数学:黑龙江省虎林市八五零农场学校 第五章第2节《一元一次方程的应用2》教案(七年级上)
〖2021年整理〗《一元一次方程的应用2》参考优秀教案
一元一次方程的应用(2)一、教学目标(一)知识与技能:1 学会分析实际问题中的“不变量”,建立方程解决问题;2 会设未知数,正确求解,并验明解的合理性。
(二)过程与方法:通过分析实际问题,明白运用方程解决问题的关键是找到等量关系从而建立数学模型解决问题。
(三)情感与态度:1体验数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决;2激发学生的学习情绪,让学生在探索问题中学会合作。
二、教学重点:如何从实际问题中寻找等量关系建立方程,解决问题后如何验证它的合理性。
三、教学难点:如何从实际问题中寻找等量关系建立方程。
四、教学过程(一)复习回顾=_________; 长方形面积S=_______;长方体体积V=_________=_________; 正方形面积S=_______;正方体体积V=________= ________; 圆的面积S = _______;圆柱体体积V = _________(二)新课学习1情境导入:如图,将一个底面直径为20cm、高为9cm的圆柱锻压成底面直径为10cm的圆柱,假设在锻压过程中圆柱的体积保持不变,那么圆柱的高变成了多少?在这个问题中有如下等量关系:锻压前的体积=锻压后的体积。
设水箱的高变为x m,填写下表:根据等量关系,列出方程:π×102×9=π×52×解方程得:=36答:高变成了36cm2例题讲解:例1、小明有一个问题想不明白他要用一根长为10米的铁线围成一个长方形。
(1)使得该长方形的长比宽多1.4米,此时长方形的长、宽各是多少米呢?面积是多少?分析:等量关系为“(长宽)× 2=周长”解:设长方形的宽为米,则它的长为()米根据题意,得:×2 =10解得:=∴= ;×=答:此时长方形的长为3.2m,宽为1.8m,面积是5.76m2(2)使长方形的长比宽多0.8米,此时长方形的长、宽各为多少米?它所围成的长方形与第一次所围成的长方形相比,面积有什么变化?解:设长方形的宽为米,则它的长为()米根据题意,得:×2 =10∴= ;×=此时长方形的长2.9m,宽2.1m,面积是6.09 m2此时长方形的面积比第一次围成的面积增大(m2)。
5.2一元一次方程(教案)
-举例:解方程5x - 2 = 3x + 1时,需要将同类项移至同一边,得到2x = 3,然后系数化为1,得到x = 1.5。
-应用一元一次方程解决实际问题:培养学生将方程应用于解决生活中的问题。
-举例:利用一元一次方程解决速度与时间、单价与总价等实际问题。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一元一次方程的基本概念。一元一次方程是只含有一个未知数,并且未知数的最高次数为1的方程。它在数学中具有重要地位,可以帮助我们解决许多实际问题。
2.案例分析:接下来,我们来看一个具体的案例。例如,计算小明购买苹果的总花费,通过建立一元一次方程,我们可以轻松解决这个问题。
五、教学反思
在今天的教学中,我发现学生们对于一元一次方程的概念和解法掌握得还不错,但在实际应用方面还存在一些困难。让我来具体谈谈几个观察到的现象和相应的思考。
首先,我发现很多同学在从实际问题中抽象出一元一次方程时感到困惑。他们知道要用方程来解决问题,但不知道如何将问题中的信息转化为数学表达式。这说明我们在教学中需要更多地强调如何从文字描述中提炼出关键信息,如何将现实问题转化为数学问题。我考虑在下一节课中增加一些具体的例子,让学生多加练习,以便提高他们这方面的能力。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了一元一次方程的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对一元一次方程的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
七年级数学上册《一元一次方程的应用》教案、教学设计
-采用合作学习法,让学生在小组内共同讨论、解决问题,培养学生的团队协作能力和沟通能力。
2.教学过程:
(1)导入:通过一个生动的实际问题,引入一元一次方程的应用,激发学生的好奇心。
(2)新知:引导学生从实际问题中抽象出一元一次方程,讲解方程的定义、各部分名称,并举例说明。
1.学生需独立完成作业,遇到问题时可以与同学讨论,但不得抄袭。
2.解题过程要求书写规范,步骤清晰,以便教师批改和指导。
3.作业完成后,请学生认真检查,确保答案的正确性。
4.教师将根据学生的作业完成情况,给予评价和反馈,帮助学生发现和纠正错误。
(3)完成课本第chapter页的习题6,此题为开放性题目,鼓励学生从不同角度思考问题,培养学生的创新思维。
3.思考题:
(1)思考一元一次方程在实际生活中的应用,尝试总结出至少三种常见的一元一次方程应用场景。
(2)与同学分享自己在解决一元一次方程问题时遇到的困难和解决方法,相互学习,共同进步。
作业要求:
(二)讲授新知
1.教学内容:一元一次方程的定义、各部分的名称以及解法。
教学过程:
(1)教师讲解一元一次方ห้องสมุดไป่ตู้的定义,让学生理解未知数、系数、常数项等概念。
(2)通过具体的例子,让学生识别一元一次方程的各部分,并学会如何解一元一次方程。
(3)教师详细讲解解一元一次方程的步骤,如移项、合并同类项、化简等。
(3)探究:设计不同类型的实际问题,让学生分组讨论,尝试列方程、解方程,并检验答案。
(4)总结:引导学生总结一元一次方程的解题步骤,归纳解题方法,形成知识体系。
(5)巩固:布置具有代表性的练习题,让学生独立完成,巩固所学知识。
一元一次方程的应用教案
一元一次方程的应用教案【教案】一元一次方程的应用一、教学目标:1. 理解一元一次方程的基本概念和解法;2. 掌握一元一次方程在实际问题中的应用方法;3. 培养学生解决实际问题的数学建模能力。
二、教学内容:1. 一元一次方程的基本概念;2. 解一元一次方程的方法;3. 一元一次方程在实际问题中的应用。
三、教学过程:1. 导入(引发学生思考,激发学习兴趣)通过一个实际问题引入一元一次方程的概念:小明花了若干天时间来完成某个作业,已经完成了其中的1/3,问他还需要多少天才能完成整个作业?2. 理解一元一次方程的基本概念解释一元一次方程的定义和基本形式,帮助学生理解方程中变量和常数的含义,并且通过几个简单的例子让学生熟悉一元一次方程的常见形式。
3. 解一元一次方程的方法介绍解一元一次方程的基本步骤,包括去括号、合并同类项、移项、消元和求解等。
通过具体的例子和步骤演示,让学生掌握解一元一次方程的技巧和方法。
4. 一元一次方程在实际问题中的应用引导学生思考一元一次方程在日常生活中的应用,例如物品购买、距离和速度的关系等。
通过具体问题的解析和实例讲解,让学生理解方程在解决实际问题中的重要性。
