带电粒子在磁场中的运动经典题目

合集下载

高考物理带电粒子在磁场中的运动常见题型及答题技巧及练习题(含答案)

高考物理带电粒子在磁场中的运动常见题型及答题技巧及练习题(含答案)

高考物理带电粒子在磁场中的运动常见题型及答题技巧及练习题(含答案)一、带电粒子在磁场中的运动专项训练1.如图所示,虚线MN 沿竖直方向,其左侧区域内有匀强电场(图中未画出)和方向垂直纸面向里,磁感应强度为B 的匀强磁场,虚线MN 的右侧区域有方向水平向右的匀强电场.水平线段AP 与MN 相交于O 点.在A 点有一质量为m ,电量为+q 的带电质点,以大小为v 0的速度在左侧区域垂直磁场方向射入,恰好在左侧区域内做匀速圆周运动,已知A 与O 点间的距离为03mv qB ,虚线MN 右侧电场强度为3mgq,重力加速度为g .求:(1)MN 左侧区域内电场强度的大小和方向;(2)带电质点在A 点的入射方向与AO 间的夹角为多大时,质点在磁场中刚好运动到O 点,并画出带电质点在磁场中运动的轨迹;(3)带电质点从O 点进入虚线MN 右侧区域后运动到P 点时速度的大小v p .【答案】(1)mgq,方向竖直向上;(2);(3013v .【解析】 【详解】(1)质点在左侧区域受重力、电场力和洛伦兹力作用,根据质点做匀速圆周运动可得:重力和电场力等大反向,洛伦兹力做向心力;所以,电场力qE =mg ,方向竖直向上; 所以MN 左侧区域内电场强度mgE q左=,方向竖直向上; (2)质点在左侧区域做匀速圆周运动,洛伦兹力做向心力,故有:200mv Bv q R=,所以轨道半径0mv R qB=; 质点经过A 、O 两点,故质点在左侧区域做匀速圆周运动的圆心在AO 的垂直平分线上,且质点从A 运动到O 的过程O 点为最右侧;所以,粒子从A 到O 的运动轨迹为劣弧; 又有033AO mv d R ==;根据几何关系可得:带电质点在A 点的入射方向与AO 间的夹角1260AOd arcsin Rθ==︒; 根据左手定则可得:质点做逆时针圆周运动,故带电质点在磁场中运动的轨迹如图所示:;(3)根据质点在左侧做匀速圆周运动,由几何关系可得:质点在O 点的竖直分速度00360y v v sin v =︒=,水平分速度001602x v v cos v =︒=;质点从O 运动到P 的过程受重力和电场力作用,故水平、竖直方向都做匀变速运动; 质点运动到P 点,故竖直位移为零,所以运动时间023y v v t g==; 所以质点在P 点的竖直分速度032yP y v v v ==, 水平分速度000317322xP x v qE v v t v g v m g =+=+⋅=; 所以带电质点从O 点进入虚线MN 右侧区域后运动到P 点时速度22013P yP xP v v v v =+=;2.如图纸面内的矩形 ABCD 区域存在相互垂直的匀强电场和匀强磁场,对边 AB ∥CD 、AD ∥BC ,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为 B .一带电粒子从AB 上的 P 点平行于纸面射入该区域,入射方向与 AB 的夹角为 θ(θ<90°),粒子恰好做匀速直线运动并从 CD 射出.若撤去电场,粒子以同样的速度从P 点射入该区域,恰垂直 CD 射出.已知边长 AD=BC=d ,带电粒子的质量为 m ,带电量为 q ,不计粒子的重力.求:(1)带电粒子入射速度的大小;(2)带电粒子在矩形区域内作直线运动的时间;(3)匀强电场的电场强度大小.【答案】(1)cos qBd m θ(2)cos sin m qB θθ (3)2cos qB dm θ【解析】 【分析】画出粒子的轨迹图,由几何关系求解运动的半径,根据牛顿第二定律列方程求解带电粒子入射速度的大小;带电粒子在矩形区域内作直线运动的位移可求解时间;根据电场力与洛伦兹力平衡求解场强. 【详解】(1) 设撤去电场时,粒子在磁场中做匀速圆周运动的半径为R ,画出运动轨迹如图所示,轨迹圆心为O .由几何关系可知:cos d Rθ=洛伦兹力做向心力:200v qv B m R= 解得0cos qBdv m θ=(2)设带电粒子在矩形区域内作直线运动的位移为x ,有sin d xθ= 粒子作匀速运动:x=v 0t 联立解得cos sin m t qB θθ=(3)带电粒子在矩形区域内作直线运动时,电场力与洛伦兹力平衡:Eq=qv 0B解得2qB dE mcos θ=【点睛】此题关键是能根据粒子的运动情况画出粒子运动的轨迹图,结合几何关系求解半径等物理量;知道粒子作直线运动的条件是洛伦兹力等于电场力.3.如图,光滑水平桌面上有一个矩形区域abcd ,bc 长度为2L ,cd 长度为1.5L ,e 、f 分别为ad 、bc 的中点.efcd 区域存在竖直向下的匀强磁场,磁感应强度为B ;质量为m 、电荷量为+q 的绝缘小球A 静止在磁场中f 点.abfe 区域存在沿bf 方向的匀强电场,电场强度为26qB Lm;质量为km 的不带电绝缘小球P ,以大小为qBL m 的初速度沿bf 方向运动.P 与A发生弹性正碰,A 的电量保持不变,P 、A 均可视为质点.(1)求碰撞后A 球的速度大小;(2)若A 从ed 边离开磁场,求k 的最大值;(3)若A 从ed 边中点离开磁场,求k 的可能值和A 在磁场中运动的最长时间. 【答案】(1)A 21k qBL v k m =⋅+(2)1(3)57k =或13k =;32m t qB π=【解析】 【分析】 【详解】(1)设P 、A 碰后的速度分别为v P 和v A ,P 碰前的速度为qBL v m= 由动量守恒定律:P A kmv kmv mv =+ 由机械能守恒定律:222P A 111222kmv kmv mv =+ 解得:A 21k qBL v k m=⋅+(2)设A 在磁场中运动轨迹半径为R , 由牛顿第二定律得: 2A A mv qvB R= 解得:21kR L k =+ 由公式可得R 越大,k 值越大如图1,当A 的轨迹与cd 相切时,R 为最大值,R L = 求得k 的最大值为1k =(3)令z 点为ed 边的中点,分类讨论如下:(I )A 球在磁场中偏转一次从z 点就离开磁场,如图2有222()(1.5)2LR L R =+-解得:56L R = 由21k R L k =+可得:57k =(II )由图可知A 球能从z 点离开磁场要满足2LR ≥,则A 球在磁场中还可能经历一次半圆运动后回到电场,再被电场加速后又进入磁场,最终从z 点离开. 如图3和如图4,由几何关系有:2223()(3)22L R R L =+- 解得:58L R =或2L R = 由21k R L k =+可得:511k =或13k = 球A 在电场中克服电场力做功的最大值为2226m q B L W m=当511k =时,A 58qBL v m =,由于2222222A 12521286qB L q B L mv m m⋅=>当13k =时,A 2qBL v m =,由于2222222A 1286qB L q B L mv m m⋅=<综合(I )、(II )可得A 球能从z 点离开的k 的可能值为:57k =或13k = A 球在磁场中运动周期为2mT qBπ= 当13k =时,如图4,A 球在磁场中运动的最长时间34t T = 即32mt qBπ=4.如图所示,在平面直角坐标系xOy 的第二、第三象限内有一垂直纸面向里、磁感应强度为B 的匀强磁场区域△ABC ,A 点坐标为(0,3a ),C 点坐标为(0,﹣3a ),B 点坐标为(23a -,-3a ).在直角坐标系xOy 的第一象限内,加上方向沿y 轴正方向、场强大小为E=Bv 0的匀强电场,在x=3a 处垂直于x 轴放置一平面荧光屏,其与x 轴的交点为Q .粒子束以相同的速度v 0由O 、C 间的各位置垂直y 轴射入,已知从y 轴上y =﹣2a 的点射入磁场的粒子在磁场中的轨迹恰好经过O 点.忽略粒子间的相互作用,不计粒子的重力. (1)求粒子的比荷;(2)求粒子束射入电场的纵坐标范围;(3)从什么位置射入磁场的粒子打到荧光屏上距Q 点最远?求出最远距离.【答案】(1)0v Ba(2)0≤y≤2a (3)78y a =,94a【解析】 【详解】(1)由题意可知, 粒子在磁场中的轨迹半径为r =a 由牛顿第二定律得Bqv 0=m 2v r故粒子的比荷v q m Ba= (2)能进入电场中且离O 点上方最远的粒子在磁场中的运动轨迹恰好与AB 边相切,设粒子运动轨迹的圆心为O ′点,如图所示.由几何关系知O ′A =r ·ABBC=2a 则OO ′=OA -O ′A =a即粒子离开磁场进入电场时,离O 点上方最远距离为OD =y m =2a所以粒子束从y 轴射入电场的范围为0≤y ≤2a (3)假设粒子没有射出电场就打到荧光屏上,有3a =v 0·t 02019222qE y t a a m ==>, 所以,粒子应射出电场后打到荧光屏上粒子在电场中做类平抛运动,设粒子在电场中的运动时间为t ,竖直方向位移为y ,水平方向位移为x ,则 水平方向有x =v 0·t竖直方向有212qE y t m=代入数据得x=2ay设粒子最终打在荧光屏上的点距Q 点为H ,粒子射出电场时与x 轴的夹角为θ,则002tan y x qE x v m v y v v aθ⋅===有H =(3a -x )·tan θ=(32)2a y y -当322a y y -=时,即y =98a 时,H 有最大值 由于98a <2a ,所以H 的最大值H max =94a ,粒子射入磁场的位置为y =98a -2a =-78a5.如图所示,在xOy 平面内,以O ′(0,R )为圆心,R 为半径的圆内有垂直平面向外的匀强磁场,x 轴下方有垂直平面向里的匀强磁场,两区域磁感应强度大小相等.第四象限有一与x 轴成45°角倾斜放置的挡板PQ ,P ,Q 两点在坐标轴上,且O ,P 两点间的距离大于2R ,在圆形磁场的左侧0<y <2R 的区间内,均匀分布着质量为m ,电荷量为+q 的一簇带电粒子,当所有粒子均沿x 轴正向以速度v 射入圆形磁场区域时,粒子偏转后都从O 点进入x 轴下方磁场,结果有一半粒子能打在挡板上.不计粒子重力,不考虑粒子间相互作用力.求:(1)磁场的磁感应强度B 的大小; (2)挡板端点P 的坐标;(3)挡板上被粒子打中的区域长度. 【答案】(1)mvqR (2)(21),0R ⎡⎤⎣⎦21042R +- 【解析】 【分析】 【详解】(1)设一粒子自磁场边界A 点进入磁场,该粒子由O 点射出圆形磁场,轨迹如图甲所示,过A 点做速度的垂线长度为r ,C 为该轨迹圆的圆心.连接AO ˊ、CO ,可证得ACOO ˊ为菱形,根据图中几何关系可知:粒子在圆形磁场中的轨道半径r =R ,由2v qvB m r=得:mv B qR=(2)有一半粒子打到挡板上需满足从O 点射出的沿x 轴负方向的粒子、沿y 轴负方向的粒子轨迹刚好与挡板相切,如图乙所示,过圆心D 做挡板的垂线交于E 点2DP R =(21)OP R =+P 点的坐标为((21)R +,0 )(3)设打到挡板最左侧的粒子打在挡板上的F 点,如图丙所示,OF =2R ①过O 点做挡板的垂线交于G 点,22(21)(1OG R R ==+②225-22=2FG OFOG R=-③22EG R =④ 挡板上被粒子打中的区域长度l =FE =2R +5-222R =2+10-42R ⑤6.如图所示,在两块长为3L 、间距为L 、水平固定的平行金属板之间,存在方向垂直纸面向外的匀强磁场.现将下板接地,让质量为m 、电荷量为q 的带正电粒子流从两板左端连线的中点O 以初速度v 0水平向右射入板间,粒子恰好打到下板的中点.若撤去平行板间的磁场,使上板的电势φ随时间t 的变化规律如图所示,则t=0时刻,从O 点射人的粒子P 经时间t 0(未知量)恰好从下板右边缘射出.设粒子打到板上均被板吸收,粒子的重力及粒子间的作用力均不计.(1)求两板间磁场的磁感应强度大小B .(2)若两板右侧存在一定宽度的、方向垂直纸面向里的匀强磁场,为了使t=0时刻射入的粒子P 经过右侧磁场偏转后在电场变化的第一个周期内能够回到O 点,求右侧磁场的宽度d 应满足的条件和电场周期T 的最小值T min . 【答案】(1)0mv B qL = (2)223cos 2d R a R L ≥+= ;min 0(632)3L T v π= 【解析】 【分析】 【详解】(1)如图,设粒子在两板间做匀速圆周运动的半径为R 1,则0102qv B m v R =由几何关系:222113()()22L LR R =+- 解得0mv B qL=(2)粒子P 从O 003L v t =01122y L v t = 解得033y v v = 设合速度为v ,与竖直方向的夹角为α,则:0tan 3y v v α== 则=3πα0023sin v v α== 粒子P 在两板的右侧匀强磁场中做匀速圆周运动,设做圆周运动的半径为R 2,则212sin L R α= , 解得23L R = 右侧磁场沿初速度方向的宽度应该满足的条件为223cos d R R L α≥+=; 由于粒子P 从O 点运动到下极板右侧边缘的过程与从上板右边缘运动到O 点的过程,运动轨迹是关于两板间的中心线是上下对称的,这两个过程经历的时间相等,则:2min 0(22)2R T t v πα--=解得()min 06323L T v π=【点睛】 带电粒子在电场或磁场中的运动问题,关键是分析粒子的受力情况和运动特征,画出粒子的运动轨迹图,结合几何关系求解相关量,并搞清临界状态.7.在如图甲所示的直角坐标系中,两平行极板MN 垂直于y 轴,N 板在x 轴上且其左端与坐标原点O 重合,极板长度l =0.08m ,板间距离d =0.09m ,两板间加上如图乙所示的周期性变化电压,两板间电场可看作匀强电场.在y 轴上(0,d /2)处有一粒子源,垂直于y 轴连续不断向x 轴正方向发射相同的带正电的粒子,粒子比荷为q m=5×107C /kg ,速度为v 0=8×105m/s .t =0时刻射入板间的粒子恰好经N 板右边缘打在x 轴上.不计粒子重力及粒子间的相互作用,求:(1)电压U 0的大小;(2)若沿x 轴水平放置一荧光屏,要使粒子全部打在荧光屏上,求荧光屏的最小长度;(3)若在第四象限加一个与x 轴相切的圆形匀强磁场,半径为r =0.03m ,切点A 的坐标为(0.12m ,0),磁场的磁感应强度大小B =23T ,方向垂直于坐标平面向里.求粒子出磁场后与x 轴交点坐标的范围.【答案】(1)40 2.1610V U =⨯ (2)0.04m x ∆= (3)0.1425m x ≥ 【解析】 【分析】【详解】(1)对于t =0时刻射入极板间的粒子:0l v T = 7110T s -=⨯211()22T y a = 2y T v a = 22yT y v = 122d y y =+ Eq ma =0U E d= 解得:40 2.1610V U =⨯(2)2T t nT =+时刻射出的粒子打在x 轴上水平位移最大:032A T x v = 所放荧光屏的最小长度A x x l ∆=-即:0.04x m ∆=(3)不同时刻射出极板的粒子沿垂直于极板方向的速度均为v y .速度偏转角的正切值均为:0tan yv v β= 37β=o0cos37v v=o 6110m/s v =⨯即:所有的粒子射出极板时速度的大小和方向均相同. 2v qvB m R = 0.03m R r ==由分析得,如图所示,所有粒子在磁场中运动后发生磁聚焦由磁场中的一点B 离开磁场.由几何关系,恰好经N 板右边缘的粒子经x 轴后沿磁场圆半径方向射入磁场,一定沿磁场圆半径方向射出磁场;从x 轴射出点的横坐标:tan 53C A R x x ︒=+ 0.1425m C x =.由几何关系,过A 点的粒子经x 轴后进入磁场由B 点沿x 轴正向运动.综上所述,粒子经过磁场后第二次打在x 轴上的范围为:0.1425m x ≥8.(18分)如图甲所示,相隔一定距离的竖直边界两侧为相同的匀强磁场区,磁场方向垂直纸面向里,在边界上固定两长为L 的平行金属极板MN 和PQ ,两极板中心各有一小孔1S 、2S ,两极板间电压的变化规律如图乙所示,正反向电压的大小均为0U ,周期为0T 。

