平方差、完全平方公式专项练习题
完全平方公式和平方差公式法习题(内含答案)
完全平方和平方差公式习题一. 选择题:1. 下列四个多项式:22b a +,22b a -,22b a +-,22b a --中,能用平方差公式分解因式的式子有( )A. 1个B. 2个 C 。
3个 D 。
4个2. )23)(23(y x y x -+-是下列哪个多项式分解因式的结果( )A 。
2249y x -B 。
2249y x +C 。
2249y x -- D. 2249y x +-3. 下列各式中,能运用完全平方公式分解因式的是( ) A. 22b a + B. 2242b ab a ++ C 。
422b ab a +- D 。
22412b ab a +- 4。
如果k x x +-322是一个完全平方公式,则k 的值为( ) A 。
361 B. 91 C. 61 D 。
31 5. 如果22259b kab a ++是一个完全平方式,则k 的值( )A. 只能是30B. 只能是30- C 。
是30或30- D. 是15或15-6。
把9)6(6)6(222+---x x 分解因式为( )A 。
)3)(3(-+x x B. 92-x C. 22)3()3(-+x x D 。
2)3(-x 7. 162-a 因式分解为( )A. )8)(8(+-a a B 。
)4)(4(+-a a C 。
)2)(2(+-a a D. 2)4(-a8. 1442+-a a 因式分解为( )A 。
2)2(-aB 。
2)22(-a C. 2)12(-a D 。
2)2(+a 9. 2222)(4)(12)(9y x y x y x ++-+-因式分解为( )A 。
2)5(y x - B. 2)5(y x + C. )23)(23(y x y x +- D. 2)25(y x -10. 把2222)())((2)(c a b c b c a ab c b a -++--+分解因式为( )A. 2)(b a c +B. 22)(b a c -C. 2)(b a c + D 。
实用版平方差、完全平方公式专项练习题(精品)汇编
平方差与完全平方式一、平方差公式:(a+b)(a-b)=a2-b2两数和与这两数差的积,等于它们的平方之差。
2、即:(a+b)(a-b) = 相同符号项的平方 - 相反符号项的平方3、平方差公式可以逆用,即:a2-b2=(a+b)(a-b)。
3、能否运用平方差公式的判定①有两数和与两数差的积即:(a+b)(a-b)或(a+b)(b-a)②有两数和的相反数与两数差的积即:(-a-b)(a-b)或(a+b)(b-a)③有两数的平方差即:a2-b2 或-b2+a2二、完全平方公式:(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
1、完全平方公式也可以逆用,即a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)22、能否运用完全平方式的判定①有两数和(或差)的平方即:(a+b)2或(a-b)2或(-a-b)2或(-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。
即:a2+2ab+b2或a2-2ab+b2-a2-2ab-b2或-a2+2ab-b2随堂练习:1.下列各式中哪些可以运用平方差公式计算(1)()()caba-+(2)()()xyyx+-+(3)()()abxxab---33(4)()()nmnm+--2.判断:(1)()()22422baabba-=-+()(2)1211211212-=⎪⎭⎫⎝⎛-⎪⎭⎫⎝⎛+xxx()(3)()()22933yxyxyx-=+--()(4)()()22422yxyxyx-=+---()(5)()()6322-=-+aaa()(6)()()933-=-+xyyx()3、计算:(1))4)(1()3)(3(+---+aaaa(2)22)1()1(--+xyxy(3))4)(12(3)32(2+--+aaa(4))3)(3(+---baba更多精品文档更多精品文档(5)22)3(x x -+ (6)22)(y x y +-4.先化简,再求值:⑴(x+2)2-(x+1)(x-1),其中x=1.5(3) )2)(2(2))(2()2(2b a b a b a b a b a +--+--+,其中2,21-==b a .(4) (2a -3b)(3b +2a)-(a -2b )2,其中:a=-2,b=35..有这样一道题,计算:2(x+y )(x -y)+[(x+y )2-xy]+ [(x -y )2+xy]的值,其中x=2006,y=2007;某同学把“y=2007”错抄成“y=2070”但他的计算结果是正确的,请回答这是怎么回事?试说明理由。
平方差、完全平方公式专项练习题 经典
平方差公式专项练习题有关配方问题(一)对于a2+2ab+b2=(a+b)2、a2-2ab+b2=(a-b)2的配方问题是,对于a2,2ab,b2这三项,认准特点,式子中缺哪项就补哪项,但要保证式子相等。
具体操作:先确定第一项,再确定第三项,最后确定中间项,并且要检验中间项与原式中的中间项相等。
(二)练习: 1.若x2+mx+9是完全平方式,则m=_____.2. 若x2+12x+m2是完全平方式,则m=_____.3. 若x2-mx+9=(x+3)2,则m=_____.4. 若4x2-mx+9是完全平方式,则m=_____.5.若4x2+12x+m2是完全平方式,则m=_____.6.若(mx)2+12x+9是完全平方式,则m=_____.7.若mx2+12x+9是完全平方式,则m=_____.8.已知x2-2(m+1)xy+16y2是一个完全平方式,那么m的值是_____.9.(1)化简(a-b)2+(b-c)2+(a-c).(2)利用上题的结论,且a-b=10,b-c=5,求a2+b2+c2-ab-bc-ac的值.(3)已知a=2x-12,b=2x-10,c=2x+4,求a2+b2+c2-ab-bc-ac的值(4)已知a,b,c是三角形的三边且满足a2+b2+c2-ab-bc-ac=0,判断三角形的形状.10.已知x2-2x+y2+6y+10=0,求x=_____,y=_____,x+y=_____.11. 已知x2-4x+y2+6y+13=0,求x=_____,y=_____,xy=_____.12.试说明N=x2-4x+y2+6y+15永远为正值.平方差公式专项练习题一、基础题1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示()A.只能是数B.只能是单项式C.只能是多项式D.以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a)B.(-a+b)(a-b)C.(13a+b)(b-13a)D.(a2-b)(b2+a)3.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.A.1个B.2个C.3个D.4个4.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-5二、填空题5.(-2x+y)(-2x-y)=______.6.(-3x2+2y2)(______)=9x4-4y4.7.(a+b-1)(a-b+1)=(_____)2-(_____)2.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.三、计算题9.利用平方差公式计算:2023×2113.10.计算:(a+2)(a2+4)(a4+16)(a-2).二、提高题1.计算:(1)(2+1)(22+1)(24+1)…(22n +1)+1(n 是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-401632.2.利用平方差公式计算:2009×2007-20082.(1)利用平方差公式计算:22007200720082006-⨯.(2)利用平方差公式计算:22007200820061⨯+.3.解方程:x (x+2)+(2x+1)(2x -1)=5(x 2+3).三、实际应用题4.广场内有一块边长为2a 米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?四、经典中考题5.下列运算正确的是()A.a3+a3=3a6B.(-a)3·(-a)5=-a8C.(-2a2b)·4a=-24a6b3D.(-13a-4b)(13a-4b)=16b2-19a26.计算:(a+1)(a-1)=______.拓展题型1.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(•1+x+x2+x3)=1-x4.(1)观察以上各式并猜想:(1-x)(1+x+x2+…+x n)=______.(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a-b)(a+b)=_______.②(a-b)(a2+ab+b2)=______.③(a-b)(a3+a2b+ab2+b3)=______.2.(结论开放题)请写出一个平方差公式,使其中含有字母m,n和数字4.3.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,•将剩下的纸板沿虚线裁成四个相同的等腰梯形,如图1-7-1所示,然后拼成一个平行四边形,如图1-7-2所示,分别计算这两个图形阴影部分的面积,结果验证了什么公式?请将结果与同伴交流一下.完全平方公式变形的应用完全平方式常见的变形有:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ab b a b a 4)(22=--+)( bc ac ab c b a c b a 222)(2222---++=++1、已知m 2+n 2-6m+10n+34=0,求m+n 的值2、已知0136422=+-++y x y x ,y x 、都是有理数,求y x 的值。