5. 上机实践和巩固设计一些练习题和实际问题,供学生上机实践解答。
通过实践操作,巩固学生对一元一次方程应用的理解和掌握。
四、教学评估:通过教学过程中的课堂练习、小组合作讨论和个人作业完成情况等,进行教学效果的评估和学生的学习情况反馈。
五、拓展延伸:鼓励学生进一步拓展应用一元一次方程的能力,在日常生活中多关注实际问题,并尝试将其转化为数学模型进行求解。
六、教学反思:根据学生的学习情况,不断优化教学方案和教学内容,提高学生的学习效果和兴趣。
【教案完】。
一元一次方程的应用教案(通用5篇)
一元一次方程的应用教案(通用5篇)一元一次方程的应用篇1一、教学分析:本节课设计简析:本节课内容是列方程解应用题,主要是小学解应用题和中学解应用题的衔接,让学生感受数学与现实生活息息相关,并且体验数学的趣味性,提高学习数学的积极性。
二、教学目标:(一)知识目标:1、通过身边的故事,引导学生对生活中的问题进行探讨和研究,学会用方程的思维解决问题。
2、借助找关键句或关键词、画线段图或示意图等方法,引导学生正确找出题中的等量关系,列出方程。
(二)能力目标:1、通过小组合作学习活动,培养学生的合作意识和语言表达能力。
2、培养学生的观察、分析能力以及用方程思维解决问题的能力。
(三)情感目标:1、使学生在讨论、交流的学习过程中获得积极的情感体验,探索意识、创新意识得到有效发展。
2、在分析应用题的过程中,培养学生勇于探索、自主学习的精神。
感受到生活中处处存在数学,体验数学的趣味性教学重点、难点:能分析题意,正确找出题中的等量关系,列出方程解决问题。
教学过程:一、温故:分别算出下列绳子的总长度【设计意图:为下面的例题做好铺垫】二、新课引入:我今天给大家讲一个故事,故事的主人翁是丢番图,希腊数学家丢番图(公元3~4世纪)的墓碑上记载着:“他生命的六分之一是幸福的童年;再活了他生命的十二分之一,两颊长起了细细的胡须;他结了婚,又度过了一生的七分之一:再过五年,他有了儿子,感到很幸福;可是,儿子只活了他父亲全部生命的一半;儿子死后,他又在极度的悲伤中度过了四年,也与世长辞了。
” 根据以上的信息,请你计算出:丢番图死时多少岁;或者根据丢番图的年龄能被6,12,2,7整除,可知这个年龄是6,12,2,7的倍数,所以他的年龄为84,168但是根据迄今被《吉尼斯世界记录》认可的世界上寿命最长的人是法国的让-卡尔门特,他在1997年8月4日去世时享年122岁。
所以丢番图的年龄为84岁。
【设计意图:这个题目有一定的难度和趣味性,可以在开课时吸引全班学生的注意力,同时这个题目可以用方程解法和算式解法,甚至还可以用以前学过的倍数来解决,解题方法多样性,可以锻炼学生的思维,也可以做到小学用算式和中学列方程解应用题的衔接。
一元一次方程的课堂应用教案
一元一次方程的课堂应用教案第一章:引言1.1 课程背景本节课我们将学习一元一次方程的课堂应用。
一元一次方程是数学中常见的方程形式,它在实际生活中有着广泛的应用。
通过学习一元一次方程的课堂应用,学生可以更好地理解方程的概念,提高解决问题的能力。
1.2 教学目标1. 了解一元一次方程的概念及其应用;2. 学会解一元一次方程的方法;3. 能够将实际问题转化为一元一次方程,并解决问题。
第二章:一元一次方程的概念2.1 方程的定义方程是由等号连接的两个表达式,其中包含未知数和已知数。
2.2 一元一次方程的定义一元一次方程是指方程中只有一个未知数,且未知数的最高次数为1。
一般形式为ax + b = 0,其中a和b是常数,且a≠0。
2.3 一元一次方程的解一元一次方程的解是指能够使方程成立的未知数的值。
第三章:解一元一次方程的方法3.1 移项将方程中的未知数移到等号的一边,常数移到等号的另一边。
3.2 合并同类项将方程中同类项进行合并,简化方程形式。
3.3 化简方程通过化简方程,使未知数系数变为1,便于求解。
第四章:实际问题转化为一元一次方程4.1 问题的理解学生在解决实际问题时,需要理解问题的背景和要求,找出问题中的等量关系。
4.2 建立方程根据问题的等量关系,将实际问题转化为一元一次方程。
4.3 解方程求解通过解方程,求解未知数的值,得到问题的解答。
第五章:课堂练习5.1 练习题给出一些一元一次方程的练习题,让学生独立解答。
5.2 答案与解析提供答案和解析,帮助学生巩固所学知识。
第六章:一元一次方程的应用案例分析6.1 案例介绍通过具体的案例,让学生了解一元一次方程在实际生活中的应用。
例如,购物时计算总价,长度、面积的计算等。
6.2 案例分析分析案例中的等量关系,引导学生将实际问题转化为一元一次方程。
6.3 案例解答利用所学的解方程方法,求解案例中的方程,得到问题的解答。
第七章:一元一次方程在几何中的应用7.1 几何问题引入通过几何问题,引导学生了解一元一次方程在几何中的应用。
一元一次方程的应用优秀教案
一元一次方程的应用【教学目标】1.知识与技能目标(1)让学生通过实例感受运用方程解决实际问题的优点;(2)使学生初步掌握用一元一次方程解简单应用题的一般方法和步骤;(3)会利用一元一次方程解决简单的实际问题。
2.方法与能力目标(1)培养学生观察能力,提高他们分析问题和解决问题的能力;(2)使学生逐步养成正确思考问题的良好习惯。
3.情感与态度目标(1)使学生初步体验方程是刻画现实世界的有效的数学模型;(2)培养学生对体育的热情、对国家的热爱,增强民族自豪感。
【教学重难点】1.利用一元一次方程解简单应用题的方法和步骤。
2.行程问题涉及的数量关系较为复杂,是本节课的难点。
【教学过程】(一)创设情境,引入新知合作学习:2008年北京奥运会上,我国获得51枚金牌,比银牌数的二倍还多9枚。
2008年奥运会我国获得几枚银牌?适当地运用一元一次方程的知识,可以解决许多现实生活中遇到的有关实际问题[板书5.3一元一次方程的应用]。
(二)应用新知共同探究:5位教师和一群学生一起去看乒乓球女子单打决赛,教师按全票价每人200元,学生特价票票价仅为教师票价的二十分之一。
如果门票总价计1490元,那么学生有多少人?问1.题中哪些量是已知的?哪些量是未知的?2.这些量之间有什么关系?能用表格去表示吗?3.设哪个未知数为x ?题中的等量关系是什么?人数票价总票价等量关系解:设学生有x 人,根据题意,得15⨯200+⨯200x =1490。
20解这个方程,得x =49。
检验:x =49适合方程,且符合题意。
答:学生有49人。
问题一:甲、乙两名运动员从相距为180千米的A ,B 两地同时出发,甲骑自行车,乙骑摩托车,沿同一条路线相向匀速行驶。
已知甲的速度为15千米/时,乙的速度为45千米/时。
经过多少时间两人相遇?分析等量关系:路程=速度⨯时间。
甲行驶的路程+乙行驶的路程=180问题二:甲、乙两名运动员从A 地出发前往B 地,甲骑自行车,乙骑摩托车,沿同一条路线匀速行驶。
一元一次方程的应用教案
一元一次方程的应用教案第一章:引言1.1 教学目标了解一元一次方程的概念及其在实际生活中的应用。
学会列出一元一次方程并解之。
1.2 教学内容引出一元一次方程的概念。
通过实际例子展示一元一次方程的应用。