高考物理带电粒子在磁场中的运动解题技巧及经典题型及练习题(含答案)及解析

高考物理带电粒子在磁场中的运动解题技巧及经典题型及练习题(含答案)及解析
量为四电荷量为 q 的带负电粒子从坐标(L,3L/2)处以初速度 v0 沿 x 轴负方向射入电场,射
出电场时通过坐标(0,L)点,不计粒子重力.
(1)求电场强度大小 E; (2)为使粒子进入磁场后途经坐标原点 0 到达坐标(-L,0)点,求匀强磁场的磁感应强度大小 B; (3)求第(2)问中粒子从进入磁场到坐标(-L,0)点所用的时间.
Q 两点之间的距离为 L ,飞出电场后从 M 点进入圆形区域,不考虑电子所受的重力。 2
(1)求 0≤x≤L 区域内电场强度 E 的大小和电子从 M 点进入圆形区域时的速度 vM; (2)若圆形区域内加一个垂直于纸面向外的匀强磁场,使电子穿出圆形区域时速度方向垂 直于 x 轴,求所加磁场磁感应强度 B 的大小和电子在圆形区域内运动的时间 t; (3)若在电子从 M 点进入磁场区域时,取 t=0,在圆形区域内加如图乙所示变化的磁场 (以垂直于纸面向外为正方向),最后电子从 N 点飞出,速度方向与进入圆形磁场时方向 相同,请写出磁场变化周期 T 满足的关系表达式。
1 4
T0
T 2
2 m 又 T0 eB0
则 T 的表达式为T mL (n=1,2,3,…)。 2n 2emU
3.如图所示,一匀强磁场磁感应强度为 B;方向向里,其边界是半径为 R 的圆,AB 为圆 的一直径.在 A 点有一粒子源向圆平面内的各个方向发射质量 m、电量-q 的粒子,粒子重力 不计.
R,圆弧对应的圆心角为
2
.则有
x2
2R2 ,此时满足
L 2n 1 x2
联立可得:
R2
2n
L
1
2
由牛顿第二定律,洛伦兹力提供向心力,则有: qvB2
m
v2 R2
得:

带电粒子在场中的运动典型例题

带电粒子在场中的运动典型例题

典例一、带电粒子在匀强磁场中的运动 定性分析1. 如图所示,一带电粒子,沿垂直于磁场方向射入一匀强磁场,粒子的运动轨迹为一条光滑曲线,运动方向由a 到b ,则下列说法中正确的是:( )A.粒子带正电,速度逐渐增大B.粒子带负电,速度逐渐增大C.粒子带正电,速度逐渐减小D.粒子带负电,速度逐渐减小2. 带电粒子进入云室会使云室中的气体电离,从而显示其运动轨迹.右图是在有匀强磁场云室中观察到的粒子的轨迹,a 和b 是轨迹上的两点,匀强磁场B 垂直纸面向里.该粒子在运动时,其质量和电荷量不变,而动能逐渐减少,下列说法正确的是:( ) A.粒子先经过之a 点,再经过b 点 B.粒子先经过b 点,再经过a 点 C.粒子带负电 D.粒子带正电定量计算直单界(对称性)1、如图所示,在y <0的区域内存在匀强磁场,磁场方向垂直于xy 平面并指向纸里,磁感应强度为B .一带负电的粒子(质量为m 、电荷量为q )以速度v 0从O 点射入磁场,入射方向在xy 平面内,与x 轴正向的夹角为θ.求: (1)该粒子射出磁场的位置;(2)该粒子在磁场中运动的时间.(粒子所受重力不计)2、. 如图所示,在第一象限内有垂直纸面向里的匀强磁场,一对正、负电子分别以相同速度沿与x 轴成30o 角从原点射入磁场,则正、负电子在磁场中运动时间之比为:( )A.1:2B.2:1C.3:1D.1:1圆界(对称性)3、 如图所示,半径为r 的圆形区域内存在着垂直纸面向里的匀强磁场,磁感应强度为B 。

现有一带电离子(不计重力)从A 以速度v 沿圆形区域的直径射入磁场,已知离子从C 点射出磁场的方向间的夹角为60º (1)该离子带何种电荷;(2)求该离子的电荷量与质量之比q/m直双界(极值和多解)4、如图所示,一束电子(电量e )以速度v 0垂直射入磁感应强度为B ,宽为d 的匀强磁场中,穿出磁场时速度方向与电子原来入射方向的夹角为30°。

最新物理带电粒子在磁场中的运动题20套(带答案)

最新物理带电粒子在磁场中的运动题20套(带答案)

最新物理带电粒子在磁场中的运动题20套(带答案)一、带电粒子在磁场中的运动专项训练1.如图所示,在xOy 坐标系中,第Ⅰ、Ⅱ象限内无电场和磁场。

第Ⅳ象限内(含坐标轴)有垂直坐标平面向里的匀强磁场,第Ⅲ象限内有沿x 轴正向、电场强度大小为E 的匀强磁场。

一质量为m 、电荷量为q 的带正电粒子,从x 轴上的P 点以大小为v 0的速度垂直射入电场,不计粒子重力和空气阻力,P 、O两点间的距离为202mv qE。

(1)求粒子进入磁场时的速度大小v 以及进入磁场时到原点的距离x ;(2)若粒子由第Ⅳ象限的磁场直接回到第Ⅲ象限的电场中,求磁场磁感应强度的大小需要满足的条件。

【答案】(102v ;20mv qE (2)0(21)EB v ≥【解析】 【详解】(1)由动能定理有:2220011222mv qE mv mv qE ⋅=- 解得:v 2v 0设此时粒子的速度方向与y 轴负方向夹角为θ,则有cosθ=022v v =解得:θ=45° 根据tan 21xyθ=⋅=,所以粒子进入磁场时位置到坐标原点的距离为PO 两点距离的两倍,故20mv x qE=(2)要使粒子由第Ⅳ象限的磁场直接回到第Ⅲ象限的电场中,其临界条件是粒子的轨迹与x 轴相切,如图所示,由几何关系有:s=R+R sinθ又:2v qvB mR=解得:(21)EBv+=故(21)EBv+≥2.如图所示,在xOy平面内,以O′(0,R)为圆心,R为半径的圆内有垂直平面向外的匀强磁场,x轴下方有垂直平面向里的匀强磁场,两区域磁感应强度大小相等.第四象限有一与x轴成45°角倾斜放置的挡板PQ,P,Q两点在坐标轴上,且O,P两点间的距离大于2R,在圆形磁场的左侧0<y<2R的区间内,均匀分布着质量为m,电荷量为+q的一簇带电粒子,当所有粒子均沿x轴正向以速度v射入圆形磁场区域时,粒子偏转后都从O点进入x轴下方磁场,结果有一半粒子能打在挡板上.不计粒子重力,不考虑粒子间相互作用力.求:(1)磁场的磁感应强度B的大小;(2)挡板端点P的坐标;(3)挡板上被粒子打中的区域长度.【答案】(1)mvqR(2)(21),0R⎡⎤⎣⎦21042R+-【解析】【分析】【详解】(1)设一粒子自磁场边界A点进入磁场,该粒子由O点射出圆形磁场,轨迹如图甲所示,过A点做速度的垂线长度为r,C为该轨迹圆的圆心.连接AOˊ、CO,可证得ACOOˊ为菱形,根据图中几何关系可知:粒子在圆形磁场中的轨道半径r=R,由2v qvB m r=得:mv B qR=(2)有一半粒子打到挡板上需满足从O 点射出的沿x 轴负方向的粒子、沿y 轴负方向的粒子轨迹刚好与挡板相切,如图乙所示,过圆心D 做挡板的垂线交于E 点2DP R =(21)OP R =+P 点的坐标为((21)R +,0 )(3)设打到挡板最左侧的粒子打在挡板上的F 点,如图丙所示,OF =2R ①过O 点做挡板的垂线交于G 点,22(21)(1OG R R ==+② 225-22=2FG OF OG R=-③22EG R=④ 挡板上被粒子打中的区域长度l =FE =2R +5-222R =2+10-42R ⑤3.如图所示,在直角坐标系x0y 平面的一、四个象限内各有一个边长为L 的正方向区域,二三像限区域内各有一个高L ,宽2L 的匀强磁场,其中在第二象限内有垂直坐标平面向外的匀强磁场,第一、三、四象限内有垂直坐标平面向内的匀强磁场,各磁场的磁感应强度大小均相等,第一象限的x<L ,L<y<2L 的区域内,有沿y 轴正方向的匀强电场.现有一质量为四电荷量为q 的带负电粒子从坐标(L ,3L/2)处以初速度0v 沿x 轴负方向射入电场,射出电场时通过坐标(0,L)点,不计粒子重力.(1)求电场强度大小E ;(2)为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小B ;(3)求第(2)问中粒子从进入磁场到坐标(-L ,0)点所用的时间.【答案】(1)2mv E qL=(2)04nmv B qL =n=1、2、3......(3)02L t v π= 【解析】本题考查带电粒子在组合场中的运动,需画出粒子在磁场中的可能轨迹再结合物理公式求解.(1)带电粒子在电场中做类平抛运动有: 0L v t =,2122L at =,qE ma = 联立解得: 2mv E qL=(2)粒子进入磁场时,速度方向与y 轴负方向夹角的正切值tan xyv v θ==l 速度大小002sin v v v θ==设x 为每次偏转圆弧对应的弦长,根据运动的对称性,粒子能到达(一L ,0 )点,应满足L=2nx ,其中n=1、2、3......粒子轨迹如图甲所示,偏转圆弧对应的圆心角为2π;当满足L=(2n+1)x 时,粒子轨迹如图乙所示.若轨迹如图甲设圆弧的半径为R ,圆弧对应的圆心角为2π.则有2R ,此时满足L=2nx 联立可得:22R n=由牛顿第二定律,洛伦兹力提供向心力,则有:2v qvB m R=得:04nmv B qL=,n=1、2、3.... 轨迹如图乙设圆弧的半径为R ,圆弧对应的圆心角为2π.则有222x R ,此时满足()221L n x =+联立可得:()2212R n =+由牛顿第二定律,洛伦兹力提供向心力,则有:222v qvB m R =得:()02221n mv B qL+=,n=1、2、3....所以为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小04nmv B qL =,n=1、2、3....或()02221n mv B qL+=,n=1、2、3.... (3) 若轨迹如图甲,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=2n×2π×2=2nπ,则02222n n m L t T qB v ππππ=⨯==若轨迹如图乙,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=(2n+1)×2π=(4n+2)π,则2220(42)(42)2n n m Lt T qB v ππππ++=⨯== 粒子从进入磁场到坐标(-L ,0)点所用的时间为02222n n m Lt T qB v ππππ=⨯==或2220(42)(42)2n n m Lt T qB v ππππ++=⨯==4.如图所示,在第一象限内存在匀强电场,电场方向与x 轴成45°角斜向左下,在第四象限内有一匀强磁场区域,该区域是由一个半径为R 的半圆和一个长为2R 、宽为2R的矩形组成,磁场的方向垂直纸面向里.一质量为m 、电荷量为+q 的粒子(重力忽略不计)以速度v 从Q(0,3R)点垂直电场方向射入电场,恰在P(R ,0)点进入磁场区域.(1)求电场强度大小及粒子经过P 点时的速度大小和方向; (2)为使粒子从AC 边界射出磁场,磁感应强度应满足什么条件;(3)为使粒子射出磁场区域后不会进入电场区域,磁场的磁感应强度应不大于多少?【答案】(1) 224mv E qR=2v ,速度方向沿y 轴负方向8222mv mv B ≤≤)2713mvqR【解析】 【分析】 【详解】(1)在电场中,粒子沿初速度方向做匀速运动132cos 4522cos 45RL R R =-︒=︒1L vt =沿电场力方向做匀加速运动,加速度为a22sin 452L R R =︒=2212L at =qEam=设粒子出电场时沿初速度和沿电场力方向分运动的速度大小分别为1v、2v,合速度v'1v v=、2v at=,2tanvvθ=联立可得224mvEqR=进入磁场的速度22122v v v v=+='45θ=︒,速度方向沿y轴负方向(2)由左手定则判定,粒子向右偏转,当粒子从A点射出时,运动半径12Rr=由211mvqv Br=''得122mvBqR=当粒子从C点射出时,由勾股定理得()222222RR r r⎛⎫-+=⎪⎝⎭解得258r R=由222mvqv Br=''得2825mvBqR=根据粒子在磁场中运动半径随磁场减弱而增大,可以判断,当82225mv mvBqR qR≤≤时,粒子从AC边界射出(3)为使粒子不再回到电场区域,需粒子在CD区域穿出磁场,设出磁场时速度方向平行于x轴,其半径为3r,由几何关系得222 332Rr r R⎛⎫+-=⎪⎝⎭解得()3714Rr+=由233mvqv Br=''得()322713mvBqR-=磁感应强度小于3B,运转半径更大,出磁场时速度方向偏向x轴下方,便不会回到电场中5.长为L的平行板电容器沿水平方向放置,其极板间的距离为d,电势差为U,有方向垂直纸面向里的磁感应强度大小为B的匀强磁场.荧光屏MN与电场方向平行,且到匀强电、磁场右侧边界的距离为x,电容器左侧中间有发射质量为m带+q的粒子源,如图甲所示.假设a、b、c三个粒子以大小不等的初速度垂直于电、磁场水平射入场中,其中a 粒子沿直线运动到荧光屏上的O点;b粒子在电、磁场中向上偏转;c粒子在电、磁场中向下偏转.现将磁场向右平移与电场恰好分开,如图乙所示.此时,a、b、c粒子在原来位置上以各自的原速度水平射入电场,结果a粒子仍恰好打在荧光屏上的O点;b、c中有一个粒子也能打到荧光屏,且距O点下方最远;还有一个粒子在场中运动时间最长,且打到电容器极板的中点.求:(1)a粒子在电、磁场分开后,再次打到荧光屏O点时的动能;(2)b,c粒子中打到荧光屏上的点与O点间的距离(用x、L、d表示);(3)b,c中打到电容器极板中点的那个粒子先、后在电场中,电场力做功之比.【答案】(1)242222222akL B dq m UEmB d= (2)1()2xy dL=+ (3)11224==5UqyW dUqW yd【解析】【详解】据题意分析可作出abc三个粒子运动的示意图,如图所示.(1) 从图中可见电、磁场分开后,a粒子经三个阶段:第一,在电场中做类平抛运动;第二,在磁场中做匀速圆周运动;第三,出磁场后做匀速直线运动到达O点,运动轨迹如图中Ⅰ所示.Uq Bqv d=, BdU v =, L LBd t v U==, 222122a Uq L B qdy t dm mU ==, 21()2a a k U U qy E m d Bd=- 242222222a k L B d q m U E mB d =(2) 从图中可见c 粒子经两个阶段打到荧光屏上.第一,在电场中做类平抛运动;第二,离开电场后做匀速直线运动打到荧光屏上,运动轨迹如图中Ⅱ所示.设c 粒子打到荧光屏上的点到O 点的距离为y ,根据平抛运动规律和特点及几何关系可得12=122dy L L x +, 1()2x y d L =+(3) 依题意可知粒子先后在电场中运动的时间比为t 1=2t 2如图中Ⅲ的粒子轨迹,设粒子先、后在电场中发生的侧移为y 1,y 22111·2Uq y t md =,11y Uq v t md =122221·2y Uq t m y t d v +=,22158qU y t md=, 124=5y y , 11224==5Uqy W d Uq W y d6.如图,第一象限内存在沿y 轴负方向的匀强电场,电场强度大小为E ,第二、三、四象限存在方向垂直xOy 平面向外的匀强磁场,其中第二象限的磁感应强度大小为B ,第三、四象限磁感应强度大小相等,一带正电的粒子,从P (-d ,0)点沿与x 轴正方向成α=60°角平行xOy 平面入射,经第二象限后恰好由y 轴上的Q 点(图中未画出)垂直y 轴进入第一象限,之后经第四、三象限重新回到P 点,回到P 点时速度方向与入射方时相同,不计粒子重力,求:(1)粒子从P 点入射时的速度v 0;(2)第三、四象限磁感应强度的大小B /;【答案】(1)3E B (2)2.4B 【解析】试题分析:(1)粒子从P 点射入磁场中做匀速圆周运动,画出轨迹如图,设粒子在第二象限圆周运动的半径为r ,由几何知识得: 23603d d d r sin sin α===︒ 根据200mv qv B r =得0233qBd v m= 粒子在第一象限中做类平抛运动,则有21602qE r cos t m -︒=(); 00y v qEt tan v mv α== 联立解得03E v B=(2)设粒子在第一象限类平抛运动的水平位移和竖直位移分别为x 和y ,根据粒子在第三、四象限圆周运动的对称性可知粒子刚进入第四象限时速度与x 轴正方向的夹角等于α.则有:x=v 0t , 2yv y t =得0322y v y tan x v α=== 由几何知识可得 y=r-rcosα=132r d = 则得23x d = 所以粒子在第三、四象限圆周运动的半径为125323d d R d sin α⎛⎫+ ⎪⎝⎭== 粒子进入第三、四象限运动的速度00432v qBd v v cos α=== 根据2'v qvB m R= 得:B′=2.4B考点:带电粒子在电场及磁场中的运动7.如图所示,真空中有一个半径r=0.5m 的圆柱形匀强磁场区域,磁场的磁感应强度大小B=2×10-3T ,方向垂直于纸面向外,x 轴与圆形磁场相切于坐标系原点O ,在x=0.5m 和x=1.5m 之间的区域内有一个方向沿y 轴正方向的匀强电场区域,电场强E=1.5×103N/C ,在x=1.5m 处竖有一个与x 轴垂直的足够长的荧光屏,一粒子源在O 点沿纸平面向各个方向发射速率相同、比荷9110q m=⨯C/kg 的带正电的粒子,若沿y 轴正方向射入磁场的粒子恰能从磁场最右侧的A 点沿x 轴正方向垂直进入电场,不计粒子的重力及粒子间的相互作用和其他阻力.求:(1)粒子源发射的粒子进入磁场时的速度大小;(2)沿y 轴正方向射入磁场的粒子从射出到打到荧光屏上的时间(计算结果保留两位有效数字);(3)从O 点处射出的粒子打在荧光屏上的纵坐标区域范围.【答案】(1)61.010/v m s =⨯;(2)61.810t s -=⨯;(3)0.75 1.75m y m ≤≤【解析】【分析】(1)粒子在磁场中做匀速圆周运动,由几何关系确定半径,根据2v qvB m R=求解速度;(2)粒子在磁场中运动T/4,根据周期求解在磁场中的运动时间;在电场中做类平抛运动,根据平抛运动的规律求解在电场值的时间;(3)根据牛顿第二定律结合运动公式求解在电场中的侧移量,从而求解从O 点处射出的粒子打在荧光屏上的纵坐标区域范围.【详解】(1)由题意可知,粒子在磁场中的轨道半径为R=r=0.5m ,由2v qvB m R= 进入电场时qBR v m = 带入数据解得v=1.0×106m/s(2)粒子在磁场中运动的时间61121044R t s v ππ-=⨯=⨯ 粒子从A 点进入电场做类平抛运动,水平方向的速度为v ,所以在电场中运动的时间62 1.010x t s v-==⨯ 总时间6612110 1.8104t t t s s π--⎛⎫=+=+⨯=⨯⎪⎝⎭ (3)沿x 轴正方向射入电场的粒子,在电场中的加速度大小121.510/qE a m s m ==⨯ 在电场中侧移:2121261111.5100.7522110y at m m ⎛⎫==⨯⨯⨯= ⎪⨯⎝⎭打在屏上的纵坐标为0.75;经磁场偏转后从坐标为(0,1)的点平行于x 轴方向射入电场的粒子打在屏上的纵坐标为1.75;其他粒子也是沿x 轴正方向平行的方向进入电场,进入电场后的轨迹都平行,故带电粒子打在荧光屏上 的纵坐标区域为0.75≤y ≤1.75.8.如图甲所示,边长为L 的正方形ABCD 区域内(含边界)有垂直纸面向里的匀强磁场。

