生成,二氧化碳由植物根系、微生物呼吸以及有机质解离产生。

(3有机酸的解离土壤中各种有机质分解的中间产物有草酸、柠檬酸等多种低分子有机酸,特别在通气不良及真菌活动下,有机酸可能积累很多。

(4土壤中AL+和H+解离。

盐基饱和度与土壤的酸碱性有密切关系,土壤盐基饱和度的高低反映了土壤中致酸离子的含量。

(5酸性沉降。

一是通过气体扩散,使固体物质降落到地面,称之为干沉降。

另一种是随降水夹带大气酸性物质到达地面,称之为湿沉降。

(6其他来源.农业生产上的施肥、灌溉措施也会影响土壤PH。

土壤水空气和热量之间的关系

土壤水空气和热量之间的关系

土壤水空气和热量之间的关系分析土壤肥力要素水、气、热之间的关系。

由于土壤水分的重要作用,因此掌握土壤水的形态学观点和能量学观点。

土壤水的类型土壤学中的土壤水是指在一个大气压下,在105℃条件下能从土壤中分离出来的水分。

土壤中液态水数量最多,对植物的生长关系最为密切。

液态水类型的划分是根据水分受力的不同来划分的,这是水分研究的形态学观点。

这一观点在农业、水利、气象等学科和生产中广泛应用。

一、吸湿水土壤颗粒从空气中吸收的汽态水分子。

从室外取土,放在室内风干若干时间后,表面上看似乎干燥了,但把土壤放在烘箱中烘烤,土壤重量会减轻;再放置到常温常压下,土壤重量又会增加,这表明土壤吸收了空气中的水汽分子。

土壤的吸湿性是由土粒表面的分子引力作用所引起的,一般来说,土壤中吸湿水的多少,取决于土壤颗粒表面积大小和空气相对湿度。

由于这种作用的力非常大,最大可达一万个大气压,所以植物不能利用此水,称之为紧束缚水。

二、膜状水土粒吸足了吸湿水后,还有剩余的吸引力,可吸引一部分液态水成水膜状附着在土粒表面,这种水分称为膜状水。

重力不能使膜状水移动,但其自身可从水膜较厚处向水膜较薄处移动,植物可以利用此水。

但由于这种水的移动非常缓慢(0.2—0.4mm/d),不能及时供给植物生长需要,植物可利用的数量很少。

当植物发生永久萎蔫时,往往还有相当多的膜状水。

三、毛管水当把一个很细的管子(毛细管)插入水中后,水分可以上升的较高于水平面,并保持在毛细管中。

毛管水:由于毛管力的作用而保持在土壤中的液态水。

毛管水可以有毛管力小的方向移向毛管力大的方向,毛管力的大小可用Laplace公式计算:P = 2T/r式中的P为毛管力,T为水的表面张力,r为毛管半径。

根据毛管水是否与地下水相连,可分为2种类型:毛管悬着水:降水或灌溉后,由地表进入土壤被保存在土壤中的毛管水。

毛管上升水:或毛管支持水,土壤中受到地下水源支持并上升到一定高度的毛管水。

影响毛管上升水的因素:地下水水位和毛管孔隙状况毛管水上升高度用下式计算:H=75/d,d为土粒平均直径(上升高度与颗粒直径间关系见p142的附表)。

第四章土壤空气和热量

第四章土壤空气和热量

二、土壤通气性
• 土壤通气性泛指土壤空气与大气进行交换、 不同土层之间气体扩散或交换的能力。
(一)土壤通气性的重要意义
• 其重要性在于补充氧气。 • 如果没有大气氧气的补充,土壤中的氧气 将迅速被耗尽,缺氧将严重影响根系的正 常生长,影响好气微生物的活动,从而影 响土壤养分的有效化。一些有毒的还原性 物质的累积将毒害根系,严重时会使植物 死亡。 • 因此,土壤必须具有一定的通气性。
(二)土壤通气性的机制
1、气体扩散 指某种气体由于分压梯度而产生的移动。 这是土壤与大气进行气体交换的主要形式。 土壤呼吸: O2(大气) 土壤 CO2(土壤) 大气
2、气体整体流动
• 由于土壤空气与大气之间存在总压力梯度 而引起的气体运动,称为整体流动。 • 温度、气压、降水、灌溉水的挤压等都可 以引起气体的整体流动。
• R随时间而变(年、月、日、瞬间) • 当R为正值,地面辐射收入大于支出,地 面增温; • 当R为负值,地面辐射收入小于支出,地 面降温; • 一般白天R为正值,地面增温; • 夜间R为负值,地面降温。
(二)影响地面辐射平衡的因素
1、太阳辐射强度 ---太阳的总辐射强度取决于气候(天气)情 况。 ---晴天的辐射强度比阴天大; ---日照角越大,单位面积上接受的热量越多, 辐射强度越高(中午,垂直,最高) ---北半球的南坡,太阳入射角比平地大,土 温比平地高;南坡土温比北坡高。
四、土壤热性质
一、土壤热容量(C) 土壤热容量指单位质量或容积的土壤每升 高(或降低)1º C所需要(或放出)的热容 量。 C = Cv*ρ ρ:土壤容重
• 水的热容量最大(4.184); • 气体的热容量最小(1.255*10-3); • 矿物质(2.163-2.435)和有机质(2.515)热 容量介于其中。 • 在固相组成物质中,腐殖质热容量大于 矿物质。 • 土壤热容量主要取决于水分含量的多少 和腐殖质含量。

土壤学真题及答案

土壤学真题及答案

、判断题(共10分每题2分,对的在题号前划”,错的在题号前划X)1、土壤形成是一个综合性的过程,它是物质的地质大循环和生物小循环矛盾统一的结果。

地面岩石的风化、风化产物的淋溶与搬运、堆积,进而产生成岩作用是地质大循环。

”2、土壤结构影响土壤水、肥、气、热的供应能力,从而在很大程度上反映了土壤肥力水平,是土壤的一种重要化学性质。

(物理性质)3、土壤液态水的流动是由于从一个土层到另一个土层中土壤水势的梯度而发生的流动的方向是较低的水势到较高的水势。

X4、吸附在土壤胶体表面的交换性致酸离子(H+和AI3+),交换性氢和铝离子只有转移到溶液中,转变成溶液中氢离子时,才会显示酸性,故称活性酸。

X潜性酸5、土壤中二氧化碳的含量比大气中的含量高。

” 二、简答题(20分每题10分)1、土壤酸化的原因有哪些?在多雨的自然条件下,降水量大大超过蒸发量,土壤及其母质的淋溶作用非常强烈,土壤溶液中的盐基离子易于随渗滤水向下移动。