平方差和完全平方公式及经典例题
平方差和完全平方公式及经典例题专题一:平方差公式例1:计算下列各整式乘法。
①位置变化$(7x+3y)(3y-7x)$②符号变化$(-2m-7n)(2m-7n)$③数字变化$98\times102$④系数变化$(4m+n)(2m-n)-24$⑤项数变化$(x+3y+2z)(x-3y+2z)$⑥公式变化$(m+2)(m-2)(m^2+4)$变式拓展训练:变式1】$(-y-x)(-x+y)(x^2+y^2)(x^4+y^4)$变式2】$(2a-\frac{b}{3})^2-\frac{(b-4a)^2}{33}$变式3】$1002-992+982-972+\cdots+22-12$专题二:平方差公式的应用例2:计算$2004-2004^2\times2005\times2003$的值为多少?变式拓展训练:变式1】$(x-y+z)^2-(x+y-z)^2$变式2】$301\times(302+1)\times(302^2+1)$变式3】$(2x+y-z+5)(2x-y+z+5)$变式4】已知$a$、$b$为自然数,且$a+b=40$。
1)求$a^2+b^2$的最大值;(2)求$ab$的最大值。
专题三:完全平方公式例3:计算下列各整式乘法。
①位置变化:$(-x-\frac{y}{2})(\frac{y}{2}+x)$②符号变化:$(-3a-2b)^2$③数字变化:$197^2$④方向变化:$(-3+2a)^2$⑤项数变化:$(x+y-1)^2$⑥公式变化$(2x-3y)^2+(4x-6y)(2x+3y)+(2x+3y)^2$变式拓展训练:变式1】$a+b=4$,则$a^2+2ab+b^2$的值为()A.8B.16C.2D.4变式2】已知$(a-b)^2=4$,$ab=12$,则$(a+b)^2$=_____变式3】已知$x+y=-5$,$xy=6$,则$x^2+y^2$的值为()A.1B.13C.17D.25变式4】已知$x(x-1)-(x^2-y)=-3$,求$x^2+y^2-2xy$的值专题四:完全平方公式的运用例4:已知:$x+y=4$,$xy=2$。
平方差、完全平方公式专项练习题
公式变形一、基础题1.(-2x+y)(-2x-y)=______.2.(-3x2+2y2)(______)=9x4-4y4.3.(a+b-1)(a-b+1)=(_____)2-(_____)2.4.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.5.利用平方差公式计算:2023×2113.2009×2007-20082.6.计算:(a+2)(a2+4)(a4+16)(a-2).(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);(3+1)(32+1)(34+1)…(32008+1)-401632.22007200720082006-⨯.22007200820061⨯+.7.解方程:x(x+2)+(2x+1)(2x-1)=5(x2+3).8(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(•1+x+x2+x3)=1-x4.(1)观察以上各式并猜想:(1-x)(1+x+x2+…+x n)=______.(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a-b)(a+b)=_______.②(a-b)(a2+ab+b2)=______.③(a-b)(a3+a2b+ab2+b3)=______.完全平方式常见的变形有:1、已知m2+n2-6m+10n+34=0,求m+n的值2、已知0136422=+-++yxyx,yx、都是有理数,求y x的值。
3.已知2()16,4,a b ab+==求223a b+与2()a b-的值。
练习:()5,3a b ab-==求2()a b+与223()a b+的值。
七年级数学下---平方差、完全平方公式专项练习题
七年级数学下---平方差、完全平方公式专项练习题平方差:一、选择题1 平方差公式(a+b) (a—b) =a2—b2中字母a, b表示()A •只能是数B •只能是单项式C •只能是多项式D•以上都可以2•下列多项式的乘法中,可以用平方差公式计算的是( )1 12 2A . (a+b) (b+a)B . ( —a+b) (a—bC . (一a+b) (b—- a)D . (a —b) (b +a)3 33. 下列计算中,错误的有( )A. 1个B . 2个C .3个D .4个©( 3a+4) (3a —4) =9a2—4;购(2a2—b) (2a2+b) =4a2—b2;@(3 —x) (x+3) =x2—9; ④(—x+y) • (x+y) =—(x—y) (x+y) =—x2—y2.4 .若x2—y2=30,且x —y= —5,则x+y 的值是()A.5 B .6 C . —6 D . —5二、填空题:5、(a+b—1) (a—b+1) = ( ____ ) 2—( _____ )2.6 . ( —2x+y) ( —2x —y) = _. 7. ( —3x2+2y2) ( ____ )=9x4—4y4.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_________ .三、计算题9.利用平方差公式计算:20- x 211. 10 .计算:(a+2) (a2+4) (a4+16) (a —2).3 3B卷:提高题1 .计算:(1) (2+1) (22+1) (24+1)-( 22n+1) +1 (n 是正整数);4016(2) (3+1) (32+1) ( 34+1)-( 32008+1)3 .解方程:x (x+2) + (2x+1) (2x - 1) =5 (x 2+3).4. 广场内有一块边长为2a 米的正方形草坪,经统一规划后,南北方向要缩短长3米,则改造后的长方形草坪的面积是多少?5. 下列运算正确的是()A . a 3+a 3=3a 6 B . (-a ) 3 •( — a ) 5=-a 8C . (-2a 2b ) • 4a=-24a 6b 3D . (- ^a -4b ) (1 a -4b ) =16b 2--a 2 3396. 计算:(a+1) (a -1) = ______ . C 卷:课标新型题2231.(规律探究题)已知 x 工 1,计算(1+x ) (1-x ) =1 — x , (1 — x ) (1+x+x ) =1 — x ,234(1-x ) (?1+x+x+x ) =1 — x .(1)观察以上各式并猜想:(1—x ) (1+x+x 2+…+x n ) =_ . (n 为正整数)(2) 根据你的猜想计算:①(1 — 2) (1+2+Z+23+24+25) = ______ . ②2+22+23+…+2n = _____ (n 为正整数).99989722 .式计算:2009X 2007- 20082.(1)计算:2007220072008 2006(2)计算:20072 2008 2006 13米,东西方向要加③(x—1) (x +x +x + …+x +x+1) = ________ .(3) 通过以上规律请你进行下面的探索:2 2®(a — b ) (a+b ) = ____________ . ®(a — b ) (a+ab+b ) = ______________ . @( a — b ) (a 3+a 2b+ab 2+b 3) =_ .2.(结论开放题)请写出一个平方差公式,使其中含有字母m n 和数字4. __________________完全平方公式变形的应用完全平方式常见的变形有:a 2 b 2 (a b)2 2ab ; a 2 b 2 (ab)2 2ab2 2 2 2 2 2(a b ) (a b) 4ab ; a b c (a b c) 2ab 2ac 2bc1 已知 m+n 2-6m+10n+34=0 求 m+n 的值y 2 4x 6y 13 0, X 、y 都是有理数,求x y 的值练一练A 组:1 .已知(a b) 5,ab 3 求(a b)2 与 3(a 2 b 2)的值。
(完整版)实用版平方差、完全平方公式专项练习题(精品)
其中 x=1.5
1.平方差公式( a+b)(a- b) =a2- b2 中字母 a, b 表示( )
A .只能是数
B.只能是单项式
C.只能是多项式 D.以上都可以
2.下列多项式的乘法中,可以用平方差公式计算的是(
)
(3) (2a b) 2
(2a b)(a b) 2(a
2b )( a
2b) ,其中 a
2、已知 (a b)2 16, ab 4, 求 a2 b2 与 (a b)2 的值。 3
- 3-
练一练 1 .已知 (a b) 5, ab 3 求 (a b)2 与 3(a2 b2) 的值。 2 .已知 a b 6, a b 4 求 ab 与 a2 b2 的值。
3、已知 a b 4, a2 b2 4 求 a2b 2 与 (a b)2 的值。
2.利用平方差公式计算: (1)2009 ×2007- 20082.