高中物理带电粒子在磁场中的运动试题(有答案和解析)及解析

高中物理带电粒子在磁场中的运动试题(有答案和解析)及解析
AB、A′B′间电压均为 U0,且满足 eU0= 3 mv02。两磁场磁感应强度相同,半径均为 R,圆心 2
O、O′在质子束的入射方向上,其连线与质子入射方向垂直且距离为 H= 7 R;整个装置处 2
于真空中,忽略粒子间的相互作用及相对论效应。
(1)试求质子束经过加速电场加速后(未进入磁场)的速度 ν 和磁场磁感应强度 B;
圆半径方向射出磁场;从
x
轴射出点的横坐标: xC
xA
R tan 53
xC 0.1425m .
由几何关系,过 A 点的粒子经 x 轴后进入磁场由 B 点沿 x 轴正向运动.
综上所述,粒子经过磁场后第二次打在 x 轴上的范围为: x 0.1425m
5.如图,平面直角坐标系中,在,y>0 及 y<- 3 L 区域存在场强大小相同,方向相反均平 2
(1)求第 I 象限内磁场的磁感应强度 B1;
(2)计算说明速率为 5v、9v 的粒子能否到达接收器;
(3)若在第Ⅱ象限内加上垂直于坐标平面的匀强磁场,使所有粒子均到达接收器,求所加磁
场的磁感应强度 B2 的大小和方向.
【答案】(1)
B1
mv qL
(2)故速率为 v
的粒子被吸收,速率为 9v
的粒子不能被吸收
速度偏转角的正切值均为: tan vy 37 v0
cos 37 v0 v
v 1106 m/s
即:所有的粒子射出极板时速度的大小和方向均相同.
qvB m v2 R
R r 0.03m
由分析得,如图所示,所有粒子在磁场中运动后发生磁聚焦由磁场中的一点 B 离开磁场.
由几何关系,恰好经 N 板右边缘的粒子经 x 轴后沿磁场圆半径方向射入磁场,一定沿磁场

带电粒子在匀强磁场中的运动典型例题精解

带电粒子在匀强磁场中的运动典型例题精解

带电粒子在匀强磁场中的运动题型一洛伦兹力大小的计算与方向判断1.如图所示,一个带正电的小球沿光滑的水平绝缘桌面向右运动,速度的方向垂直于一个水平方向的匀强磁场,小球飞离桌子边缘落到地板上.设其飞行时间为t1,水平射程为s1,落地速率为v1.撤去磁场,其余条件不变时,小球飞行时间为t2,水平射程为s2,落地速率为v2,则()A.t1.>t2B.S1>S2C. S1<S2D. V1>V22.摆长为L的单摆在匀强磁场中摆动,摆动平面与磁场方向垂直,如图所示,球在最高点A时,摆线与竖直角度为且摆动中摆线始终绷紧,若摆球带正电,电量为q,质量为m,磁感应强度为B,当球从最高处摆到最低处时,摆线上的拉力F多大?题型二带电粒子在有界磁场中的运动问题3.带电粒子的质量m=1.7×10-27kg,电荷量q=1.6×10-19C,以速度v=3.2×106m/s沿着垂直于磁场方向又垂直磁场边界的方向进入匀强磁场,磁场的磁感应强度为B=0.17T,磁场宽度为L=10cm,求:(不计重力).(1)带电粒子离开磁场时的偏转角多大?(2)带电粒子在磁场中运动的时间是多少?(3)带电粒子在离开磁场时偏离入射方向的距离d多大?4.如图1,圆形区域内存在垂直纸面向里的匀强磁场,磁感应强度为B,现有一电荷量为q,质量为m的正离子从a点沿圆形区域的直径入射,设正离子射出磁场区域方向与入射方向的夹角为,求此离子在磁场区域内飞行的时间。

题型三“对称法”在带电粒子圆周运动中的应用5.如图所示,在x轴上方存在着垂直于纸面向里、磁感应强度为B的匀强磁场,一个不计重力的带电粒子从坐标原点O处以速度v进入磁场,粒子进人磁场时的速度方向垂直于磁场且与x轴正方向成120°角,若粒子穿过y轴正半轴后在磁场中到x轴的最大距离为a,则该粒子的比荷和所带电荷的正负是()6.如右图所示,在某空间实验室中,有两个靠在一起的等大的圆柱形区域,分别存在着等大反向的匀强磁场,磁感应强度B=0.10 T,磁场区域半径r= m,左侧区圆心为O1,磁场向里,右侧区圆心为O2,磁场向外.两区域切点为 C.今有质量m=3.2×10-26kg.带电荷量q=1.6×10-19 C的某种离子,从左侧区边缘的A点以速度v=106 m/s正对O1的方向垂直磁场射入,它将穿越C点后再从右侧区穿出.求:(1)该离子通过两磁场区域所用的时间.(2)离子离开右侧区域的出射点偏离最初入射方向的侧移距离为多大?(侧移距离指垂直初速度方向上移动的距离)题型四复杂轨迹的圆周运动问题如图所示,在x<0与x>0的区域中,存在磁感应强度大小分别为B1与B2的匀强磁场,磁场方向垂直于纸面向里,且B1>B2。

带电粒子在匀强磁场中的运动计算题含答案

带电粒子在匀强磁场中的运动计算题含答案

带电粒子在匀强磁场中的运动计算题1.如图,空间存在方向垂直于纸面(xOy平面)向里的磁场。

在x≥0区域,磁感应强度的大小为B0;x<0区域,磁感应强度的大小为λB0(常数λ>1)。

一质量为m、电荷量为q(q>0)的带电粒子以速度v0从坐标原点O沿x轴正向射入磁场,此时开始计时,当粒子的速度方向再次沿x轴正向时,求(不计重力)(1)粒子运动的时间;(2)粒子与O点间的距离。

2.平面直角坐标系xOy中,第Ⅰ象限存在垂直于平面向里的匀强磁场,第Ⅲ象限存在沿y轴负方向的匀强电场,如图所示。

一带负电的粒子从电场中的Q点以速度v0沿x轴正方向开始运动,Q点到y轴的距离为到x轴距离的2倍。

粒子从坐标原点O离开电场进入磁场,最终从x轴上的P点射出磁场,P点到y轴距离与Q点到y轴距离相等。

不计粒子重力,求:(1)粒子到达O点时速度的大小和方向;(2)电场强度和磁感应强度的大小之比。

3.如图,在y>0的区域存在方向沿y轴负方向的匀强电场,场强大小为E,在y<0的区域存在方向垂直于xOy 平面向外的匀强磁场。

一个氕核11H和一个氘核12H先后从y轴上y=h点以相同的动能射出,速度方向沿x 轴正方向。

已知11H进入磁场时,速度方向与x轴正方向的夹角为60°,并从坐标原点O处第一次射出磁场。

1H的质量为m,电荷量为q,不计重力。

求1(1)11H第一次进入磁场的位置到原点O的距离;(2)磁场的磁感应强度大小;(3)12H第一次离开磁场的位置到原点O的距离。

4.如图甲,空间存在﹣范围足够大的垂直于xOy平面向外的匀强磁场,磁感应强度大小为B.让质量为m,电量为q(q>0)的粒子从坐标原点O沿xOy平面以不同的初速度大小和方向入射到该磁场中。

不计重力和粒子间的影响。

(1)若粒子以初速度v1沿y轴正向入射,恰好能经过x轴上的A(a,0)点,求v1的大小;(2)已知一粒子的初速度大小为v(v>v1),为使该粒子能经过A(a,0)点,其入射角θ(粒子初速度与x 轴正向的夹角)有几个?并求出对应的sinθ值;(3)如图乙,若在此空间再加入沿y轴正向、大小为E的匀强电场,一粒子从O点以初速度v0沿y轴正向发射。