这时溶液中的H+取代土壤胶体上的金属离子,而为土壤所吸附,使土壤盐基饱和度下降,氢饱和度增加,引起土壤酸化,在交换过程中,土壤溶液中H+可以由下述途径补给。

(1水的解离。

水的解离常数虽然很小,但由于H+离子被土壤吸附而使其解离平衡受到破坏,所以将有新的H+离子释放出来。

(2碳酸解离。

土壤中的碳酸主要是二氧化碳溶于水生成,二氧化碳由植物根系、微生物呼吸以及有机质解离产生。

(3有机酸的解离土壤中各种有机质分解的中间产物有草酸、柠檬酸等多种低分子有机酸,特别在通气不良及真菌活动下,有机酸可能积累很多。

(4 土壤中AL+和H+解离。

盐基饱和度与土壤的酸碱性有密切关系,土壤盐基饱和度的高低反映了土壤中致酸离子的含量。

(5酸性沉降。

一是通过气体扩散,使固体物质降落到地面,称之为干沉降。

另一种是随降水夹带大气酸性物质到达地面,称之为湿沉降。

(6其他来源.农业生产上的施肥、灌溉措施也会影响土壤PH。

2、土壤有机质对土壤肥力有哪些影响?土壤有机质含量是土壤肥力水平的一项重要指标,对土壤肥力的影响是多方面的,它对土壤养分供应、土壤结构、土壤生态功能都有重要的影响。

土壤水分、空气和热量

土壤水分、空气和热量

1cm
19 ℃
(2)导热率的物理意义
导热率大则传热快,得热后迅速下传(失热后迅速补 给),引起的变温小。
导热率小则传热慢,得热后不易下传(失热后补给缓 慢),引起的变温大。
J s-1
1cm2
20 ℃
21 ℃ 21 ℃
1cm
19 ℃
20 ℃ 19.2 ℃
Question:土壤的导热率大小取决于什么? Answer:取决于土壤中的基本组成物质。
固相 50% 矿物质45% 水20-30% 空气
30-20% 孔隙50%
有机质5%
不同土壤组分的热容量
土壤组成物质
粗石英砂 高岭石 石灰 腐殖质 Fe2O3 Al2O3
土壤空气 土壤水分
重量热容量 (Jg-1℃-1)
0.745 0.975 0.895 0.682 0.908 1.996 1.004 4.184
一般作物根系的吸水力平均为1.5MPa。
2、土壤膜状水
土壤膜状水:吸湿水达到最大后,土壤还有剩余的引力吸 附液态水, 在吸湿水的外围形成一层水膜。
膜 状 水 示 意 图
土壤膜状水的有效性:
土壤膜状水
3.1MPa (靠近土壤内层)(无效水)
受到的引力
0.625 MPa (靠近土壤外层)(有效水)
一般作物根系的吸水力平均为1.5MPa。
取容积为1的土壤,设它吸收(放出)的热量为 ⊿Q,引起的温度变化为⊿T ,则根据定义Cv=⊿Q/⊿T, 这就是容积热容量。
转换公式一下:⊿T=⊿Q/Cv, 当不同的物质吸收或放出相同热量时候,热容量越 大的物质,升、降温缓慢, 即温度变化小,反之亦然。
Question:土壤的热容量大小取决于什么?

9-11土壤水、气、热的调节土壤氧化还原性质土壤孔性

9-11土壤水、气、热的调节土壤氧化还原性质土壤孔性

9 土壤水、气、热的调节§1 土壤水的调节① 控制地表径流,增加土壤水分入渗② 减少土壤水分蒸发③ 合理灌溉④ 提高土壤水分对作物的有效性⑤ 多余水的排除§2 土壤空气调节改善土壤结构,增大土壤孔隙度;通过调节水分,控制通气状况。

§3 土壤温度调节1)合理耕作与施用有机肥2)以水调温3)覆盖与遮荫Chap. 10 土壤氧化还原性质§1 土壤氧化还原体系§2 土壤氧化还原电位土壤氧化还原电位可用下式表示:E0为标准氧化还原电位(化学手册中可查到)n为反应中电子转移数用0.059时,单位为v,用59时为mv土壤氧化还原状况分级(表2-21)旱地土壤的Eh值多在400~700mV之间,大于700mV,表明土壤通气过强; Eh 值低于200mV,则土壤通气不良。

水田土壤的Eh值变化较大,正常值低于200~300mV,长期积水的水稻土可降至100mV甚至下降到负值。

一般水稻适宜在轻度还原条件(180-300mV)下生长。

水田土壤的Eh值低于180mV或100mV,将使土壤中Fe2+、Mn2+的浓度升高,导致水稻Fe、Mn中毒。

Eh降至负值时,会产生有机酸和H2S。

Eh <-100mV时,硫化物与亚铁生成硫化铁沉淀,使水稻产生黑根。

土壤养分的转化也与Eh值有密切的关系。

N的转化(硝化、反硝化)Fe的有效性P的有效性等Chap. 11 土壤孔性§1 土壤孔性的概念土壤中土粒或团聚体之间以及团聚体内部的空隙叫做土壤孔隙。

土壤孔性包括孔隙度(孔隙的数量)和孔隙类型(孔隙的大小及其比例),前者决定着土壤气、液两相的总量,后者决定着气、液两相的比例。

§2 土壤孔隙度土壤孔隙度是单位容积土壤中孔隙容积占整个土体容积的百分数。

它表示土壤中各种大小孔隙度的总和。

一般是通过土壤容重和土壤密度来计算。

土壤孔隙度= [1- (容重)/相对密度] ×100%土壤孔隙度=[孔隙容积/土壤容积] ×100%=[(土壤容积-土粒容积)/土壤容积] ×100%=[1-(土粒容积/土壤容积)] ×100%= [1-(土粒重量/土粒密度)/(土壤重量/容重)] ×100%= (1-容重/土粒密度)×100%土粒密度:单位容积(无粒间孔隙)的固体土粒的干重。