1.3 教学方法采用问题解决的方式,引导学生通过思考和讨论来理解一元一次方程的概念。
1.4 教学步骤引入一元一次方程的概念,并给出简单的例子。
让学生尝试解决实际问题,并引导他们发现问题可以用方程来表示。
讲解一元一次方程的解法,并通过练习题巩固学生的理解。
第二章:一元一次方程的解法2.1 教学目标学会解一元一次方程。
2.2 教学内容讲解一元一次方程的解法,包括加减法、乘除法等。
2.3 教学方法通过例题和练习题,引导学生掌握一元一次方程的解法。
2.4 教学步骤讲解一元一次方程的解法,包括加减法、乘除法等。
提供练习题,让学生通过解题来巩固所学的方法。
第三章:实际问题与一元一次方程3.1 教学目标学会将实际问题转化为一元一次方程,并解决之。
3.2 教学内容讲解如何将实际问题转化为一元一次方程。
提供实际问题的例子,让学生尝试解决。
3.3 教学方法通过实际问题的例子,引导学生将问题转化为方程,并解决之。
3.4 教学步骤给出一个实际问题,引导学生思考如何将其转化为方程。
讲解如何解这个方程,并通过练习题巩固学生的理解。
第四章:应用举例4.1 教学目标学会使用一元一次方程解决实际问题。
4.2 教学内容提供一些应用一元一次方程的例子。
4.3 教学方法通过实际问题的例子,引导学生应用一元一次方程解决问题。
4.4 教学步骤给出一个实际问题,引导学生思考如何应用一元一次方程来解决。
讲解如何应用方程,并通过练习题巩固学生的理解。
第五章:总结与提高5.1 教学目标总结一元一次方程的应用,提高解题能力。
5.2 教学内容总结一元一次方程的应用。
5.3 教学方法通过练习题,引导学生总结一元一次方程的应用。
5.4 教学步骤提供一些练习题,让学生通过解题来总结一元一次方程的应用。
2021年七年级数学上册 一元一次方程的应用(第2课时)教案 (新版)新人教版
感谢您使用本资源,本资源是由订阅号”初中英语资源库“制作并分享给广大用户,本资源制作于2020年底,是集实用性、可编辑性为一体。
本资源为成套文件,包含本年级本课的相关资源。
有教案、教学设计、学案、录音、微课等教师最需要的资源。
我们投入大量的人力、物力,聘请精英团队,从衡水中学、毛毯厂中学、昌乐中学等名校集合了一大批优秀的师资,精研中、高考,创新教学过程,将同学们喜闻乐见的内容整体教给学生。
本资源适用于教师下载后作为教学的辅助工具使用、适合于学生家长下载后打印出来作为同步练习使用、也适用于同学们自己将所学知识进行整合,整体把握进度和难度,是一个非常好的资源。
如果需要更多成套资料,请微信搜索订阅号“初中英语资源库”,在页面下方找到“资源库”,就能得到您需要的每一份资源(包括小初高12000份主题班会课课件免费赠送!)3.2一元一次方程的应用(第2课时)教学目标一、知识与能力借助生活中的实例,了解速度、路程和时间之间的关系,通过等量关系能列一元一次方程。
教学过程一、创设情景,谈话导入(学生思考,小组交流,教师点评)建立方程(方程组)解决实际问题,是中学数学应用的一个重要方面,我们现实生活中到处都要应用到方程和方程组来解决我们的实际问题。
二、例题解析例3.为了适应经济的发展,铁路运输提速。
如果客车行驶速度每小时增加40千米,提速后由合肥到北京1110千米的路程只需要行驶10小时,那么,提速前,这趟客车每小时行驶多少千米?分析:行程问题中常涉及的量有路程、速度、时间。
它们之间基本关系是:路程=速度×时间解:设提速前火车每小时行驶xkm,那么提速后火车每小时行驶(x+40)km。
火车行驶路程1110km,速度是每小时(x+40)km。
所需时间是10h。
根据题意,可得方程10×(x+40)=1110解得 x=71km答:提速前这趟火车的速度是每小时71km。
分析复杂行程问题中等量关系,还可以借助直线图形。
《一元一次方程的应用》 教学设计
《一元一次方程的应用》教学设计一、教学目标1、知识与技能目标学生能够理解一元一次方程的概念,掌握一元一次方程的解法,并能熟练运用一元一次方程解决实际问题。
2、过程与方法目标通过实际问题的引入和解决,培养学生分析问题、解决问题的能力,以及将实际问题转化为数学模型的能力。
3、情感态度与价值观目标让学生在解决问题的过程中体验成功的喜悦,增强学习数学的兴趣和自信心,同时培养学生的数学思维和创新精神。
二、教学重难点1、教学重点一元一次方程的解法和应用。
2、教学难点将实际问题中的数量关系转化为一元一次方程,并正确求解。
三、教学方法讲授法、讨论法、练习法四、教学过程1、导入新课通过一个简单的实际问题引入:小明去商店买笔,一支笔 2 元,他买了 x 支笔,共花费 10 元,请问他买了几支笔?引导学生列出方程 2x = 10,从而引出一元一次方程的概念。
2、讲解一元一次方程的概念形如 ax + b = 0(a、b 为常数,a ≠ 0)的方程叫做一元一次方程。
强调方程中只含有一个未知数,未知数的次数是 1,等号两边都是整式。
3、讲解一元一次方程的解法以方程 3x + 5 = 14 为例,详细讲解移项、合并同类项、系数化为1 等步骤。
4、例题讲解例 1:某数的 3 倍加上 5 等于 14,求这个数。
设这个数为 x,可列出方程 3x + 5 = 14,解方程得 x = 3。
例 2:一个长方形的周长为 20 厘米,长比宽多 2 厘米,求长方形的长和宽。
设长方形的宽为 x 厘米,则长为(x + 2)厘米,根据周长公式可列出方程 2(x + x + 2) = 20,解方程得 x = 4,所以长为 6 厘米,宽为 4 厘米。
5、小组讨论给出一些实际问题,让学生分组讨论并列出方程。
例如:(1)一辆汽车以每小时 60 千米的速度行驶,行驶了 x 小时,共行驶了 300 千米,求行驶时间。
(2)一个班级有男生 25 人,女生比男生少 5 人,全班共有多少人?6、课堂练习让学生独立完成课本上的练习题,教师巡视并进行个别指导。
[精品教案]一元一次方程的应用教案
一元一次方程的应用教案以下是为您推荐的一元一次方程的应用教案,希望本篇文章对您学习有所帮助。
