72高三数学期末考试试题(理科)72
2023届四川省泸县第四中学高三上学期期末考试数学(理)试题(解析版)
2023届四川省泸县第四中学高三上学期期末考试数学(理)试题一、单选题1.设集合{}2A x x =<,{}230B x x x =-<,则A B ⋃=( ).A .()2,3-B .()2,0-C .()0,2D .()2,3【答案】A【分析】解绝对值不等式、一元二次不等式分别求集合A 、B ,再由集合并运算求A B ⋃. 【详解】由题设{|22}A x x =-<<,{|03}B x x =<<, 所以(2,3)A B =-. 故选:A2.若复数()()211i z x x =-++为纯虚数(i 为虚数单位),则实数x 的值为( )A .-1B .0C .1D .-1或1【答案】C【分析】根据纯虚数的定义列出方程(组)求解.【详解】由已知得21010x x ⎧-=⎨+≠⎩,解得1x =,故选:C3.某车间从生产的一批产品中随机抽取了1000个零件进行一项质量指标的检测,整理检测结果得此项质量指标的频率分布直方图如图所示,则下列结论错误的是( )A .0.005a =B .估计这批产品该项质量指标的众数为45C .估计这批产品该项质量指标的中位数为60D .从这批产品中随机选取1个零件,其质量指标在[)50,70的概率约为0.5 【答案】C【分析】利用各组的频率之和为1,求得a 的值,判定A ;根据众数和中位数的概念判定BC ;根据频率估计概率值,从而判定D.【详解】()0.0350.0300.0200.010101a ++++⨯=,解得0.005a =,故A 正确; 频率最大的一组为第二组,中间值为4050452+=,所以众数为45,故B 正确; 质量指标大于等于60的有两组,频率之和为()0.0200.010100.30.5+⨯=<,所以60不是中位数,故C 错误;由于质量指标在[50,70)之间的频率之和为()0.030.02100.5+⨯=,可以近似认为从这批产品中随机选取1个零件,其质量指标在[)50,70的概率约为0.5,故D 正确. 故选:C4.若实数x ,y 满足约束条件2301030x y x y x y --≤⎧⎪-+≥⎨⎪+-≥⎩,则2z x y =+的最小值为( ).A .1-B .4C .5D .14【答案】B【分析】由题设作出不等式组表示的区域,结合2z x y =+的几何意义即可求出答案. 【详解】作出不等式组表示的区域如下图中阴影部分,直线2z x y =+化为:1122y x+z =-表示斜率为12-的一组平行线,当1122y x+z =-经过点B 有最小值,由302101x y x x y y +-==⎧⎧⇒⎨⎨-+==⎩⎩,所以()2,1B ,则2z x y =+的最小值为:224z =+=.故选:B.5.执行下面的程序框图,如果输出的n =4,则输入的t 的最小值为( )A .14B .18C .116D .132【答案】C【分析】由已知的程序语句可知,该程序的功能是利用循环结构计算并输出变量n 的值,模拟程序的运算过程,即可得解.【详解】解:执行下面的程序框图,已知S =1,n =0,m =12; 执行循环体S =12,m =14,n =1;S =14,m =18,n =2;S =18,m =116,n =3;S =116,m =132,n =4; 如果输出的n =4,则输入的t 的最小值为116. 故选:C .6.一个容器装有细沙3cm a ,细沙从容器底部一个细微的小孔慢慢地匀速漏出,min t 后剩余的细沙量为()3cm bty ae-=,经过8min 后发现容器内还有一半的沙子,若容器中的沙子只有开始时的八分之一,则需再经过的时间为( ). A .24min B .26min C .8min D .16min【答案】D【分析】依题意有8b ae -= 12a ,解得ln28b =,得到ln 28t y ae -=,再令8a y =,求解得到t 的值,减去最初的8min 即得所求. 【详解】依题意有8b ae -=12a ,即8b e -= 12,两边取对数得ln281ln28ln ln2,,28t b b y ae --==-∴=∴= , 当容器中只有开始时的八分之一,则有ln2ln2881188t t ae a e --=∴=, 两边取对数得ln21ln 3ln2,2488t t -==-∴=, 所以再经过的时间为()24816min -=. 故选:D .7.已知α满足sin()4πα+,则2tan tan 1αα=+( )A .3B .﹣3C .49D .49-【答案】D【分析】首先化简sin()4πα+得到8sin 29α=-,接着化切为弦将2tan tan 1αα+表示成1sin 22α,代入求解即可.【详解】解:∵sin()cos )4a παα+=+,即1sin cos 3αα+=,平方可得112sin cos 9αα+=,∴8sin 29α=-, 故222tan 12sin cos 14sin 2tan 12sin cos 29ααααααα=⨯==-++;故选:D .【点睛】(1)给值求值问题一般是正用公式将所求“复角”展开,看需要求相关角的哪些三角函数值,然后根据角的范围求出相应角的三角函数值,代入展开式即可.(2)通过求所求角的某种三角函数值来求角,关键点在选取函数,常遵照以下原则:①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的范围是0,2π⎛⎫⎪⎝⎭,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为,22ππ⎛⎫- ⎪⎝⎭,选正弦较好.8.已知曲线322y x x x =-++在1x =处的切线为l ,若l 与222:250C x y ax a +-+-=相切,则实数=a ( ) A .2或3- B .2-或3 C .2 D .3【答案】A【分析】根据导数的几何意义求出切线方程,将圆的方程配成标准式,即可得到圆心坐标与半径,再根据直线与圆相切,圆心到直线的距离等于半径,即可得到方程,解得即可; 【详解】解:因为322y x x x =-++,当1x =时3y =,又2321y x x '=-+,所以1|2x y ='=,所以曲线322y x x x =-++在1x =处的切线为()321y x -=-,即210x y -+=,又222:250C x y ax a +-+-=,即()22:5C x a y -+=,即圆心(),0C a ,半径r =因为直线l 与C 相切,所以圆心到直线的距离d ==2a =或3a =-;故选:A9.在5道题中有3道理科试题和2道文科试题.如果不放回地依次抽2道题,则第一次和第二次都抽到理科题的概率是( ) A .25B .12C .35D .310【答案】D【分析】根据题意,设A 事件为第一次抽到理科试题,B 事件为第二次抽到理科试题,进而()()()3135210P AB P A P B ==⨯=.【详解】设A 事件为第一次抽到理科试题,B 事件为第二次抽到理科试题,所以第一次和第二次都抽到理科题的概率是()()()3135210P AB P A P B ==⨯=.故选:D.10.已知定义在R 上的偶函数()f x ,其导函数为()f x ',若()2()0xf x f x '->,(3)1f -=,则不等式()19f x x x <的解集是( ) A .(,3)(0,3)-∞- B .()3,3-C .(3,0)(0,3)-⋃D .(,3)(3,)-∞-⋃+∞【答案】A【分析】根据题目中信息其导函数为()f x ',若()2()0xf x f x '->可知,需构造函数2()()f x g x x =, 利用导函数判断函数()g x 的单调性,利用函数()g x 的单调性、奇偶性来解题,当0x > 时,即2()19f x x <,1()9g x <,当0x < 时,即2()19f x x >,1()9g x >. 【详解】构造函数2()()f x g x x=,43'()2()'()2()'()xf x f x xf x f x g x x x x --=⋅= , 当0x > 时,()2()0xf x f x '->,故'()0g x >,()g x 在(0,)+∞ 上单调递增, 又()f x 为偶函数,21y x = 为偶函数, 所以2()()f x g x x =为偶函数,在,0()-∞ 单调递减. (3)1f -=,则(3)1f =,231(3)(3)39f g g -===(); ()19f x x x <, 当0x > 时,即2()19f x x <,1()(3)9g x g <=,所以(0,3)x ∈ ; 当0x < 时,即2()19f x x >,1()(3)9g x g >=-,所以(,3)x ∈-∞-. 综上所述,(,3)(0,3)x ∈-∞-⋃. 故选:A【点睛】需对题中的信息联想到构造函数利用单调性解不等式,特别是分为当0x > 时, 当0x < 时两种情况,因为两边同时除以x ,要考虑其正负.11.已知曲线1C :e x y =上一点11(,)A x y ,曲线2C :1ln ()y x x m =+-(0)m >上一点22(,)B x y ,当12y y =时,对于任意12,x x 都有e AB ≥恒成立,则m 的最小值为( )A .e 1-BC .1D .e 1+【答案】A【分析】根据题中条件,得到()12e 1ln xx m =+-,21e x x -≥,推出()2e 201ln e x x m -<+-≤;证明ln 1x x ≤-,分离参数得2e2ex m x -≥-,构造函数求出2e2ex x --的最大值,即可得出结果.【详解】因为当12y y =时,对于任意12,x x 都有e AB ≥恒成立,所以有:()12e 1ln xx m =+-,21e x x -≥,()2e 201ln e x x m -∴<+-≤,21ex m ∴>+,令()ln 1g x x x =-+,则()111x g x x x-'=-=, 所以当()0,1x ∈时,()0g x '>,则()g x 单调递增; 当()1,x ∈+∞时,()0g x '<,则()g x 单调递减; 因此()()10g x g ≤=,即ln 1x x ≤-显然恒成立;因为21x m e->,所以()22ln 1x m x m -≤--,即()221ln x m x m +-≤-;为使()2e21ln e x x m -+-≤恒成立,只需2e2ex x m --≤恒成立;即2e2ex m x -≥-恒成立;令()e e x f x x -=-,则()e1e x f x -=-',由0f x解得e x <;由()0f x '<解得e x >;所以()f x 在(),e -∞上单调递增;在()e,+∞上单调递减; 所以()()max e e 1f x f ==-;e 1m ∴≥-,因此m 的最小值为e 1-.故选:A12.在三棱锥-P ABC 中,已知2PA AB AC ===,2PAB π∠=,23BAC π∠=,D 是线段BC 上的点,2BD DC =,AD PB ⊥.若三棱锥-P ABC 的各顶点都在球O 的球面上,则球O 的半径为( )A .1 BC D 【答案】D【分析】在ABC 中,由余弦定理,求得BC =得到BD =证得AB AD ⊥,进而证得AB ⊥平面PAB ,得到PA AD ⊥,证得PA ⊥平面ABC ,结合球的截面圆的性质,即可求得球O 的半径.【详解】如图所示,在ABC 中,因为2AB AC ==,23BAC π∠=, 可得222212cos 22222()232BC AB AC AB AC BAC =+-⋅∠=+-⨯⨯⨯-=,又因为2BD DC =,所以433BD =, 由6ABC π∠=,2AB =,可得233AD =,可得22BD AB AD =+,所以AB AD ⊥, 又由AD PB ⊥,PB AB B ⋂=且,PB AB ⊂平面PAB ,所以AD ⊥平面PAB , 又由PA ⊂平面PAB ,所以PA AD ⊥, 又由2PAB π∠=,即PA AB ⊥,且AB AD A ⋂=,可得PA ⊥平面ABC ,设ABC 外接圆的半径为r ,则24sin BDr A==,可得2r =,即12AO =, 设三棱锥-P ABC 的外接球的半径为R ,可得22222221111()2152PA R AO OO AO =+=+=+=,即5R =. 