调解土壤水、气、热的措施

调解土壤水、气、热的措施

调解土壤水、气、热的措施
调解土壤水气热的措施可以采取以下几个方面的方法:
1. 排水:合理排除过剩的土壤水分,预防土壤积水。

可以采取开挖
排水沟、修建排水管道等措施。

2. 保持土壤结构:增加土壤通气性和保水性,有利于水分和气体的
交换。

可以进行定期翻耕、增加有机质、施加适量的施肥等。

3. 种植适合环境的作物:选择适应土壤水气热条件的作物进行种植,避免种植不适应的作物导致土壤水分不均衡。

4. 覆盖保护:通过覆盖保护土壤,减少水分蒸发和土壤温度波动。

可以使用覆膜、覆盖物、秸秆等材料进行保护。

5. 调节灌溉管理:根据不同作物的需水量和生长时期,合理安排灌
溉时间和水量,避免过量浇水或不足浇水。

6. 构建防风护坡:对于易发生风蚀的区域,可以构建防风护坡,减
少土壤中的风蚀和水分蒸发。

7. 合理利用地下水和地表水资源:在水资源有限的情况下,合理利用地下水和地表水资源,进行水资源的合理配置和利用。

8. 定期监测和评估:定期对土壤水气热状况进行监测和评估,根据监测结果调整措施,进行及时的调整和改进。

综上所述,调解土壤水气热需要从排水、土壤结构、作物选择、覆盖保护、灌溉管理、防风护坡、合理利用水资源以及定期监测和评估等多方面入手,综合应用不同措施,才能有效改善土壤水、气、热状况。

第五节 土壤的水气热条件

第五节 土壤的水气热条件

2.土壤导热率
评价土壤传导热量快慢的指标。指面积
为1m2、相距1m的两截面上温度相差1K时, 每秒中所通过该单元土体的热量焦耳数。 单位:J/(m.K.s)土壤三相组成中,空气 的导热率最小,矿物质的导热率最大, 为土壤空气的100倍。水的导热率介于二 者之间。土壤越紧实,导热率越好。
(三)土壤空气和温度调节
3. 毛管水

靠土壤毛管引力而保持在土壤毛管孔隙 中的水叫毛管水,运动较快,不再受土粒引 力作用,是可以移动的自由水。是植物用水 的主要来源。毛管水所受的毛管引力在 0.625—0.01MPa,小于1.5MPa。
(1)毛管悬着水
指地形部位较高,不受地下水影响的地
区其土壤上层所保持的水分。当毛管悬 着水达到最大值时的土壤含量叫做“田 间持水量”,田间持水量是因土灌溉的 一个重要依据。
(二)、土壤热量
土壤的热量来源太阳辐射、生物热、地热。
1.土壤的热特性 (1)土壤热容量 重量热容量—单位重量土壤升高10K所需 的热量(J/g.K)容积热容量—单位容积土壤 升高10K所需的热量( J/g.K)
土壤热容量的大小
决定于土壤固、气、液,由于固相变化不大,
而空气的热容量很小(水的1/3000),而水 的热容量很大,因此,土壤热容量的大小主 要决定于土壤含水量,土壤含水多,升高10 C所需要的热量大,降低10 C放出的热量也越 多。
二、土壤空气和土壤热量
(一)土壤空气
土壤空气是土壤三相组成之一,也是土 壤肥力因素之一。
1.土壤空气的特点
(1)CO2含量高于大气,O2含量低于大气
(2)常被水汽饱和,相对湿度高 (3)含有一定的还原性气体,H2S、CH4、H2 (4)土壤空气的组成处于变化之中,特别是 O2和CO2

土壤空气、土壤热量及水气热调节

土壤空气、土壤热量及水气热调节

项目 对照 自然含水量 9.90
化肥 11.76
猪粪 15.08
秸秆 14.10
化肥+猪 粪
16.92
化肥+秸 秆
15.71
田间持水量 25.00 28.40 30.98 29.12 31.23 31.41
饱和含水量 35.18 35.10 39.23 36.90 40.71 40.68
34/42
2.6.1.2 土壤空气调节
对于粘质土壤的通气不良可采取合理耕作结合增 施有机肥料,以改善土壤结构、增加土壤通气孔隙。
对于地势低洼、地下水位高的易涝地区的土壤通 气不良应加强土壤水分管理,建立完整的排水系统,降 低地下水位,及时排除渍涝。
对于因降(灌)水量大而造成的土壤过湿、表土 板结而影响通气的,应及时中耕、松土,破除地结皮等, 土壤通气性就会大大改善。
K =λ /Cv
式中:K为土壤导温率;
λ 为导热率;
Cv为土壤容积热容量。
26/42
27/42
土壤组成与土壤的热特性
重量
导热率
土壤组 成分
容积热容量 (J·cm-3·K-1)
热容量 (J·g-1·K-1)
(J·cm-1·s-1·K-1)
土壤
空气
0.0013
1.00 0.00021-0.00025
28/42
2.5.3 土壤温度与作物生长 2.5.3.1 土壤温度与种子萌发 2.5.3.2 土壤温度与作物根系生长 2.5.3.3 土壤温度与作物营养生长和生殖生长 2.5.3.4 土壤温度影响养分转化与吸收 此外,土壤有机质的转化、养分的释放以及土壤 中水、气的运动等也都受到土壤温度的影响。
29/42
2.6 土壤水、气、热的调节与氧化还原性 2.6.1 土壤水、气、热的调节 2.6.2 土壤氧化还原性质

第五章 土壤空气与热状况

第五章 土壤空气与热状况

4、对土壤热特性的影响因素:固、液、气三相物质比例 由下表可见,土壤水分热容量最大,土壤空气最小,而 矿质土粒和土壤有机质介于两者之间,而固体是相对稳 定的,则主要取决于土壤水分和土壤空气的含量。 所以,粘土:水分含量较高,早春季节解冻迟,土壤回 升慢,为冷性土; 砂土:水分含量低,早春土温回升快,为热性土。
三、土壤通气性(soil aeration) 土壤通气性(土壤透气性):指土壤空气与近地层大气进行气
体交换以及土体内部允许气体扩散和流动的性能。
土壤通气性影响多种生物的生命活动,各种有机物质转化的化
学过程,根际呼吸,种子萌发,土壤病虫害的发生。
土壤通气产生的机制:
(一)、土壤空气扩散(Soil air diffusion) 指某种气体成分由于分压梯度与大气不同而产生的移动。它是 土壤空气与大气间进行交换的主要因素,原理服从气体扩散 公式: F=-D· dc/dx F:单位时间气体扩散通过单位面积的数量; Dc/dx:气体浓度梯度或气体分压梯度; D:扩散系数,负号表示其从气体分压高向低扩散。
2、土壤水分调节:
减少土壤水分的损失;增加作物对降雨,灌溉水及土壤中 原有贮水的有效利用,同时包括对多余水分的排除等, 措施如下: (1)控制地表径流,增加土壤水分入渗;