一元一次方程的应用教学设计示例教学目标1.使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题;2.培养学生观察能力,提高他们分析问题和解决问题的能力;3.使学生初步养成正确思考问题的良好习惯.教学重点和难点一元一次方程解简单的应用题的方法和步骤.课堂教学过程设计一、从学生原有的认知结构提出问题在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?为了回答上述这几个问题,我们来看下面这个例题.例1 某数的3倍减2等于某数与4的和,求某数.(首先,用算术方法解,由学生回答,教师板书)解法1:(4+2)(3-1)=3.答:某数为3.(其次,用代数方法来解,教师引导,学生口述完成)解法2:设某数为x,则有3x-2=x+4.解之,得x=3.答:某数为3.纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程.本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤.二、师生共同分析、研究一元一次方程解简单应用题的方法和步骤例2 某面粉仓库存放的面粉运出 15%后,还剩余42 500千克,这个仓库原来有多少面粉?师生共同分析:1.本题中给出的已知量和未知量各是什么?2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)3.若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?上述分析过程可列表如下:解:设原来有x千克面粉,那么运出了15%x千克,由题意,得x-15%x=42 500,所以 x=50 000.答:原来有 50 000千克面粉.此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)教师应指出:(1)这两种相等关系的表达形式与原来重量-运出重量=剩余重量,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程;(2)例2的解方程过程较为简捷,同学应注意模仿.依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:(1)仔细审题,透彻理解题意.即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数; (2)根据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步);(3)根据相等关系,正确列出方程.即所列的方程应满足两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等;(4)求出所列方程的解;(5)检验后明确地、完整地写出答案.这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义. 例3 (投影)初一2班第一小组同学去苹果园参加劳动,休息时工人师傅摘苹果分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一小组有多少学生,共摘了多少个苹果?。
一元一次方程的应用教案
一元一次方程的应用教案一元一次方程的应用教案以下是查字典数学网为您推荐的一元一次方程的应用教案,希望本篇文章对您学习有所帮助。
一元一次方程的应用教学设计示例教学目标1.使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题;2.培养学生观察能力,提高他们分析问题和解决问题的能力;3.使学生初步养成正确思考问题的良好习惯.教学重点和难点一元一次方程解简单的应用题的方法和步骤.课堂教学过程设计一、从学生原有的认知结构提出问题在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?为了回答上述这几个问题,我们来看下面这个例题.例1 某数的3倍减2等于某数与4的和,求某数.(首先,用算术方法解,由学生回答,教师板书)2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)3.若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?上述分析过程可列表如下:解:设原来有x千克面粉,那么运出了15%x千克,由题意,得x-15%x=42 500,所以 x=50 000.答:原来有 50 000千克面粉.此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)教师应指出:(1)这两种相等关系的表达形式与原来重量-运出重量=剩余重量,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程;(2)例2的解方程过程较为简捷,同学应注意模仿.依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:(1)仔细审题,透彻理解题意.即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数; (2)根据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步);(3)根据相等关系,正确列出方程.即所列的方程应满足两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等;(4)求出所列方程的解;(5)检验后明确地、完整地写出答案.这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义. 例3 (投影)初一2班第一小组同学去苹果园参加劳动,休息时工人师傅摘苹果分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一小组有多少学生,共摘了多少个苹果?。
一元一次方程的应用教案
一、教案基本信息1. 一元一次方程的应用教案2. 教学目标:让学生掌握一元一次方程的概念和基本性质。
培养学生运用一元一次方程解决实际问题的能力。
提高学生逻辑思维和解决问题的能力。
3. 教学重点:一元一次方程的定义和求解方法。
运用一元一次方程解决实际问题。
4. 教学难点:一元一次方程的建立和求解过程。
将实际问题转化为方程形式。
二、教学内容1. 导言:引入一元一次方程的概念,引导学生了解一元一次方程在实际生活中的应用。
举例说明一元一次方程的和解过程。
2. 一元一次方程的定义:介绍一元一次方程的基本形式:ax + b = 0。
解释方程中的字母a、b的含义。
3. 一元一次方程的求解方法:演示如何通过移项、合并同类项求解一元一次方程。
引导学生掌握解方程的基本步骤。
4. 实际问题与一元一次方程:引导学生将实际问题转化为方程形式。
举例说明如何运用一元一次方程解决问题。
5. 巩固练习:提供一些实际问题,让学生运用一元一次方程求解。
引导学生总结解题经验,提高解题能力。
三、教学方法1. 讲授法:讲解一元一次方程的基本概念、性质和解题方法。
引导学生理解和掌握一元一次方程的解题思路。
2. 案例分析法:通过实际问题案例,引导学生将问题转化为方程形式,并求解。
分析案例中的解题步骤和关键点。
3. 练习法:提供练习题,让学生独立解决实际问题,巩固所学知识。
引导学生总结解题经验,提高解题能力。
四、教学评价1. 课堂参与度:观察学生在课堂上的参与情况,是否积极回答问题、参与讨论。
2. 练习题解答:评估学生解答练习题的正确率和解题思路。
3. 实际问题解决:评估学生将实际问题转化为方程形式并求解的能力。
4. 学生反馈:收集学生的反馈意见,了解教学效果,不断调整教学方法。
五、教学资源1. 教案教材。
2. 教学PPT。
3. 实际问题案例。