带电粒子在磁场中偏转历年高考题详解

带电粒子在磁场中偏转历年高考题详解

7.〔08四川卷〕24.如图,一半径为R 的光滑绝缘半球面开口向下,固定在水平面上。

整个空间存在匀强磁场,磁感应强度方向竖直向下。

一电荷量为q 〔q >0〕、质量为m 的小球P 在球面上做水平的匀速圆周运动,圆心为O ’。

球心O到该圆周上任一点的连线与竖直方向的夹角为θ〔0<θ<)2π。

为了使小球能够在该圆周上运动,求磁感应强度大小的最小值及小球P 相应的速率。

重力加速度为g 。

解析:据题意,小球P 在球面上做水平的匀速圆周运动,该圆周的圆心为O ’。

P 受到向下的重力mg 、球面对它沿OP 方向的支持力N 和磁场的洛仑兹力f =qvB ①式中v 为小球运动的速率。

洛仑兹力f 的方向指向O ’。

根据牛顿第二定律0cos =-mg N θ ②θsin sin 2R v m N f =- ③ 由①②③式得0cos sin sin 22=+-θθθqR v m qBR v ④ 由于v 是实数,必须满足 θθθcos sin 4sin 22gR m qBR -⎪⎭⎫ ⎝⎛=∆≥0 ⑤ 由此得B ≥θcos 2R g q m⑥ 可见,为了使小球能够在该圆周上运动,磁感应强度大小的最小值为 θcos 2min R g q mB =⑦ 此时,带电小球做匀速圆周运动的速率为mR qB v 2sin min θ= ⑧ 由⑦⑧式得θθsin cos gR v = ⑨ 8.〔08重庆卷〕25.题25题为一种质谱仪工作原理示意图.在以O 为圆心,OH 为对称轴,夹角为2α的扇形区域内分布着方向垂直于纸面的匀强磁场.对称于OH 轴的C 和D分别是离子发射点和收集点.CM 垂直磁场左边界于M ,且OM=d.现有一正离子束以小发散角〔纸面内〕从C 射出,这些离子在CM 方向上的分速度均为v 0.假设该离子束中比荷为q m的离子都能会聚到D ,试求: 〔1〕磁感应强度的大小和方向〔提示:可考虑沿CM 方向运动的离子为研究对象〕; 〔2〕离子沿与CM 成θ角的直线CN 进入磁场,其轨道半径和在磁场中的运动时间; 〔3〕线段CM 的长度.解析:〔1〕设沿CM 方向运动的离子在磁场中做圆周运动的轨道半径为R由12R '=200mv qv B R = R=d得B =0mv qd磁场方向垂直纸面向外〔2〕设沿CN 运动的离子速度大小为v ,在磁场中的轨道半径为R ′,运动时间为t 由v cos θ=v 0得v =0cos v θR ′=mv qB=cos d θ方法一:设弧长为st =s vs=2(θ+α)×R ′t =02v R '⨯+)(αθ 〔09年全国卷Ⅰ〕26〔21分〕如图,在x 轴下方有匀强磁场,磁感应强度大小为B ,方向垂直于xy 平面向外。

高中物理带电粒子在磁场中的运动题20套(带答案)

高中物理带电粒子在磁场中的运动题20套(带答案)

高中物理带电粒子在磁场中的运动题20套(带答案)一、带电粒子在磁场中的运动专项训练1.如图所示,在两块水平金属极板间加有电 压U 构成偏转电场,一束比荷为510/qC kg m=的带正电的粒子流(重力不计),以速度v o =104m/s 沿 水平方向从金属极板正中间射入两板.粒子经电 场偏转后进入一具有理想边界的半圆形变化磁场 区域,O 为圆心,区域直径AB 长度为L =1m , AB 与水平方向成45°角.区域内有按如图所示规 律作周期性变化的磁场,已知B 0=0. 5T ,磁场方向 以垂直于纸面向外为正.粒子经偏转电场后,恰好从下极板边缘O 点与水平方向成45°斜向下射入磁场.求:(1)两金属极板间的电压U 是多大?(2)若T o =0.5s ,求t =0s 时刻射人磁场的带电粒子在磁场中运动的时间t 和离开磁场的位置.(3)要使所有带电粒子通过O 点后的运动过程中 不再从AB 两点间越过,求出磁场的变化周期B o ,T o 应满足的条件.【答案】(1)100V (2)t=5210s π-⨯,射出点在AB 间离O 点0.042m (3)5010s 3T π-<⨯【解析】试题分析:(1)粒子在电场中做类平抛运动,从O 点射出使速度代入数据得U=100V (2)粒子在磁场中经过半周从OB 中穿出,粒子在磁场中运动时间射出点在AB 间离O 点(3)粒子运动周期,粒子在t=0、….时刻射入时,粒子最可能从AB 间射出如图,由几何关系可得临界时 要不从AB 边界射出,应满足得考点:本题考查带电粒子在磁场中的运动2.如图,光滑水平桌面上有一个矩形区域abcd ,bc 长度为2L ,cd 长度为1.5L ,e 、f 分别为ad 、bc 的中点.efcd 区域存在竖直向下的匀强磁场,磁感应强度为B ;质量为m 、电荷量为+q 的绝缘小球A 静止在磁场中f 点.abfe 区域存在沿bf 方向的匀强电场,电场强度为26qB Lm;质量为km 的不带电绝缘小球P ,以大小为qBL m 的初速度沿bf 方向运动.P 与A发生弹性正碰,A 的电量保持不变,P 、A 均可视为质点.(1)求碰撞后A 球的速度大小;(2)若A 从ed 边离开磁场,求k 的最大值;(3)若A 从ed 边中点离开磁场,求k 的可能值和A 在磁场中运动的最长时间. 【答案】(1)A 21k qBL v k m =⋅+(2)1(3)57k =或13k =;32m t qB π=【解析】 【分析】 【详解】(1)设P 、A 碰后的速度分别为v P 和v A ,P 碰前的速度为qBLv m= 由动量守恒定律:P A kmv kmv mv =+ 由机械能守恒定律:222P A 111222kmv kmv mv =+ 解得:A 21k qBL v k m=⋅+(2)设A 在磁场中运动轨迹半径为R , 由牛顿第二定律得: 2A A mv qvB R= 解得:21kR L k =+ 由公式可得R 越大,k 值越大如图1,当A 的轨迹与cd 相切时,R 为最大值,R L = 求得k 的最大值为1k =(3)令z 点为ed 边的中点,分类讨论如下:(I )A 球在磁场中偏转一次从z 点就离开磁场,如图2有222()(1.5)2LR L R =+-解得:56L R = 由21k R L k =+可得:57k =(II )由图可知A 球能从z 点离开磁场要满足2LR ≥,则A 球在磁场中还可能经历一次半圆运动后回到电场,再被电场加速后又进入磁场,最终从z 点离开.如图3和如图4,由几何关系有:2223()(3)22L R R L =+-解得:58L R =或2LR = 由21k R L k =+可得:511k =或13k = 球A 在电场中克服电场力做功的最大值为2226m q B L W m=当511k =时,A 58qBL v m =,由于2222222A 12521286qB L q B L mv m m ⋅=>当13k =时,A 2qBL v m =,由于2222222A 1286qB L q B L mv m m⋅=<综合(I )、(II )可得A 球能从z 点离开的k 的可能值为:57k =或13k = A 球在磁场中运动周期为2mT qBπ= 当13k =时,如图4,A 球在磁场中运动的最长时间34t T = 即32mt qBπ=3.“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O ,外圆弧面AB 的电势为2L()o ϕ>,内圆弧面CD 的电势为φ,足够长的收集板MN 平行边界ACDB ,ACDB 与MN 板的距离为L .假设太空中漂浮着质量为m ,电量为q 的带正电粒子,它们能均匀地吸附到AB 圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子的影响,不考虑过边界ACDB 的粒子再次返回.(1)求粒子到达O 点时速度的大小;(2)如图2所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个匀强磁场,方向垂直纸面向内,则发现均匀吸附到AB 圆弧面的粒子经O 点进入磁场后最多有23能打到MN 板上,求所加磁感应强度的大小;(3)如图3所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个垂直MN 的匀强电场,电场强度的方向如图所示,大小4E Lφ=,若从AB 圆弧面收集到的某粒子经O 点进入电场后到达收集板MN 离O 点最远,求该粒子到达O 点的速度的方向和它在PQ 与MN 间运动的时间. 【答案】(1)2q v mϕ=2)12m B L q ϕ=;(3)060α∴= ;22m L q ϕ【解析】 【分析】 【详解】试题分析:解:(1)带电粒子在电场中加速时,电场力做功,得:2102qU mv =-2U ϕϕϕ=-=2q v mϕ=(2)从AB 圆弧面收集到的粒子有23能打到MN 板上,则上端刚好能打到MN 上的粒子与MN 相切,则入射的方向与OA 之间的夹角是60︒,在磁场中运动的轨迹如图甲,轨迹圆心角060θ=.根据几何关系,粒子圆周运动的半径:2R L =由洛伦兹力提供向心力得:2v qBv m R=联合解得:12m B L qϕ=(3)如图粒子在电场中运动的轨迹与MN 相切时,切点到O 点的距离最远, 这是一个类平抛运动的逆过程. 建立如图坐标.212qE L t m=222mL mt L qE q ϕ==22x Eq qEL q v t m m m ϕ===若速度与x 轴方向的夹角为α角 cos x v v α=1cos 2α=060α∴=4.正、负电子从静止开始分别经过同一回旋加速器加速后,从回旋加速器D 型盒的边缘引出后注入到正负电子对撞机中.正、负电子对撞机置于真空中.在对撞机中正、负电子对撞后湮灭成为两个同频率的光子.回旋加速器D 型盒中的匀强磁场的磁感应强度为0B ,回旋加速器的半径为R ,加速电压为U ;D 型盒缝隙间的距离很小,带电粒子穿过的时间可以忽略不计.电子的质量为m 、电量为e ,重力不计.真空中的光速为c ,普朗克常量为h .(1)求正、负电子进入对撞机时分别具有的能量E 及正、负电子对撞湮灭后产生的光子频率v(2)求从开始经回旋加速器加速到获得最大能量的过程中,D 型盒间的电场对电子做功的平均功率P(3)图甲为正负电子对撞机的最后部分的简化示意图.位于水平面的粗实线所示的圆环真空管道是正、负电子做圆周运动的“容器”,正、负电子沿管道向相反的方向运动,在管道内控制它们转变的是一系列圆形电磁铁.即图中的A 1、A 2、A 4……A n 共有n 个,均匀分布在整个圆环上.每个电磁铁内的磁场都是匀强磁场,并且磁感应强度都相同,方向竖直向下.磁场区域的直径为d .改变电磁铁内电流大小,就可以改变磁场的磁感应强度,从而改变电子偏转的角度.经过精确调整,首先实现电子在环形管道中沿图甲中粗虚线所示的轨道运动,这时电子经过每个电磁铁时射入点和射出点都在电磁铁的同一直径的两端,如图乙所示.这就为进一步实现正、负电子的对撞做好了准备.求电磁铁内匀强磁场的磁感应强度B 大小【答案】(1) 222202e B R mc v mh h =+,22202e B R E m = ;(2) 20e B U mπ ;(3)02sin B R n dπ【解析】 【详解】解:(1)正、负电子在回旋加速器中磁场里则有:200mv evB R= 解得正、负电子离开回旋加速器时的速度为:00eB Rv m=正、负电子进入对撞机时分别具有的能量:222200122e B R E mv m==正、负电子对撞湮灭时动量守恒,能量守恒,则有:222E mc hv +=正、负电子对撞湮灭后产生的光子频率:222202e B R mc v mh h=+(2) 从开始经回旋加速器加速到获得最大能量的过程,设在电场中加速n 次,则有:2012neU mv =解得:2202eB R n mU=正、负电子在磁场中运动的周期为:02mT eB π=正、负电子在磁场中运动的时间为:2022B R nt T Uπ==D 型盒间的电场对电子做功的平均功率:20e B UW E P t t mπ===(3)设电子在匀强磁场中做圆周运动的半径为r ,由几何关系可得sin2dr nπ=解得:2sind r nπ=根据洛伦磁力提供向心力可得:200mv ev B r=电磁铁内匀强磁场的磁感应强度B 大小:02sinB R n B dπ=5.如图所示,同轴圆形区域内、外半径分别为R 1=1 m 、R 2=3m ,半径为R 1的圆内分布着B 1=2.0 T 的匀强磁场,方向垂直于纸面向外;外面环形磁场区域分布着B 2=0.5 T 的匀强磁场,方向垂直于纸面向内.一对平行极板竖直放置,极板间距d =3cm ,右极板与环形磁场外边界相切,一带正电的粒子从平行极板左板P 点由静止释放,经加速后通过右板小孔Q ,垂直进入环形磁场区域.已知点P 、Q 、O 在同一水平线上,粒子比荷4×107C /kg ,不计粒子的重力,且不考虑粒子的相对论效应.求:(1) 要使粒子不能进入中间的圆形磁场区域,粒子在磁场中的轨道半径满足什么条件? (2) 若改变加速电压大小,可使粒子进入圆形磁场区域,且能竖直通过圆心O ,则加速电压为多大?(3) 从P 点出发开始计时,在满足第(2)问的条件下,粒子到达O 点的时刻. 【答案】(1) r 1<1m . (2) U =3×107V . (3) t=(6.1×10-8+12.2×10-8k)s (k =0,1,2,3,…) 【解析】 【分析】(1)画出粒子恰好不进入中间磁场区的临界轨迹,先根据几何关系求出半径;(2)画出使粒子进入圆形磁场区域,且能竖直通过圆心O的轨迹,结合几何关系求解半径,然后根据洛伦兹力提供向心力列方程,再根据动能定理对直线加速过程列方程,最后联立方程组求解加速电压;(3)由几何关系,得到轨迹对应的圆心角,求解粒子从Q孔进入磁场到第一次到O点所用的时间,然后考虑周期性求解粒子到达O点的时刻.【详解】(1) 粒子刚好不进入中间磁场时轨迹如图所示,设此时粒子在磁场中运动的半径为r1,在Rt△QOO1中有r12+R22=(r1+R1)2代入数据解得r1=1m粒子不能进入中间磁场,所以轨道半径r1<1m.(2) 轨迹如图所示,由于O、O3、Q共线且水平,粒子在两磁场中的半径分别为r2、r3,洛伦兹力不做功,故粒子在内外磁场的速率不变,由qvB=m2 v r得r=mv qB易知r3=4r2且满足(r2+r3)2=(R2-r2)2+r32解得r2=34m,r3=3m又由动能定理有qU=12mv2代入数据解得U=3×107V.(3)带电粒子从P到Q的运动时间为t1,则t1满足12v t1=d得t1=10-9s令∠QO2O3=θ,所以cosθ=0.8,θ=37°(反三角函数表达亦可)圆周运动的周期T=2m qB π故粒子从Q孔进入磁场到第一次到O点所用的时间为8221372180532610360360m mt sqB qBππ-⨯⨯⨯-=+=考虑到周期性运动,t总=t1+t2+k(2t1+2t2)=(6.1×10-8+12.2×10-8k)s(k=0,1,2,3,…).6.如图所示,在竖直面内半径为R的圆形区域内存在垂直于面向里的匀强磁场,其磁感应强度大小为B,在圆形磁场区域内水平直径上有一点P,P到圆心O的距离为2R,在P 点处有一个发射正离子的装置,能连续不断地向竖直平面内的各方向均匀地发射出速率不同的正离子. 已知离子的质量均为m,电荷量均为q,不计离子重力及离子间相互作用力,求:(1)若所有离子均不能射出圆形磁场区域,求离子的速率取值范围;(2)若离子速率大小02BqRvm=,则离子可以经过的磁场的区域的最高点与最低点的高度差是多少。