球O 的半径为5. 故选:D.【点睛】解决与球有关的切、接问题,其通法是作出截面,将空间几何问题转化为平面几何问题求解,其解题思维流程:(1)定球心:如果是内切球,球心到切点的距离相等且为半径;如果是外接球,球心到接点的距离相等且为半径;(2)作截面:选准最佳角度做出截面(要使这个截面尽可能多的包含球、几何体的各种元素以及体现这些元素间的关系),达到空间问题平面化的目的;(3)求半径下结论:根据作出截面中的几何元素,建立关于球半径的方程,并求解.二、填空题13.已知椭圆22x y 12516+=,则椭圆的焦点坐标是______.【答案】()3,0-,()3,0【分析】通过标准方程确定2a 和2b ,根据,,a b c 的关系,得到焦点(),0c ±. 【详解】由题意得:225a =,216b = 由222a b c =+得:25163c =-= ∴焦点坐标为()3,0±本题正确结果:()3,0-,()3,0【点睛】本题考查了椭圆标准方程的定义和简单几何性质,属于基础题. 14.某正三棱锥正视图如图所示,则侧视图的面积为_______.【答案】63【分析】本题首先可根据正三棱锥正视图绘出原图,然后通过原图得出正三棱锥的侧视图,即可求出结果.【详解】如图,根据正三棱锥正视图可绘出原图,正三棱锥高为22534-=,底面边长为6,结合原图易知,ABC 即正三棱锥的侧视图,BC 为底面三角形的高, 则侧视图的面积1334632S , 故答案为:6315.已知AB ,CD 是过抛物线28y x =焦点F 且互相垂直的两弦,则11AF BF CF DF+⋅⋅的值为__________. 【答案】116【分析】设直线AB 、CD 的方程联立抛物线,若11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y ,应用韦达定理求12x x +、12x x 、34x x +、34x x ,根据抛物线的定义易得12(2)(2)AF BF x x ⋅=++、34(2)(2)CF DF x x ⋅=++,进而求目标式的值. 【详解】由题设,直线AB 、CD 的斜率一定存在,设AB 为(2)y k x =-,11(,)A x y ,22(,)B x y ,联立抛物线方程,可得2222(48)40k x k x k -++=且264(1)0k ∆=+>,∴21224(2)k x x k ++=,124x x =,而1||2AF x =+,2||2BF x =+,∴2121212216(1)(2)(2)2()4k AF BF x x x x x x k +⋅=++=+++=,由CD AB ⊥,设CD 为2xy k-=,33(,)C x y ,44(,)D x y ,联立抛物线,可得22(84)40x k x -++=,同理有23484x x k +=+,344x x =,∴216(1)CF DF k ⋅=+,综上,222111116(1)16(1)16k AF BF CF DF k k +=+=⋅⋅++. 故答案为:116. 【点睛】关键点点睛:设直线方程联立抛物线,结合韦达定理及抛物线的定义求AF BF ⋅、CF DF ⋅,进而求目标式的值.16.已知函数()sin()(0,)R f x x ωϕωϕ=+>∈在区间75,126ππ⎛⎫⎪⎝⎭上单调,且满足73124f f ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭.有下列结论:①203f π⎛⎫= ⎪⎝⎭;②若5()6f x f x π⎛⎫-= ⎪⎝⎭,则函数()f x 的最小正周期为π; ③关于x 的方程()1f x =在区间[)0,2π上最多有4个不相等的实数解;④若函数()f x 在区间213,36ππ⎡⎫⎪⎢⎣⎭上恰有5个零点,则ω的取值范围为8,33⎛⎤⎥⎝⎦. 其中所有正确结论的编号为________. 【答案】①②④.【分析】①利用函数()()f a f b =-⇔()f x 关于点(,0)2a b+对称.即可得出答案. ②利用函数()()f a x f x -=⇔()f x 关于2ax =轴对称,再结合①即可得出答案. ③利用函数()f x 在区间75,126ππ⎛⎫⎪⎝⎭上单调,即可求出周期的取值范围,当T 取最小值时,实数解最多.求出其实数解即可判断.④利用函数()f x 在区间213,36ππ⎡⎫⎪⎢⎣⎭上恰有5个零点结合①可得出81033w <≤,再结合()f x 在区间75,126ππ⎛⎫⎪⎝⎭上单调时3w ≤,即可得出ω的取值范围. 【详解】①因为73124f f ππ⎛⎫⎛⎫=-⎪ ⎪⎝⎭⎝⎭且73212423πππ+=,所以203f π⎛⎫= ⎪⎝⎭.①正确. ②因为5()6f x f x π⎛⎫-= ⎪⎝⎭所以()f x 的对称轴为255162x ππ==, 125=3244TT ππππ-==⇒.②正确. ③在一个周期内()1f x =只有一个实数解,函数()f x 在区间75,126ππ⎛⎫⎪⎝⎭上单调且203f π⎛⎫= ⎪⎝⎭,522)6334(T πππ-=≥.当23T π=时,()sin3f x x =,()1f x =在区间[)0,2π上实数解最多为53,,662πππ共3个.③错误 ④函数()f x 在区间213,36ππ⎡⎫⎪⎢⎣⎭上恰有5个零点,213251325632632222T T w w ππππππ-≤⇒-≤⋅<⋅<,解得81033w <≤;又因为函数()f x 在区间75,126ππ⎛⎫⎪⎝⎭上单调且203f π⎛⎫= ⎪⎝⎭,522)6334(T πππ-=≥,即2233w w ππ⇒≤≥, 所以8,33w ⎛⎤∈⎥⎝⎦.④正确 故填:①②④.【点睛】本题考查三角函数曲线.属于难题.熟练掌握三角函数曲线的性质是解本题的关键.三、解答题17.ABC 的内角,,A B C 的对边分别为,,a b c ,已知2sin()8sin 2B AC +=. (1)求cos B ; (2)若6a c +=,ABC 面积为2,求b .【答案】(1)1517;(2)2. 【详解】试题分析:(1)利用三角形的内角和定理可知A C B π+=-,再利用诱导公式化简()sin A C +,利用降幂公式化简28sin 2B ,结合22sin cos 1B B +=,求出cos B ;(2)由(1)可知8sin 17B =,利用三角形面积公式求出ac ,再利用余弦定理即可求出b . 试题解析:(1)()2sin 8sin2BA C +=,∴()sin 41cosB B =-,∵22sin cos 1B B +=, ∴()22161cos cos 1B B -+=,∴()()17cos 15cos 10B B --=,∴15cos 17B =; (2)由(1)可知8sin 17B =, ∵1sin 22ABCSac B =⋅=,∴172ac =, ∴()2222222217152cos 2152153617154217b ac ac B a c a c a c ac =+-=+-⨯⨯=+-=+--=--=, ∴2b =.18.体育中考(简称体考)是通过组织统一测试对初中毕业生身体素质作出科学评价的一种方式,即通过测量考生身高、体重、肺活量和测试考生运动成绩等指标来进行体质评价.已知某地区今年参加体考的非城镇与城镇学生人数之比为1:3,为了调研该地区体考水平,从参加体考的学生中,按非城镇与城镇学生用分层抽样方法抽取200人的体考成绩作为样本,得到成绩的频率分布直方图(如图所示),体考成绩分布在[]0,60范围内,且规定分数在40分以上的成绩为“优良”,其余成绩为“不优良”.(1)将下面的22⨯列联表补充完整,根据表中数据回答,是否有百分之九十的把握认为“优良”与“城镇学生”有关?类别 非城镇学生城镇学生合计 优良不优良 115合计200(2)现从该地区今年参加体考的大量学生中,随机抽取3名学生,并将上述调查所得的频率视为概率,试以概率相关知识回答,在这3名学生中,成绩为“优良”人数的期望值为多少? 附参考公式与数据:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()20P K k ≥0.15 0.10 0.05 0k2.0722.7063.841【答案】(1)填表见解析,没有;(2)34.【分析】(1)根据题中信息完善22⨯列联表,并计算出2K 的观测值,结合临界值表可得出结论;(2)记3人中成绩为“优良”的人数为随机变量X ,由条件可知1~3,4X B ⎛⎫⎪⎝⎭,利用二项分布的期望公式可求得结果.【详解】(1)根据题意以及频率分布直方图,因为非城镇与城镇学生人数之比为1:3,且样本容量为200, 所以非城镇学生人数为50,城镇学生人数为150, 故城镇学生优良人数为15011535-=,又因为优良学生的人数为()0.0050.021020050+⨯⨯=,所以非城镇优良学生共为503515-=,则非城镇不优良学生人数为501535-=,代入数据计算()222001511535350.889 2.7065015050150K ⨯-⨯=≈<⨯⨯⨯,所以没有百分之九十的把握认为“优良”与“城镇学生”有关; (2)由题意及频率分布直方图可知,成绩“优良”的概率为5012004p ==, 记3人中成绩为“优良”的人数为随机变量X ,则1~3,4X B ⎛⎫⎪⎝⎭,所以()13344E X =⨯=,故成绩为“优良”人数的期望值为34.【点睛】方法点睛:求随机变量的期望和方差的基本方法如下: (1)已知随机变量的分布列,直接利用期望和方差公式直接求解;(2)已知随机变量X 的期望、方差,求(),aX b a b R +∈的期望与方差,利用期望和方差的性质(()()E aX b aE X b +=+,()()2D aX b a D X +=)进行计算;(3)若能分析出所给的随机变量服从常用的分布(如:两点分布、二项分布等),可直接利用常用分布列的期望和方差公式进行计算.19.如图,在三棱锥-P ABC 中,ABC 为直角三角形,90ACB ∠=,PAC △是边长为4的等边三角形,BC =P AC B --的大小为60,点M 为P A 的中点.(1)请你判断平面P AB 垂直于平面ABC 吗?若垂直,请证明;若不垂直,请说明理由; (2)求CM 与平面PBC 所成角的正弦值. 【答案】(1)垂直,证明见解析;(2)3913. 【分析】(1)平面PAB ⊥平面ABC ;分别取AC ,AB 的中点D ,E ,连接PD ,DE ,PE ,则PDE ∠为二面角P AC B --的平面角,即60PDE ∠=,进而根据勾股定理得PE ED ⊥,根据AC ⊥平面PED 得AC PE ⊥,进而可得答案;(2)根据题意,以点C 为原点,CA ,CB 分别为x ,y 轴,过点C 且与PE 平行的直线为z 轴,建立空间直角坐标系,利用坐标法求解即可. 【详解】(1)平面PAB ⊥平面ABC 理由如下:如图,分别取AC ,AB 的中点D ,E ,连接PD ,DE ,PE ,则//DE BC .因为90ACB ∠=,3BC = 所以DE AC ⊥,3DE因为PAC △是边长为4的等边三角形, 所以PD AC ⊥,23PD =于是,PDE ∠为二面角P AC B --的平面角,则60PDE ∠=,在PDE △中,由余弦定理,得222cos603PE PD DE PD DE =+-⋅=, 所以222=PD PE ED +, 所以PE ED ⊥.因为ED AC ⊥,PD AC ⊥,ED PD D =, 所以AC ⊥平面PED , 所以AC PE ⊥. 又ACED D =,所以PE ⊥平面ABC因为PE ⊂平面ABC . 所以平面PAB ⊥平面ABC .