2007
20072
.
2008 2006
20072
.
2008 2006 1
502 49 2 48 2 47 2
2 2 12ຫໍສະໝຸດ 3.解方程: x (x+2) +(2x+1 )( 2x- 1) =5( x2+3).
三、实际应用题
4.广场内有一块边长为 2a 米的正方形草坪,经统一规划后,南北方向要缩短
4a2
b2 (
)( 2)
1 x
1
1 x1
2
2
1 x2 1 ( ) 2
( 3) 3x y 3x y 9x 2 y 2 ( )( 4) 2x y 2x y 4x 2 y 2 ( )
( 5) a 2 a 3 a2 6 ( ) ( 6) x 3 y 3 xy 9 ( )
平方差、完全平方公式专项练习题
- 1 -平方差公式专项练习题一、基础题1.平方差公式(a+b )(a -b )=a 2-b 2中字母a ,b 表示( )A .只能是数B .只能是单项式C .只能是多项式D .以上都可以 2.下列多项式的乘法中,可以用平方差公式计算的是( ) A .(a+b )(b+a ) B .(-a+b )(a -b ) C .(13a+b )(b -13a ) D .(a 2-b )(b 2+a ) 3.下列计算中,错误的有( )①(3a+4)(3a -4)=9a 2-4;②(2a 2-b )(2a 2+b )=4a 2-b 2;③(3-x )(x+3)=x 2-9;④(-x+y )·(x+y )=-(x -y )(x+y )=-x 2-y 2. A .1个 B .2个 C .3个 D .4个4.若x 2-y 2=30,且x -y=-5,则x+y 的值是( ) A .5 B .6 C .-6 D .-5 二、填空题5.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____. 三、计算题6.利用平方差公式计算:(1) )52)(52(22--+-x x (2) )4)(4(-+ab ab(3) )14)(14(---a a (4)2009×2007-20082.(5)2023×2113. (6).(a+2)(a 2+4)(a 4+16)(a -2).(7)(2+1)(22+1)(24+1) (22)+1)+1(n 是正整数);完全平方公式专项练习题 一、选择题1.下列各式中,能够成立的等式是( ).A .B .C .D .2.下列式子:①②③ ④ 中正确的是( )A .①B .①②C .①②③D .④ 3. ( ) A .B .C .D .4.若 ,则M 为( ).A .B .C .D .5.一个正方形的边长为 ,若边长增加,则新正方形的面积人增加了( ). A . B .C .D .以上都不对6.如果 是一个完全平方公式,那么a 的值是( ). A .2 B .-2 C .D .7.若一个多项式的平方的结果为 ,则( )A .B .C .D .- 2 -二、填空题 1.2.3.(2x -______)2=____-4xy +y 2.4.(3m 2+_______)2=_______+12m 2n +________.5.(3a -5)2=9a 2+25-_______. 三、解答题1.运用完全平方公式计算:(1) (2)(3)(4) .四、首尾互倒例1:已知242411112,1;(2);(3)x a a a x a a a+=++-求:()例2.已知0132=--x x ,求①221x x += ②221x x -=五.求值:(1)已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值.(2)已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值.六.试说明不论x,y 取何值,代数式226415x y x y ++-+的值总是正数。
平方差、完全平方公式专项练习题
公式变形之南宫帮珍创作一、基础题1.(-2x+y )(-2x -y )=______. 2.(-3x 2+2y 2)(______)=9x 4-4y 4.3.(a+b -1)(a -b+1)=(_____)2-(_____)2. 4.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.5.利用平方差公式计算:2023×2113.2009×2007-20082.6.计算:(a+2)(a 2+4)(a 4+16)(a -2).(2+1)(22+1)(24+1) (22)+1)+1(n 是正整数);(3+1)(32+1)(34+1)…(32008+1)-401632.22007200720082006-⨯.22007200820061⨯+.7.解方程:x (x+2)+(2x+1)(2x -1)=5(x 2+3). 8(规律探究题)已知x≠1,计算(1+x )(1-x )=1-x 2,(1-x )(1+x+x 2)=1-x 3,(1-x )(•1+x+x 2+x 3)=1-x 4.(1)观察以上各式并猜测:(1-x )(1+x+x 2+…+x n)=______.(n 为正整数) (2)根据你的猜测计算:①(1-2)(1+2+22+23+24+25)=______. ②2+22+23+ (2)=______(n 为正整数). ③(x -1)(x 99+x 98+x 97+…+x 2+x+1)=_______.(3)通过以上规律请你进行下面的探索: ①(a -b )(a+b )=_______. ②(a -b )(a 2+ab+b 2)=______.③(a -b )(a 3+a 2b+ab 2+b 3)=______. 完全平方式罕见的变形有:1、已知m 2+n 2-6m+10n+34=0,求m+n 的值2、已知0136422=+-++y x y x ,y x 、都是有理数,求yx 的值。
完整版)平方差公式与完全平方公式练习题
完整版)平方差公式与完全平方公式练习题1.计算以下多项式的积:1) $x^2-1$2) $m^2-4$3) $(2x)^2-1$4) $x^2-25y^2$2.哪些多项式可以用平方差公式相乘?1) 可以2) 可以3) 可以4) 可以5) 可以6) 可以3.计算:1) $9x^2-4$2) $4a^2-3b^2$3) $4y^2-x^2$4.简便计算:1) $9996$2) $-y^2-3y+10$5.计算:1) $4y^2-xy-2x^2$2) $25-4x^2$3) $-0.5x^4+0.25x^2$4) $12x$5) $.75$6) $9999$6.证明:两个连续奇数的积加上1一定是一个偶数的平方。
假设两个连续奇数为$(2n+1)$和$(2n+3)$,它们的积为$(2n+1)(2n+3)=4n^2+8n+3$,加上1后得到$4n^2+8n+4=(2n+2)^2$,是一个偶数的平方。
7.求证:$(m+5)^2-(m-7)^2$一定是24的倍数。
m+5)^2-(m-7)^2=(m^2+10m+25)-(m^2-14m+49)=24m-24$。
是24的倍数。
完全平方公式(一)1.应用完全平方公式计算:1) $16m^2+8mn+n^2$2) $y^2-6y+9$3) $a^2+2ab+b^2$4) $b^2-2ab+a^2$2.简便计算:1) $$2) $9801$3) $50$4) $50$3.计算:1) $16x^2-8xy+y^2$2) $9a^4-24a^3b+16a^2b^2$3) $10xy^2-y^4$4) $-9a^2-2ab-3b^2$5) $6x^2-3xy+3y^2$4.在下列多项式中,哪些是由完全平方公式得来的?1) 是2) 是3) 不是4) 是5) 是完全平方公式(二)1.运用法则:1) $a+\dfrac{b-c}{2}$2) $a-\dfrac{b-c}{2}$3) $a-\dfrac{b+c}{2}$4) $a+\dfrac{b+c}{2}$2.判断下列运算是否正确:1) 正确2) 错误3) 正确4) 错误3.计算:1) $x^2-4y^2+12x-12y+9$2) $a^2+b^2+c^2+2ab+2ac+2bc$3) $6x+9$4) $2x^2+16x+19$4.计算:dfrac{1}{x^2}+\dfrac{1}{x}+\dfrac{1}{4}$1+\dfrac{1}{x}+\dfrac{1}{x^2}$dfrac{1}{c^2}+\dfrac{1}{c}+\dfrac{1}{4}$1.求(a-b+2c)²和(a+b+c)²-(a-b-c)²的结果。
平方差、完全平方公式专项练习题