物理带电粒子在磁场中的运动题20套(带答案)及解析

物理带电粒子在磁场中的运动题20套(带答案)及解析

物理带电粒子在磁场中的运动题20套(带答案)及解析一、带电粒子在磁场中的运动专项训练1.如图所示,在两块水平金属极板间加有电 压U 构成偏转电场,一束比荷为510/qC kg m=的带正电的粒子流(重力不计),以速度v o =104m/s 沿 水平方向从金属极板正中间射入两板.粒子经电 场偏转后进入一具有理想边界的半圆形变化磁场 区域,O 为圆心,区域直径AB 长度为L =1m , AB 与水平方向成45°角.区域内有按如图所示规 律作周期性变化的磁场,已知B 0=0. 5T ,磁场方向 以垂直于纸面向外为正.粒子经偏转电场后,恰好从下极板边缘O 点与水平方向成45°斜向下射入磁场.求:(1)两金属极板间的电压U 是多大?(2)若T o =0.5s ,求t =0s 时刻射人磁场的带电粒子在磁场中运动的时间t 和离开磁场的位置.(3)要使所有带电粒子通过O 点后的运动过程中 不再从AB 两点间越过,求出磁场的变化周期B o ,T o 应满足的条件.【答案】(1)100V (2)t=5210s π-⨯,射出点在AB 间离O 点0.042m (3)5010s 3T π-<⨯【解析】试题分析:(1)粒子在电场中做类平抛运动,从O 点射出使速度代入数据得U=100V (2)粒子在磁场中经过半周从OB 中穿出,粒子在磁场中运动时间射出点在AB 间离O 点(3)粒子运动周期,粒子在t=0、….时刻射入时,粒子最可能从AB间射出如图,由几何关系可得临界时要不从AB边界射出,应满足得考点:本题考查带电粒子在磁场中的运动2.欧洲大型强子对撞机是现在世界上最大、能量最高的粒子加速器,是一种将质子加速对撞的高能物理设备,其原理可简化如下:两束横截面积极小,长度为l-0质子束以初速度v0同时从左、右两侧入口射入加速电场,出来后经过相同的一段距离射入垂直纸面的圆形匀强磁场区域并被偏转,最后两质子束发生相碰。

带电粒子在磁场中的圆周运动---经典练习题(含答案详解)

带电粒子在磁场中的圆周运动---经典练习题(含答案详解)

电粒子在磁场中的圆周运动1.处于匀强磁场中的一个带电粒子,仅在磁场力作用下做匀速圆周运动.将该粒子的运动等效为环形电流,那么此电流值( ) A .与粒子电荷量成正比 B .与粒子速率成正比 C .与粒子质量成正比 D .与磁感应强度成正比答案 D解析 假设带电粒子的电荷量为q ,在磁场中做圆周运动的周期为T =2πm qB ,则等效电流i =q T =q 2B2πm ,故答案选D.带电粒子在有界磁场中的运动2.如图377所示,在第Ⅰ象限内有垂直纸面向里的匀强磁场,一对正、负电子分别以相同速率沿与x 轴成30°角的方向从原点射入磁场,则正、负电子在磁场中运动的时间之比为( )图377A .1∶2B .2∶1C .1∶ 3D .1∶1答案 B解析 正、负电子在磁场中运动轨迹如图所示,正电子做匀速圆周运动在磁场中的部分对应圆心角为120°,负电子圆周部分所对应圆心角为60°,故时间之比为2∶1.回旋加速器问题图3783.回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电极相连接的两个D 形金属盒,两盒间的狭缝中形成的周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D 形金属盒处于垂直于盒底面的匀强磁场中,如图378所示,要增大带电粒子射出时的动能,下列说法中正确的是( ) A .增加交流电的电压 B .增大磁感应强度 C .改变磁场方向 D .增大加速器半径答案 BD解析 当带电粒子的速度最大时,其运动半径也最大,由牛顿第二定律q v B =m v 2r ,得v =qBrm .若D 形盒的半径为R ,则R =r 时,带电粒子的最终动能E km =12m v 2=q 2B 2R 22m .所以要提高加速粒子射出的动能,应尽可能增大磁感应强度B 和加速器的半径R .(时间:60分钟)题组一 带电粒子在磁场中的圆周运动图3791.如图379所示,ab 是一弯管,其中心线是半径为R 的一段圆弧,将它置于一给定的匀强磁场中,方向垂直纸面向里.有一束粒子对准a 端射入弯管,粒子的质量、速度不同,但都是一价负粒子,则下列说法正确的是( )A .只有速度大小一定的粒子可以沿中心线通过弯管B .只有质量大小一定的粒子可以沿中心线通过弯管C .只有质量和速度乘积大小一定的粒子可以沿中心线通过弯管D .只有动能大小一定的粒子可以沿中心线通过弯管 答案 C解析 由R =m vqB 可知,在相同的磁场,相同的电荷量的情况下,粒子做圆周运动的半径决定于粒子的质量和速度的乘积.图37102.如图3710所示,水平导线中有电流I 通过,导线正下方的电子初速度的方向与电流I 的方向相同,则电子将( )A .沿路径a 运动,轨迹是圆B .沿路径a 运动,轨迹半径越来越大C .沿路径a 运动,轨迹半径越来越小D .沿路径b 运动,轨迹半径越来越小 答案 B解析 由左手定则可判断电子运动轨迹向下弯曲.又由r =m vqB 知,B 减小,r 越来越大,故电子的径迹是a .故选B.3.一电子在匀强磁场中,以一正电荷为圆心在一圆轨道上运行.磁场方向垂直于它的运动平面,电场力恰好是磁场作用在电子上的磁场力的3倍,电子电荷量为e ,质量为m ,磁感应强度为B ,那么电子运动的角速度可能为( )A .4Be mB .3Be mC .2Be m D.Be m答案 AC解析 向心力可能是F 电+F B 或F 电-F B ,即4eB v 1=m v 21R =mω21R 或2eB v 2=m v 22R =mω22R ,所以角速度为ω1=4Be m 或ω2=2Be m.故A 、C 正确.4.在匀强磁场中,一个带电粒子做匀速圆周运动,如果又顺利垂直进入另一磁感应强度是原来磁感应强度2倍的匀强磁场中做匀速圆周运动,则( ) A .粒子的速率加倍,周期减半 B .粒子的速率不变,轨道半径减半 C .粒子的速率减半,轨道半径变为原来的14D .粒子的速率不变,周期减半 答案 BD解析 由R =m v qB 可知,磁场加倍半径减半,洛伦兹力不做功,速率不变,由T =2πmBq 可知,周期减半,故B 、D 选项正确.图37115.如图3711所示,一带电粒子(重力不计)在匀强磁场中沿图中轨道运动,中央是一薄绝缘板,粒子在穿过绝缘板时有动能损失,由图可知( ) A .粒子的运动方向是abcde B .粒子带正电C .粒子的运动方向是edcbaD .粒子在下半周期比上半周期所用时间长 答案 BC题组二 带电粒子在有界磁场中运动图37126.空间存在方向垂直于纸面向里的匀强磁场,图3712中的正方形为其边界.一细束由两种粒子组成的粒子流沿垂直于磁场的方向从O 点入射.这两种粒子带同种电荷,它们的电荷量、质量均不同,但其比荷相同,且都包含不同速率的粒子.不计重力.下列说法正确的是( ) A .入射速度不同的粒子在磁场中的运动时间一定不同 B .入射速度相同的粒子在磁场中的运动轨迹一定相同 C .在磁场中运动时间相同的粒子,其运动轨迹一定相同D .在磁场中运动时间越长的粒子,其轨迹所对的圆心角一定越大 答案 BD解析 由于粒子比荷相同,由R =m vqB 可知速度相同的粒子轨迹半径相同,运动轨迹也必相同,B 正确.对于入射速度不同的粒子在磁场中可能的运动轨迹如图所示,由图可知,粒子的轨迹直径不超过磁场边界一半时转过的圆心角都相同,运动时间都为半个周期,而由T =2πmqB 知所有粒子在磁场运动周期都相同,A 、C 皆错误.再由t =θ2πT =θmqB可知D 正确,故选BD.图37137.如图3713所示,有界匀强磁场边界线SP ∥MN ,速率不同的同种带电粒子从S 点沿SP 方向同时射入磁场.其中穿过a 点的粒子速度v 1与MN 垂直;穿过b 点的粒子速度v 2与MN 成60°角,设粒子从S 到a 、b 所需时间分别为t 1和t 2,则t 1∶t 2为(重力不计)( ) A .1∶3 B .4∶3 C .1∶1 D .3∶2答案 D解析 如图所示,可求出从a 点射出的粒子对应的圆心角为90°.从b 点射出的粒子对应的圆心角为60°.由t =α2πT ,可得:t 1∶t 2=3∶2,故选D.图37148.如图3714所示,直角三角形ABC 中存在一匀强磁场,比荷相同的两个粒子沿AB 方向射入磁场,分别从AC 边上的P 、Q 两点射出,则( ) A .从P 射出的粒子速度大 B .从Q 射出的粒子速度大C .从P 射出的粒子,在磁场中运动的时间长D .两粒子在磁场中运动的时间一样长 答案 BD解析 作出各自的轨迹如图所示,根据圆周运动特点知,分别从P 、Q 点射出时,与AC 边夹角相同,故可判定从P 、Q 点射出时,半径R 1<R 2,所以,从Q 点射出的粒子速度大,B 正确;根据图示,可知两个圆心角相等,所以,从P 、Q 点射出时,两粒子在磁场中的运动时间相等.正确选项应是B 、D. 题组三 质谱仪和回旋加速器图37159.如图3715是质谱仪的工作原理示意图.带电粒子被加速电场加速后,进入速度选择器.速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B 和E .平板S 上有可让粒子通过的狭缝P 和记录粒子位置的胶片A 1A 2.平板S 下方有磁感应强度为B 0的匀强磁场.下列表述正确的是( ) A .质谱仪是分析同位素的重要工具 B .速度选择器中的磁场方向垂直纸面向外 C .能通过狭缝P 的带电粒子的速率等于EBD .粒子打在胶片上的位置越靠近狭缝P ,粒子的比荷越小答案 ABC解析 质谱仪是测量带电粒子的质量和分析同位素的重 要工具,故A 选项正确;速度选择器中电场力和洛伦兹力是一对平衡力,即:q v B =qE ,故v =EB ,根据左手定则可以确定,速度选择器中的磁场方向垂直纸面向外,故B 、C 选项正确.粒子在匀强磁场中运动的半径r =m v qB 0,即粒子的比荷qm =v B 0r ,由此看出粒子的运动半径越小,粒子打在胶片上的位置越靠近狭缝P ,粒子的比荷越大,故D 选项错误. 10.用回旋加速器分别加速α粒子和质子时,若磁场相同,则加在两个D 形盒间的交变电压的频率应不同,其频率之比为( )A .1∶1B .1∶2C .2∶1D .1∶3 答案 B图371611.(2014·高新区高二检测)一个用于加速质子的回旋加速器,其核心部分如图3716所示,D 形盒半径为R ,垂直D 形盒底面的匀强磁场的磁感应强度为B ,两盒分别与交流电源相连.下列说法正确的是( ) A .质子被加速后的最大速度随B 、R 的增大而增大 B .质子被加速后的最大速度随加速电压的增大而增大 C .只要R 足够大,质子的速度可以被加速到任意值 D .不需要改变任何量,这个装置也能用于加速α粒子 答案 A解析 由r =m v qB 知,当r =R 时,质子有最大速度v m =qBRm ,即B 、R 越大,v m 越大,v m 与加速电压无关,A 对、B 错.随着质子速度v 的增大、质量m 会发生变化,据T =2πmqB 知质子做圆周运动的周期也变化,所加交流电与其运动不再同步,即质子不可能一直被加速下去,C 错.由上面周期公式知α粒子与质子做圆周运动的周期不同,故此装置不能用于加速α粒子,D 错. 题组四 综合应用图371712.带电粒子的质量m =1.7×10-27kg ,电荷量q =1.6×10-19C ,以速度v =3.2×106 m/s 沿垂直于磁场同时又垂直于磁场边界的方向进入匀强磁场中,磁场的磁感应强度为B =0.17 T ,磁场的宽度L =10 cm ,如图3717所示.(1)带电粒子离开磁场时的速度多大? (2)带电粒子在磁场中运动多长时间?(3)带电粒子在离开磁场时偏离入射方向的距离d 为多大?(g 取10 m/s 2) 答案 见解析解析 粒子所受的洛伦兹力F 洛=q v B ≈8.7×10-14 N ,远大于粒子所受的重力G =mg =1.7×10-26 N ,故重力可忽略不计.(1)由于洛伦兹力不做功,所以带电粒子离开磁场时速度仍为3.2×106 m/s.(2)由q v B =m v 2r 得轨道半径r =m v qB =1.7×10-27×3.2×1061.6×10-19×0.17m =0.2 m .由题图可知偏转角θ满足:sin θ=Lr =0.1 m 0.2 m =0.5,所以θ=30°=π6,带电粒子在磁场中运动的周期T =2πm qB,可见带电粒子在磁场中运动的时间t =θ2π·T =112T ,所以t =πm 6qB = 3.14×1.7×10-276×1.6×10-19×0.17 s ≈3.3×10-8 s. (3)带电粒子在离开磁场时偏离入射方向的距离d =r (1-cos θ)=0.2×(1-32)m ≈2.7×10-2 m.图371813.如图3718所示,两个板间存在垂直纸面向里的匀强磁场,一带正电的质子以速度v 0从O 点垂直射入.已知两板之间距离为d .板长为d ,O 点是NP 板的正中点,为使粒子能从两板之间射出,试求磁感应强度B 应满足的条件(已知质子带电荷量为q ,质量为m ). 答案4m v 05dq ≤B ≤4m v 0dq解析 如图所示,由于质子在O 点的速度垂直于板NP ,所以粒子在磁场中做圆周运动的圆心O ′一定位于NP 所在的直线上.如果直径小于ON ,则轨迹将是圆心位于ON 之间的一段半圆弧. (1)如果质子恰好从N 点射出,R 1=d 4,q v 0B 1=m v 20R 1.所以B 1=4m v 0dq.(2)如果质子恰好从M 点射出R 22-d 2=⎝⎛⎭⎫R 2-d 22,q v 0B 2=m v 20R 2,得B 2=4m v 05dq.所以B 应满足4m v 05dq ≤B ≤4m v 0dq.图371914.如图3719,一个质量为m ,电荷量为-q ,不计重力的带电粒子从x 轴上的P (a,0)点以速度v ,沿与x 轴正方向成60°的方向射入第一象限内的匀强磁场中,并恰好垂直于y 轴射出第一象限,求: (1)匀强磁场的磁感应强度B ; (2)穿过第一象限的时间. 答案 (1)3m v 2qa (2)43πa 9v解析 (1)作出带电粒子做圆周运动的圆心和轨迹,由图中几何关系知: R cos 30°=a ,得:R =23a3Bq v =m v 2R 得:B =m v qR =3m v2qa .(2)运动时间:t =120°360°·2πm qB =43πa9v.。

带电粒子在磁场中运动解题方法及经典例题

带电粒子在磁场中运动解题方法及经典例题

带电粒子在磁场中运动一、不计重力的带电粒子在匀强磁场中的运动1.匀速直线运动:若带电粒子的速度方向与匀强磁场的方向平行,则粒子做匀速直线运动.2.匀速圆周运动:若带电粒子的速度方向与匀强磁场的方向垂直,则粒子做匀速圆周运动.质量为m、电荷量为q的带电粒子以初速度v垂直进入匀强磁场B中做匀速圆周运动,其角速度为ω,轨道半径为R,运动的周期为T,推导半径和周期公式:推导过程:运动时间t=3.对于带电粒子在匀强磁场中做匀速圆周运动的问题,应注意把握以下几点.(1)粒子圆轨迹的圆心的确定的常规方法①若已知粒子在圆周运动中的两个具体位置与通过某一位置时的速度方向,可在已知的速度方向的位置作速度的垂线,同时作两位置连线的中垂线,两垂线的交点为圆轨迹的圆心,如图4-2 所示.②若已知做圆周运动的粒子通过某两个具体位置的速度方向,可在两位置上分别作两速度的垂线,两垂线的交点为圆轨迹的圆心,如图4-3所示.③若已知做圆周运动的粒子通过某一具体位置的速度方向与圆轨迹的半径R,可在该位置上作速度的垂线,垂线上距该位置R处的点为圆轨迹的圆心(利用左手定则判断圆心在已知位置的哪一侧),如图4-4所示.图4-2图4-3图4-4例1 、一个质量为m电荷量为q的带电粒子从x轴上的P〔a,0〕点以速度v,沿与x正方向成60°的方向射入第一象限内的匀强磁场中,并恰好垂直于y轴射出第一象限。