合理耕翻:创造疏松的耕作层,保持土壤适当的透水性 以吸收更多的降雨和减少地表径流损失。 等高种植,建立水平梯田:改造地形,平整土地,减少 水土流失,梯田层层蓄水,坎地节节拦蓄 改良表土质地结构:增加土壤孔隙度,使蓄墒能力增强。
第二节
一、土壤热来源与平衡
土壤热状况
(一)土壤热来源
1、太阳辐射(solar radiation) 与所处的纬度有关,随纬度的提高,接受辐射减少;

第五章土壤水、热、气、肥及其相互关系

第五章土壤水、热、气、肥及其相互关系

1.3.1.1吸湿水: 干燥的土粒由于分子引力和静电引力的 存在而从空气中吸收水份的性质称为吸 湿性,所紧密吸附的水分就称为吸湿水. 特点: <1>.吸湿水的数量与大气温、湿度有关, 大 气温度愈低、湿度愈大, 吸湿量愈大; 也与质地有关,质地愈重,吸湿性愈强,吸 湿量也愈大.


<2>.吸湿水受土粒引力极大{31~10000个大气 压},无溶解力,不导电,在土壤中不能自由运动, 与土粒作整体运动. 同时,植物根系的根吸力一般只有10~20个大 气压,所以吸湿水不能被一般植物吸收利用.

年变化 - (太阳辐射能的季节变化) 呈现两个阶段, 升温阶段, 2~7月; 降温阶段, 8~1月; 最高温7月, 最低温1月. 随土层加深年变幅也减小, 在5~20米处消 失.
影响土温的因素: 一切影响土壤热量收入或支出的因素最终都将 影响土壤温度的高低, 可分为环境因素和土壤 内部因素两大类. 环境因素: a. 土壤所处的纬度 随着纬度的增加, 太阳入射角减小, 单位面积土 壤得到的太阳辐射能减少, 故纬度越高, 土温越 低.
第 五 章 土壤水、热、气、 肥及其相互关系

土壤水、热、气、肥4大因素 :
各有其独立的运动发展变化规律 各自与环境状况息息相关 共存于土壤体系中,相互联系、相 互制约的。
第 一 节

土壤热性质
1- 土壤的热量来源 土壤热量主要来自4个方面,太阳辐射能、地热、 生物热和化学热。 1-1 太阳辐射: 任何物体,温度高于绝对零度 (-273 ℃) 时, 都要以电磁波的方式向外辐射能量。 太阳表面温度高达6000 ℃, 它要以电磁波 的方式向外辐射大量能量, 这种能量是土壤热 量的主要来源, 一般每cm2每分钟可得到1.9 卡 的热量.

土壤水分、空气、热量(1)

土壤水分、空气、热量(1)
害、渍害。因此必须排除土壤多余的水分,主要包括排除地表 积水、降低过高的地下水和除去土壤上层滞水。
2.土壤空气调节
• 对于一般旱作来说,发生通气不良、供氧不足的情况 很少。土壤通气不良主要发生在那些质地粘重、通气 孔隙度不足10%、气体交换缓慢的粘质土壤上。对于 此类土壤可采取合理耕作结合增施有机肥料,以改善 土壤结构、增加土壤通气孔隙。土体中水分过多不仅 空气容量减少,而且阻碍土壤空气与大气的气体交换, 这是地势低洼、地下水位高的易涝地区土壤通气性差 的主要原因,对此应加强土壤水分管理,建立完整的 排水系统,降低地下水位,及时排除渍涝。至于那些 主要是由降(灌)水量大而造成的土壤过湿、表土板结而 影响通气的,则应及时中耕、松土,破除地结皮等, 土壤通气性就会大大改善。
壤水的收人大于支出,则土壤水分含量增加;反之,土壤水的支出
大于收入,则土壤水分含量降低。在农业生产实践中,土壤水分平 衡的作用主要表现为:
①计算作物日耗水量 例如,某玉米地在6月15日灌水前根层土壤 含水量厚度为70mm,然后灌水55mm。6月25日测定同一根层的含 水量厚度为81mm,假设灌水后的这段时间内无降雨过程,也没有 土壤水分的深层渗漏,则在此期间玉米的日耗水量为:
• (1)土水势 • (2)土壤水吸力 • (3)土壤水分特征曲线
(1)土水势 土水势(soil water potential)表示土壤水分在土—水平衡体系 中所具有的能态。通常用水势(ψw)表示。由于土壤水分受到各 种吸力的作用,有时还存在附加压力,所以其水势必然与参 比系统不同,两者之差为土水势的量度。通常规定纯水池参 比系统的水势能为零,因此,土水势一般为负值,它主要由 以下几个分势组成。 基质势(matric potential) 通常用ψm表示。对于非饱和土壤 而言,由于基质吸力对水分的吸持,完成这一过程需要环境 对它做功,所以基质势为负值;而饱和的土壤水不受基质吸 持,故其基质势为零。