公式变形之袁州冬雪创作一、基础题1.(-2x+y )(-2x -y )=______. 2.(-3x 2+2y 2)(______)=9x 4-4y 4.3.(a+b -1)(a -b+1)=(_____)2-(_____)2.4.两个正方形的边长之和为5,边长之差为2,那末用较大的正方形的面积减去较小的正方形的面积,差是_____.5.操纵平方差公式计算:2023×2113.2009×2007-20082.6.计算:(a+2)(a 2+4)(a 4+16)(a -2). (2+1)(22+1)(24+1) (22)+1)+1(n 是正整数);(3+1)(32+1)(34+1)…(32008+1)-401632.22007200720082006-⨯.22007200820061⨯+.7.解方程:x (x+2)+(2x+1)(2x -1)=5(x 2+3).8(规律探究题)已知x≠1,计算(1+x )(1-x )=1-x 2,(1-x )(1+x+x 2)=1-x 3,(1-x )(•1+x+x 2+x 3)=1-x 4.(1)观察以上各式并猜测:(1-x )(1+x+x 2+…+x n)=______.(n 为正整数) (2)根据你的猜测计算:①(1-2)(1+2+22+23+24+25)=______. ②2+22+23+ (2)=______(n 为正整数).③(x -1)(x 99+x 98+x 97+…+x 2+x+1)=_______. (3)通过以上规律请你停止下面的探索:①(a -b )(a+b )=_______. ②(a -b )(a 2+ab+b 2)=______.③(a -b )(a 3+a 2b+ab 2+b 3)=______.完全平方式罕见的变形有:1、已知m 2+n 2-6m+10n+34=0,求m+n 的值2、已知0136422=+-++y x y x ,y x 、都是有理数,求yx 的值.3.已知 2()16,4,a b ab +==求223a b +与2()a b -的值.操练: ()5,3a b ab -==求2()a b +与223()a b +的值. 2.已知6,4a b a b +=-=求ab 与22a b +的值.3、已知224,4a b a b +=+=求22a b 与2()a b -的值.4、已知(a +b)2=60,(a -b)2=80,求a 2+b 2及a b 的值5.已知6,4a b ab +==,求22223a b a b ab++的值.6.已知222450x y x y +--+=,求21(1)2x xy --的值.7.已知16x x -=,求221x x+的值.8、0132=++x x ,求(1)221x x +(2)441xx +9试说明不管x,y 取何值,代数式226415x y x y ++-+的值总是正数. 10、已知三角形ABC 的三边长分别为a,b,c 且a,b,c 知足等式22223()()a b c a b c ++=++,请说明该三角形是什么三角形?“整体思想”在整式运算中的运用1、当代数式532++x x 的值为7时,求代数式2932-+x x 的值.2、已知2083-=x a ,1883-=x b ,1683-=x c ,求:代数式bc ac ab c b a ---++222的值.3、已知4=+y x ,1=xy ,求代数式)1)(1(22++y x 的值4、已知2=x 时,代数式10835=-++cx bx ax ,求当2-=x 时,代数式835-++cx bx ax 的值5、若123456786123456789⨯=M ,123456787123456788⨯=N试比较M 与N 的大小整式的乘法、平方差公式、完全平方公式、整式的除法一、请准确填空1、若a 2+b 2-2a +2b +2=0,则a2004+b2005=________.2、一个长方形的长为(2a +3b ),宽为(2a -3b ),则长方形的面积为________.3、5-(a -b )2的最大值是________,当5-(a -b )2取最大值时,a 与b 的关系是________. x 2+41y 2成为一个完全平方式,则应加上________.5.(4a m+1-6a m )÷2am -1=________.×31×(302+1)=________.x 2-5x +1=0,则x 2+21x =________.8.已知(2005-a )(2003-a )=1000,请你猜测(2005-a )2+(2003-a )2=________. 二、相信你的选择x 2-x -m =(x -m )(x +1)且x ≠0,则m 等于A.-1B.0C.110.(x +q )与(x +51)的积不含x 的一次项,猜测q 应是 A.5B.51C.-51D.-511.下列四个算式:①4x 2y 4÷41xy =xy 3;②16a 6b 4c ÷8a 3b 2=2a 2b 2c ;③9x 8y 2÷3x 3y =3x 5y ; ④(12m 3+8m 2-4m )÷(-2m )=-6m 2+4m +2,其中正确的有 12.设(x m -1y n +2)·(x 5m y -2)=x 5y 3,则m n 的值为A.1B.-1C.3D.-313.计算[(a 2-b 2)(a 2+b 2)]2等于 A.a 4-2a 2b 2+b4B.a 6+2a 4b 4+b6C.a 6-2a 4b 4+b 6D.a 8-2a 4b 4+b 814.已知(a +b )2=11,ab =2,则(a -b )2的值是 A.11 B.3C.5x 2-7xy +M 是一个完全平方式,那末M 是A.27y2B.249y2C.449y2y 2x ,y 互为不等于0的相反数,n 为正整数,你认为正确的是A.x n、y n一定是互为相反数 B.(x 1)n、(y1)n一定是互为相反数C.x 2n 、y 2n 一定是互为相反数D.x2n -1、-y 2n -1一定相等三、考察你的基本功(1)(a -2b +3c )2-(a +2b -3c )2;(2)[ab (3-b )-2a (b -21b 2)](-3a 2b 3);(3)-2100×100×(-1)2005÷(-1)-5;(4)[(x +2y )(x -2y )+4(x -y )2-6x ]÷6x .18.(6分)解方程x (9x -5)-(3x -1)(3x +1)=5.四、生活中的数学×106m/h,请你推算一下第二宇宙速度是飞机速度的多少倍? 五、探究拓展与应用 20.计算.(2+1)(22+1)(24+1)=(2-1)(2+1)(22+1)(24+1)=(22-1)(22+1)(24+1)=(24-1)(24+1)=(28-1). 根据上式的计算方法,请计算 (3+1)(32+1)(34+1)…(332+1)-2364的值.用适当的方法计算 (1)20022003200220022⨯-(2)2222221247484950-++-+-(3)⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-2222200411411311211 (4)()()()()1212121264842++++整合与拓展 一 变号后运用:()()()()()2525555522+-=--=-+-=---b b b b b b 二交换位置后运用:()()()()2255555b b b b b -=--+-=---三 持续运用:()()()()()4222111111x x x x x x -=+-=+-+四 整体运用:()()()[]()1111222-+=-+=-+++b a b a b a b a 五 逆向应用:2222221247484950-++-+-=()()()()()()12124748474849504950-+++-++-+ 六 先拆项再运用:()()99964100002100210021009810222=-=-=-+=⨯七 先添因式再运用:()()()()1212121264842++++=()()()()1212121212264422-+++-=()()()()()31231212312121212864646444-=+-=++-。
平方差公式与完全平方公式试题含答案
乘法公式的复习一、复习:a+ba-b=a 2-b 2 a+b 2=a 2+2ab+b 2 a-b 2=a 2-2ab+b 2归纳小结公式的变式,准确灵活运用公式:① 位置变化,xyyxx 2y 2 ② 符号变化,xyxyx 2y 2 x 2y 2③ 指数变化,x 2y 2x 2y 2x 4y 4 ④ 系数变化,2ab 2ab 4a 2b 2⑤ 换式变化,xyzmxyzmxy 2zm 2 x 2y 2z 22zm +m 2x 2y 2z 22zmm 2⑥ 增项变化,xyzxyzxy 2z 2 x 22xy y 2z 2⑦ 连用公式变化,xyxyx 2y 2x 2y 2x 2y 2x 4y 4⑧ 逆用公式变化,xyz 2xyz 2xyzxyzxyzxyz2x 2y 2z 4xy 4xz例1.