(2)以点C 为原点,CA ,CB 分别为x ,y 轴,过点C 且与PE 平行的直线为z 轴,建立空间直角坐标系,如图所示,则(0,23,0)B ,(4,0,0)A ,3,0)E ,3,3)P ,33)2M 332CM →⎛⎫= ⎪ ⎪⎝⎭,()0,23,0CB →=,()3,3CP →=.设平面PBC 的一个法向量为()111,,n x y z →=, 则00n CB n CP ⎧⋅=⎨⋅=⎩,即1111230,2330x y z ⎧=⎪⎨+=⎪⎩ 取13x =,则()3,0,2n →=-.所以CM 与平面PBC 所成角的正弦值sin cos,CM nθ→→===【点睛】本题考查面面垂直的证明,线面所成角的求解,考查空间想象能力,逻辑推理能力,数学运算能力,是中档题.本题第一问在探究过程中,先假设平面PAB⊥平面ABC,再根据逻辑关系推理论证,关键在于分别取AC,AB的中点D,E,连接PD,DE,PE,构造辅助线.20.已知椭圆()222210x ya ba b+=>>F,上顶点为A,左顶点为B,且||||10FA FB⋅=+(1)求椭圆的方程;(2)已知()4,0C-,()4,0D,点P在椭圆上,直线PC,PD分别与椭圆交于另一点M,N,若CP CMλ=,DP DNμ=,求证:λμ+为定值.【答案】(1)221105x y+=;(2)证明见解析.【分析】(1)先表示出,FA FB,然后计算出FA FB⋅,结合离心率公式cea=和222a b c=+求解出22,a b的值,则椭圆方程可求;(2)设出,,P M N的坐标,通过将向量共线表示为坐标关系可得到,λμ的关系式①,再通过点差法分别求得,λμ满足的关系式②和关系式③,通过将关系式②和③作差可得,λμ的关系式④,再结合关系式①可证明λμ+为定值.【详解】解:()1设(),0F c.由题意得||FA a=,||FB a c=+,ca=,222a b c=+,()||||10FA FB a a c∴⋅=+=+解得210a=,25b=.∴椭圆的方程为221105x y+=.()2设()00,P x y,()11,M x y,()22,N x y.由CP CMλ=,DP DNμ=,得()()00114,4,x y x yλ+=+,()()00224,4,x y x yμ-=-,()010141,,x xy yλλλ⎧-=-∴⎨=⎩,()020241,,x xy yμμμ⎧-=-⎨=⎩()1284x xλμλμ∴-=-+,①又点P ,M ,N 均在椭圆上,由220022222111,105,105x y x y λλλ⎧+=⎪⎪⎨⎪+=⎪⎩且01,y y λ=得()()01012110x x x x λλλ-+=-, ()01512x x λλ∴+=-+.②同理,由220022222221,105,105x y x y μμμ⎧+=⎪⎪⎨⎪+=⎪⎩且02,y y μ=得()()22002110x x x x μμμ-+=-()02512x x μμ∴+=+.③ 联立②③得()12552x x λμλμ-=-+-.④ 联立①④得263λμ+=, λμ∴+为定值263. 【点睛】关键点点睛:解答本题第二问的关键在于对于向量共线的坐标表示以及点差法求解参数与坐标之间的关系,每一步都是通过构建关于,λμ的方程,结合联立方程的思想完成证明. 21.已知函数()ln a xf x bx x=+在1x =处的切线方程为1y x =-. (1)求函数()y f x =的解析式;(2)若不等式()f x kx ≤在区间()0,∞+上恒成立,求实数k 的取值范围; (3)求证:444ln 2ln 3ln 1232n n e+++<. 【答案】(1)()ln x f x x =;(2)1,2e ⎡⎫+∞⎪⎢⎣⎭;(3)证明见解析. 【分析】(1)求得函数()y f x =的导数,由题意得出()()1110f f ⎧=⎪⎨='⎪⎩,可得出关于a 、b 的方程组,解出这两个未知数的值,即可得出函数()y f x =的解析式; (2)利用参变量法得出2ln xk x ≥对任意的()0,x ∈+∞恒成立,构造函数()2ln x g x x=,利用导数求得函数()y g x =在区间()0,∞+上的最大值,即可得出实数k 的取值范围; (3)由(2)可知,当x >()ln 2x x f x x e =≤,变形得出42ln 112x x e x≤⋅,利用放缩法得出()42ln 111112221n n n e n e n n ⎛⎫≤⋅<-≥ ⎪-⎝⎭,依次得到4ln 2111222e ⎛⎫<- ⎪⎝⎭,4ln 31113223e ⎛⎫<- ⎪⎝⎭,,()4ln 111221n n n e n n ⎛⎫<-≥ ⎪-⎝⎭,利用不等式的可加性即可证得所证不等式成立. 【详解】(1)()ln a xf x bx x =+,该函数的定义域为()0,∞+,()()21ln a x f x b x -'=+, 由题意可知,点()()1,1f 在直线1y x =-上,()10f ∴=, 由题意得()()1011f b f a b ⎧==⎪⎨=+'=⎪⎩,解得10a b =⎧⎨=⎩,()ln x f x x ∴=;(2)对任意的()0,x ∈+∞,由()f x kx ≤,得ln x kx x≥,即2ln xk x ≥,令()2ln xg x x =,其中0x >,则()max k g x ≥, ()312ln xg x x -'=,令()0g x '=,可得x =所以,函数()y g x =在x ()max 12g x g e==. 12k e ∴≥,因此,实数k 的取值范围是1,2e ⎡⎫+∞⎪⎢⎣⎭;(3)由(2)可知,当x >()ln 2x x f x x e =≤,则42ln 112x x e x≤⋅, 当2n ≥时,42ln 11111221n n e n e n n ⎛⎫<⋅=- ⎪-⎝⎭, 4ln 2111222e ⎛⎫∴<- ⎪⎝⎭,4ln 31113223e ⎛⎫<- ⎪⎝⎭,,4ln 11121n n e n n ⎛⎫<- ⎪-⎝⎭, 上述不等式全部相加得444ln 2ln 3ln 11112322n n e n e⎛⎫+++<-<⎪⎝⎭. 因此,对任意的2n ≥,444ln 2ln 3ln 1232n n e+++<. 【点睛】本题考查利用导数的几何意义求函数解析式、利用导数研究不等式恒成立问题,同时也考查了利用导数证明函数不等式,考查运算求解能力与推理能力,属于难题.22.在直角坐标系xOy 中,圆C 的参数方程1cos sin x y ϕϕ=+⎧⎨=⎩(ϕ为参数).以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求圆C 的极坐标方程;(2)直线l的极坐标方程是()sin ρθθ=:3OM πθ=与圆C 的交点为O ,P ,与直线l 的交点为Q ,求线段PQ 的长. 【答案】(1)2cos ρθ=;(2)2【分析】(1)先由圆的参数方程消去参数,得到圆的普通方程,再由极坐标与直角坐标的互化公式,即可得出圆的极坐标方程;(2)由题意,先设,P Q 两点的极坐标为:1(,)ρθP ,2(,)ρθQ ,将3πθ=代入直线l 的极坐标方程,得到2ρ;将3πθ=代入圆的极坐标方程,得到1ρ,再由12ρρ=-PQ ,即可得出结果.【详解】(1)因为,圆C 的参数方程1cos sin x y ϕϕ=+⎧⎨=⎩(ϕ为参数),消去参数可得:()2211x y -+=;把cos sin x y ρθρθ=⎧⎨=⎩代入()2211x y -+=,化简得:2cos ρθ=,即为此圆的极坐标方程; (2)设,P Q 两点的极坐标为:1(,)ρθP ,2(,)ρθQ ,因为直线l的极坐标方程是()sin ρθθ=:3OM πθ=,将3πθ=代入()sin ρθθ=12ρ⎫=⎪⎪⎝⎭23ρ=; 将3πθ=代入2cos ρθ=得12cos13πρ==,所以122PQ ρρ=-=.【点睛】本题主要考查圆的参数方程与普通方程的互化,直角坐标方程与极坐标方程的互化,以及极坐标下的两点间距离,熟记公式即可,属于常考题型. 23.设()|1||3|f x x x =+--.(1)对一切x R ∈,不等式()f x m ≥恒成立,求实数m 的取值范围;(2)已知0,0,()a b f x >>最大值为M ,(2)2a b M ab +=,且224128a b +≤,求证:216a b +=. 【答案】(1)(,4]-∞-;(2)证明见解析.【分析】(1)由零点分段法可得4,1()22,134,3x f x x x x -≤-⎧⎪=--<<⎨⎪≥⎩,求得()f x 的最小值后,即可得实数m 的取值范围;第 21 页 共 21 页 (2)由题意转化条件得2(2)1a b ab+=,利用基本不等式可得216a b +≤、216a b +≥,即可得证. 【详解】(1)由题意4,1()1322,134,3x f x x x x x x -≤-⎧⎪=+--=--<<⎨⎪≥⎩, 所以[]min ()4f x =-,所以,实数m 的取值范围是(,4]-∞-;(2)证明:由(1)知,4M =,由(2)2a b M ab +=得2(2)1a b ab+=,224128a b +≤,所以216a b +≤≤=,当且仅当2b a =,且224128a b +=,即4a =,8b =时,等号成立;2(2)42(2)242416a b a b a b a b ab b a ⎛⎫+⎛⎫+=+⋅=++≥= ⎪ ⎪ ⎪⎝⎭⎝⎭, 当且仅当4a b b a =,且2(2)1a b ab+=,即4a =,8b =时,等号成立; 综上所述,216a b +=.【点睛】本题考查了绝对值不等式恒成立问题的解决,考查了利用基本不等式证明不等式的应用及运算求解能力,属于中档题.。
四川省泸县第四中学2022-2023学年高三上学期期末考试数学(理)试题含答案
四川省泸县四中高2023届高三上期末考试理科数学本试卷共4页。
考试结束后,只将答题卡交回注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}2A x x =<,{}230B x x x =-<,则A B ⋃=A .()2,3-B .()2,0-C .()0,2D .()2,32.若复数()()211i z x x =-++为纯虚数(i 为虚数单位),则实数x 的值为A .-1B .0C .1D .-1或13.某车间从生产的一批产品中随机抽取了1000个零件进行一项质量指标的检测,整理检测结果得此项质量指标的频率分布直方图如图所示,则下列结论错误的是A .0.005a =B .估计这批产品该项质量指标的众数为45C .估计这批产品该项质量指标的中位数为60D .从这批产品中随机选取1个零件,其质量指标在[)50,70的概率约为0.54.若实数x ,y 满足约束条件2301030x y x y x y --≤⎧⎪-+≥⎨⎪+-≥⎩,则2z x y =+的最小值为A .1-B .4C .5D .145.执行下面的程序框图,如果输出的n =4,则输入的t 的最小值为A .14B .18C .116D .1326.一个容器装有细沙3cm a ,细沙从容器底部一个细微的小孔慢慢地匀速漏出,min t 后剩余的细沙量为()3cm bt y ae -=,经过8min 后发现容器内还有一半的沙子,若容器中的沙子只有开始时的八分之一,则需再经过的时间为A .24min B .26min C .8min D .16min7.已知α满足sin()4πα+2tan tan 1αα=+A .3B .﹣3C .49D .49-8.已知曲线322y x x x =-++在1x =处的切线为l ,若l 与222:250C x y ax a +-+-= 相切,则实数=a A .2或3-B .2-或3C .2D .39.在5道题中有3道理科试题和2道文科试题.如果不放回地依次抽2道题,则第一次和第二次都抽到理科题的概率是A .25B .12C .35D .31010.已知定义在R 上的偶函数()f x ,其导函数为()f x ',若()2()0xf x f x '->,(3)1f -=,则不等式()19f x x x <的解集是A .