调解土壤水、气、热的措施

调解土壤水、气、热的措施

调解土壤水、气、热的措施
1. 加强土地保水措施,例如建立防护林带、植被覆盖等,降低蒸发速率和水分蒸发量,增加土壤保水能力。

2. 在土壤上覆盖植物秸秆等材料,改善土壤结构,增强土壤保水和保肥能力,同时降低土壤表面温度,减少水分蒸发。

3. 实行灌溉管理,采取适当的灌溉方式,如滴灌、喷灌、微灌等,减少水分的浪费和土壤蒸发。

4. 改善土壤通气性,增加土壤的气体交换和氧气供应,促进土壤微生物群落的发展和植物根系的生长。

5. 选择适宜的农作物种植,根据其对水分的需求和生长特点进行合理配置,减少水分的浪费和土壤蒸发。

6. 加强土壤有机质的积累,增强土壤的肥力和保水能力,改善土壤的生态环境和微生物群落的发展。

7. 控制土壤温度,避免出现过高或过低的温度,影响土壤水、气、热的平衡。

8. 合理利用农药和化肥,减少对土壤和水环境的污染,避免影响土壤水、气、
热的平衡。

土壤水、气、热调节

土壤水、气、热调节

有机无机配施对土壤水分状况的影响 ( %)
项目
对照 化肥
自然含水量 9.90 11.76 田间持水量 25.00 28.40 饱和含水量 35.18 35.10
猪粪 15.08 30.98 39.23
秸秆 化肥+猪粪 化肥+秸秆
14.10 29.12 36.90
16.92 31.23 40.71
15.71 31.41 40.68
灌溉方法:
地面平整、质地偏粘的土壤、大田作物和果园可采用畦灌; 土壤质地偏砂、丘陵旱地、菜园地等可选喷灌; 设施栽培的蔬菜可滴灌; 水分渗漏过快、深层漏水严重的土壤不宜采用沟灌。
灌溉方式:喷灌、滴灌、沟灌等
喷灌
滴灌
④提高土壤水分对作物的有效性
通过深耕结合施用有机肥,降低凋萎系数,提高 田间持水量,增加土壤有效水的范围;加厚耕层,促 进根系生长,扩大根系吸水范围,增加土壤水分的作 物有效性。
②减少土壤水分蒸发
中耕除草,消灭杂草,减少蒸腾;切断上下土层间 的毛管,降低土表蒸发,减少水分损失。
地面覆盖在干旱和半干旱地区,可使用地膜、作物 秸秆等进行土表覆盖,以减少水分蒸发损失。
③合理灌溉
灌溉目的:对根层补充水分,使土壤含水量达到田间持水量。 灌溉定额:据土壤自然含水量与其田间持水量之差确定。
二、土壤空气调节
质地粘重、通气孔隙度不足10%、气体交换缓慢的粘质土壤。
措施: 合理耕作结合增施有机肥料,以改善土壤结构、
增加土壤通气孔隙。 地势低洼、地下水位高的易涝地区,建立完整
的排水系统,降低地下水位,排除渍涝。 由降(灌)水量大而造成土壤过湿、表土板
结,则应中耕、松土,破除地结皮等。
三、土壤温度调节

土壤水、空气和热量

土壤水、空气和热量

curve)(P68-69自学)
第三节 土壤空气
一、土壤空气组成
土壤空气与大气组成含量的差异
气体 O2(%)
20.94
18.0~20.03
CO2(%)
0.03
0.15~0.65
N2(%)
78.05
78.8~80.24
其它气体(%)
0.98
0.98
近地表大气
土壤空气
土壤空气与近地表大气组成,主要差别: (1)土壤空气中的CO2含量高于大气; (2)土壤空气中的O2含量低于大气; (3)土壤空气中水汽含量一般高于大气; (4)土壤空气中含有较多的还原性气体。
毛管上升水达最大量时的土壤含水量。
毛管上升水受地下水压影响,通常大于田间持水
量。毛管持水量是计算土壤毛管孔隙度的依据。
毛管孔度=毛管持水量 ×容重
通气孔度=总孔度-非活性孔度-毛管孔度
(三)土壤水的有效性(availability)
土壤水的有效性是指土壤水能否被植物吸收利用 及其难易程度。不能被植物吸收利用的水称为无效水 (unavailable water),能被植物吸收利用的水称为有 效水(available water)。有效水的范围是凋萎系数至 田间持水量间的差值,即凋萎系数是土壤有效水的下 限。
二、土壤空气的运动
(一)土壤空气的对流(convection)
指土壤与大气间由总压力梯度推动的气体整体流动,也 称质流。对流由高压区流向低压区。
影响土壤空气对流的因素
(1)气压变化:大气压上升,一部分空气进入土壤孔隙,
大气压下降,土壤空气膨胀,一部分土壤空气进入大气。
(2)温度变化:土壤温度高于大气温度时,土壤中的空气
由重力作用产生的水势。如果土壤水在参照面之 上,则重力势为正,反之,重力势为负。 5、总水势(Ψt)

土壤水分平衡、土壤空气的运动、土壤热量与土壤热性质

土壤水分平衡、土壤空气的运动、土壤热量与土壤热性质

其土壤含水量的变化应等于其来水水增加,负值表示减少。

田间土壤水分收支示意图P 下渗水 D 降水灌溉 I上行水 U根据田间土壤水分示意图,可列出土壤水分平衡的数学表达式:P+l+U=E+T+R+In+D+△W式中:△W 表示计算时段末与时段初土体储水量之差(mm);公式中左侧为水分进入量;而右侧则为水分支出量。

当△W 为零时,说明,土层中水分无增无减,即收支平衡。

植物冠层截流 ln蒸腾、蒸发ET 径流损失 R动,并不断地与大气进行交换。

如果土壤空气和大气不进行交换,土壤空气中的氧气可能会在12~40h消耗殆尽。

土壤空气运动的方式有两种:对流和扩散。

(一)对流定义:是指土壤与大气间由总压力梯度推动的气体的整体流动,也称为质流。

土壤与大气间的对流总是由高压区流向低压区。

低压对流方向:高压总压力梯度的产生:气压变化、温度梯度、表面风力、降雨或灌溉、翻耕。

土壤空气对流方程式:q v = -(k /η) ▽pq v—空气的容积对流量(单位时间通过单位横截面积的空气容积);k —通气孔隙透气率;η —土壤空气的粘度;▽p —土壤空气压力的三维梯度。

空气对流量随着土壤透气率和气压梯度的增大而增大。

(二)扩散定义:在大气和土壤之间CO2和O2浓度的不同形成分压梯度,驱使土壤从大气中吸收O2,同时排出CO2的气体扩散作用,称为土壤呼吸。

是土壤与大气交换的主要机制。

扩散过程气相扩散液相扩散通过充气孔隙扩散保持着大气和土壤间的气体交流作用通过不同厚度水膜的扩散(二)扩散这两种扩散过程都可以用费克(Fick)定律表示:qd = - Ddc/dxqd — 扩散通量(单位时间通过单位面积扩散的质量);“-”— 表示方向D — 在该介质中扩散系数(其量纲为面积/时间);dc/dx — 浓度梯度对于气体来说,其浓度梯度常用分压梯度表示:qd = - (D/B) (dp/dx )B — 偏压与浓度的比扩散系数D值的大小取决于土壤性质,通气孔隙状况及其影响因素(质地、结构、松紧程度、土壤含水量等)(一)土壤热量来源太阳辐射能:土壤热量的最根本来源。