已知2=+b a ,1=ab ,求22b a +的值;解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值;解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式;解:19992-2000×1998 =19992-1999+1×1999-1=19992-19992-12=+1 =1例4:已知a+b=2,ab=1,求a 2+b 2和a-b 2的值;〖解析〗此题可用完全平方公式的变形得解;解:a 2+b 2=a+b 2-2ab=4-2=2a-b 2=a+b 2-4ab=4-4=0例5:已知x-y=2,y-z=2,x+z=14;求x 2-z 2的值;〖解析〗此题若想根据现有条件求出x 、y 、z 的值,比较麻烦,考虑到x 2-z 2是由x+z 和x-z 的积得来的,所以只要求出x-z 的值即可;解:因为x-y=2,y-z=2,将两式相加得x-z=4,所以x 2-z 2=x+zx-z=14×4=56; 例6:判断2+122+124+1……22048+1+1的个位数字是几〖解析〗此题直接计算是不可能计算出一个数字的答案,故有一定的规律可循;观察到1=2-1和上式可构成循环平方差;解:2+122+124+1……22048+1+1=2-122+124+1……22048+1+1=24096=161024因为当一个数的个位数字是6的时候,这个数的任意正整数幂的个位数字都是6,所以上式的个位数字必为6;例7.运用公式简便计算11032 21982解:1103210032 10022100332 100006009 106092198220022 20022200222 400008004 39204例8.计算1a 4b 3ca 4b 3c 23xy 23xy 2解:1原式a 3c 4ba 3c 4ba 3c 24b 2a 26ac 9c 216b 22原式3xy 23xy 29x 2 y 24y 49x 2y 24y 4例9.解下列各式1已知a 2b 213,ab 6,求ab 2,ab 2的值;2已知ab 27,ab 24,求a 2b 2,ab 的值;3已知aa 1a 2b 2,求222a b ab +-的值; 4已知13x x -=,求441x x +的值; 分析:在公式ab 2a 2b 22ab 中,如果把ab ,a 2b 2和ab 分别看作是一个整体,则公式中有三个未知数,知道了两个就可以求出第三个;解:1∵a 2b 213,ab 6ab 2a 2b 22ab 132625 ab 2a 2b 22ab 132612∵ab 27,ab 24a 22abb 27 ① a 22abb 24 ②①②得 2a 2b 211,即22112a b +=①②得 4ab 3,即34ab =3由aa 1a 2b 2 得ab 24由13x x -=,得19x x 2⎛⎫-= ⎪⎝⎭ 即22129x x +-= 22111x x ∴+= 221121x x 2⎛⎫∴+= ⎪⎝⎭ 即4412121x x ++= 441119x x += 例10.四个连续自然数的乘积加上1,一定是平方数吗为什么分析:由于1234125522345112111234561361192…… 得猜想:任意四个连续自然数的乘积加上1,都是平方数; 解:设n ,n 1,n 2,n 3是四个连续自然数则nn 1n 2n 31 nn 3n 1n 21 n 23n 22n 23n 1n 23nn 23n 21 n 23n 12∵n 是整数, n 2,3n 都是整数 n 23n 1一定是整数n 23n 1是一个平方数 四个连续整数的积与1的和必是一个完全平方数;二、乘法公式的用法一、套用:这是最初的公式运用阶段,在这个环节中,应弄清乘法公式的来龙去脉,准确地掌握其特征,为辨认和运用公式打下基础,同时能提高学生的观察能力;例1. 计算:()()53532222x y x y +-解:原式()()=-=-53259222244x y x y二、连用:连续使用同一公式或连用两个以上公式解题;例2. 计算:()()()()111124-+++a a a a解:原式()()()=-++111224a a a例3. 计算:()()32513251x y z x y z +-+-+--解:原式()()[]()()[]=-++--+25312531y z x y z x三、逆用:学习公式不能只会正向运用,有时还需要将公式左、右两边交换位置,得出公式的逆向形式,并运用其解决问题;例4. 计算:()()57857822a b c a b c +---+解:原式()()[]()()[]=+-+-++---+578578578578a b c a b c a b c a b c四、变用: 题目变形后运用公式解题;例5. 计算:()()x y z x y z +-++26解:原式()[]()[]=++-+++x y z z x y z z 2424五、活用: 把公式本身适当变形后再用于解题;这里以完全平方公式为例,经过变形或重新组合,可得如下几个比较有用的派生公式:灵活运用这些公式,往往可以处理一些特殊的计算问题,培养综合运用知识的能力; 例6. 已知a b ab -==45,,求a b 22+的值;解:()a b a b ab 2222242526+=-+=+⨯=例7. 计算:()()a b c d b c d a ++-+++-22解:原式()()[]()()[]=++-++--b c a d b c a d 22三、学习乘法公式应注意的问题一、注意掌握公式的特征,认清公式中的“两数”.例1 计算-2x 2-52x 2-5分析:本题两个因式中“-5”相同,“2x 2”符号相反,因而“-5”是公式a +ba -b =a 2-b 2中的a ,而“2x 2”则是公式中的b .解:原式=-5-2x 2-5+2x 2=-52-2x 22=25-4x 4.例2 计算-a 2+4b 2分析:运用公式a +b 2=a 2+2ab +b 2时,“-a 2”就是公式中的a ,“4b ”就是公式中的b ;若将题目变形为4b -a 22时,则“4b ”是公式中的a ,而“a 2”就是公式中的b .解略二、注意为使用公式创造条件例3 计算2x +y -z +52x -y +z +5.分析:粗看不能运用公式计算,但注意观察,两个因式中的“2x ”、“5”两项同号,“y ”、“z ”两项异号,因而,可运用添括号的技巧使原式变形为符合平方差公式的形式.解:原式=〔2x +5+y -z 〕〔2x +5-y -z 〕=2x +52-y -z 2=4x 2+20x +25-y +2yz -z 2.例5 计算2+122+124+128+1.分析:此题乍看无公式可用,“硬乘”太繁,但若添上一项2-1,则可运用公式,使问题化繁为简.解:原式=2-12+122+124+128+1 =22-122+124+128+1=24-124+128+1=28-128+1=216-1三、注意公式的推广计算多项式的平方,由a +b 2=a 2+2ab +b 2,可推广得到:a +b +c 2=a 2+b 2+c 2+2ab +2ac +2bc .可叙述为:多项式的平方,等于各项的平方和,加上每两项乘积的2倍.例6 计算2x +y -32解:原式=2x 2+y 2+-32+2·2x ·y +2·2x -3+2·y -3=4x 2+y 2+9+4xy -12x -6y .四、注意公式的变换,灵活运用变形公式例7 2已知:x +2y =7,xy =6,求x -2y 2的值.分析:粗看似乎无从下手,但注意到乘法公式的下列变形:x 2+y 2=x +y 2-2xy ,x 3+y 3=x +y 3-3xyx +y ,x +y 2-x -y 2=4xy ,问题则十分简单.解:2x -2y 2=x +2y 2-8xy =72-8×6=1.例8 计算a +b +c 2+a +b -c 2+a -b +c +b -a +c 2.分析:直接展开,运算较繁,但注意到由和及差的完全平方公式可变换出a +b 2+a -b 2=2a 2+b 2,因而问题容易解决.解:原式=a +b +c 2+a +b -c 2+c +a -b 2+c -a -b 2=2a +b 2+c 2+2c 2+a -b 2=2a +b 2+a -b 2+4c 2=4a 2+4b 2+4c 2五、注意乘法公式的逆运用例9 计算a -2b +3c 2-a +2b -3c 2.分析:若按完全平方公式展开,再相减,运算繁杂,但逆用平方差公式,则能使运算简便得多. 解:原式=a -2b +3c +a +2b -3ca -2b +3c -a +2b -3c =2a -4b +6c =-8ab +12ac .例10 计算2a +3b 2-22a +3b 5b -4a +4a -5b 2分析:此题可以利用乘法公式和多项式的乘法展开后计算,但逆用完全平方公式,则运算更为简便.解:原式=2a +3b 2+22a +3b 4a -5b +4a -5b 2=2a +3b +4a -5b 2=6a -2b 2=36a 2-24ab +4b 2. 四、怎样熟练运用公式:一、明确公式的结构特征这是正确运用公式的前提,如平方差公式的结构特征是:符号左边是两个二项式相乘,且在这四项中有两项完全相同,另两项是互为相反数;等号右边是乘式中两项的平方差,且是相同项的平方减去相反项的平方.明确了公式的结构特征就能在各种情况下正确运用公式.二、理解字母的广泛含义乘法公式中的字母a 、b 可以是具体的数,也可以是单项式或多项式.理解了字母含义的广泛性,就能在更广泛的范围内正确运用公式.如计算x +2y -3z 2,若视x +2y 为公式中的a ,3z 为b ,则就可用a -b 2=a 2-2ab +b 2来解了;三、熟悉常见的几种变化有些题目往往与公式的标准形式不相一致或不能直接用公式计算,此时要根据公式特征,合理调整变化,使其满足公式特点.