(,3)(0,3)-∞- B .()3,3-C .(3,0)(0,3)-⋃D .(,3)(3,)-∞-⋃+∞11.已知双曲线1C :x y e =上一点11(,)A x y ,曲线2C :1ln ()y x x m =+-(0)m >上一点22(,)B x y ,当12y y =时,对于任意1x ,2x 都有AB e ≥恒成立,则m 的最小值为A .1e -B C .1D .1e +12.在三棱锥-P ABC 中,已知2PA AB AC ===,2PAB π∠=,23BAC π∠=,D 是线段BC 上的点,2BD DC =,AD PB ⊥.若三棱锥-P ABC 的各顶点都在球O 的球面上,则球O 的半径为A .1B CD二、填空题:本题共4小题,每小题5分,共20分.13.已知椭圆22x y 12516+=,则椭圆的焦点坐标是______.14.某正三棱锥正视图如图所示,则侧视图的面积为_______.15.已知AB ,CD 是过抛物线28y x =焦点F 且互相垂直的两弦,则11AF BF CF DF+⋅⋅的值为__________.16.已知函数()sin()(0,)R f x x ωϕωϕ=+>∈在区间75,126ππ⎛⎫⎪⎝⎭上单调,且满足73124f f ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭.有下列结论:①203f π⎛⎫= ⎪⎝⎭;②若5()6f x f x π⎛⎫-= ⎪⎝⎭,则函数()f x 的最小正周期为π;③关于x 的方程()1f x =在区间[)0,2π上最多有4个不相等的实数解;④若函数()f x 在区间213,36ππ⎡⎫⎪⎢⎣⎭上恰有5个零点,则ω的取值范围为8,33⎛⎤⎥⎝⎦.其中所有正确结论的编号为________.三、解答题:共70分。
高三数学第一学期期末考试理科试题
石景山区2021—2021学年高三第一学期期末考试数学〔理科〕一、选择题:本大题一一共8个小题,每一小题5分,一共40分.在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的,把所选项前的字母填在题后括号内. 1.集合}2,1,0{=P ,},2|{P a a x x Q ∈==,那么Q P =〔 〕A .}0{B .}1,0{C .}2,1{D .}2,0{2.“b a +是偶数〞是“a 与b 都是偶数〞的〔 〕A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.函数x x f ln 21)(=的反函数是〔 〕 A .21)(x e x f=- B .2110)(x x f=- C .x e x f21)(=-D .x x f2110)(=-4.在ABC ∆中,︒=∠90C ,)1,(x BC =,)3,2(=AC ,那么x 的值是〔 〕A .5B .5-C .23 D .23-5.不等式212>++x x 的解集是〔 〕 A .),1()0,1(+∞- B .)1,0()1,( --∞ C .)1,0()0,1( - D .),1()1,(+∞--∞6.在各项都为正数的等比数列{}n a 中,首项31=a ,前三项和为21,那么543a a a ++=( )A .33B .72C .84D .1897.设函数⎩⎨⎧>≤++=)0(2)0()(2x x c bx x x f ,假设)0()4(f f =-,2)2(-=-f ,那么关于x的方程x x f =)(的解的个数为〔 〕 A .1B .2C .3D .48.计算机中常用的十六进制是逢16进1的记数制,采用数字-09和字母F A -一共16个记数符号.这些符号与十进制的数的对应关系如下表:例如,用十六进制表示:B D E 1=+,那么=⨯B A 〔 〕 A .E 6 B .72C .F 5D .0B二、填空题:本大题一一共6个小题,每一小题5分,一共30分.把答案填在题中横线上. 9.复数ii4321-+的实部是 . 10.从4名男生和3名女生中选出4人参加某个座谈会,假设这4人中必须既有男生又有女生,那么不同的选法种数一共有 .〔用数字答题〕11.nx x )(1-+的展开式中各项系数的和是128,那么=n ;展开式中3x 的系数是 .〔用数字答题〕12.函数=)(x f ⎪⎩⎪⎨⎧≤+>--)1()1(112x a x x x x 在1=x 处连续,那么实数a 的值是 .13.在半径为35的球面上有A 、B 、C 三点,6=AB ,8=BC ,10=CA ,那么球心到平面ABC 的间隔 为 .14.设函数)(x f 的图象与直线a x =,b x =及x 轴所围成图形的面积称为函数)(x f 在],[b a 上的面积,函数nx y sin =在[0,nπ]上的面积为n 2〔*∈N n 〕,那么〔1〕函数x y 3sin =在[0,3π]上的面积为 ;〔2〕函数1)3sin(+-=πx y 在[3π,34π]上的面积为 . 三、解答题:本大题一一共6个小题,一共80分.解答题应写出文字说明,证明过程或者演算步骤. 15.〔此题满分是12分〕在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,73tan =C .〔Ⅰ〕求C cos 的值; 〔Ⅱ〕假设25=⋅CA CB ,且9=+b a ,求c 的长.16.〔此题满分是12分〕函数b ax ax x x f +++=23)(的图象过点)2,0(P .〔Ⅰ〕假设函数)(x f 在1-=x 处的切线斜率为6,求函数)(x f y =的解析式; 〔Ⅱ〕假设3>a ,求函数)(x f y =的单调区间.17.〔此题满分是14分〕如图,在三棱锥BCD A -中,面⊥ABC 面BCD ,ABC ∆是正三角形,︒=∠90BCD ,︒=∠30CBD .〔Ⅰ〕求证:CD AB ⊥;〔Ⅱ〕求二面角C AB D --的大小; 〔Ⅲ〕求异面直线AC 与BD 所成角的大小.ACBD18.〔此题满分是14分〕袋中装有4个黑球和3个白球一共7个球,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取……取后不放回,直到两人中有一人取到白球时即终止.每个球在每一次被取出的时机是等可能的,用ξ表示取球终止时所需的取球次数.〔Ⅰ〕求恰好取球3次的概率;〔Ⅱ〕求随机变量ξ的概率分布;〔Ⅲ〕求恰好甲取到白球的概率.19.〔此题满分是14分〕等差数列}{n a 中,公差0>d ,其前n 项和为n S ,且满足:4532=⋅a a ,1441=+a a .〔Ⅰ〕求数列}{n a 的通项公式; 〔Ⅱ〕通过公式cn S b nn +=构造一个新的数列}{n b .假设}{n b 也是等差数列, 求非零常数c ; 〔Ⅲ〕求1)25()(+⋅+=n n b n b n f 〔*N n ∈〕的最大值.20.〔此题满分是14分〕设)(2)(x f xppx x g --=,其中x x f ln )(=. 〔Ⅰ〕假设)(x g 在其定义域内为增函数,务实数p 的取值范围; 〔Ⅱ〕证明: ()1≤-f x x ;〔Ⅲ〕证明:2*222ln 2ln 3ln 21(,2)234(1)n n n n N n n n --+++<∈≥+.石景山区2021—2021学年第一学期期末考试试卷高三数学〔理科〕参考答案一、选择题:本大题一一共8个小题,每一小题5分,一共40分.在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的,把所选项前的字母填在题后括号内.二、填空题:本大题一一共6个小题,每一小题5分,一共30分.把答案填在题中横线上.注:第11、14题第1个空3分,第2个空2分.三、解答题:本大题一一共6个小题,一共80分.解答题应写出文字说明,证明过程或者演算步骤. 15.〔此题满分是12分〕 解:〔Ⅰ〕∵ 73tan =C , ∴ 73cos sin =CC. 又∵ 1cos sin 22=+C C , 解得 1cos 8C =±. ……………………3分 ∵ 0tan >C ,∴ C 是锐角.∴ 81cos =C . ………………………6分 〔Ⅱ〕∵ 25=⋅CA CB ,∴ 25cos =C ab . 解得 20=ab . …………………8分又∵ 9=+b a , ∴ 4122=+b a . ∴ 36cos 2222=-+=C ab b a c .∴ 6=c . ………………………12分16.〔此题满分是12分〕解:〔Ⅰ〕a ax x x f ++='23)(2. ………………………2分由题意知⎩⎨⎧=+-=-'==623)1(2)0(a a f b f ,得⎩⎨⎧=-=23b a . …………………5分 ∴ 233)(23+--=x x x x f . ……………………6分〔Ⅱ〕023)(2=++='a ax x x f . ∵ 3>a ,∴ 01242>-=∆a a .由0)(>'x f 解得332a a a x ---<或者332aa a x -+->,由0)(<'x f 解得333322aa a x a a a -+-<<---. ……………10分∴ )(x f 的单调增区间为:)33,(2a a a ----∞和),33(2+∞-+-aa a ; )(x f 的单调减区间为: )33,33(22aa a a a a -+----.……12分17.〔此题满分是14分〕 解法一:〔Ⅰ〕证明:∵ 面ABC ⊥面BCD ,︒=∠90BCD ,且面ABC 面BCD BC =,∴ ⊥CD 面ABC . ……………2分 又∵ ⊂AB 面ABC ,∴ AB DC ⊥. ………………4分〔Ⅱ〕解:如图,过点C 作CM ⊥AB 于M ,连结DM .由〔Ⅰ〕知⊥CD 面ABC .∴ CM 是斜线DM 在平面ABC 内的射影, ∴ AB DM ⊥.〔三垂线定理〕∴ CMD ∠是二面角C AB D --的平面角. …………………6分 设1=CD ,由︒=∠90BCD ,︒=∠30CBD 得3=BC ,2=BD .∵ ABC ∆是正三角形,∴ 2323=⋅=BC CM . ∴ 32tan ==∠CM CD CMD . ∴ 32arctan =∠CMD .∴ 二面角C AB D --的大小为32arctan. …………………9分 〔Ⅲ〕解:如图,取三边AB 、AD 、BC 的中点M 、N 、O ,连结AO 、MO 、NO 、MN 、OD , 那么AC OM //,AC OM 21=;BD MN //,BD MN 21=. ∴ OMN ∠是异面直线AC 与BD 所成的角或者其补角. ………………11分 ∵ ABC ∆是正三角形,且平面⊥ABC 平面BCD , ∴ ⊥AO 面BCD ,AOD ∆是直角三角形,AD ON 21=. 又∵ ⊥CD 面ABC ,故2222==+=ON AC DC AD .在OMN ∆中,23=OM ,1=MN ,1=ON . ∴ 4321cos ==∠MN MOOMN . ∴ 异面直线AC 和BD 所成角为43arccos. ……………14分 解法二:〔Ⅰ〕分别取BC 、BD 的中点O 、M ,连结AO 、OM . ∵ ABC ∆是正三角形,ACBD∴ BC AO ⊥.∵ 面ABC ⊥面BCD ,且面ABC 面BCD BC =, ∴ ⊥AO 平面BCD .∵ OM 是BCD ∆的中位线,且⊥CD 平面ABC , ∴ ⊥OM 平面ABC .以点O 为原点,OM 所在直线为x 轴,OC 所在直线为y 轴,OA 所在直线为z 轴,建立空间直角坐标系. ……………2分设1=CD , 那么)0,0,0(O ,)23,0,0(A ,)0,23,0(-B , )0,23,0(C ,)0,23,1(D . ∴ )23,23,0(--=AB ,)0,0,1(=CD . ……………………4分 ∴ 00)23(0)23(10=⨯-+⨯-+⨯=⋅CD AB . ∴ CD AB ⊥,即 CD AB ⊥. …………………6分 〔Ⅱ〕∵ ⊥CD 平面ABC ,∴ 平面ABC 的法向量为)0,0,1(=CD . ……………………7分 设平面ABD 的法向量为),,(z y x n =,∴ )23,23,0(--=AB ,)23,23,1(-=AD . ∴ 0)23()23(0=⨯-+⨯-+⨯=⋅z y x AB n ,即 033=+z y .0)23(231=⨯-+⨯+⨯=⋅z y x AD n ,即 0332=-+z y x . y∴ 令3=y ,那么3-=x ,1-=z .