求3〕〕匀强磁场的磁感应强度B和射出点的坐标。

〔坐标为〔0,a例2、电子自静止开始经M、N板间〔两板间的电压为U〕的电场加速后从A点垂直于磁场边界射入宽度为d的匀强磁场中,电子离开磁场时的位置P偏离入射方向的距离为L,如图2所示,求:〔1〕正确画出电子由静止开始直至离开磁场时的轨迹图; 〔2〕匀强磁场的磁感应强度.〔已知电子的质量为m ,电量为e 〕emUd L L 2222(2)利用速度的垂线与角的平分线的交点找圆心当带电粒子通过圆形磁场区后又通过无场区,如果只知道射入和射出时的速度的方向和射入时的位置,而不知道射出点的位置,应当利用角的平分线和半径的交点确定圆心。

带电粒子在匀强磁场中的运动(12道经典例题)

带电粒子在匀强磁场中的运动(12道经典例题)

方法概述3:
带电粒子垂直进入圆形区域的匀强磁场中,只受洛伦兹
力作用的运动轨迹有以下规律:
1、沿半径方向入射的粒子一定沿另一半径方向射出.
证明:如图所示,连接OO′和OB.
因为AO=BO,OO′为两三角形的公共边,AO′=BO′
所以△AOO′≌△BOO′
所以O′B⊥OB
即OB为 AB 的切线,
电荷射出的方向得证.
三、双边界问题
例3.如图所示,宽度为d的有界匀强磁场,其磁感应强度为B, MM′和NN′是它的两条边界线.现有质量为m、电荷量为q的带
负电粒子沿图示方向垂直磁场方向射入,要使粒子不能从边 界NN′射出,则粒子入射速率v的最大值是( )
A. qBd m
B. 2+ 2 qBd
m
C. qBd 2m
解:(1)由左手定则可知物块带负电荷. (2)当物块离开斜面时,物块对斜面压力为0,受力如
图所示,则:qvB-mgcos30°=0,解得v=3.46 m/s. (3)由动能定理得:mgsin30°·L= mv2,解得物块
在斜面上滑行的最大距离L=1.2 m.
七、带电体在洛伦兹力作用下的直线运动
例9.如图所示,匀强电场方向水平向右,匀强磁场方向垂直 于纸面向里,一质量为m、带电荷量为q的微粒以速度v与磁 场方向垂直,与电场成45°角射入复合场中,恰能做匀速 直线运动,求电场强度E和磁感应强度B的大小.
分析:本题已知轨迹上两点的速度方向即轨迹的切线方
向,就可以确定圆心的位置,再由此解出半径.
解:因为速度方向改变30°,因此此段轨迹所对应的圆
心角为30°,如图所示,由几何关系可得:
半径 R=2dBiblioteka 再由半径公式 R = mv

高中物理带电粒子在磁场中的运动压轴题复习题含答案解析

高中物理带电粒子在磁场中的运动压轴题复习题含答案解析

高中物理带电粒子在磁场中的运动压轴题复习题含答案解析一、带电粒子在磁场中的运动压轴题1.如图,区域I 内有与水平方向成45°角的匀强电场1E ,区域宽度为1d ,区域Ⅱ内有正交的有界匀强磁场B 和匀强电场2E ,区域宽度为2d ,磁场方向垂直纸面向里,电场方向竖直向下.一质量为m 、电量大小为q 的微粒在区域I 左边界的P 点,由静止释放后水平向右做直线运动,进入区域Ⅱ后做匀速圆周运动,从区域Ⅱ右边界上的Q 点穿出,其速度方向改变了30,重力加速度为g ,求:(1)区域I 和区域Ⅱ内匀强电场的电场强度12E E 、的大小. (2)区域Ⅱ内匀强磁场的磁感应强度B 的大小. (3)微粒从P 运动到Q 的时间有多长.【答案】(1)12mg E q =,2mgE q =122m gd 121626d d gd gd π+ 【解析】 【详解】(1)微粒在区域I 内水平向右做直线运动,则在竖直方向上有:1sin45qE mg ︒= 求得:12mgE q=微粒在区域II 内做匀速圆周运动,则重力和电场力平衡,有:2mg qE = 求得:2mgE q=(2)粒子进入磁场区域时满足:2111cos452qE d mv ︒=2v qvB m R=根据几何关系,分析可知:222sin30d R d ==︒整理得:122m gd B =(3)微粒从P 到Q 的时间包括在区域I 内的运动时间t 1和在区域II 内的运动时间t 2,并满足:211112a t d =1tan45mg ma ︒=2302360Rt vπ︒=⨯︒ 经整理得:112121222612126gd d d d t t t gd g gd ππ+=+=+⨯=2.如图所示,一匀强磁场磁感应强度为B ;方向向里,其边界是半径为R 的圆,AB 为圆的一直径.在A 点有一粒子源向圆平面内的各个方向发射质量m 、电量-q 的粒子,粒子重力不计.(1)有一带电粒子以的速度垂直磁场进入圆形区域,恰从B 点射出.求此粒子在磁场中运动的时间.(2)若磁场的边界是绝缘弹性边界(粒子与边界碰撞后将以原速率反弹),某粒子沿半径方向射入磁场,经过2次碰撞后回到A 点,则该粒子的速度为多大?(3)若R =3cm 、B =0.2T ,在A 点的粒子源向圆平面内的各个方向发射速度均为3×105m /s 、比荷为108C /kg 的粒子.试用阴影图画出粒子在磁场中能到达的区域,并求出该区域的面积(结果保留2位有效数字). 【答案】(1) (2)(3)【解析】 【分析】(1)根据洛伦兹力提供向心力,求出粒子的半径,通过几何关系得出圆弧所对应的圆心角,根据周期公式,结合t=T 求出粒子在磁场中运动的时间.(2)粒子径向射入磁场,必定径向反弹,作出粒子的轨迹图,通过几何关系求出粒子的半径,从而通过半径公式求出粒子的速度.(3)根据粒子的半径公式求出粒子的轨道半径,作出粒子轨迹所能到达的部分,根据几何关系求出面积. 【详解】 (1)由得r 1=2R粒子的运动轨迹如图所示,则α=因为周期.运动时间.(2)粒子运动情况如图所示,β=.r2=R tanβ=R由得(3)粒子的轨道半径r3==1.5cm粒子到达的区域为图中的阴影部分区域面积为S=πr32+2×π(2r3)2−r32=9.0×10-4m2【点睛】本题考查了带电粒子在磁场中的运动问题,需掌握粒子的半径公式和周期公式,并能画出粒子运动的轨迹图,结合几何关系求解.该题对数学几何能力要求较高,需加强这方面的训练.3.空间中存在方向垂直于纸面向里的匀强磁场,磁感应强度为B,一带电量为+q、质量为m的粒子,在P点以某一初速开始运动,初速方向在图中纸面内如图中P点箭头所示.该粒子运动到图中Q点时速度方向与P点时速度方向垂直,如图中Q点箭头所示.已知P、Q间的距离为L.若保持粒子在P点时的速度不变,而将匀强磁场换成匀强电场,电场方向与纸面平行且与粒子在P点时速度方向垂直,在此电场作用下粒子也由P点运动到Q 点.不计重力.求:(1)电场强度的大小.(2)两种情况中粒子由P 运动到Q 点所经历的时间之比.【答案】E =;2B E t t π= 【解析】 【分析】 【详解】(1)粒子在磁场中做匀速圆周运动,以v 0表示粒子在P 点的初速度,R 表示圆周的半径,则有200v qv B m R= 由于粒子在Q 点的速度垂直它在p 点时的速度,可知粒子由P 点到Q 点的轨迹为14圆周,故有R =以E 表示电场强度的大小,a 表示粒子在电场中加速度的大小,t E 表示粒子在电场中由p 点运动到Q 点经过的时间,则有qE ma = 水平方向上:212E R at =竖直方向上:0E R v t =由以上各式,得E = 且E mt qB = (2)因粒子在磁场中由P 点运动到Q 点的轨迹为14圆周,即142B t T m qB π==所以2B E t t π=4.如图所示,荧光屏MN 与x 轴垂直放置,与x 轴相交于Q 点,Q 点的横坐标06x cm =,在第一象限y 轴和MN 之间有沿y 轴负方向的匀强电场,电场强度51.610/E N C =⨯,在第二象限有半径5R cm =的圆形磁场,磁感应强度0.8B T =,方向垂直xOy 平面向外.磁场的边界和x 轴相切于P 点.在P 点有一个粒子源,可以向x 轴上方180°范围内的各个方向发射比荷为81.010/qC kg m=⨯的带正电的粒子,已知粒子的发射速率60 4.010/v m s =⨯.不考虑粒子的重力、粒子间的相互作用.求:(1)带电粒子在磁场中运动的轨迹半径; (2)粒子从y 轴正半轴上射入电场的纵坐标范围; (3)带电粒子打到荧光屏上的位置与Q 点间的最远距离. 【答案】(1)5cm (2)010y cm ≤≤ (3)9cm 【解析】 【详解】(1)带电粒子进入磁场受到洛伦兹力的作用做圆周运动20v qv B m r=解得:05mv r cm qB== (2)由(1)问中可知r R =,取任意方向进入磁场的粒子,画出粒子的运动轨迹如图所示,由几何关系可知四边形1PO FO '为菱形,所以1//FO O P ',又O P '垂直于x 轴,粒子出射的速度方向与轨迹半径1FO 垂直,则所有粒子离开磁场时的方向均与x 轴平行,所以粒子从y 轴正半轴上射入电场的纵坐标范围为010y cm ≤≤.(3)假设粒子没有射出电场就打到荧光屏上,有000x v t =2012h at =qE a m=解得:18210h cm R cm =>=,说明粒子离开电场后才打到荧光屏上.设从纵坐标为y 的点进入电场的粒子在电场中沿x 轴方向的位移为x ,则0x v t =212y at =代入数据解得2x y =设粒子最终到达荧光屏的位置与Q 点的最远距离为H ,粒子射出的电场时速度方向与x 轴正方向间的夹角为θ,000tan 2y qE x v m v yv v θ===,所以()()00tan 22H x x x y y θ=-=-,由数学知识可知,当()022x y y -=时,即 4.5y cm =时H 有最大值,所以max 9H cm =5.如图所示,在竖直平面内建立直角坐标系,y 轴沿竖直方向.在x = L 到x =2L 之间存在竖直向上的匀强电场和垂直坐标平面向里的匀强磁场,一个比荷(qm)为k 的带电微粒从坐标原点以一定初速度沿+x 方向抛出,进入电场和磁场后恰好在竖直平面内做匀速圆周运动,离开电场和磁场后,带电微粒恰好沿+x 方向通过x 轴上x =3L 的位置,已知匀强磁场的磁感应强度为B ,重力加速度为g .求:(1)电场强度的大小; (2)带电微粒的初速度;(3)带电微粒做圆周运动的圆心坐标.【答案】(1)g k (2)2g kB (3)2222232(,)28g k B L L k B g-【解析】 【分析】 【详解】(1)由于粒子在复合场中做匀速圆周运动,则:mg =qE ,又=qk m解得g E k=(2)由几何关系:2R cos θ=L ,粒子做圆周运动的向心力等于洛伦兹力:2v qvB m r= ;由cos y v vθ=在进入复合场之前做平抛运动:y gt =v0L v t =解得02g v kB=(3)由212h gt =其中2kBL t g = ,则带电微粒做圆周运动的圆心坐标:'32O x L =; 222'222sin 8O g k B L y h R k B gθ=-+=-6.如图所示,x 轴的上方存在方向与x 轴成45角的匀强电场,电场强度为E ,x 轴的下方存在垂直纸面向里的匀强磁场,磁感应强度0.5.B T =有一个质量1110m kg -=,电荷量710q C -=的带正电粒子,该粒子的初速度30210/v m s =⨯,从坐标原点O 沿与x 轴成45角的方向进入匀强磁场,经过磁场和电场的作用,粒子从O 点出发后第四次经过x 轴时刚好又回到O 点处,设电场和磁场的区域足够宽,不计粒子重力,求:①带电粒子第一次经过x 轴时的横坐标是多少?②电场强度E 的大小及带电粒子从O 点出发到再次回到O 点所用的时间.【答案】①带电粒子第一次经过x 轴时的横坐标是0.57m ;②电场强度E 的大小为3110/V m ⨯,带电粒子从O 点出发到再次回到O 点所用的时间为32.110.s -⨯【解析】【分析】(1)粒子在磁场中受洛伦兹力作用下做一段圆弧后第一次经过x轴,根据洛伦兹力提供向心力公式求出半径,再根据几何关系求出坐标;(2)然后进入电场中,恰好做匀减速运动直到速度为零后又返回,以相同速率再次进入磁场仍在洛伦兹力作用下又做一段圆弧后,再次进入电场正好做类平抛运动.粒子在磁场中两次运动刚好完成一个周期,由粒子在电场中的类平抛运动,根据垂直电场方向位移与速度关系,沿电场方向位移与时间关系,结合牛顿第二定律求出E,三个过程的总时间即为总时间.【详解】①粒子在磁场中受磁场力的作用沿圆弧运动,洛仑兹力提供向心力,2v qvB mR=,半径0.4mvR mBq==,根据圆的对称性可得粒子在磁场中第一次偏转所对的圆心角为90,则第一次经过x轴时的横坐标为120.420.57x R m m==≈②第一次进入电场,运动方向与电场方向相反,做匀减速直线运动,速度减为零后又反向加速返回磁场,在磁场中沿圆周运动,再次进入电场时速度方向刚好垂直电场方向,在电场力的作用下偏转,打在坐标原点O处,其运动轨迹如图所示.由几何关系可得,第二次进入电场中的位移为22R,在垂直电场方向的位移11s vt=,运动时间4112410s Rt sv v-===⨯在沿电场方向上的位移22112s at=,又因22s R=得722212110/sa m st==⨯根据牛顿第二定律Eq a m= 所以电场强度3110/maE V m q==⨯ 粒子从第一次进入电场到再返回磁场的时间422410vt s a-==⨯, 粒子在磁场中两段运动的时间之和刚好是做一个完整圆周运动的周期42410mT s Bqππ-==⨯ 所以粒子从出发到再回到原点的时间为312 2.110t t t T s -=++≈⨯ 【点睛】本题考查带电粒子在电场、磁场中两运动模型:匀速圆周运动与类平抛运动,及相关的综合分析能力,以及空间想像的能力,应用数学知识解决物理问题的能力.7.如图所示,匀强磁场的磁感应强度大小为B .磁场中的水平绝缘薄板与磁场的左、右边界分别垂直相交于M 、N ,MN =L ,粒子打到板上时会被反弹(碰撞时间极短),反弹前后水平分速度不变,竖直分速度大小不变、方向相反.质量为m 、电荷量为-q 的粒子速度一定,可以从左边界的不同位置水平射入磁场,在磁场中做圆周运动的半径为d ,且d <L ,粒子重力不计,电荷量保持不变. (1)求粒子运动速度的大小v ;(2)欲使粒子从磁场右边界射出,求入射点到M 的最大距离d m ; (3)从P 点射入的粒子最终从Q 点射出磁场,PM =d ,QN =2d,求粒子从P 到Q 的运动时间t .【答案】(1)qBd v m =;(2)m 23d +;(3)A.当31L nd d =+-(时, 334π2L m t d qB -=(),B.当3L nd d =+(时, 334π2L m t d qB -=()【解析】 【分析】 【详解】(1)粒子在磁场中做匀速圆周运动由洛伦兹力提供向心力有:2v qvB m R=,解得:mv R qB = 由题可得:R d =解得qBdv m=; (2)如图所示,粒子碰撞后的运动轨迹恰好与磁场左边界相切由几何关系得d m =d (1+sin60°) 解得m 23d d +=(3)粒子的运动周期2πmT qB=设粒子最后一次碰撞到射出磁场的时间为t ',则 (1,3,5,)4Tt nt n '=+=A.当31L nd d =+-()时,粒子斜向上射出磁场 112t T '=解得334π2L m t d qB -=+() B.当31+L nd d =+()时,粒子斜向下射出磁场 512t T '=解得334π2L m t d qB -=-().8.右图中左边有一对平行金属板,两板相距为d ,电压为V ;两板之间有匀强磁场,磁感应强度大小为B 0,方向与金属板面平行并垂直于纸面朝里,图中右边有一半径为R 、圆心为O 的圆形区域,区域内也存在匀强磁场,磁感应强度大小为B ,方向垂直于纸面朝里.一电荷量为q 的正离子沿平行于金属板面、垂直于磁场的方向射入平行金属板之间,沿同一方向射出平行金属板之间的区域,并沿直径EF 方向射入磁场区域,最后从圆形区域边界上的G 点射出,已知弧所对应的圆心角为.不计重力,求:(1)离子速度的大小;(2)离子的质量.【答案】(1)(2)【解析】【分析】【详解】试题分析:带电粒子在磁场中的运动轨迹分析如图所示(1)由题设知,离子在平行金属板之间做匀速直线运动,则①又②由①②式得③(2)在圆形磁场区域,离子做匀速圆周运动.则④由几何关系有⑤解得考点:带电粒子在磁场中的运动点评:本题是速度选择器和带电粒子在匀强磁场中运动的组合问题,可以列出带电粒子在磁场中做圆周运动洛伦兹力做向心力的表达式求解,根据几何关系求半径是解题关键.9.如图所示,虚线OL与y轴的夹角为θ=60°,在此角范围内有垂直于xOy平面向外的匀强磁场,磁感应强度大小为B.一质量为m、电荷量为q(q>0)的粒子从左侧平行于x 轴射入磁场,入射点为M.粒子在磁场中运动的轨道半径为R.粒子离开磁场后的运动轨迹与x轴交于P点(图中未画出),且OP=R.不计重力.求M点到O点的距离和粒子在磁场中运动的时间.【答案】当α=30°时,粒子在磁场中运动的时间为π126T m tqB ==当α=90°时,粒子在磁场中运动的时间为π42T m tqB ==【解析】根据题意,粒子进入磁场后做匀速圆周运动,设运动轨迹交虚线OL于A点,圆心在y轴上的C点,AC与y轴的夹角为α;粒子从A点射出后,运动轨迹交x轴的P点,设AP与x 轴的夹角为β,如图所示.有(判断出圆心在y轴上得1分)2vqvB mR=(1分)周期为2πmTqB=(1分)过A点作x、y轴的垂线,垂足分别为B、D.由几何知识得sinαAD R=,cot60OD AD=︒,,OP AD BP=+α=β (2分)联立得到sinαα13+=(2分)解得α=30°,或α=90° (各2分)设M 点到O 点的距离为h ,有sin αAD R = h R OC =-,3cos αOC CD OD R AD =-=-联立得到h=R -3R cos(α+30°) (1分) 解得h=(1-3)R (α=30°) (2分) h=(1+3)R (α=90°) (2分) 当α=30°时,粒子在磁场中运动的时间为π126T m t qB==(2分) 当α=90°时,粒子在磁场中运动的时间为 π42T m t qB ==(2分) 【考点定位】考查带电粒子在匀强磁场中的运动及其相关知识.10.如图甲所示,两金属板M 、N 水平放置组成平行板电容器,在M 板中央开有小孔O ,再将两个相同的绝缘弹性挡板P 、Q 对称地放置在M 板上方,且与M 板夹角均为60°,两挡板的下端在小孔O 左右两侧.现在电容器两板间加电压大小为U 的直流电压,在M 板上方加上如图乙所示的、垂直纸面的交变磁场,以方向垂直纸面向里为磁感应强度的正值,其值为B 0,磁感应强度为负值时大小为B x ,但B x 未知.现有一质量为m 、电荷量为q (q >0),不计重力的带电粒子,从N 金属板中央A 点由静止释放,t =0时刻,粒子刚好从小孔O 进入上方磁场中,在t 1时刻粒子第一次撞到左挡板P 上,紧接着在t 1+t 2时刻粒子撞到了右挡板Q 上,然后粒子又从O 点竖直向下返回平行金属板间,接着再返回磁场做前面所述的运动.粒子与挡板碰撞前后电荷量不变,沿板面的分速度不变,垂直于板面的分速度大小不变、方向相反,不计碰撞的时间及磁场变化产生的感应影响.图中t 1,t 2未知,求:(1)粒子第一次从A 到达O 点时的速度大小;(2) 粒子从O点第一次撞到左挡板P的时间t1的大小;(3)图乙中磁感应强度B x的大小;(4)两金属板M和N之间的距离d.【答案】(1)v=2Uqm(2)t1=3mB qπ(3)B x=2B0(4)d=()35224n UmB qπ+,n=0,1,2,3【解析】【分析】粒子在电场间做匀加速直线运动,由动能定理求出粒子刚进入磁场的速度,在磁场中做圆周运动,由几何关系得圆心角求出运动时间,粒子在整个装置中做周期性的往返运动,由几何关系得半径求出磁感应强度B x的大小,在t1~(t1+t2)时间内,粒子做匀速圆周运动,由周期关系求出在金属板M和N间往返时间,再求出金属板M和N间的距离。