4. 练习题。
5. 教学视频或动画(可选)。
六、教学步骤1. 导入新课:通过引入实际问题,激发学生对一元一次方程应用的兴趣。
一元一次方程的应用教案
一元一次方程的应用教案教案标题:一元一次方程的应用教案目标:1. 理解一元一次方程的概念和基本性质。
2. 掌握解一元一次方程的方法和技巧。
3. 能够运用一元一次方程解决实际问题。
教学重点:1. 理解一元一次方程的含义和解的概念。
2. 运用一元一次方程解决实际问题。
教学难点:1. 将实际问题转化为一元一次方程。
2. 运用一元一次方程解决复杂实际问题。
教学准备:1. 教师准备:教案、课件、黑板、白板、笔等。
2. 学生准备:课本、笔、纸等。
教学过程:一、导入(5分钟)1. 引入一元一次方程的概念,与学生一起回顾方程的定义和基本性质。
2. 提问:你们能举出一些实际生活中可以用方程表示的问题吗?二、讲解(15分钟)1. 介绍一元一次方程的定义和一些常见的形式。
2. 解释如何将实际问题转化为一元一次方程。
3. 通过示例演示如何解一元一次方程,并讲解解的意义。
三、练习(20分钟)1. 学生分组完成一些简单的一元一次方程练习题,巩固解方程的方法和技巧。
2. 学生个别或小组完成一些实际问题的一元一次方程转化和解答练习。
四、拓展(10分钟)1. 引导学生思考更复杂的实际问题,并指导他们将问题转化为一元一次方程。
2. 学生个别或小组完成拓展练习题,提高解决复杂实际问题的能力。
五、总结(5分钟)1. 总结一元一次方程的基本概念和解题方法。
2. 强调一元一次方程在实际生活中的应用意义。
六、作业布置(5分钟)1. 布置一些相关的一元一次方程的作业题,要求学生独立完成。
2. 鼓励学生积极思考并运用所学知识解决实际问题。
教学反思:本节课通过讲解和练习相结合的方式,使学生了解了一元一次方程的概念和基本性质,掌握了解一元一次方程的方法和技巧,并能够运用一元一次方程解决实际问题。
在教学过程中,我注重培养学生的思维能力和解决问题的能力,通过引导学生思考和练习,提高了他们的学习兴趣和动手能力。
同时,我也发现一些学生在转化实际问题为一元一次方程的过程中存在困难,需要进一步指导和巩固。
一元一次方程的应用教案
一元一次方程的应用教案教案:一元一次方程的应用教学目标:1. 理解一元一次方程的概念及基本形式。
2. 学会应用一元一次方程解决实际问题。
3. 提高学生解决实际问题的能力。
教学资源:1. 教材《数学》(任选一)2. 学生练习册3. 小白板、彩色笔、计算器等教学过程:第一节:引入1. 老师简要介绍一元一次方程的概念,并讲解基本形式:ax + b = 0。
2. 利用黑板上的例题,引导学生通过观察解题步骤,理解一元一次方程的解法。
第二节:实际问题解决1. 老师提供一个实际问题例子,如:小明用500元买了一些相同价格的书和铅笔,已知每本书的价格为x元,每支铅笔的价格为y元。
如果小明一共买了10本书和10支铅笔,且总价格等于500元,用一元一次方程表示这个问题并解决。
2. 学生通过思考和讨论,尝试将问题转化为一元一次方程。
3. 老师引导学生讲解解题过程,重点解释如何列方程、如何解方程,以及解方程的含义。
4. 学生进行个别或小组练习,教师巡视指导,及时纠正错误。
第三节:更多的应用1. 老师提供更多的实际问题例子,如:甲乙两人共有100元,甲比乙多3倍,他们之间的差为多少?请用一元一次方程解决。
2. 学生独立或小组解决问题,体验一元一次方程的实际应用。
3. 学生展示解题过程和答案,老师进行点评和讲解,指导学生掌握解题技巧和方法。
4. 学生通过课后练习巩固所学知识。
第四节:拓展应用1. 老师提供较复杂的实际问题例子,如:一辆火车和一辆汽车从相距300公里的A地和B地同时出发,火车每小时行80公里,汽车每小时行60公里。
多少小时后两车相遇?请用一元一次方程解决。
2. 学生独立或小组解决问题,训练解决实际问题的能力。
3. 学生展示解题过程和答案,老师进行点评和讲解,巩固学生对一元一次方程应用的理解和掌握。
课堂小结:本节课我们学习了一元一次方程的应用,通过实际问题的解决,学会了如何将问题转化为一元一次方程,并通过解方程找出问题的解决办法。
一元一次方程的应用优秀教案
一元一次方程的应用【教学内容】一元一次方程的应用(2)【教学目标】(一)知识与技能:1.学会分析实际问题中的“不变量”,建立方程解决问题;2.会设未知数,正确求解,并验明解的合理性。
(二)过程与方法:通过分析实际问题,明白运用方程解决问题的关键是找到等量关系从而建立数学模型解决问题。
(三)情感与态度:1.体验数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决;2.激发学生的学习情绪,让学生在探索问题中学会合作。
【教学重点】如何从实际问题中寻找等量关系建立方程,解决问题后如何验证它的合理性。
【教学难点】如何从实际问题中寻找等量关系建立方程。
【教学过程】(一)复习回顾。
1.长方形的周长l=_________;长方形面积S=_______;长方体体积V=_________。
2.正方形的周长l=_________;正方形面积S=_______;正方体体积V=________。
3.圆的周长l=________;圆的面积S=_______;圆柱体体积V=_________。
(二)新课学习。
1.情境导入:此时长方形的长2.9m,宽2.1m,面积是6.09m2。
此时长方形的面积比第一次围成的面积增大6.09-5.76=0.33(m2)。
(3)若使长方形的长和宽相等,即围成一个正方形,此时正方形的边长是多少米?围成的面积与第二次围成的面积相比,又有什么变化?解:设正方形的宽为x米。
根据题意,得:(x+x)×2 =10解得:x=2.5∴2.5×2.5=6.25此时正方形的长2.5m,面积是6.25m2。
面积增大:6.25-6.09=0.16(m2)此时长方形的面积比第二次围成的面积增大0.16m2。
3.比较探究:同样长的铁线围成怎样的四边形面积最大?例题:面积:3.2×1.8=5.76。
练习(1):面积:2.9×2.1=6.09。
练习(2):面积:2.5×2.5 =6.25。
《一元一次方程的应用》教案