《土壤学》第四章 土壤水分、空气与热量状况

《土壤学》第四章  土壤水分、空气与热量状况
(四)水层厚度(水深)mm =土层厚度×水容%
(五)土壤水贮量(方/亩或吨/亩)
=2/3 ×水层厚度
(六)墒情:干墒、黄墒、灰墒、黑墒 干、 润、 潮、 湿
三、土壤水分含量的测定 • (一)烘干法:常用
1、经典烘干法 :恒温箱105-110 ºC烘干称重计算
2、快速烘干法 :红外线烘干法、微波炉烘干法、酒精燃 烧法、电炉法等。
(三)土壤空气对植物抗病性的影响 通气不良产生还原性气体H2S、CH4、
H2、NO等会严重危害作物生长,CO2 过多致使土壤酸度增高,致使霉菌发育, 植株生病
氧扩散率(ODR与不同植物状况之间关系)
植物
茎叶菜 莴苣 菜豆 甜菜 草莓 棉花 柑橘
土壤类型
壤土 粉砂壤土
壤土 壤土 砂壤土 粘壤土 砂壤土
一是受辐射、气温、湿度和风速等气象因素的影响; 二是受土壤含水率的大小和分布的影响
土面蒸发过程区分为三个阶段: 1、大气蒸发控制阶段 2、土壤导水快慢控制阶段
在土壤不是很湿能进入田间时,应及时锄地松土, 减少水分蒸发。 3、水汽扩散阶段
一般情况下,只要土表有1~2mm干土层就能显著降 低蒸发强度。
田间土壤水分收支示意图
总水势(Ψt) Ψt=Ψm+Ψp+Ψs+Ψg
(二)土壤水吸力
指土壤水在承受一定吸力的情况 下所处的能态,简称吸力。
与土水势的意义一致,但只是 基质吸力和溶质吸力的和。
(三)土水势的测定
• 主要有张力计法(测定基质势最 常用)
• 压力膜法 • 冰点下降法 • 水气压法等
张力计法
压力膜法
冰点下降法
中耕
3. 合理灌溉排水,及时增减土壤水分。
变漫灌、畦灌、沟灌等地面灌溉方式为波涌灌、膜 下灌等改良的灌溉方式,有条件的可采用较为先进 的滴灌、喷灌和渗灌

土壤水、空气和热量

土壤水、空气和热量

1、吸湿水
--- 干燥土粒通过分子引力和静电引力的作用,从 空气中吸持汽态水,使之在土粒表面形成一或 数分子层厚的水膜,称为吸湿水。 ---没有溶解溶质的能力,不能呈液态自由移动, 只有加热到105-110°C时,才呈气态扩散。不能 被植物吸收利用。 ---质地粘重、有机质含量高的土壤,吸湿水含量 高。 ---土壤空气湿度达到近100%时,土壤时湿水达到 最大量。此时的含水量称为吸湿系数。
(1)水深(Dw) 指在一定厚度(h)和一定面积土壤中所含水量相当于 同面积水层的厚度。 Dw= θv.h
单位可以用cm或mm,
(2)绝对水体积(容量)
指一定面积一定厚度土壤所含水量的体积,量纲为 L3 。 V方/公顷,
V方/亩
第二节、土壤水的能态
一、土水势
与自然界其它物体一样,土壤水具有不同数量和形 式的能量。
(1)毛管悬着水
降雨或灌溉以后,由于毛管力的作用而保留在土壤 上层的水分,称为毛管悬着水。 毛管悬着水达到最大量时的含水量,称为田间持水 量。 田间持水量是旱地土壤有效水的上限。
(2)毛管上升水
地下水随毛管孔隙上升而被毛管力保持在土壤中的 水份,称为毛管上升水。 当地下水位适当时,毛管上升水是作物所需水份的 重要来源。 毛管上升水达到最大量时的土壤含水量,称为毛管 持水量。
土壤水分特征曲线示意图
不同土壤的水分特征曲线 (低吸力脱湿过程)
五、土壤水分的有效性
土壤水分的有效性指土壤水是否能被植物利用及其 被利用的难易程度。 传统的水分形态学观点认为:旱地土壤水分有效性 的上限是田间持水量,下限是凋萎系数。
土壤水分能量观点认为:土壤水分有效性是一个与大 气条件紧密相连的问题,应该从土壤-植物-大气这个动 态系统来阐明土壤水分的有效性。 只要根系吸收水分的速率能平衡蒸腾损耗水分的速率, 植物就能正常生长,土壤水分就是有效的。 一旦根系吸水速率低于蒸腾速率,植物就失水,并且 迅速凋萎。此时土壤水分就是无效的。

土壤的水、气、热状况

土壤的水、气、热状况

(二)、气态水的运动 土壤气相水在孔隙内的运动,实际上是 水气分子从一个地方向另一个地方扩散 的运动。它服从于一般气体扩散定律。 水气运动的梯度是水气压梯度,即水气 从气压高处向气压低出扩散。
(1)大气蒸发力控制阶段(蒸发率不 变阶段):特点:土壤水较多,向土 面的导水率高,足以补偿土面蒸发消 耗水量,所以蒸发率不变,一般可持 续几天,丢水量也大。
(1)毛管上升水:是指地下水沿着毛管上升而充 满毛管孔隙中的水分。土壤中毛管上升水的最大值 称为毛管持水量,它是吸湿水、膜状水和毛管上升 水的总和。
(2)毛管悬着水:是在地下水位深,当降雨
或灌溉后,借毛管力保持在土壤上层未能下 渗的水分。这种象悬着在上层土壤中的毛管 水称为毛管悬着水。
重力水
当土壤水分超过田间持水量,多余的 水分就会受重力的作用沿土壤中大孔 隙望下移动,这种受重力支配的水叫 重力水。 重力水不受土壤吸附力和毛管力的作 用。它是植物根系能够吸收利用的水 分。
(2)土壤导水力控制阶段(蒸发率降低阶 段)特点:土壤蒸发的强度取决于土壤的导 水性质,即导水率的大小。该阶段维持的时 间不长。当土面的水气与大气压的水气达到 平衡时,土面就成为风干状态的干土层。除 地面覆盖外,中耕结合镇压,具有良好的保 墒效果。
(3)扩散控制阶段:土面形成干土后,土壤 水向干土层的导水率降至近于零时,液态水 已不能运行至地表,在干土层下稍微湿润土 层的水分汽化,形成水气分子通过干土层扩 散到大气中去。只要土表有 1-2cm 的干土层, 就能显著减低蒸发率。这一阶段,通过镇压 以防止蒸发,抑制水气向大气扩散。 二阶段 初。
土壤导热率主要受含水量及松紧程度的影 响。土壤导热率随含水量的增加而增加,因为 含水量增加后不仅在数量上水分增加易于导热, 而且水分增加后使土粒间彼此相连,增加了传 热途经。,所以湿土比干土导热快。在低温时, 导热率与土壤容重呈正比关系。因为容重小, 孔度高,因为孔隙中空气可被认为不传热途径, 所以导热率低;容重大,土粒彼此接触紧密, 易于导热。一般而言,土壤含水量对土壤导热 率增大的影响比容重增加的影响要显著的多。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章土壤水、空气和热量主要教学目标:学会分析土壤肥力要素水、气、热之间的关系。