【物理】物理带电粒子在磁场中的运动题20套(带答案)及解析

【物理】物理带电粒子在磁场中的运动题20套(带答案)及解析

【物理】物理带电粒子在磁场中的运动题20套(带答案)及解析一、带电粒子在磁场中的运动专项训练1.如图所示,在一直角坐标系xoy 平面内有圆形区域,圆心在x 轴负半轴上,P 、Q 是圆上的两点,坐标分别为P (-8L ,0),Q (-3L ,0)。

y 轴的左侧空间,在圆形区域外,有一匀强磁场,磁场方向垂直于xoy 平面向外,磁感应强度的大小为B ,y 轴的右侧空间有一磁感应强度大小为2B 的匀强磁场,方向垂直于xoy 平面向外。

现从P 点沿与x 轴正方向成37°角射出一质量为m 、电荷量为q 的带正电粒子,带电粒子沿水平方向进入第一象限,不计粒子的重力。

求: (1)带电粒子的初速度;(2)粒子从P 点射出到再次回到P 点所用的时间。

【答案】(1)8qBLv m=;(2)41(1)45m t qB π=+ 【解析】 【详解】(1)带电粒子以初速度v 沿与x 轴正向成37o 角方向射出,经过圆周C 点进入磁场,做匀速圆周运动,经过y 轴左侧磁场后,从y 轴上D 点垂直于y 轴射入右侧磁场,如图所示,由几何关系得:5sin37o QC L =15sin37OOQO Q L ==在y 轴左侧磁场中做匀速圆周运动,半径为1R ,11R O Q QC =+21v qvB m R=解得:8qBLv m=; (2)由公式22v qvB m R =得:2mv R qB =,解得:24R L =由24R L =可知带电粒子经过y 轴右侧磁场后从图中1O 占垂直于y 轴射放左侧磁场,由对称性,在y 圆周点左侧磁场中做匀速圆周运动,经过圆周上的E 点,沿直线打到P 点,设带电粒子从P 点运动到C 点的时间为1t5cos37o PC L =1PCt v=带电粒子从C 点到D 点做匀速圆周运动,周期为1T ,时间为2t12mT qBπ=2137360oo t T = 带电粒子从D 做匀速圆周运动到1O 点的周期为2T ,所用时间为3t22·2m mT q B qBππ== 3212t T =从P 点到再次回到P 点所用的时间为t12222t t t t =++联立解得:41145mt qB π⎛⎫=+⎪⎝⎭。

高考物理带电粒子在磁场中的运动常见题型及答题技巧及练习题(含答案)含解析

高考物理带电粒子在磁场中的运动常见题型及答题技巧及练习题(含答案)含解析

高考物理带电粒子在磁场中的运动常见题型及答题技巧及练习题(含答案)含解析一、带电粒子在磁场中的运动专项训练1.如图所示,两条竖直长虚线所夹的区域被线段MN 分为上、下两部分,上部分的电场方向竖直向上,下部分的电场方向竖直向下,两电场均为匀强电场且电场强度大小相同。

挡板PQ 垂直MN 放置,挡板的中点置于N 点。

在挡板的右侧区域存在垂直纸面向外的匀强磁场。

在左侧虚线上紧靠M 的上方取点A,一比荷qm=5×105C/kg 的带正电粒子,从A 点以v 0=2×103m/s 的速度沿平行MN 方向射入电场,该粒子恰好从P 点离开电场,经过磁场的作用后恰好从Q 点回到电场。

已知MN 、PQ 的长度均为L=0.5m ,不考虑重力对带电粒子的影响,不考虑相对论效应。

(1)求电场强度E 的大小; (2)求磁感应强度B 的大小;(3)在左侧虚线上M 点的下方取一点C ,且CM=0.5m ,带负电的粒子从C 点沿平行MN 方向射入电场,该带负电粒子与上述带正电粒子除电性相反外其他都相同。

若两带电粒子经过磁场后同时分别运动到Q 点和P 点,求两带电粒子在A 、C 两点射入电场的时间差。

【答案】(1) 16/N C (2) 21.610T -⨯ (3) 43.910s -⨯ 【解析】 【详解】(1)带正电的粒子在电场中做类平抛运动,有:L=v 0t2122L qE t m = 解得E=16N/C(2)设带正电的粒子从P 点射出电场时与虚线的夹角为θ,则:0tan v qE t mθ=可得θ=450粒子射入磁场时的速度大小为2v 0粒子在磁场中做匀速圆周运动:2v qvB m r=由几何关系可知22r L =解得B=1.6×10-2T(3)两带电粒子在电场中都做类平抛运动,运动时间相同;两带电粒子在磁场中都做匀速圆周运动,带正电的粒子转过的圆心角为32π,带负电的粒子转过的圆心角为2π;两带电粒子在AC 两点进入电场的时间差就是两粒子在磁场中的时间差; 若带电粒子能在匀强磁场中做完整的圆周运动,则其运动一周的时间22r mT v qBππ==; 带正电的粒子在磁场中运动的时间为:4135.910s 4t T -==⨯; 带负电的粒子在磁场中运动的时间为:421 2.010s 4t T -==⨯带电粒子在AC 两点射入电场的时间差为412 3.910t t t s -∆=-=⨯2.如图所示,MN 为绝缘板,CD 为板上两个小孔,AO 为CD 的中垂线,在MN 的下方有匀强磁场,方向垂直纸面向外(图中未画出),质量为m 电荷量为q 的粒子(不计重力)以某一速度从A 点平行于MN 的方向进入静电分析器,静电分析器内有均匀辐向分布的电场(电场方向指向O 点),已知图中虚线圆弧的半径为R ,其所在处场强大小为E ,若离子恰好沿图中虚线做圆周运动后从小孔C 垂直于MN 进入下方磁场.()1求粒子运动的速度大小;()2粒子在磁场中运动,与MN 板碰撞,碰后以原速率反弹,且碰撞时无电荷的转移,之后恰好从小孔D 进入MN 上方的一个三角形匀强磁场,从A 点射出磁场,则三角形磁场区域最小面积为多少?MN 上下两区域磁场的磁感应强度大小之比为多少?()3粒子从A 点出发后,第一次回到A 点所经过的总时间为多少?【答案】(1)EqRm;(2)212R ;11n +;(3)2πmR Eq 。

高中物理带电粒子在磁场中的运动题20套(带答案)

高中物理带电粒子在磁场中的运动题20套(带答案)

1 2
mv02
可得 v0
2eU m
电子从 Q 点到 M 点,做类平抛运动,
x 轴方向做匀速直线运动, t L L m
v0
2eU
y 轴方向做匀加速直线运动, L 1 eE t2 2 2m
由以上各式可得: E 2U L
电子运动至 M 点时: vM
v02
(
Ee m
t)2
即: vM 2
eU m
设 vM 的方向与 x 轴的夹角为 θ,
cos v0 2 vM 2
解得:θ=45°。 (2)如图甲所示,电子从 M 点到 A 点,做匀速圆周运动,因 O2M=O2A,O1M=O1A, 且 O2A∥MO1,所以四边形 MO1AO2 为菱形,即 R=L
由洛伦兹力提供向心力可得:
evM
B
m
vM2 R
即 B mvM 2 mv eR L e
E
点的试卷比下方粒子中第一个达到
C
的时间滞后 Δt
l0 t0
上方最后的一个粒子从 E 点到达 D 点所需时间为
t
R
Rsin
π 3
1 6
2πR
6

3
3R
2v0
2v0
12v0
要使两质子束相碰,其运动时间满足 t t t
联立解得 l0
π
3 3 12
6
4.如图甲所示,在直角坐标系中的 0≤x≤L 区域内有沿 y 轴正方向的匀强电场,右侧有以点 (2L,0)为圆心、半径为 L 的圆形区域,与 x 轴的交点分别为 M、N,在 xOy 平面内,从 电离室产生的质量为 m、带电荷量为 e 的电子以几乎为零的初速度从 P 点飘入电势差为 U 的加速电场中,加速后经过右侧极板上的小孔 Q 点沿 x 轴正方向进入匀强电场,已知 O、