《一元一次方程的应用》教案教学目标1、了解一元一次方程在解决实际问题中的应用、体会运用方程解决问题的关键是抓住等量关系,建立数学模型等量关系,建立数学模型. .2、学会通过分析图形问题中的基本等量关系,并由此关系列方程解相关的应用题、学会通过分析图形问题中的基本等量关系,并由此关系列方程解相关的应用题. .3、能借助“线段图”分析复杂问题中的数量关系,从而列出方程,解决问题、能借助“线段图”分析复杂问题中的数量关系,从而列出方程,解决问题..熟悉行程问题中路程、速度、时间之间的关系,从而实现从文字语言到符号语言的转换问题中路程、速度、时间之间的关系,从而实现从文字语言到符号语言的转换. .4、整体把握打折问题中的基本量之间的关系:整体把握打折问题中的基本量之间的关系:商品利润商品利润商品利润==商品售价-商品成本价;商品售价-商品成本价;商品商品的利润率的利润率==利润÷成本×100%.5、探索打折问题中的等量关系,建立一元一次方程、探索打折问题中的等量关系,建立一元一次方程. .教学重点与难点重点:重点:((1)寻找图形问题中的等量关系,寻找图形问题中的等量关系,建立方程;建立方程;建立方程;((2)根据具体问题列出的方程,根据具体问题列出的方程,掌握掌握其简单的解方程的方法其简单的解方程的方法. .难点:寻找图形问题中的等量关系,建立数学模型,建立一元一次方程,使实际问题数学化学化. .教学准备多媒体课件、例题用到的实物多媒体课件、例题用到的实物. .教学过程一、创新情境,引入新课一、创新情境,引入新课教师:怎样解答本章“情景导航”中的问题?与同学交流教师:怎样解答本章“情景导航”中的问题?与同学交流教师:根据题意,请思考下列问题:教师:根据题意,请思考下列问题:(1)题目中哪些是已知量?哪些是未知量?题目中哪些是已知量?哪些是未知量?…………(3)题目中的等量关系是什么?题目中的等量关系是什么?…………二、合作探究,展示交流二、合作探究,展示交流根据题意列出方程:根据题意列出方程:x +2x +4x +8x +16x +32x +64x =381. 我们可以把这个方程看做“宝塔问题”的一个“数学模型”我们可以把这个方程看做“宝塔问题”的一个“数学模型”. .教师:很好,我这儿有一个问题:某居民楼顶有一个底面直径和高均为4m 的圆柱形储水箱、现该楼进行维修改造,为减少楼顶原有储水箱的占地面积,需要将它的底面直径由4m 减少为3.2m ,那么在容积不变的前提下,水箱的高度将由原先的4m 增高为多少米?你能帮他吗?帮他吗?学生:用一元一次方程来解、这个问题的等量关系:旧水箱的体积学生:用一元一次方程来解、这个问题的等量关系:旧水箱的体积==新水箱的体积新水箱的体积. . 教师:同学们分析得很好,列方程时,关键是找出问题中的等量关系教师:同学们分析得很好,列方程时,关键是找出问题中的等量关系..下面我们如果设新水箱的高为x m ,通过填写下表来看一下旧水箱的体积和新水箱的体积、,通过填写下表来看一下旧水箱的体积和新水箱的体积、旧水箱旧水箱 新水箱新水箱 底面半径底面半径//m2 1、6 高/m4 x 体积体积//m 3 π×22×4 π×1、62×x(学生计算填表,让一位同学说出自己的结果学生计算填表,让一位同学说出自己的结果) )学生:旧水箱的圆柱的底面半径为4÷2=2m ,高为4米,所以旧水箱的圆柱的体积为π×222×4m 33;新水箱的圆柱的底面半径为3.2÷2=1.6m ,高设为x m ,所以新水箱的体积为π×1.62×x .由等量关系我们便可得到方程:π×22×4=π×1.62×x .教师:列出方程我们只是走完“万里长征”重要的第一步,如何解这个方程呢?教师:列出方程我们只是走完“万里长征”重要的第一步,如何解这个方程呢? 学生:将π换成3.14,算出x 的系数π×22,然后将系数化为1就解出了方程就解出了方程. .学生:我认为应先观察方程的特点,左右两边都含有π,可用等式的第二个性质,方程两边同时除以π,可使方程变得简单,可使方程变得简单. .教师:这位同学的想法很好、下面我们共同把这个题的过程写一下教师:这位同学的想法很好、下面我们共同把这个题的过程写一下. .解:设新水箱圆柱的高为x 厘米,厘米,根据题意,列出方程π×22×4=π×1.62×x ,解得x =254. 答:高变成了254米. 教师:通过本题的解答过程,你能总结一下列一元一次方程解决实际问题的步骤吗? (学生认真思考后,小组内交流、教师适时引导共同归纳出列一元一次方程解决实际问题的步骤:理解题意、寻找等量关系、设未知数列方程、解方程、作答题的步骤:理解题意、寻找等量关系、设未知数列方程、解方程、作答.) .)设计意图:设置丰富的问题情境,使学生经历模型化的过程,激发学生的好奇心和主动学习的欲望学习的欲望. .探究:周长相等问题探究:周长相等问题教师:用你手中的铁丝围成一个四边形,在所有的四边形中他们的周长有什么特点? 学生:不变,都相等学生:不变,都相等. .教师:所围成的四边形的面积变化吗?动手操作试一试教师:所围成的四边形的面积变化吗?动手操作试一试. .(学生动手操作,操作完成后让学生汇报结果学生动手操作,操作完成后让学生汇报结果) )学生:面积发生变化学生:面积发生变化. .教师:下面以小组为单位,借助你手中的铁丝,依据上一题的解题经验,教师:下面以小组为单位,借助你手中的铁丝,依据上一题的解题经验,小组内分工合小组内分工合作完成下面问题作完成下面问题. .例:用一根长为10米的铁丝围成一个长方形米的铁丝围成一个长方形. .(1)使得该长方形的长比宽多1.4米,此时长方形的长、宽各为多少米?米,此时长方形的长、宽各为多少米?(2)使得该长方形的长比宽多0.8米,此时长方形的长、宽各为多少米?它围成的长方形与(1)中所围成的长方形相比,面积有什么变化?中所围成的长方形相比,面积有什么变化?(3)使得该长方形的长与宽相等,即围成一个正方形,此时正方形的边长是多少米?它所围成的面积与所围成的面积与((2)中相比又有什么变化?中相比又有什么变化?教学建议:小组讨论解题过程中,教师巡视课堂,指导、参与学生的讨论制作,帮助有学习有难的个人或小组有学习有难的个人或小组..在讨论解答完成后,让小组选代表阐述解题的步骤、思路并展示自己小组所做的长方形自己小组所做的长方形((或正方形或正方形)),指导学生反思各组的解答过程并讨论:解决这道题的关键是什么?从解这道题中你有何收获和体验、通过猜测、验证说明三个长方形面积变化的规律,教师及时引导学生给予评价,表扬鼓励,同时用多媒体展示解题步骤,进一步规范学生的解题格式生的解题格式. .解:解:((1)设此时长方形的宽为x m ,则它的长为,则它的长为((x +1.4)m ,根据题意,得x +(x +1.4)=10×12, 解这个方程,得x =1.8,x +1.4=1.8+1.4=3.2,此时长方形的长为3.2m ,宽为1.8m .(2)此时长方形的宽为x m ,则它的长为,则它的长为((x +0.8)m ,根据题意,得x +(x +0.8)=10×12、解这个方程,得x =2.1, x +0.8=2.1+0.8=2.9,此时长方形的长为2.9m ,宽为2.1m ,面积为2.1×2.9=6.09m 2,(1)中长方形的面积为3、2×1.8=5.76m 2,此时长方形的面积比,此时长方形的面积比((1)中长方形面积增大6.09-5.76=0.33m 2. (3)设正方形的边长为x m ,根据题意,得4x =10×12,解这个方程,得x =2.5,正方形的边长为2.5m ,正方形的面积为2.5×2.5=6.25m 22,比,比((2)中面积增大6.25-6.09=0.16m 22. 教师:我们解答这个题的关键是我们在改变长方形的长和宽的同时,长方形的周长不变,始终是铁丝的长度10米,由此便可建立“等量关系”,但是我们可以发现,虽然长方形的周长不变,改变长方形的长和宽,长方形的面积却在发生变化,而且围成正方形的时候面积达到最大到最大. .