由于土壤水分的重要作用,因此首先要求学生掌握土壤水的形态学观点和能量学观点。

在基本知识掌握的基础上,并能系统地处理土壤水、气、热三者的相互关系和调节措施。

主要内容:第一节:土壤水的类型第二节:土壤水分含量的表示方法第三节:土壤水分能量的分析第四节:土壤水分的管理与调节第五节:土壤空气和热量第六节:土壤水、气、热的相互关系第一节土壤水的类型土壤学中的土壤水是指在一个大气压下,在105℃条件下能从土壤中分离出来的水分。

土壤中液态水数量最多,对植物的生长关系最为密切。

液态水类型的划分是根据水分受力的不同来划分的,这是水分研究的形态学观点。

这一观点在农业、水利、气象等学科和生产中广泛应用。

一、吸湿水土壤颗粒从空气中吸收的汽态水分子。

从室外取土,放在室内风干若干时间后,表面上看似乎干燥了,但把土壤放在烘箱中烘烤,土壤重量会减轻;再放置到常温常压下,土壤重量又会增加,这表明土壤吸收了空气中的水汽分子。

土壤的吸湿性是由土粒表面的分子引力作用所引起的,一般来说,土壤中吸湿水的多少,取决于土壤颗粒表面积大小和空气相对湿度。

由于这种作用的力非常大,最大可达一万个大气压,所以植物不能利用此水,称之为紧束缚水。

二、膜状水土粒吸足了吸湿水后,还有剩余的吸引力,可吸引一部分液态水成水膜状附着在土粒表面,这种水分称为膜状水。

重力不能使膜状水移动,但其自身可从水膜较厚处向水膜较薄处移动,植物可以利用此水。

但由于这种水的移动非常缓慢(0.2—0.4mm/d),不能及时供给植物生长需要,植物可利用的数量很少。

当植物发生永久萎蔫时,往往还有相当多的膜状水。

三、毛管水当把一个很细的管子(毛细管)插入水中后,水分可以上升的较高于水平面,并保持在毛细管中。

毛管水:由于毛管力的作用而保持在土壤中的液态水。

毛管水可以有毛管力小的方向移向毛管力大的方向,毛管力的大小可用Laplace公式计算:P = 2T/r式中的P为毛管力,T为水的表面张力,r为毛管半径。

根据毛管水是否与地下水相连,可分为2种类型:毛管悬着水:降水或灌溉后,由地表进入土壤被保存在土壤中的毛管水。

毛管上升水:或毛管支持水,土壤中受到地下水源支持并上升到一定高度的毛管水。

影响毛管上升水的因素:地下水水位和毛管孔隙状况毛管水上升高度用下式计算: H=75/d,d为土粒平均直径(上升高度与颗粒直径间关系见的附表)。

若假设土粒的d为0.001毫米,据公式得出H为75米,但这个数据无法从实验中得到证实。

实际上,一般毛管水的上升高度不超过3—4米,这可能是由于毛管直径太小,当达到一定长度后,很容易被堵塞。

四、重力水降水或灌溉后,不受土粒和毛管力吸持,而在重力作用下向下移动的水,称为重力水。

植物能完全吸收重力水,但由于重力水很快就流失(一般两天就会从土壤中移走),因此利用率很低。

五、地下水在土壤中或很深的母质层中,具有不透水层时,重力水就会在此层之上的土壤孔隙中聚积起来,形成水层,这就是地下水。

在干旱条件下,土壤水分蒸发快,如地下水位过高,就会使水溶性盐类向上集中,使含盐量增加到有害程度,即所谓的盐渍化;在湿润地区,如地下水位过高,就会是土壤过湿,植物不能生长,有机残体不能分解,这就是沼泽化。

第二节土壤水分含量的表示方法一、土壤绝对含水量1、重量百分数:土壤水分的重量占烘干土的百分率。

2、体积百分数:土壤容积含水量%=土壤重量含水量*容重意义:可反映土壤孔隙的充水程度,可计算土壤的固、液、气相的三相比。

如土壤含水量(重量)20%,容重为1.2。

则土壤容积含水量为20%*1.2=24.0%土壤总孔隙度=1—1.2/2.65=55% 空气所占体积为55%—24%=31% 固相体积为100—55%=45%。

3、土壤蓄水量(立方米/亩)=每亩面积(平方米)*土层深度*土壤容重*土壤重量含水量如土壤田间持水量为25%(重量),容重1.1。

测得土壤自然含水量为10%,现将没亩1米深的土层内含水量提高到田间持水量水平,问应灌多少水(立方米/亩)应灌水量(立方米/亩)=666.6*1*1.1*(25%—10%)=110立方米/亩4、水层厚度:单位面积上一定土层厚度内含有的水层厚度,可与雨量相比。

水层厚度(mm)=土层厚度(h)*土壤容重(d)*重量百分数%*10 5、水体积:水层厚度乘以面积。

二、土壤相对含量土壤水分含量占饱和含水量的百分比或占田间持水量的百分比。

三、水分常数:土壤含水量根据受土壤各种力的作用达到某种程度的水量,对于同一土壤来说,此时的含水量基本不变,称为土壤水分常数,又叫水分特征值,它是一些与植物吸收水分有关系的数值。

1、吸湿系数(最大吸湿水量)是在相对湿度接近饱和空气时,土壤吸收水汽分子的最大量与烘干土重的百分率。

2、凋萎系数当植物产生永久凋萎时的土壤含水量。

此时土壤水主要是全部的吸湿水和部分膜状水。

经验公式凋萎系数=吸湿系数*(1.34~1.5)3、田间持水量当土壤被充分饱和后,多余的重力水已经渗漏,渗透水流已降至很低甚至停止时土壤所持的含水量. 此时水分类型包括吸湿水、膜状水和全部毛管悬着水。