∴ )1,3,3(--=n . ……………………9分∴ n CD n CD <,cos 13133-=. ∵ 二面角C AB D --是锐角,∴ 二面角C AB D --的大小为13133arccos. ………………11分〔Ⅲ〕∵ )0,3,1(=BD ,)23,23,0(-=AC , ∴ AC BD <,cos 43)23()23(00)3(1)23(023301222222=-++⋅++-⨯+⨯+⨯=. ∴ 异面直线AC 和BD 所成角为43arccos . ……………14分18.〔此题满分是14分〕解:〔Ⅰ〕恰好取球3次的概率3565673341=⨯⨯⨯⨯=P ; ……………………3分〔Ⅱ〕由题意知,ξ的可能取值为1、2、3、4、5,()317P ξ==, ()4322767P ξ⨯===⨯,()4336376535P ξ⨯⨯===⨯⨯,()432334765435P ξ⨯⨯⨯===⨯⨯⨯, ()43213157654335P ξ⨯⨯⨯⨯===⨯⨯⨯⨯. 所以,取球次数ξ的分布列为:…………………10分〔Ⅲ〕 因为甲先取,所以甲只有可能在第1次,第3次和第5次取球.记“甲取到白球〞的事件为A .那么()()“1”“3”“5”P A P ξξξ====或或.因为事件“1=ξ〞、“3=ξ〞、“5=ξ〞两两互斥, 所以)5()3()1()(=+=+==ξξξP P P A P 352235135673=++=. 所以恰好甲取到白球的概率为3522. ……………14分19.〔此题满分是14分〕解:〔Ⅰ〕∵ 数列{}n a 是等差数列,∴ 144132=+=+a a a a .又4532=a a , ∴ ⎩⎨⎧==9532a a ,或者⎩⎨⎧==5932a a . ……………2分∵ 公差0>d ,∴ 52=a ,93=a . ∴ 423=-=a a d ,121=-=d a a .∴ 34)1(1-=-+=n d n a a n . …………4分 〔Ⅱ〕∵ n n n n n d n n na S n -=-+=-+=212)1(2)1(21,∴ cn nn c n S b n n +-=+=22. ………………6分 ∵ 数列{}n b 是等差数列, ∴ 212+++=n n n b b b .∴ cn n n c n n n c n n n +++-+++-=+++-+⋅)2()2()2(22)1()1()1(22222. 去分母,比拟系数,得 21-=c . ……………9分 ∴ n n nn b n 22122=--=. ………………10分〔Ⅲ〕)1(2)25(2)(+⋅+=n n nn f2625125262++=++=nn n n n≤361. ……………12分当且仅当n n 25=,即5=n 时,)(n f 获得最大值361. ……………14分20.〔此题满分是14分〕 解:〔Ⅰ〕∵ x xppx x g ln 2)(--=〔0>x 〕, ∴ 22222)(x px px x x p p x g +-=-+=' . ……………1分 令p x px x h +-=2)(2,要使)(x g 在),0(+∞为增函数, 只需)(x h 在),0(+∞上满足:0)(≥x h 恒成立, 即022≥+-p x px .22(0,)1xp x ≥+∞+在上恒成立. 又∵ )0(1122121202>=⋅≤+=+<x xx xx x x, ………4分∴ 1p ≥. …………5分〔Ⅱ〕证明:要证 1ln -≤x x ,即证 01ln ≤+-x x )0(>x , 设1ln )(+-=x x x k ,xxx x k -=-='111)(则. ………………6分 当]1,0(∈x 时,0)(>'x k ,∴ )(x k 为单调递增函数; 当),1(+∞∈x 时,0)(<'x k ,∴ )(x k 为单调递减函数;∴ 0)1()(max ==k x k . …………………9分 即 01ln ≤+-x x ,∴ 1ln -≤x x . …………10分〔Ⅲ〕由〔Ⅱ〕知1ln -≤x x ,又0>x ,∴xx x x x 111ln -=-≤. ∵ *∈N n ,2≥n ,可令2n x =,得 22211ln nn n -≤. …………12分∴ )11(21ln 22n n n -≤. ∴ )11311211(21ln 33ln 22ln 222222nn n -++-+-≤+++)]13121()1[(21222nn +++--=)])1(1431321()1[(21+++⨯+⨯--<n n n )]11141313121()1[(21+-++-+---=n n n )]1121(1[21+---=n n )1(4122+--=n n n . ……………14分注:假设有其它解法,请酌情给分.。
高三数学试题(理科)
高三理科数学试题说明:试题满分150分,时间120分钟。
分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷为第1页至第2页,选项按要求涂在答题卡,第Ⅱ卷为第3页至第4页,按要求写在答题卡指定位置。
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 定义集合运算:|xA B z z x A y B y ⎧⎫*==∈∈⎨⎬⎩⎭,,.设{}02A =,,{}12B =,,则集合A B *的所有元素之和为( )A .0B .2C .3D .62. 设集合{}12S x x =->,{}6T x a x a =<<+,S T =R ,则a 的取值范围是( ) A .31a -<<-B .31a --≤≤C .3a -≤或1a -≥D .3a <-或1a >-3. 在等差数列{}n a 中,若2006200720086a a a ++=,则该数列的前2013项的和为 ( ) A .2012 B .2013C . 4024D .40264. 在△ABC 中,cos cos A bB a=,则△ABC 一定是 ( ) A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形 5. 已知a 、b 、c∈R,下列命题正确的是( ) A .a >b ⇒ ac 2>bc 2B .b a cbc a >⇒> C .110a b ab a b >⎫⇒>⎬<⎭ D .110a b ab a b>⎫⇒>⎬>⎭ 6. 定义在R 上的偶函数()f x 满足:对任意的1212,[0,)()x x x x ∈+∞≠,有2121()()0f x f x x x -<-.则( )A. (5)(3)(1)f f f <-<B. (1)(3)(5)f f f <-<C. (3)(1)(5)f f f -<<D. (5)(1)(3)f f f <<-7. 设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2 B .12 C .12- D .2-8. 若函数()(21)()x f x x x a =+- 为奇函数,则sin 3a π=( ).A.12B.2C.34D. 19. 已知实数x ,y 满足条件5003x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,i z x y =+ (i 为虚数单位),则|12i |z -+的最小值是( ) AB.1C.2D.1210. 已知函数2sin(2)(0)y x ωϕω=+>)在区间[]02π,的图像如下:那么ω=( ) A .1B .2C .21D .31 11. 函数()sin lg f x x x =-零点的个数( )A .3B. 4C. 5D. 612. 函数3,0()log 1,0xex f x x x ⎧<⎪=⎨-≥⎪⎩的图像的是( )二、填空题:本大题共4小题,每小题4分,共16分.将答案填在题中的横线上. 13. 函数lg(5)2x y x -=-的定义域是 .14. 40(2)2x a x x ++≥>-恒成立,则a 的取值范围是______________. 15. 已知等比数列{}n a 的前n 项和为n S ,其中252,16a a ==,则2182n n nS S ++的最小值是 .16. 在下列命题中:①对于任意实数x ,有()(),()(),f x f x g x g x -=--=且x>0时,()0,()0,f x g x ''>>则x<0时()().f x g x ''> ②函数sin(2)6y x π=-图象的一个对称中心为点(,0)3π;③若函数()f x 在R 上满足1(2)()f x f x +=-,则()f x 是周期为4的函数; ④在ABC ∆中,若20OA OB OC ++=,则AOC BOC S S ∆= ;其中正确命题的序号为_________________________________。
山东省济南市2022届高三上学期期末考试数学(理)试题 Word版含答案
高三教学质量调研考试数学(理科)本试卷分第I 卷和第II 卷两部分,共5页。
满分150分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回. 留意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类写在答题卡和试卷规定的位置上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦洁净后,再选涂其他答案标号,答案写在试卷上无效.3.第II 卷必需用0.5毫米黑色签字笔作答,答案必需写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:假如大事A ,B 互斥,那么()()()P A B P A P B +=+;假如大事A ,B 独立,那么()()()P AB P A P B =.1.若()12z i i +=+(i 是虚数单位),则z = A.322i+ B.322i -C. 322i -- D. 322i -+ 2.设集合{}{}1,0,1,2A x x x R B =+<3,∈=,则A B ⋂= A. {}02x x << B. {}42x x -<< C. {},1,2xD. {}0,13.在ABC ∆中,“60A ∠=”是“3sin 2A =”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件4.要得到函数sin 23y x π⎛⎫=-⎪⎝⎭的图象,只要将函数sin 2y x =的图象 A.向左平移3π个单位 B. 向右平移3π个单位 C.向左平移6π个单位D. 向右平移6π个单位5.一个几何体的三视图如图,则该几何体的体积为A.6πB.3π C.2πD. π6.已知,x y 满足约束条件40400x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩,则32z x y =+的最大值为A.6B.8C.10D.127.过双曲线()222210,0x y a b a b-=>>的右焦点F 作圆222x y a +=的切线FM (切点为M ),交y 轴于点P.若M 为线段FP 的中点,则双曲线的离心率为 A.2B.3C.2D.58.已知向量 的夹角为60,且2,=1a b a xb =-,当取得最小值时,实数x 的值为 A.2B. 2-C.1D. 1-9.