常见的几种变化是:1、位置变化 如3x +5y 5y -3x 交换3x 和5y 的位置后即可用平方差公式计算了.2、符号变化 如-2m -7n 2m -7n 变为-2m +7n 2m -7n 后就可用平方差公式求解了思考:不变或不这样变,可以吗3、数字变化 如98×102,992,912等分别变为100-2100+2,100-12,90+12后就能够用乘法公式加以解答了.4、系数变化 如4m +2n 2m -4n 变为22m +4n 2m -4n 后即可用平方差公式进行计算了. 5、项数变化 如x +3y +2zx -3y +6z 变为x +3y +4z -2zx -3y +4z +2z 后再适当分组就可以用乘法公式来解了四、注意公式的灵活运用有些题目往往可用不同的公式来解,此时要选择最恰当的公式以使计算更简便.如计算a 2+12·a 2-12,若分别展开后再相乘,则比较繁琐,若逆用积的乘方法则后再进一步计算,则非常简便.即原式=a 2+1a 2-12=a 4-12=a 8-2a 4+1.对数学公式只会顺向从左到右运用是远远不够的,还要注意逆向从右到左运用.如计算1-2211-2311-241…1-2911-2101,若分别算出各因式的值后再行相乘,不仅计算繁难,而且容易出错.若注意到各因式均为平方差的形式而逆用平方差公式,则可巧解本题. 即原式=1-211+211-311+31×…×1-1011+101=21×23×32×34×…×109×1011 =21×1011=2011. 有时有些问题不能直接用乘法公式解决,而要用到乘法公式的变式,乘法公式的变式主要有:a 2+b 2=a +b 2-2ab ,a 2+b 2=a -b 2+2ab 等.用这些变式解有关问题常能收到事半功倍之效.如已知m +n =7,mn =-18,求m 2+n 2,m 2-mn + n 2的值.面对这样的问题就可用上述变式来解,即m 2+n 2=m +n 2-2mn =72-2×-18=49+36=85,m 2-mn + n 2= m +n 2-3mn =72-3×-18=103.下列各题,难不倒你吧1、若a +a1=5,求1a 2+21a ,2a -a 12的值. 2、求2+122+124+128+1216+1232+1264+1+1的末位数字.答案:1.123;221.2. 6五、乘法公式应用的五个层次乘法公式:a +ba -b=a 2-b 2,a ±b=a 2±2ab +b 2,a ±ba 2±ab +b 2=a 3±b 3.第一层次──正用即根据所求式的特征,模仿公式进行直接、简单的套用.例1计算 2-2x -y2x -y .2原式=-y -2x -y +2x=y 2-4x 2.第二层次──逆用,即将这些公式反过来进行逆向使用.例2计算119982-1998·3994+19972;解1原式=19982-2·1998·1997+19972 =1998-19972=1 第三层次──活用 :根据待求式的结构特征,探寻规律,连续反复使用乘法公式;有时根据需要创造条件,灵活应用公式.例3化简:2+122+124+128+1+1.分析直接计算繁琐易错,注意到这四个因式很有规律,如果再增添一个因式“2-1”便可连续应用平方差公式,从而问题迎刃而解.解原式=2-12+122+124+128+1+1=22-122+124+128+1+1=216.例4计算:2x-3y-1-2x-3y+5分析仔细观察,易见两个因式的字母部分与平方差公式相近,但常数不符.于是可创造条件─“拆”数:-1=2-3,5=2+3,使用公式巧解.解原式=2x-3y-3+2-2x-3y+3+2=2-3y+2x-32-3y-2x-3=2-3y2-2x-32=9y2-4x2+12x-12y-5.第四层次──变用:解某些问题时,若能熟练地掌握乘法公式的一些恒等变形式,如a2+b2=a+b2-2ab,a3+b3=a+b3-3aba+b等,则求解十分简单、明快.例5已知a+b=9,ab=14,求2a2+2b2和a3+b3的值.解:∵a+b=9,ab=14,∴2a2+2b2=2a+b2-2ab=292-2·14=106,a3+b3=a+b3-3aba+b=93-3·14·9=351第五层次──综合后用:将a+b2=a2+2ab+b2和a-b2=a2-2ab+b2综合,可得 a+b2+a-b2=2a2+b2;a+b2-a-b2=4ab;等,合理地利用这些公式处理某些问题显得新颖、简捷.例6计算:2x+y-z+52x-y+z+5.解:原式=142x+y-z+5+2x-y+z+52-142x+y-z+5-2x-y+z+52=2x+52-y-z2=4x2+20x+25-y2+2yz-z2六、正确认识和使用乘法公式1、数形结合的数学思想认识乘法公式:对于学习的两种三个乘法公式:平方差公式:a+ba-b=a2-b2、完全平方公式:a+b2=a2+2ab+b2;a-b2=a2-2ab+b2,可以运用数形结合的数学思想方法来区分它们;假设a、b都是正数,那么可以用以下图形所示意的面积来认识乘法公式;如图1,两个矩形的面积之和即阴影部分的面积为a+ba-b,通过左右两图的对照,即可得到平方差公式a+ba-b=a2-b2;图2中的两个图阴影部分面积分别为a+b2与a-b2,通过面积的计算方法,即可得到两个完全平方公式:a+b2=a2+2ab+b2与a-b2=a2-2ab+b2;2、乘法公式的使用技巧:①提出负号:对于含负号较多的因式,通常先提出负号,以避免负号多带来的麻烦;例1、运用乘法公式计算:1-1+3x-1-3x; 2-2m-12解:1-1+3x-1-3x=-1-3x-1+3x=1-3x1+3x=12-3x2=1-9x2.2 -2m-12=-2m+12=2m+12= 4m 2+4m+1.②改变顺序:运用交换律、结合律,调整因式或因式中各项的排列顺序,可以使公式的特征更加明显.例2、 运用乘法公式计算:1错误!错误!; 2x-1/2x 2+1/4x+1/2解:1错误!错误!=错误!错误!=错误!错误!=错误!= 错误!2 x-1/2x 2+1/4x+1/2= x-1/2 x+1/2x 2+1/4=x 2-1/4 x 2+1/4= x 2-1/16.③逆用公式将幂的公式或者乘法公式加以逆用,比如逆用平方差公式,得a 2-b 2 = a+ba-b,逆用积的乘方公式,得a n b n =ab n ,等等,在解题时常会收到事半功倍的效果;例3、 计算:1x/2+52-x/2-52 ; 2a-1/22a 2+1/4 2a+1/22解:1x/2+52-x/2-52 =x/2+5+x/2-5 x/2+5-x/2-5=x/2+5+x/2-5 x/2+5-x/2+5=x ·10=10x.2a-1/22a 2+1/4 2a+1/22=a-1/2a 2+1/4 a+1/2 2 =a-1/2 a+1/2 a 2+1/4 2=a 2-1/4 a 2+1/4 2 =a 4-1/16 2 =a 8-a 4/8+1/256.④合理分组:对于只有符号不同的两个三项式相乘,一般先将完全相同的项调到各因式的前面,视为一组;符号相反的项放在后面,视为另一组;再依次用平方差公式与完全平方公式进行计算;计算:1x+y+11-x-y; 22x+y-z+52x-y+z+5.解:1 x+y+11-x-y=1+x+y1-x-y= 1+x+y1-x+y=12-x+y 2=1-x 2+2xy+y 2= 1-x 2-2xy-y 2.22x+y-z+52x-y+z+5=2x+5+y-z2x+5-y+z= 2x+5+y-z2x+5-y-z= 2x+52-y-z 2 =4x 2+20x+25-y 2-2yz+z 2= 4x 2+20x+25-y 2+2yz-z 2 = 4x 2-y 2-z 2+2yz +20x+25 .七、巧用公式做整式乘法整式乘法是初中数学的重要内容,是今后学习的基础,应用极为广泛;尤其多项式乘多项式,运算过程复杂,在解答中,要仔细观察,认真分析题目中各多项式的结构特征,将其适当变化,找出规律,用乘法公式将其展开,运算就显得简便易行;一. 先分组,再用公式例1. 计算:()()a b c d a b c d -+-----简析:本题若以多项式乘多项式的方法展开,则显得非常繁杂;通过观察,将整式()a b c d -+-运用加法交换律和结合律变形为()()--++b d a c ;将另一个整式()----a b c d 变形为()()---+b d a c ,则从其中找出了特点,从而利用平方差公式即可将其展开;解:原式[]()()[]=--++---+()()b d a c b d a c 二. 先提公因式,再用公式例2. 计算:8244x y x y +⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪简析:通过观察、比较,不难发现,两个多项式中的x 的系数成倍数,y 的系数也成倍数,而且存在相同的倍数关系,若将第一个多项式中各项提公因数2出来,变为244x y +⎛⎝ ⎫⎭⎪,则可利用乘法公式; 解:原式=+⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪24444x y x y 三. 