物理带电粒子在磁场中的运动练习题20篇及解析

物理带电粒子在磁场中的运动练习题20篇及解析

物理带电粒子在磁场中的运动练习题20篇及解析一、带电粒子在磁场中的运动专项训练1.如图所示,一质量为m 、电荷量为+q 的粒子从竖直虚线上的P 点以初速度v 0水平向左射出,在下列不同情形下,粒子经过一段时间后均恰好经过虚线右侧的A 点.巳知P 、A 两点连线长度为l ,连线与虚线的夹角为α=37°,不计粒子的重力,(sin 37°=0.6,cos 37°=0.8).(1)若在虚线左侧存在垂直纸面向外的匀强磁场,求磁感应强度的大小B 1;(2)若在虚线上某点固定一个负点电荷,粒子恰能绕该负点电荷做圆周运动,求该负点电荷的电荷量Q (已知静电力常量为是);(3)若虚线的左侧空间存在垂直纸面向外的匀强磁场,右侧空间存在竖直向上的匀强电场,粒子从P 点到A 点的过程中在磁场、电场中的运动时间恰好相等,求磁场的磁感应强度的大小B 2和匀强电场的电场强度大小E .【答案】(1)0152mv B ql = (2)2058mv l Q kq = (3)0253mv B ql π= 220(23)9mv E qlππ-=【解析】 【分析】 【详解】(1)粒子从P 到A 的轨迹如图所示:粒子在磁场中做匀速圆周运动,设半径为r 1 由几何关系得112cos 25r l l α== 由洛伦兹力提供向心力可得2011v qv B m r =解得:0 152mv Bql=(2)粒子从P到A的轨迹如图所示:粒子绕负点电荷Q做匀速圆周运动,设半径为r2由几何关系得252cos8lr lα==由库仑力提供向心力得2222vQqk mr r=解得:258mv lQkq=(3)粒子从P到A的轨迹如图所示:粒子在磁场中做匀速圆周运动,在电场中做类平抛运动粒子在电场中的运动时间00sin35l ltv vα==根据题意得,粒子在磁场中运动时间也为t,则2Tt=又22mTqBπ=解得0253mvBqlπ=设粒子在磁场中做圆周运动的半径为r,则0v t rπ=解得:35l r π=粒子在电场中沿虚线方向做匀变速直线运动,21cos 22qE l r t mα-=⋅ 解得:220(23)9mv E qlππ-=2.如图纸面内的矩形 ABCD 区域存在相互垂直的匀强电场和匀强磁场,对边 AB ∥CD 、AD ∥BC ,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为 B .一带电粒子从AB 上的 P 点平行于纸面射入该区域,入射方向与 AB 的夹角为 θ(θ<90°),粒子恰好做匀速直线运动并从 CD 射出.若撤去电场,粒子以同样的速度从P 点射入该区域,恰垂直 CD 射出.已知边长 AD=BC=d ,带电粒子的质量为 m ,带电量为 q ,不计粒子的重力.求:(1)带电粒子入射速度的大小;(2)带电粒子在矩形区域内作直线运动的时间; (3)匀强电场的电场强度大小.【答案】(1)cos qBd m θ(2)cos sin m qB θθ (3)2cos qB dm θ【解析】 【分析】画出粒子的轨迹图,由几何关系求解运动的半径,根据牛顿第二定律列方程求解带电粒子入射速度的大小;带电粒子在矩形区域内作直线运动的位移可求解时间;根据电场力与洛伦兹力平衡求解场强. 【详解】(1) 设撤去电场时,粒子在磁场中做匀速圆周运动的半径为R ,画出运动轨迹如图所示,轨迹圆心为O .由几何关系可知:cos d Rθ=洛伦兹力做向心力:200v qv B m R= 解得0cos qBdv m θ=(2)设带电粒子在矩形区域内作直线运动的位移为x ,有sin d xθ= 粒子作匀速运动:x=v 0t 联立解得cos sin m t qB θθ=(3)带电粒子在矩形区域内作直线运动时,电场力与洛伦兹力平衡:Eq=qv 0B解得2qB dE mcos θ=【点睛】此题关键是能根据粒子的运动情况画出粒子运动的轨迹图,结合几何关系求解半径等物理量;知道粒子作直线运动的条件是洛伦兹力等于电场力.3.“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O ,外圆弧面AB 的电势为2L()o ϕ>,内圆弧面CD 的电势为φ,足够长的收集板MN 平行边界ACDB ,ACDB 与MN 板的距离为L .假设太空中漂浮着质量为m ,电量为q 的带正电粒子,它们能均匀地吸附到AB 圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子的影响,不考虑过边界ACDB 的粒子再次返回.(1)求粒子到达O 点时速度的大小;(2)如图2所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个匀强磁场,方向垂直纸面向内,则发现均匀吸附到AB 圆弧面的粒子经O 点进入磁场后最多有23能打到MN 板上,求所加磁感应强度的大小;(3)如图3所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个垂直MN 的匀强电场,电场强度的方向如图所示,大小4E Lφ=,若从AB 圆弧面收集到的某粒子经O 点进入电场后到达收集板MN 离O 点最远,求该粒子到达O 点的速度的方向和它在PQ 与MN 间运动的时间. 【答案】(1)2q v mϕ=2)12m B L q ϕ=;(3)060α∴= ;22m L q ϕ【解析】 【分析】 【详解】试题分析:解:(1)带电粒子在电场中加速时,电场力做功,得:2102qU mv =-2U ϕϕϕ=-=2q v mϕ=(2)从AB 圆弧面收集到的粒子有23能打到MN 板上,则上端刚好能打到MN 上的粒子与MN 相切,则入射的方向与OA 之间的夹角是60︒,在磁场中运动的轨迹如图甲,轨迹圆心角060θ=.根据几何关系,粒子圆周运动的半径:2R L =由洛伦兹力提供向心力得:2v qBv m R=联合解得:12m B L qϕ=(3)如图粒子在电场中运动的轨迹与MN 相切时,切点到O 点的距离最远, 这是一个类平抛运动的逆过程. 建立如图坐标.212qE L t m=222mL mt L qE q ϕ==22x Eq qEL q v t m m m ϕ===若速度与x 轴方向的夹角为α角 cos x v v α=1cos 2α=060α∴=4.如图所示,MN 为绝缘板,CD 为板上两个小孔,AO 为CD 的中垂线,在MN 的下方有匀强磁场,方向垂直纸面向外(图中未画出),质量为m 电荷量为q 的粒子(不计重力)以某一速度从A 点平行于MN 的方向进入静电分析器,静电分析器内有均匀辐向分布的电场(电场方向指向O 点),已知图中虚线圆弧的半径为R ,其所在处场强大小为E ,若离子恰好沿图中虚线做圆周运动后从小孔C 垂直于MN 进入下方磁场.()1求粒子运动的速度大小;()2粒子在磁场中运动,与MN 板碰撞,碰后以原速率反弹,且碰撞时无电荷的转移,之后恰好从小孔D 进入MN 上方的一个三角形匀强磁场,从A 点射出磁场,则三角形磁场区域最小面积为多少?MN 上下两区域磁场的磁感应强度大小之比为多少?()3粒子从A 点出发后,第一次回到A 点所经过的总时间为多少?【答案】(1)EqRm;(2)212R ;11n +;(3)2πmR Eq 。

专题:带电粒子在有界磁场中的运动

专题:带电粒子在有界磁场中的运动

mm
qU 1 mv2 2
U 2qB2R2 m
600
r
O2
磁场,入射方向与CD夹角θ,为了使电子能从磁场
的另一侧边界EF射出,v应满足的条件是:
A.v>eBd/m(1+sinθ) B.v>eBd/m(1+cosθ) C.v> eBd/msinθ D.v< eBd/mcosθ
d r(1 cos )
C
EB
. v θO
B
D
F
qvB m v2 r
思考:求电子在磁场中运动的 最长时间是多长?
专题:带电粒子在有界 磁场的运动
双边界磁场(一定宽度的无限长磁场)
例、一正离子,电量为q ,质量为m, 垂直射入磁感应强度为B、宽度为d
的匀强磁场中,穿出磁场时速度方向 与其原来入射方向的夹角是30°,
d
v
30°
v
(1)离子的运动半径是多少?
θ
(2)离子射入磁场时速度是多少? O
(3)穿越磁场的时间又是多少?
2
O’
PB
qB
Bq
⑵ 2 vt vt Bq t
r mv m
S
qB
或 t 2 2m 2m 2 qB qB
qB t
2m
3.如图直线MN上方有磁感应强度为B的匀强磁场。正、 负电子同时从同一点O以与MN成30°角的同样速度v 射入磁场(电子质量为m,电荷为e),它们从磁场中射 出时相距多远?射出的时间差是多少?
①速度较小时粒子作部分圆周运动
后从原边界飞出;②速度在某一范
围内从侧面边界飞;③速度较大时
粒子作部分圆周运动从另一侧面边
界飞出。
量变积累到一定程度发生质变,出现临界状态(轨迹与边界相切)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y
p
o
θ
x
v
入射速度与边界夹角=
y
出射速度与边界夹角
v

o
θ
f洛
θθ
R sin ? ? L
4 q ? 2v sin ?
m LB
x v
? 带电粒子在圆形磁场中的运动
从平面几何的角度看,是粒子轨迹圆与磁场边界圆的两圆 相交问题。
? 特殊情形:
B v

α θO
界 圆
θ
轨 迹
有用规律二(请记下P96)
? 4、解题关键有三点: ? ①粒子圆轨迹的圆心O的确定
? ②运动半径R的确定
? ③运动周期T的确定
? 带电粒子在匀强磁场中的运动
由洛伦兹力提供向心力
轨道半径:
mv r = qB
qvB =
mv2 r
——周期T与R和v无关
仅由粒子种类(m、q)
运动周期: T =
2? r
v
=
2? m
qB
决定,和磁感应强度B 决定。
这个磁场;结果,这些质子在该磁场中运动的时间有的
较长,有的较短,其中运动时间较长的粒子( CD )
A.射入时的速度一定较大
B.在该磁场中运动的路程一定较长
C .在该磁场中偏转的角度一定较大
D.从该磁场中飞出的速度一定较小
T
=
2? m
Bq
t T
=
θ
2?
B v
O s2 s1
θ1 R1
O′
2aq
射出点坐标为( 0, 3 a )
O
v
60o
a
x
? 单边界磁场
练、如图,虚线上方存在磁感应强度为 B的磁场,
一带正电的粒子质量 m、电量q,若它以速度 v沿与
虚线成 300、 900、1500、1800角分别射入,
1. 请作出上述几种情况下粒子的轨迹
2. 观察入射速度、出射速度与虚线夹角间的关系
? 2、从试题的难度上看,多属于中等难度或 较难的计算题。原因有二:一是题目较长, 常以科学技术的具体问题为背景,从实际问 题中获取、处理信息,把实际问题转化成物 理问题。二是涉及数学知识较多(特别是几 何知识)。
? 3、常见的五种有界磁场:单边界磁场、双 边界磁场、矩形磁场、圆形磁场、三角形 磁场
两类典型问题
1. 带电粒子在有界匀强磁场中(只受洛 伦兹力)做圆弧运动;
2. 带电粒子在磁场中运动时的临界问题 (或多解问题)的讨论
概述
? 1、本类问题对知识考查全面,涉及到力学、 电学、磁学等高中物理的主干知识,对学生 的空间想象能力、分析综合能力、应用数学 知识解决物理问题能力有较高的要求,是考 查学生多项能力的极好的载体,因此成为历 年高考的热点。
qB
? 对称性
有用规律一 :(记下书本 P96 ,以备高三复习时查阅) 过入射点和出射点作一直线, 入射速度与直线的夹角
等于出射速度与直线的夹角 ,并且如果把两个速度移到 共点时,关于直线轴对称。
强调: 本规律是在单边界磁场中总结出的,但是 适用于任何类型的磁场
例如图所示,在y < 0的区域内存在匀强磁场, 磁场方向如图,磁感应强度为B。一带正电的粒 子以速度v从O点射入磁场,入射方向在xoy平面 内,与x轴正向的夹角为θ 。若粒子射出磁场的 位置与O点的距离为L,求该粒子的比荷q/m。
rB vO
θ
解:(1) R
?
mv (本题是物理方法求半径 eB

(2)由几何知识得:圆心角: α= θ
t?
? 2?
T?
m?
eB
Rθ 2
O1
v
?
(3)由如图所示几何关系可知, tan 2
?
r R
所以:r ?
mv tan ?
eB 2
练、 如图虚线所示区域内有方向垂直于纸面的匀强磁场,
一束速度大小各不相同的质子正对该区域的圆心 O射入
轨迹圆
例如图虚线所围圆形区域内有方向垂直纸面向里的匀强磁场 B。
电子束沿圆形区域的直径方向以速度 v射入磁场,经过磁场
区后,电子束运动的方向与原入射方向成θ 角。设电子质量
为m,电荷量为e,不计电子之间的相互作用力及所受的重力。
求:
(1)电子在磁场中运动轨迹的半径 R; (2)电子在磁场中运动的时间t ; (3)圆形磁场区域的半径r 。
角速度: ω ? qB m
频率:
f
?
1 T
?
qB
2? m
动能:
Ek
?
1 mv 2 2
?
(qBR)2 2m
? 解题的基本过程与方法
1 找圆心:

? 已知任意两点速度方向:作垂线
可找到两条半径,其交点是圆心。
v
? 已知一点速度方向和另外一点的
θ
位置:作速度的垂线得半径,连
O
接两点并作中垂线,交点是圆心。
(1)离子的运动半径是多少?
(2)离子射入磁场时速度是多少?
(3)穿越磁场的时间又是多少?
答 案 : R ? 2d
v ? 2dqB m
d
v
30°
v
θ
O B
t ? ?m
6 qB
? 附:电偏转与磁偏转的区别
注意: (1)电偏转是类平抛运动
磁偏转是匀速圆周运动
(2)这里射出速度的反向延长线与 初速度延长线的交点不再是宽度 线段的中点。这点与带电粒子在 匀强电场中的偏转结论不同!
3. 求其在磁场中运动的时间。
入射角300时 t ? 60? ? 2?m ? ?m
360? qB 3qB
入射角900时
t ? 180? ? 2?m ? ?m
360? qB qB
入射角1500时
t ? 300? ? 2?m ? 5?m
360? qB 3qB
入射角1800时
t ? T ? 2?m
O′
圆 在圆形磁场内, 入射速度沿径
向, 出射速度也必沿径向.
? 带电粒子在圆形磁场中的运动
从平面几何的角度看,是粒子轨迹圆与磁场边界圆的两Байду номын сангаас 相交问题。
? 一般情形:

BB
界 OC

A
O'
有用规律三:(记下P96)
磁场圆心O和运动轨迹圆心O′都 在入射点和出射点连线AB的中
垂线上。
或者说两圆心连线OO′与两个交 点的连线AB垂直。
v
2 画圆弧: 3 定半径: ? 几何法求半径
? 公式求半径
αα α
4 算时间:先算周期,再用圆心角
O
算时间 T ? 2?m
qB
t
?
? 2?
T
注意:θ
θ = 2α
应以弧度制表示
? 双边界磁场(一定宽度的无限长磁场)
例、一正离子 , 电量为q , 质量为m, 垂直射入磁感应强度为 B、宽度为 d
的匀强磁场中,穿出磁场时速度方向 与其原来入射方向的夹角是 30°,
L v
y
θR
OB
练 一个质量为 m电荷量为 q的带电粒子(不计重力)
从x轴上的P( a,0)点以速度 v,沿与x正方向成 60o
的方向射入第一象限内的匀强磁场中,并恰好垂
直于 y轴射出第一象限。求匀强磁场的磁感应强
度B和射出点的坐标。 解析 :
y v
r ? 2a ? mv
B
3 Bq
得 B ? 3mv
相关文档
最新文档