设等差数列{}n a 的前n 项和为n S ,且满足201620170,0S S ><,对任意正整数n ,都有n k a a ≥,则k 的值为 A.1006B.1007C.1008D.100910.已知R 上的奇函数()f x 满足()2f x '>-,则不等式()()2132ln f x xx -<-+()312x -的解集是A. 10,e ⎛⎫ ⎪⎝⎭B. ()0,1C. ()1,+∞D. (),e +∞第II 卷(共100分)二、填空题:本大题共5个小题,每小题5分,共25分. 11.某高校为了了解教科研工作开展状况与老师年龄之间的关系,将该校为[)[)35,40,40,45,不小于35岁的80名老师按年龄分组,分组区间[)[)[)45,5050555560,,,,,由此得到频率分布直方图如图,则这80名老师中年龄小于45岁的老师有________人.12. 执行右图的程序框图,则输出的S=_________.13. 二项式636ax ⎛⎫+ ⎪ ⎪⎝⎭的开放式中5x 的系数为3,则20ax dx =⎰_________.14.已知M,N 是圆22:20A x y x +-=与圆22:240B x y x y ++-=的公共点,则BMN ∆的面积为___________.15.对于函数()[]()()sin ,0,212,2,2x x f x f x x π⎧∈⎪=⎨-∈+∞⎪⎩,有下列5个结论:①任取[)12,0,x x ∈+∞,都有()()122f x f x -≤; ②函数()y f x =在区间[]4,5上单调递增;③()()()22f x kf x k k N +=+∈,对一切[)0,x ∈+∞恒成立; ④函数()()ln 1y f x x =--有3个零点;⑤若关于x 的方程()()f x m m =<0有且只有两个不同实根12,x x ,则123x x +=. 则其中全部正确结论的序号是_________.(请写出全部正确结论的序号)三、解答题:本大题共6小题,共75分. 16.(本小题满分12分) 已知向量()()3sin ,cos ,cos ,cos ,m x n x x x R ==∈,设()f x m n =(I )求函数()f x 的解析式及单调增区间;(II )在ABC ∆中,,,a b c 分别为ABC ∆内角A,B,C 的对边,且()1,2,1a b c f A =+==,求ABC ∆的面积.17. (本小题满分12分)如图,边长为2的正方形ADEF 与梯形ABCD 所在的平面相互垂直,其中AB//CD ,112AB BC CD BC AB ⊥===,,点M 在线段EC 上. (I )证明:平面BDM ⊥平面ADEF ;(II )若2EM MC =,求平面BDM 与平面ABF 所成锐二面角的大小.18. (本小题满分12分)某卫视的大型消遣节目现场,全部参演的节目都由甲、乙、丙三名专业老师投票打算是否通过进入下一轮,甲、乙、丙三名老师都有“通过”“待定”“淘汰”三类票各一张,每个节目投票时,甲、乙、丙三名老师必需且只能投一张票,每人投三类票中的任意一类票的概率均为13,且三人投票相互没有影响,若投票结果中至少有两张“通过”票,则该节目获得“通过”,否则该节目不能获得“通过”。
北京市朝阳区2018-2019高三数学期末考试(理科)试题(解析版)
北京市朝阳区2018-2019学年度第一学期期末质量检测高三年级数学试卷(理工类)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知集合,,则A. B. C. D.【答案】D【解析】【分析】利用并集定义直接求解.【详解】集合A={x∈N|1≤x≤3}={1,2,3},B={2,3,4,5},∴A∪B={1,2,3,4,5}.故选:D.【点睛】本题考查并集的求法,考查并集定义、不等式性质等基础知识,考查运算求解能力,是基础题.2.设复数满足,则=A. B. C. 2 D.【答案】B【解析】【分析】把已知等式变形,利用复数代数形式的乘除运算化简,再由复数模的计算公式求解.【详解】由(1﹣i)z=2i,得z,∴|z|.故选:B.【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题.3.执行如图所示的程序框图,若输入的,则输出的=A. B. C. D.【答案】A【解析】【分析】根据框图的流程依次计算程序运行的结果,直到满足条件跳出循环,确定输出S的值【详解】模拟程序的运行,可得S=12,n=1执行循环体,S=10,n=2不满足条件S+n≤0,执行循环体,S=6,n=3不满足条件S+n≤0,执行循环体,S=0,n=4不满足条件S+n≤0,执行循环体,S=﹣8,n=5满足条件S+n≤0,退出循环,输出S的值为﹣8.故选:A.【点睛】解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.4.在平面直角坐标系中,过三点的圆被轴截得的弦长为A. B. C. D.【答案】A【解析】【分析】利用待定系数法求出圆的一般方程,令y=0可得:x2﹣4x=0,由此即可得到圆被轴截得的弦长.【详解】根据题意,设过A、B、C的圆为圆M,其方程为x2+y2+Dx+Ey+F=0,又由A(4,4),B(4,0),C(0,4),则有,解可得:D=﹣4,E=﹣4,F=0,即圆M的方程为x2+y2﹣4x﹣4y=0,令y=0可得:x2﹣4x=0,解可得:x1=0,x2=4,即圆与x轴的交点的坐标为(0,0),(4,0),则圆被x轴截得的弦长为4;故选:A.【点睛】本题考查直线与圆的方程的应用,涉及待定系数法求圆的方程,关键是求出圆的方程.5.将函数的图象向右平移个单位后,图象经过点,则的最小值为A. B. C. D.【答案】B【解析】【分析】根据三角函数平移变换的规律得到向右平移φ(φ>0)个单位长度的解析式,将点带入求解即可.【详解】将函数y=sin2x的图象向右平移φ(φ>0)个单位长度,可得y=sin2(x﹣φ)=sin(2x﹣2φ),图象过点,∴sin(2φ),即2φ2kπ,或2kπ,k∈Z,即φ 或,k ∈Z ,∵φ>0,∴φ的最小值为. 故选:B .【点睛】本题主要考查了函数y =A sin (ωx +φ)的图象变换规律,考查计算能力,属于基础题. 6.设为实数,则是 “”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件 【答案】C 【解析】 【分析】 由“x <0”易得“”,反过来,由“”可得出“x <0”,从而得出“x <0”是“”的充分必要条件.【详解】若x <0,﹣x >0,则:;∴“x <0“是““的充分条件;若,则;解得x <0; ∴“x <0“是““的必要条件;综上得,“x <0”是“”的充分必要条件.故选:C .【点睛】充分、必要条件的三种判断方法.1.定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.2.等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件. 7.对任意实数,都有(且),则实数的取值范围是A. B. C. D.【答案】B【解析】【分析】由题意可得a>1且a≤e x+3对任意实数x都成立,根据指数函数的性质即可求出.【详解】∵log a(e x+3)≥1=log a a,∴a>1且a≤e x+3对任意实数x都成立,又e x+3>3,∴1<a≤3,故选:B【点睛】本题考查了对数的运算性质和函数恒成立的问题,属于中档题.8.以棱长为1的正方体各面的中心为顶点,构成一个正八面体,再以这个正八面体各面的中心为顶点构成一个小正方体,那么该小正方体的棱长为A. B. C. D.【答案】C【解析】【分析】利用正八面体与大小正方体的关系,即可得到结果.【详解】正方体C1各面中心为顶点的凸多面体C2为正八面体,它的中截面(垂直平分相对顶点连线的界面)是正方形,该正方形对角线长等于正方体的棱长,所以它的棱长a2;以C2各个面的中心为顶点的正方体为图形C3是正方体,正方体C3面对角线长等于C2棱长的,(正三角形中心到对边的距离等于高的),因此对角线为,所以a,3故选:【点睛】本题考查组合体的特征,抓住两个组合体主元素的关系是解题的关键,考查空间想象能力,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.已知数列为等差数列,为其前项的和.若,,则_______.【答案】【解析】【分析】运用等差数列的前n项和公式可解决此问题.【详解】根据题意得,2=6,∴=3 又=7,∴2d=7﹣3=4,∴d=2,=1,∴S=55+20=25,5故答案为:25.【点睛】本题考查等差数列的前n项和公式的应用.10.已知四边形的顶点A,B,C,D在边长为1的正方形网格中的位置如图所示,则____________.【答案】【解析】【分析】以A为坐标原点,以AC所在直线为x轴建立平面直角坐标系,分别求出的坐标,由数量积的坐标运算得答案.【详解】如图,以A为坐标原点,以AC所在直线为x轴建立平面直角坐标系,则A(0,0),B(4,2),C(7,0),D(3,﹣2),∴,,∴7×1+0×4=7.故答案为:7.【点睛】本题考查平面向量数量积的性质及其运算,合理构建坐标系是解题的关键,是基础的计算题.11.如图,在边长为1的正方形网格中,粗实线表示一个三棱锥的三视图,则该三棱锥的体积为_______________.【答案】【解析】【分析】由三视图还原几何体,该几何体为三棱锥,底面三角形ACB与侧面三角形APB为全等的等腰直角三角形,侧面PAB⊥侧面ACB,AB=4,PO=OC=2,由此即可得到结果.【详解】由三视图还原原几何体如图,该几何体为三棱锥,底面三角形ACB与侧面三角形APB为全等的等腰直角三角形,侧面PAB⊥侧面ACB,AB=4,PO=OC=2.侧面PAC与PBC为全等的等边三角形.则该三棱锥的体积为V=.故答案为:.【点睛】本题考查由三视图求体积,关键是由三视图还原原几何体,考查空间想象能力及运算能力,是中档题.12.过抛物线焦点的直线交抛物线于两点,分别过作准线的垂线,垂足分别为.若,则__________________.【答案】【解析】【分析】设直线AB的倾斜家为锐角θ,由|AF|=4|BF|,可解出cosθ的值,进而得出sinθ的值,然后利用抛物线的焦点弦长公式计算出线段AB的长,再利用|CD|=|AB|sinθ可计算出答案.【详解】设直线AB的倾斜角为θ,并设θ为锐角,由于|AF|=4|BF|,则有,解得,则,由抛物线的焦点弦长公式可得,因此,.故答案为:5.【点睛】本题考查抛物线的性质,解决本题的关键在于灵活利用抛物线的焦点弦长公式,属于中等题.13.2018年国际象棋奥林匹克团体赛中国男队、女队同时夺冠.国际象棋中骑士的移动规则是沿着3×2格或2×3格的对角移动.在历史上,欧拉、泰勒、哈密尔顿等数学家研究了“骑士巡游”问题:在格的黑白相间的国际象棋棋盘上移动骑士,是否可以让骑士从某方格内出发不重复地走遍棋盘上的每一格?图(一)给出了骑士的一种走法,它从图上标1的方格内出发,依次经过标2,3,4,5,6,,到达标64的方格内,不重复地走遍棋盘上的每一格,又可从标64的方格内直接走回到标1的方格内.如果骑士的出发点在左下角标50的方格内,按照上述走法,_____(填“能”或“不能”)走回到标50的方格内.若骑士限制在图(二)中的3×4=12格内按规则移动,存在唯一一种给方格标数字的方式,使得骑士从左上角标1的方格内出发,依次不重复经过2,3,4,5,6,,到达右下角标12的方格内,分析图(二)中A处所标的数应为____.【答案】(1). 能(2).【解析】【分析】根据题意,画出路线图,解判断是否能,再根据题意,结合题目中的数字,即可求出A处的数字.【详解】如图所示:如果骑士的出发点在左下角标50的方格内,按照上述走法,能走回到标50的方格内,如图所示:使得骑士从左上角标1的方格内出发,依次不重复经过2,3,4,5,6,…,到达右下角标12的方格,且路线是唯一的,故A处应该为8,故答案为:能,8【点睛】本题考查了合情推理的问题,考查了转化与化归思想,整体和部分的思想,属于中档题14.