田间持水量=吸湿系数*2.5 测定方法(野外):在野外地里灌水后,铺上枯枝落叶防止蒸发,两天后,重力水下渗,这时所测得的土壤含水量就是田间持水量。

4、全容水量土壤完全为水所饱和时的含水量,此时土壤水包括吸湿水、膜状水、毛管水和重力水。

水分基本充满了土壤孔隙,在自然条件下,水稻土、沼泽土或降雨、灌溉量较大时可达到全容水量。

4、有效水含量土壤中的水分,并不是全部能被植物的根系吸收利用。

土壤水的有效性是指土壤水被植物吸收利用的状况。

一般情况下:最大有效含水量(%)= 田间含水量%—凋萎系数% 有效水分含量(%)= 自然含水量%—凋萎系数%能被植物利用的有效水的数量比较复杂,受土壤质地、结构、土壤层位及有机质含量的影响较大。

第三节土壤水分能量的分析一、土水势土壤水和自然界其他物体一样,含有不同数量和形式的能,处于一定的能量状态,能自发地从能量较高的地方向能量较低的地方移动。

土水势是表示土壤水能量状态常用的名称。

土壤水的“能”包括动能和势能,但由于土壤水在土壤中的移动速度缓慢,所以只考虑它的势能。

势能是由力场中的位置决定的。

土壤水分由于受各种力的影响,其势能必然会发生变化,表现为水分的自由能降低。

如果要把水从土壤中抽出,必然要施以相应的力作相应的功,以克服土壤中对水作用的各种力量。

土水势就是土壤水在各种力的作用下势能的变化。

由于作用力不同,土水势可以分为几个分势:基质势:由土粒分子吸水和毛管力作用下所降低的势能,是最主要的土水势组成部分。

渗透势:土壤水中溶质所降低的势能,在一般土壤中忽略不计。

重力势:在淹水条件下,由于重力作用水向下渗漏时产生。

土水势是上述各分势的代数和。

二、土壤水吸力1、概念:土壤水承受一定吸力的情况下所处的能态。

在概念上并不是土壤对水的吸力,但在实际应用中仍用土壤对水的吸力来表示。

在数值上相当于土水势的基质分势和渗透分势。

2、表示单位:用压力作单位,即大气压或厘米水柱高;由于厘米水柱高数据太大,用起来不方便,这里采用了pF值,即用厘米水柱高的对数值来表示。

3、测定方法主要应用张力计法。

主要原理是将充满水的带有素烧瓷杯(陶土滤杯)的金属管埋入土中,素烧瓷杯有孔径在1.0—1.5um之间的细孔,瓷杯和管内充满水,水可通过细孔与土壤水接触,当土壤水势小于瓷杯内水势时,水分由细孔进入土壤。

金属管上端连接金属表,水分由瓷杯细孔进入土壤后,管内形成负压,当内外水势相等时,真空压力计上的负压读数即代表管外土壤水吸力。

第四节土壤水分的管理与调节一、土壤水分的测定方法定量测定方法1、烘干法(标准法)2、中子仪法3、时域反射仪(Time Domain Reflectometry TDR)4、张力计、电阻法、石膏法5、压力膜二、影响土壤水分状况的因素1、气候:降雨量和蒸发量是两个相互矛盾的重要因素,在一定条件下,难以人为控制。

2、植被:植被的蒸腾消耗土壤的水分,而植被可以通过降低地表径流来增加土壤水分。

3、地形和水文条件:地形地势的高低,影响土壤的水分。

在园林绿化生产中,要注意平整土地。

对易遭水蚀的地方,要注意修成水平梯田。

4、土壤的物理性质:土壤质地、土壤结构、土壤松紧度、有机质含量都对土壤水分的入渗、流动、保持、排除以及蒸发等,产生重要的影响。

在一定程度程度上,决定着土壤的水分状况。

与气候因素相比,土壤物理性质是比较容易改变的而且是行之有效的。

5、人为影响:主要是通过灌溉、排水等措施,调节土壤的水分含量。

三、土壤水分的调节 1、灌溉和排水 2、耕作 3、施有机肥 4、地面覆盖地膜覆盖,有很高的保墒、增温效果。

对裸露的地方用小石块、粗沙或草炭、枯枝落叶、作物秸杆覆盖。

种植地被植物。

5、土壤增温保墒剂土壤增温保墒剂化学成分:高分子脂肪类经皂化后的产物,黑色。

作用:防止地表蒸发,增加地表蒸发,增加地表温度。

使用方法:稀释后,直接喷洒在土壤表面。

国外的“TAB”是一种高效的土壤保湿剂。

遇水时,微粒体积可膨胀30多倍,能吸收超过自身重300——1000倍的水分,其中绝大部分可供植物吸收。

第五节土壤空气部分一、土壤空气的组成近地大气组成:氧气20.94% 二氧化碳0.03% 氮气78.08% 其他气体0.95% 相对湿度60——90%。

土壤空气组成:氧气10.35——20.03% 二氧化碳0.15——0.65% 氮气78.8——80.2% 相对湿度100% 土壤孔隙和土壤含水量影响土壤空气数量二、土壤的通气性的生态意义1、对植物的直接影响为植物的呼吸作用,提供必需的氧气。

在通气良好的条件下,土壤中的根系长、颜色浅、根毛多,根的生理活动旺盛。

缺氧时,根系短而粗、色暗、根毛大量减少,生理代谢受阻。

当土壤空气中,氧的浓度低于9%~10%时,根系发育就受到影响。

低于5%时,大部分的植物根系就会停止发育。

2、对土壤微生物生命活动和养分转化的影响通气良好时,好气微生物活动旺盛,有机质分解迅速、彻底,植物可吸收利用较多的速效养分。

通气不良时,有机质分解和养分释放慢,还会产生有毒的还原物质(如硫化氢、磷化氢等)。

三、紧实土壤的改良人为践踏、机械压实以及有机质缺乏、结构不良等引起的土壤紧实现象在城市绿地中异常突出。

改良措施:松土可采用人工、机械、爆破以及生物方式。

施用抗紧实的物料:粗有机物料、膨化岩类。

采用通气透水的铺装方式强化地下通气的措施。

相关文档
最新文档