设计意图:通过例题让学生再次感受找到题目中的等量关系是列方程解应用题的关键,让学生经历知识的探索、发现、掌握、应用的过程、使学生体验让学生经历知识的探索、发现、掌握、应用的过程、使学生体验“数学化”“数学化”过程,使学生在实际动手计算、制作中体验合作的愉快及成功的喜悦,进一步理性地感受上一个环节中得出的结论,培养学生数学思考的严谨性,判断推理的科学性,语言表述的准确性出的结论,培养学生数学思考的严谨性,判断推理的科学性,语言表述的准确性. .三、训练反馈,应用提升三、训练反馈,应用提升1、问答题、问答题(1)小明家离学校有1000米,他骑车的速度是25米/分,那么小明从家到学校需那么小明从家到学校需_________小时小时小时. .(2)甲、乙两地相距1600千米,一列火车从甲地出发去乙地,经过16小时,距离乙地还有240千米千米..这列火车每小时行驶多少千米?这列火车每小时行驶多少千米?2、抢答题、抢答题(1)用一元一次方程解决问题的基本步骤:用一元一次方程解决问题的基本步骤:____________. ____________.(2)行程问题主要研究、三个量的关系行程问题主要研究、三个量的关系. .路程路程=_____=_____=_____,速度,速度,速度=_____=_____=_____,时间,时间,时间=_____. =_____.(3)若小明每秒跑4米,那么他10秒跑秒跑_________米米.自主学习自主学习例:小明早晨要在7:50以前赶到距家1000米的学校上学,一天,小明以80m /min 的速度出发,5min 后,小明的爸爸发现他忘了带语文书,于是,爸爸立即以180m /min 的速度去追小明,并且在途中追上了他追小明,并且在途中追上了他. .(1)爸爸追上小明用了多长时间?爸爸追上小明用了多长时间?(2)追上小明时,距离学校还有多远?追上小明时,距离学校还有多远?独立思考,完成上面的问题独立思考,完成上面的问题. .1、根据题目已知条件,画出线段图:、根据题目已知条件,画出线段图:2、找出等量关系:、找出等量关系:小明走过的路程=爸爸走过的路程小明走过的路程=爸爸走过的路程. .3、板书规范写出解题过程:、板书规范写出解题过程:解:解:((1)设爸爸追上小明用了x min .根据题意,得80×5+80x =180x化简得100x =400.解得,x =4.因此,爸爸追上小明用了4min .(2)180×4=720(m )1000-720=280(m )所以,追上小明时,距离学校还有280米.(学生独立完成,找到等量关系并列出方程,教师巡视学生并给予检查和指导教师巡视学生并给予检查和指导..请书写规范的学生到前面板演,并讲解其解题思路,其他同学对照黑板谈谈自己的不足之处范的学生到前面板演,并讲解其解题思路,其他同学对照黑板谈谈自己的不足之处.) .)分析出发时间不同的追及问题,分析出发时间不同的追及问题,能画出线段图,能画出线段图,进行图形语言、符号语言与文字语言之间的相互转化,理解题中的等量关系,培养学生思维的灵活性,进一步列出方程,解决问题,既能娴熟使用“线段图”又能利用方程的思想解决问题既能娴熟使用“线段图”又能利用方程的思想解决问题. .四、拓展应用四、拓展应用1、用多媒体展示收集的各商场打折销售情景;、用多媒体展示收集的各商场打折销售情景;2、通过情景剧了解打折销售活动,弄清相关概念及内在联系、通过情景剧了解打折销售活动,弄清相关概念及内在联系. .讨论分析商品销售中的几个概念:讨论分析商品销售中的几个概念:(1)进价:购进商品时的价格进价:购进商品时的价格.(.(.(有时也叫成本价有时也叫成本价有时也叫成本价) )(2)售价:在销售商品时的售出价售价:在销售商品时的售出价.(.(.(有时称成交价,卖出价有时称成交价,卖出价有时称成交价,卖出价) )(3)标价:在销售时标出的价标价:在销售时标出的价.(.(.(有时称原价,定价有时称原价,定价有时称原价,定价) )(4)利润:在销售商品的过程中纯收入,即:利润利润:在销售商品的过程中纯收入,即:利润==售价-进价售价-进价. .(5)利润率:利润占进价的百分率,即:利润率利润率:利润占进价的百分率,即:利润率==利润÷进价×100%.(6)打折:卖货时,按照标价乘以十分之几或百分之几十,按照标价乘以十分之几或百分之几十,则称将标价进行了几折则称将标价进行了几折则称将标价进行了几折((或理解为:销售价占标价的百分率解为:销售价占标价的百分率).).).例如某种服装打例如某种服装打8折即按标价的百分之八十出售折即按标价的百分之八十出售. .新课讲解新课讲解1、主题分析:一家商店将某种服装按成本价提高40%后标价,以8折(即按标价的80%)优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?元,这种服装每件的成本是多少元?想一想:这15元的利润是怎么来的?元的利润是怎么来的?2、例题分析:商店对某种商品作调价,按原价的9折出售,此时商品的利润率是15%,此商品的进价为1800元商品的原价是多少?商品的原价是多少?教师引导学生完成教师引导学生完成. .巩固新知巩固新知让学生完成课本让学生完成课本“挑战自我”“挑战自我”“挑战自我”及相关练习,做完后小组讨论交流,教师对其中出现的问及相关练习,做完后小组讨论交流,教师对其中出现的问题进行及时的指导题进行及时的指导. .五、课堂小结五、课堂小结教师:通过本节课的学习,你有哪些收获?还有那些困惑?教师:通过本节课的学习,你有哪些收获?还有那些困惑?教学建议:先让学生畅所欲言,着重引导学生总结以下三个方面:教学建议:先让学生畅所欲言,着重引导学生总结以下三个方面:1、通过对“水箱变高了”的了解,我们知道“旧水箱的体积、通过对“水箱变高了”的了解,我们知道“旧水箱的体积==新水箱的体积”,“变形前周长等于变形后周长”是解决此类问题的关键,即变的是什么,不变的是什么周长等于变形后周长”是解决此类问题的关键,即变的是什么,不变的是什么. .2、遇到较为复杂的实际问题时,我们可以借助表格分析问题中的等量关系,借此列出方程,并进行方程解的检验方程,并进行方程解的检验. .3、解出的数学问题要联系生活实际问题来检验它的结果的合理性、解出的数学问题要联系生活实际问题来检验它的结果的合理性. .4、会借“线段图”分析行程问题、会借“线段图”分析行程问题. .5、各种行程问题中的规律及等量关系、各种行程问题中的规律及等量关系. .同向追及问题:同向追及问题:(1)同时不同地——甲路程+路程差=乙路程;甲时间=乙时间同时不同地——甲路程+路程差=乙路程;甲时间=乙时间. .(2)同地不同时——甲时间+时间差=乙时间;甲路程=乙路程同地不同时——甲时间+时间差=乙时间;甲路程=乙路程. .6、能理解商品销售问题中的基本概念及相等关系,熟练地应用“利润、能理解商品销售问题中的基本概念及相等关系,熟练地应用“利润==售价-成本价”“利润率“利润率==利润÷成本价×100%”来寻找商品销售中的相等关系”来寻找商品销售中的相等关系. .7、能联系以前研究过的问题,加深理解用一元一次方程解决实际问题的一般步骤、能联系以前研究过的问题,加深理解用一元一次方程解决实际问题的一般步骤. .。