如图,以正方形的各边为底可向外作四个腰长为1的等腰三角形,则阴影部分面积的最大值是___________.【答案】【解析】【分析】设等腰三角形底角为,阴影面积为,根据正弦函数的图象与性质即可得到结果.【详解】设等腰三角形底角为,则等腰三角形底边长为高为,阴影面积为:,当时,阴影面积的最大值为故答案为:【点睛】本题考查平面图形的面积问题,考查三角函数的图象与性质,解题关键用等腰三角形底角为表示等腰三角形的底边与高.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.在中,已知,(1)求的长;(2)求边上的中线的长.【答案】(1)(2)【解析】【分析】(1)利用同角关系得到,结合正弦定理即可得到的长;(2)在中求出,结合余弦定理即可得到边上的中线的长. 【详解】解:(1)由,,所以.由正弦定理得,,即.(2)在中,.由余弦定理得,,所以.所以.【点睛】本题考查正余弦定理的应用,考查推理及运算能力,属于中档题.16.某日A,B,C三个城市18个销售点的小麦价格如下表:(1)甲以B市5个销售点小麦价格的中位数作为购买价格,乙从C市4个销售点中随机挑选2个了解小麦价格.记乙挑选的2个销售点中小麦价格比甲的购买价格高的个数为,求的分布列及数学期望;(2)如果一个城市的销售点小麦价格方差越大,则称其价格差异性越大.请你对A,B,C三个城市按照小麦价格差异性从大到小进行排序(只写出结果).【答案】(1)分布列见解析,期望为1(2)C,A,B【解析】【分析】(1)由题意可得的可能取值为0,1,2.求出相应的概率值,即可得到的分布列及数学期望;(2)三个城市按照价格差异性从大到小排列为:C,A,B.【详解】解:(1)B市共有5个销售点,其小麦价格从低到高排列为:2450,2460,2500,2500,2500.所以中位数为2500,所以甲的购买价格为2500.C市共有4个销售点,其小麦价格从低到高排列为:2400,2470,2540,2580,故的可能取值为0,1,2.,,.所以分布列为所以数学期望.(2)三个城市按小麦价格差异性从大到小排序为:C,A,B【点睛】求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是:“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式等),求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布X~B(n,p)),则此随机变量的期望可直接利用这种典型分布的期望公式(E(X)=np)求得.17.如图,三棱柱的侧面是平行四边形,,平面平面,且分别是的中点.(1)求证:平面;(2)当侧面是正方形,且时,(ⅰ)求二面角的大小;(ⅱ)在线段上是否存在点,使得?若存在,指出点的位置;若不存在,请说明理由.【答案】(1)见解析(2)(ⅰ)(ⅱ)点在点处时,有【解析】【分析】(1)取中点,证明四边形是平行四边形,可得从而得证;(2)(ⅰ)先证明平面以为原点建立空间直角坐标系,求出平面与平面的法向量,即可得到二面角的大小;(ⅱ)假设在线段上存在点,使得. 设,则.利用垂直关系,建立的方程,解之即可.【详解】证明:(1)取中点,连,连.在△中,因为分别是中点,所以,且.在平行四边形中,因为是的中点,所以,且.所以,且.所以四边形是平行四边形.所以.又因为平面,平面,所以平面.(2)因为侧面是正方形,所以.又因为平面平面,且平面平面,所以平面.所以.又因为,以为原点建立空间直角坐标系,如图所示. 设,则,.(ⅰ)设平面的一个法向量为.由得即令,所以.又因为平面,所以是平面的一个法向量.所以.由图可知,二面角为钝角,所以二面角的大小为.(ⅱ)假设在线段上存在点,使得.设,则.因为,又,所以.所以.故点在点处时,有【点睛】本题考查向量法求二面角大小、线面平行的证明,考查满足线面垂直的点的位置的判断与求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查化归与转化思想、数形结合思想,考查推理论论能力、空间想象能力,是中档题.18.已知函数.(Ⅰ)当时,求函数的极小值;(Ⅱ)当时,讨论的单调性;(Ⅲ)若函数在区间上有且只有一个零点,求的取值范围.【答案】(Ⅰ)(Ⅱ)详见解析(Ⅲ)【解析】【分析】(Ⅰ)由题意,当时,求得,得出函数的单调性,进而求解函数的极值;(Ⅱ)由,由,得或,分类讨论,即可得到函数的单调区间;(Ⅲ)由(1)和(2),分当和,分类讨论,分别求得函数的单调性和极值,即可得出相应的结论,进而得到结论.【详解】解:(Ⅰ)当时:,令解得,又因为当,,函数为减函数;当,,函数为增函数.所以,的极小值为.(Ⅱ).当时,由,得或.(ⅰ)若,则.故在上单调递增;(ⅱ)若,则.故当时,;当时,.所以在,单调递增,在单调递减.(ⅲ)若,则.故当时,;当时,.所以在,单调递增,在单调递减.(Ⅲ)(1)当时,,令,得.因为当时,,当时,,所以此时在区间上有且只有一个零点.(2)当时:(ⅰ)当时,由(Ⅱ)可知在上单调递增,且,,此时在区间上有且只有一个零点.(ⅱ)当时,由(Ⅱ)的单调性结合,又,只需讨论的符号:当时,,在区间上有且只有一个零点;当时,,函数在区间上无零点.(ⅲ)当时,由(Ⅱ)的单调性结合,,,此时在区间上有且只有一个零点.综上所述,.【点睛】本题主要考查了导数在函数中的综合应用问题,着重考查了转化与化归思想、逻辑推理能力与计算能力,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用.19.过椭圆W:的左焦点作直线交椭圆于两点,其中,另一条过的直线交椭圆于两点(不与重合),且点不与点重合.过作轴的垂线分别交直线,于,.(Ⅰ)求点坐标和直线的方程;(Ⅱ)求证:.【答案】(Ⅰ),的方程为(Ⅱ)详见解析【解析】【分析】(Ⅰ)由题意可得直线的方程为.与椭圆方程联立方程组,即可求解B点坐标;(Ⅱ)设,,的方程为,联立方程组,根据根与系数的关系,求得,,进而得出点的纵坐标,化简即可证得,得到证明.【详解】(Ⅰ)由题意可得直线的方程为.与椭圆方程联立,由可求.(Ⅱ)当与轴垂直时,两点与,两点重合,由椭圆的对称性,.当不与轴垂直时,设,,的方程为().由消去,整理得.则,.由已知,,则直线的方程为,令,得点的纵坐标.把代入得.由已知,,则直线的方程为,令,得点的纵坐标.把代入得.把,代入到中,=.即,即..【点睛】本题主要考查了直线与圆锥曲线的位置关系的应用问题,解答此类题目,通常通过联立直线方程与椭圆(圆锥曲线)方程的方程组,应用一元二次方程根与系数的关系,得到“目标函数”的解析式,确定函数的性质进行求解,此类问题易错点是复杂式子的变形能力不足,导致错漏百出,本题能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.20.已知是由正整数组成的无穷数列,对任意,满足如下两个条件:①是的倍数;②.(1)若,,写出满足条件的所有的值;(2)求证:当时,;(3)求所有可能取值中的最大值.【答案】(1)(2)见解析(3)85【解析】【分析】(1)根据满足的两个条件即可得到满足条件的所有的值;(2)由,对于任意的,有. 当时,成立,即成立;若存在使,由反证法可得矛盾;(3)由(2)知,因为且是的倍数,可得所有可能取值中的最大值.【详解】(1)的值可取.(2)由,对于任意的,有.当时,,即,即.则成立.因为是的倍数,所以当时,有成立.若存在使,依以上所证,这样的的个数是有限的,设其中最大的为.则,成立,因为是的倍数,故.由,得.因此当时,.(3)由上问知,因为且是的倍数,所以满足下面的不等式:,. 则,, ,,,,,,,,当时,这个数列符合条件.故所求的最大值为85.【点睛】本题考查了数列的有关知识,考查了逻辑推理能力,综合性较强.。
2024届高三数学仿真模拟卷(全国卷)(理科)(考试版)
2024年高考第三次模拟考试高三数学(理科)(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:高考全部内容5.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}24A x x =-≤≤,{}260B x x x =-≥,则A B = ()A .[]2,0-B .[]0,4C .[]2,6-D .[]4,62.已知3i 2z a =(R a ∈,i 是虚数单位),若21322z =,则=a ()A .2B .1C .12D .143.如图,已知AM 是ABC 的边BC 上的中线,若AB a=,AC b = ,则AM 等于()A .()12a b- B .()12a b-- C .()12a b+ D .()12a b-+ 4.已知函数()()πtan 0,02f x x ωϕωϕ⎛⎫=+><< ⎝⎭的最小正周期为2π,直线π3x =是()f x 图象的一条对称轴,则()f x 的单调递减区间为()A .()π5π2π,2πZ 66k k k ⎛⎤-+∈ ⎥⎝⎦B .()5π2π2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦C .()4ππ2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦D .()π2π2π,2πZ 33k k k ⎛⎤-+∈ ⎥⎝⎦5.已知直线l 过点()1,1A 交圆22:4O x y +=于,C D 两点,则“CD =l 的斜率为0”的()A .必要而不充分条件B .充分必要条件C .充分而不必要条件D .即不充分也不必要条件6.甲、乙、丙、丁、戊共5名同学进行唱歌比赛,决出第一名到第五名.丙和丁去询问成绩,回答者对丙说:很遗憾,你和丁都没有得到冠军,对丁说:你当然不会是最差的从这两个回答分析,5人的名次排列方式共有()A .24种B .54种C .96种D .120种7.函数()πln sin 2x x f x x⎛⎫⋅- ⎪⎝⎭=的部分图象大致为()A .B .C.D.8.祖暅是我国南北朝时期伟大的数学家.祖暅原理用现代语言可以描述为“夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的面积总相等,那么这两个几何体的体积相等”.例如,可以用祖暅原理推导半球的体积公式,如图,底面半径和高都为R 的圆柱与半径为R 的半球放置在同一底平面上,然后在圆柱内挖去一个半径为R ,高为R 的圆锥后得到一个新的几何体,用任何一个平行于底面的平面α去截这两个几何体时,所截得的截面面积总相等,由此可证明半球的体积和新几何体的体积相等.若用平行于半球底面的平面α去截半径为R 的半球,且球心到平面α的距离为2R ,则平面α与半球底面之间的几何体的体积是()A3R B3R C3R D3R9.已知函数()21e 3ln ,ln ,ln ,ln 222f x x a f b f c f ⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A .a b c <<B .b a c <<C .c<a<bD .a c b<<10.已知数列{}n a 满足1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,若81a =,1a 的所有可能取值构成集合M ,则M 中的元素的个数是()A .7个B .6个C .5个D .4个11.如图,已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,点A 在C 上,点B 在y 轴上,A ,2F ,B 三点共线,若直线1BF1AF的斜率为,则双曲线C 的离心率是()AB .32CD .312.已知()f x ,()g x 都是定义在R 上的函数,对任意x ,y 满足()()()()()f x y f x g y g x f y -=-,且()()210f f -=≠,则下列说法正确的是()A .