先分项,再用公式例3. 计算:()()232236x y x y ++-+简析:两个多项中似乎没多大联系,但先从相同未知数的系数着手观察,不难发现,x 的系数相同,y 的系数互为相反数,符合乘法公式;进而分析如何将常数进行变化;若将2分解成4与-2的和,将6分解成4与2的和,再分组,则可应用公式展开; 解:原式=[]()()[]()()24232423x y x y +--++- 四. 先整体展开,再用公式例4. 计算:()()a b a b +-+221简析:乍看两个多项式无联系,但把第二个整式分成两部分,即[]()a b -+21,再将第一个整式与之相乘,利用平方差公式即可展开;解:原式[]=+-+()()a b a b 221五. 先补项,再用公式例5. 计算:331313131842+++++()()()()简析:由观察整式()31+,不难发现,若先补上一项()31-,则可满足平方差公式;多次利用平方差公式逐步展开,使运算变得简便易行;解:原式=+++++-331313131312842()()()()() 六. 先用公式,再展开例6. 计算:11211311411102222-⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪… 简析:第一个整式1122-⎛⎝ ⎫⎭⎪可表示为11222-⎛⎝ ⎫⎭⎪⎡⎣⎢⎢⎤⎦⎥⎥,由简单的变化,可看出整式符合平方差公式,其它因式类似变化,进一步变换成分数的积,化简即可;解:原式=+⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪+⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪+⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪+⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪11211211311311411411101110… 七. 乘法公式交替用例7. 计算:()()()()x z x xz z x z x xz z +-+-++222222简析:利用乘法交换律,把第一个整式和第四个整式结合在一起,把第二个整式与第三个整式结合,则可利用乘法公式展开;解:原式[][]=+++-+-()()()()x z x xz z x xz z x z 222222 八、中考与乘法公式1. 结论开放例1. 02年济南中考请你观察图1中的图形,依据图形面积的关系,不需要添加辅助线,便可得到一个你非常熟悉的公式,这个公式是______________;分析:利用面积公式即可列出()()x y x y x y +-=-22或()()x y x y x y 22-=+-或()x y x xy y -=-+2222在上述公式中任意选一个即可;例2. 03年陕西中考如图2,在长为a 的正方形中挖掉一个边长为b 的小正方形a b >,把余下的部分剪成一个矩形,如图3,通过计算两个图形的面积,验证了一个等式,则这个等式是______________;分析:利用面积公式即可列出()()a b a b a b +-=-22或()()a b a b a b 22-=+-2. 条件开放例3. 03年四川中考多项式912x +加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式可以是____________填上你认为正确的一个即可,不必考虑所有的可能情况;分析:解答时,可能习惯于按课本上的完全平方公式,得出 ()9163122x x x ++=+ 或()9163122x x x +-=-只要再动点脑筋,还会得出 9191222x x +-= 故所加的单项式可以是±6x ,或8144x ,或-1,或-92x 等; 3. 找规律例4. 01年武汉中考 观察下列各式:由猜想到的规律可得()()x x x x x n n n -+++++=--1112…____________;分析:由已知等式观察可知 ()()x x x x x x n n n n -+++++=---+111121…4. 推导新公式例5. 在公式()a a a +=++12122中,当a 分别取1,2,3,……,n 时,可得下列n 个等式 将这n 个等式的左右两边分别相加,可推导出求和公式:123++++=…n __________用含n 的代数式表示 分析:观察已知等式可知,后一个等式的右边第一项等于前一个等式的左边,将已知等式左右两边分别相加,得:()n n n +=+⨯+⨯++⨯+112122222… 移项,整理得:例6. 04年临汾中考阅读材料并解答问题:我们已经知道,完全平方公式可以用平面几何图形的面积来表示,实际上还有一些等式也可以用这种形式表示,例如:()()22322a b a b a ab b ++=++ 就可以用图4或图5等图表示;1请写出图6中所表示的代数恒等式____________;2试画出一个几何图形,使它的面积能表示:3请仿照上述方法另写一个含有a,b 的代数恒等式,并画出与之对应的几何图形; 解:1()()2222522a b b a a b ab ++=++2如图7。
平方差、完全平方公式专项练习题(精品)
平方差公式专项练习题一、基础题1.平方差公式(a+b) (a-b) =a2-b2 中字母 a, b 表示( )A.只能是数 B.只能是单项式 C.只能是多项式 D.以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是( )A. (a+b) (b+a) B. (-a+b) (a-b)1 1C. ( a+b) (b- a)D. (a2-b) (b2+a)3 33.下列计算中,错误的有( )①(3a+4) (3a-4) =9a2-4;②(2a2-b) (2a2+b) =4a2-b2;③(3-x) (x+3) =x2-9;④(-x+y) · (x+y) = -(x-y) (x+y) =-x2-y2.A. 1 个 B. 2 个 C. 3 个 D. 4 个4.若 x2-y2=30,且 x-y=-5,则 x+y 的值是( )A. 5 B. 6 C.-6 D.-5二、填空题5. (-2x+y) (-2x-y) =______.6. (-3x2+2y2 ) ( ______ ) =9x -4 4y4.7. (a+b-1) (a-b+1) = ( _____ ) 2 -( _____ ) 2.8.两个正方形的边长之和为 5,边长之差为 2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.三、计算题2 19 .利用平方差公式计算: 20 ×21 .3 310.计算: (a+2) (a2+4) (a4+16) (a-2).二、提高题1 .计算:(1) (2+1) (22+1) (24+1) … (22n+1) +1 (n 是正整数);34016(2) (3+1) (32+1) (34+1) … (32008+1) -.22 .利用平方差公式计算:2009×2007-20082.2007(1)利用平方差公式计算:.20072 一 2008 2006(2)利用平方差公式计算:.3 .解方程: x (x+2) + (2x+1) (2x-1) =5 (x2+3).三、实际应用题4.广场内有一块边长为 2a 米的正方形草坪,经统一规划后,南北方向要缩短 3 米,东西方向要加长 3 米,则改造后的长方形草坪的面积是多少?四、经典中考题5.下列运算正确的是( )A. a3+a3=3a6 B. (-a) 3 · (-a) 5=-a81 1 1C. (-2a2b) ·4a=-24a6b3 D. (- a-4b) ( a-4b) =16b2 - a23 3 96.计算: (a+1) (a-1) =______.完全平方公式变形的应用完全平方式常见的变形有 :a2+b2=(a+b)2一2aba2+b2=(a一b)2+2ab(a+b)2一(a一b)2=4aba2+b2+c2=(a+b+c)2一2ab一2ac一2bc1、已知 m2+n2-6m+10n+34=0,求 m+n 的值2、已知x2 + y2 + 4x 一 6y +13= 0,x 、y 都是有理数,求x y 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平方差公式专项练习题A卷:基础题一、选择题1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示()A.只能是数B.只能是单项式C.只能是多项式D.以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a)B.(-a+b)(a-b)C.(13a+b)(b-13a)D.(a2-b)(b2+a)3.