2022年数学精品初中教学设计《一元一次方程的应用2》特色教案
7.4 一元一次方程的应用第2课时教学目标1.借助表格分析复杂问题中的数量关系, 从而建立方程解决实际问题.2.领悟数学来源于实践, 效劳于实践, 解决问题用最简单的方法.3.培养学生热爱数学、积极探索、勇于创新的精神.教学重难点【教学重点】找出等量关系, 解决实际问题.【教学难点】探究多种解决方法.课前准备课件教学过程【教与学目标】1、经历探索分式的加减法运算法那么的过程, 通过与分数加减法法那么的类比, 开展学生的联想与合情推理能力.2、能熟练地进行同分母的分式加减法的运算. 【重、难点】熟练地进行同分母的分式加减法的运算. 【教与学过程】 一、知识引桥1、分式是怎样通分的?与分数的通分有区别吗?2、看谁做的又对又快.(1)41+42= (2)21+31= (3)61+81= (4)22xy 与yx 23通分后的分式为与(5)92-a a 与9612++a a 通分后的分式为 与二、学习新知〔一〕考考你〔1〕甲、乙两捆相同型号的电线, 质量分别为m 千克和n 千克, 如果这种电线每米的质量为a 千克, 那么这两捆电线的总长度为 米.〔2〕如果这两捆电线的型号不同, 质量分别为p 千克和q 千克, 甲捆电线每米质量为a 千克, 乙捆电线每米质量为b 千克, 那么这两捆电线的总长度为 米.〔二〕交流与发现〔1〕与同学交流说明一下分数的加法法那么, 下面的题目你一定会做:①xx 31+= ②xyxy xy 542-+= 归纳一下同分母分式加减法法那么:例1、计算〔1〕x y 3 +x y 35 〔2〕mn n m 22-+mnn m 22+[分析] 第〔1〕题是同分母的分式减法的运算, 分母不变, 只把分子相减, 〔2〕是多项式要变号的问题, 应引起注意. 例2、计算〔1〕3283322--+-+a a a a 〔2〕x y y y x x -+-22 [分析]此题是同分母的分式加减法的运算, 强调分子为多项式时, 应把多项式看作一个整体加上括号参加运算, 结果也要约分化成最简分式. 注意:最后结果一定要化为最简公式. 三、学以致用计算:(1)xyx y 232+(2)23223+++a aa a (3) 3y y x x+(4) m n mn m n m n n m -+---+22四、课堂小结谈谈你的收获. 五、教学反思。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学:黑龙江省虎林市八五零农场学校第五章第2节《一元一次方程
的应用2》教案(七年级上)
一、课题§5.2一元一次方程的应用(2)
二、教学目标
1.提高学生列方程解和、差、倍、半问题的能力,使学生注意所列方程中的单位要统一;
2.培养学生解等积变形问题的能力.
三、教学重点和难点
重点:列方程解等积变形问题.
难点:等积变形问题中找等量关系.
四、教学手段
引导——活动——讨论
五、教学方法
启发式教学
六、教学过程
(一)、从学生原有的认知结构提出问题
1.列方程解应用题的一般步骤是什么?
2.已知甲比乙多5个:
(1)如果乙有a个,则甲有几个?
(2)用等式表示甲、乙间的数量关系.
(甲-5=乙;甲-乙=5;甲=乙+5,三者之中答出一个即可)
教师强调:由此题所列等式可以看到,“多的”应当减才能等于“少的”,或“少的”应当加才等于“多的”.
列方程解应用题,不仅要注意单位在书写方面的要求,而且更要注意方程中的单位是否统一.本节课,学习如何利用一元一次方程来解决有关和、差、倍、半问题及等积变形问题.
(二)、讲授新课
药水原有多少升?
师生共同分析:
1.由学生审题并找出已知量、未知量?
不是一回事.(学生答)
3.让学生找出题中存在的相等关系.
以上问题,若学生在回答时有困难,教师应做适当点拨.
解:(学生口述,教师板书)
设这瓶药水原有x升.
所以 x=12.
答:这瓶药水原有12升.
不是一回事.
例2 某工厂锻造直径为60毫米,高20毫米的圆柱形零件毛坯,需要截取直径40毫米的圆钢多长?
师生共同分析:
这是一个有关体积方面的应用问题.那么圆柱体的体积公式是什么呢?(圆柱体积=底面积×高) 由学生审题并找出题中的已知量、未知量,此时教师要讲授锻造的意义,使学生明确锻造时,虽然钢的长度和底面直径变了,但体积没有变化.然后请学生说出本题中的相等关系.
(圆钢的体积=零件毛坯的体积)
设需要截取的圆钢的长度为x毫米,再分析相等关系的左边和右边,便可得下表.
解:设需要截取的圆钢长度为x毫米.
依题意,得
解方程 400 x=18 000.
所以 x=245.
答:需截取的圆钢的长是45毫米.
(解答过程,学生口述,教师板书)
(三)、课堂练习
1.圆柱(1)的底面直径为10厘米,高为18厘米;圆柱(2)的底面直径为8厘米.已知圆柱(2)的体积是圆柱(1)的体积的1.5倍,求圆柱(2)的高.
2.将内径为200毫米的圆柱形水桶中的满桶水倒入一个内部长、宽、高分别为300毫米、300毫米、80毫米的长方体铁盒,正好倒满,求圆柱形水桶的水高(精确到1毫米.π≈3.14).3.某校初一有学生153人,分成甲、乙、丙三个班,乙班比丙班多5人而比甲班少8人,问三个班各有学生多少人?
(四)、师生共同小结
在师生共同回顾本节课所学的内容的基础上,教师指出:
(1)解决和、差、倍、分问题,需注意所列方程两边的单位要统一.这在其它类型题中也会经常遇到;
(2)对于等积变形问题,解决它的关键是明确锻造前后的体积相等,同时要记准求圆柱体的体积公式,
不要把直径当成半径.
七、练习设计
1.长方体甲的长、宽、高分别是260毫米,150毫米,325毫米,长方体乙的底面积是130×130毫米2(长、宽都是130毫米).已知甲的体积是乙的体积的2.5倍,求乙的高.
2.内径为120毫米的圆柱形玻璃杯,和内径为300毫米,内高为32毫米的圆柱形玻璃盘可以盛同样多的水,求玻璃杯的内高.
3.用内径为 90毫米的圆柱形玻璃杯(已装满水)向一个内底面积为 131×131毫米2,内高是81毫米的长方体铁盒倒水,当铁盒装满水时,玻璃杯中水的高度下降多少?
4.某工厂三个车间共 180人,第二车间人数是第一车间人数的3倍还多1人,第三车间人数是第一车间人数的一半还少1人,求三个车间各多少人?
5.有一根铁丝,第一次用去它的一半少1米,第二次用去剩下的一半多1米,结果还剩下2.5米,问这根铁丝原长多少米?
八、板书设计
§5.2一元一次方程的应用(2)
(一)知识回顾(三)例题解析(五)课堂
小结
例1、例2
(二)观察发现(四)课堂练习练习设计
九、教学后记
本节课的教学设计侧重讲列方程解应用题的一般步骤,同时使学生初步感受到代数方法的优越性,从而激发学生学习的积极性.
由于本节课是列方程解应用题的第一节课,只要学生能达到解题时步骤完整、格式正确就可以了.因此,本节课所选的例题及练习题中的等量关系均是学生比较熟悉的,易于接受的.。