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.A.1个B.2个C.3个D.4个4.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-5二、填空题5.(-2x+y)(-2x-y)=______.6.(-3x2+2y2)(______)=9x4-4y4.7.(a+b-1)(a-b+1)=(_____)2-(_____)2.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.三、计算题9.利用平方差公式计算:2023×2113.10.计算:(a+2)(a2+4)(a4+16)(a-2).B卷:提高题一、七彩题1.(多题-思路题)计算:(1)(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-401632.2.(一题多变题)利用平方差公式计算:2009×2007-20082.(1)一变:利用平方差公式计算:22007200720082006-⨯.(2)二变:利用平方差公式计算:22007 200820061⨯+.二、知识交叉题3.(科内交叉题)解方程:x(x+2)+(2x+1)(2x-1)=5(x2+3).三、实际应用题4.广场内有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?四、经典中考题5.(2007,泰安,3分)下列运算正确的是()A.a3+a3=3a6B.(-a)3·(-a)5=-a8C.(-2a2b)·4a=-24a6b3D.(-13a-4b)(13a-4b)=16b2-19a26.(2008,海南,3分)计算:(a+1)(a-1)=______.C卷:课标新型题1.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(•1+x+x2+x3)=1-x4.(1)观察以上各式并猜想:(1-x)(1+x+x2+…+x n)=______.(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a-b)(a+b)=_______.②(a-b)(a2+ab+b2)=______.③(a-b)(a3+a2b+ab2+b3)=______.2.(结论开放题)请写出一个平方差公式,使其中含有字母m,n和数字4.3.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,•将剩下的纸板沿虚线裁成四个相同的等腰梯形,如图1-7-1所示,然后拼成一个平行四边形,如图1-7-2所示,分别计算这两个图形阴影部分的面积,结果验证了什么公式?请将结果与同伴交流一下.完全平方公式变形的应用完全平方式常见的变形有:ab b a b a 2)(222-+=+ab b a b a 2)(222+-=+ab b a b a 4)(22=--+)(bc ac ab c b a c b a 222)(2222---++=++1、已知m 2+n 2-6m+10n+34=0,求m+n 的值2、已知0136422=+-++y x y x ,y x 、都是有理数,求y x 的值。
3.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。
练一练 A 组:1.已知()5,3a b ab -==求2()a b +与223()a b +的值。
2.已知6,4a b a b +=-=求ab 与22a b +的值。
3、已知224,4a b a b +=+=求22a b 与2()a b -的值。
4、已知(a +b)2=60,(a -b)2=80,求a 2+b 2及a b 的值B 组:5.已知6,4a b ab +==,求22223a b a b ab ++的值。
6.已知222450x y x y +--+=,求21(1)2x xy --的值。
7.已知16x x -=,求221x x +的值。
8、0132=++x x ,求(1)221x x +(2)441x x +9、试说明不论x,y 取何值,代数式226415x y x y ++-+的值总是正数。
C 组:10、已知三角形 A BC 的三边长分别为a,b,c 且a,b,c 满足等式22223()()a b c a b c ++=++,请说明该三角形是什么三角形?整式的乘法、平方差公式、完全平方公式、整式的除法(B 卷)综合运用题 姓名:一、请准确填空1、若a 2+b 2-2a +2b +2=0,则a 2004+b 2005=________.2、一个长方形的长为(2a +3b ),宽为(2a -3b ),则长方形的面积为________.3、5-(a -b )2的最大值是________,当5-(a -b )2取最大值时,a 与b 的关系是________.4.要使式子0.36x 2+41y 2成为一个完全平方式,则应加上________. 5.(4a m+1-6a m )÷2a m -1=________.6.29×31×(302+1)=________.7.已知x 2-5x +1=0,则x 2+21x =________. 8.已知(2005-a )(2003-a )=1000,请你猜想(2005-a )2+(2003-a )2=________.二、相信你的选择9.若x 2-x -m =(x -m )(x +1)且x ≠0,则m 等于A.-1B.0C.1D.210.(x +q )与(x +51)的积不含x 的一次项,猜测q 应是 A.5 B.51 C.-51 D.-5 11.下列四个算式:①4x 2y 4÷41xy =xy 3;②16a 6b 4c ÷8a 3b 2=2a 2b 2c ;③9x 8y 2÷3x 3y =3x 5y ; ④(12m 3+8m 2-4m )÷(-2m )=-6m 2+4m +2,其中正确的有A.0个B.1个C.2个D.3个12.设(x m -1y n +2)·(x 5m y -2)=x 5y 3,则m n 的值为A.1B.-1C.3D.-313.计算[(a 2-b 2)(a 2+b 2)]2等于A.a 4-2a 2b 2+b 4B.a 6+2a 4b 4+b 6C.a 6-2a 4b 4+b 6D.a 8-2a 4b 4+b 814.已知(a +b )2=11,ab =2,则(a -b )2的值是A.11B.3C.5D.1915.若x 2-7xy +M 是一个完全平方式,那么M 是 A.27y 2 B.249y 2 C.449y 2 D.49y 216.若x ,y 互为不等于0的相反数,n 为正整数,你认为正确的是A.x n 、y n 一定是互为相反数B.(x1)n 、(y 1)n 一定是互为相反数 C.x 2n 、y 2n 一定是互为相反数 D.x 2n -1、-y 2n -1一定相等三、考查你的基本功17.计算(1)(a -2b +3c )2-(a +2b -3c )2;(2)[ab (3-b )-2a (b -21b 2)](-3a 2b 3);(3)-2100×0.5100×(-1)2005÷(-1)-5;(4)[(x +2y )(x -2y )+4(x -y )2-6x ]÷6x .18.(6分)解方程x (9x -5)-(3x -1)(3x +1)=5.四、生活中的数学19.(6分)如果运载人造星球的火箭的速度超过11.2 km/s(俗称第二宇宙速度),则人造星球将会挣脱地球的束缚,成为绕太阳运行的恒星.一架喷气式飞机的速度为1.8×106 m/h,请你推算一下第二宇宙速度是飞机速度的多少倍?五、探究拓展与应用20.计算.(2+1)(22+1)(24+1)=(2-1)(2+1)(22+1)(24+1)=(22-1)(22+1)(24+1)=(24-1)(24+1)=(28-1).根据上式的计算方法,请计算(3+1)(32+1)(34+1)…(332+1)-2364的值. “整体思想”在整式运算中的运用“整体思想”是中学数学中的一种重要思想,贯穿于中学数学的全过程,有些问题局部求解各个击破,无法解决,而从全局着眼,整体思考,会使问题化繁为简,化难为易,思路清淅,演算简单,复杂问题迎刃而解,现就“整体思想”在整式运算中的运用,略举几例解析如下,供同学们参考:1、当代数式532++x x 的值为7时,求代数式2932-+x x 的值.2、已知2083-=x a ,1883-=x b ,1683-=x c ,求:代数式bc ac ab c b a ---++222的值。
3、已知4=+y x ,1=xy ,求代数式)1)(1(22++y x 的值4、已知2=x 时,代数式10835=-++cx bx ax ,求当2-=x 时,代数式 835-++cx bx ax 的值5、若123456786123456789⨯=M ,123456787123456788⨯=N试比较M 与N 的大小6、已知012=-+a a ,求2007223++a a 的值. 如有侵权请联系告知删除,感谢你们的配合!。