()01f =B .函数()21g x +的图象关于点()1,0对称C .()()110g g +-=D .若()11f =,则()202311n f n ==∑第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分13.已知数列{}n a 的前n 项和2n S n n =+,当9n nS a +取最小值时,n =.14.若函数()sin 1f x x x ωω=-在[]0,2π上恰有5个零点,且在ππ[,415-上单调递增,则正实数ω的取值范围为.15.已知52345012345(23)x a a x a x a x a x a x +=+++++,则123452345a a a a a -+-+=.(用数字作答)16.已知定义在R 上的函数()f x 满足()4()0f x f x '+>,且(01f =),则下列说法正确的是.①()f x 是奇函数;②(0,),()0x f x ∃∈+∞>;③41(1)e f >;④0x ∀>时,41()e xf x <三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知()sin ,5sin 5sin m B A C =+ ,()5sin 6sin ,sin sin n B C C A =--垂直,其中A ,B ,C 为ABC的内角.(1)求cos A 的大小;(2)若BC =ABC 的面积的最大值.18.(12分)2016年10月“蓝瘦香菇”等网络新词突然在网络流行,某社区每月都通过问卷形式进行一次网上调查,现从社区随机抽取了60名居民进行调查.已知上网参与问卷调查次数与参与人数的频数分布如下表:参与调查问卷次数[)0,2[)2,4[)4,6[)6,8[)8,10[]10,12参与调查问卷人数814814106(1)若将参与调查问卷不少于4次的居民称为“关注流行语居民”,请你根据频数分布表,完成22⨯列联表,据此调查你是否有99%的把握认为在此社区内“关注流行语与性别有关”?男女合计关注流行语8不关注流行语合计40(2)从被调查的人中按男女比例随机抽取6人,再从选取的6人中选出3人参加政府听证会,求选出的3人为2男1女的概率.附:参考公式()()()()()22n ad bc K a b c d a c b d -=++++及附表()2P K k ≥0.1000.0500.0100.001k2.7063.8416.63510.82819.(12分)在几何体中,底面ABC 是边长为2的正三角形.⊥AE 平面ABC ,若,5,4,3AE CD BF AE CD BF ===∥∥.(1)求证:平面DEF ⊥平面AEFB ;(2)是否在线段AE 上存在一点P ,使得二面角P DF E --的大小为π3.若存在,求出AP 的长度,若不存在,请说明理由.20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2P ⎛⎫ ⎪⎝⎭在椭圆C 上,且PF 垂直于x 轴.(1)求椭圆C 的方程;(2)直线l 斜率存在,交椭圆C 于,A B 两点,,,A B F 三点不共线,且直线AF 和直线BF 关于PF 对称.(ⅰ)证明:直线l 过定点;(ⅱ)求ABF △面积的最大值.21.(12分)已知函数()2,0eax x f x a =>.(1)当2a =时,求函数()f x 的单调区间和极值;(2)当0x >时,不等式()()2cos ln ln 4f x f x a x x ⎡⎤-≥-⎣⎦恒成立,求a 的取值范围.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22.在平面直角坐标系xOy 中,曲线C 的参数方程为12cos 2sin x y αα=+⎧⎨=⎩(α为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 42πρθ⎛⎫-= ⎪⎝⎭.(1)求C 的普通方程和l 的直角坐标方程;(2)设直线l 与x 轴相交于点A ,动点B 在C 上,点M 满足AM MB =,点M 的轨迹为E ,试判断曲线C与曲线E 是否有公共点.若有公共点,求出其直角坐标;若没有公共点,请说明理由.选修4-5:不等式选讲23.已知()2122f x x x x =-+-+.(1)求()2f x ≥的解集;(2)记()f x 的最小值为t ,且2(0,0)3a b t a b +=>>,求证:11254a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭.。
2022-2023学年内蒙古自治区包头市高三年级上册学期期末数学理试题【含答案】
2022-2023学年度第一学期高三年级期末教学质量检测试卷理科数学注意事项:1.答卷前,考生务必将自己的姓名、考场、座位号写在答题卡上,将条形码粘贴在规定区域.本试卷满分150分,考试时间120分钟.2.做选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将答题卡交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合,,则(){}2560A x x x =-->{}10B x x =->A B = A.B.C.D.()6,+∞()1,1-(),1-∞-()1,62. 设,则在复平面内对应的点位于()32i z =-1z A. 第一象限 B. 第二象限C. 第三象限D. 第四象限3. 已知,,,则()31log 4a =322b -=2312c ⎛⎫= ⎪⎝⎭A B. C. D.a b c>>a c b>>b c a>>c b a>>4. 已知A ,B ,C 三人都去同一场所锻炼,其中A 每隔1天去一次,B 每隔2天去一次,C 每隔3天去一次.若3月11日三人都去锻炼,则下一次三人都去锻炼的日期是()A. 3月22日 B. 3月23日C. 3月24日D. 3月25日5. 某公司为了解用户对其产品的满意度,从使用该产品的用户中随机调查了100个用户,根据用户对产品的满意度评分,得到如图所示的用户满意度评分的频率分布直方图.若用户满意度评分的中位数、众数、平均数分别为a ,b ,c ,则()A. B. C. D. a b c <<b a c <<a c b<<b<c<a6. 若函数与都在区间上单调递增,则的最大值()2sin f x x =()cos2g x x=(),m n n m -为()A. B. C. D. π4π3π2π7. 已知,()()4,2AB =()()1,0AC t t =>AB BC ⋅=A B. C. 8 D. 168-16-8. 设为直线,为平面,则的必要不充分条件是()a βa β⊥A. 直线与平面内的两条相交直线垂直a βB. 直线与平面内任意直线都垂直a βC. 直线在与平面垂直的一个平面内a βD. 直线与平面都垂直于同一平面a β9. 记为等差数列的前项和.已知,,则()n S {}n a n 55S =610a =AB.312n a n =+520n a n =-C.D.2314n S n n=-231322n S n n=-10. 已知,,则()π0,2α⎛⎫∈ ⎪⎝⎭22sin2cos21cos ααα=++tan2α=A. B. C. 2 D. 3131211. 已知抛物线,斜率为的直线与的交点为E ,F ,与轴的交点为.2:3C y x =32l C x H 若,()()1EH k HF k =>EF =k =A. 5B. 4C. 3D. 212. 已知三棱锥的四个顶点都在球的球面上,,,E ,F 分-P ABC O 4PA =2PB PC ==别是PA ,AB 的中点,,,,则球的体积为()90CEF ∠=︒PB AC ⊥PC PA ⊥OA. B. C. D. 二、填空题:共4小题,每小题5分,共20分.13. 曲线在点处的切线方程为______.()()224e xf x x x =++()()0,0f 14. 已知数列和满足,,,.{}n a {}n b 11a =12b =134n n n a a b +=-+134n n n b b a +=--则数列的通项______.{}n n a b +n n a b +=15. 甲、乙两队进行排球决赛,采取五场三胜制(当一队赢得三场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以获胜的概率是3:1______.16. 已知双曲线的左、右焦点分别为,,过且倾斜角为()2222:10x y C b a a b -=>>1F 2F 1F 的直线与的两条渐近线分别交于A ,B 两点.若,则的离心率为______.4πC 2//BF OA C 三、解答题:共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.第17∼21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:60分.17. 的内角A ,B ,C 的对边分别为a ,b ,c ,设ABC .()22sin sin sin 3sin sin A C B A C+=+(1)求;B (2)若,求.623a b c =+sin A 18. 9年来,某地区第年的第三产业生产总值(单位:百万元)统计图如下图所示.根据x y 该图提供的信息解决下列问题.(1)在所统计的9个生产总值中任选2个,记其中不低于平均值的个数为,求的分X X 布列和数学期望;()E X (2)由统计图可看出,从第6年开始,该地区第三产业生产总值呈直线上升趋势,试从第6年开始用线性回归模型预测该地区第11年的第三产业生产总值.(附:对于一组数据,,…,,其回归直线的斜率和()11,x y ()22,x y (),n nx y ˆˆˆy bx a =+截距的最小二乘法估计分别为:,.()()()1122211ˆn niii ii i nni i i i x x y y x y nx ybx xx nx====---==--∑∑∑∑ ˆa y bx =-19. 如图,直四棱柱的底面是平行四边形,,,1111ABCD A B C D -14AA =2AB BC ==,,,分别是,,的中点.60BAD ∠=︒E FH 1A D 1BB BC (1)证明:平面;EF ⊥11BCC B (2)求平面与平面所成二面角的正弦值.1DC H DEF 20. 已知点,,动点满足直线与的斜率之积为,()0,3M -()0,3N (),P x y PM PN 3-记的轨迹为曲线.P C (1)求的方程,并说明是什么曲线;C C (2)过坐标原点的直线交C 于A ,B 两点,点A 在第一象限,轴,垂足为,连AD y ⊥D接并延长交于点.BD C H (i )证明:直线与的斜率之积为定值;AB AH (ii )求面积的最大值.ABD △21. 已知函数.()()ln 11f x x a x =--+(1)若存在极值,求的取值范围;()f x a (2)当时,讨论函数的零点情况.2a =()()sin g x f x x=+(二)选考题:共10分.请考生在第22,23题中任选一题作答.并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22. 在直角坐标系中,曲线的参数方程为(s 为参数),直线的参数xOyC 2222,1s x s y ⎧-=⎪⎪+⎨⎪=⎪⎩l 方程为(为参数).1cos 2sin x t y t αα=-+⎧⎨=+⎩t (1)求和的直角坐标方程;C l (2)若曲线截直线所得线段的中点坐标为,求的面积.C l AB ()1,2-OAB [选修4-5:不等式选讲]23. 已知()()4f x x m x x x m =-+--(1)当时,求不等式的解集;2m =()0f x ≥(2)若时,,求的取值范围.(),2x ∈-∞()0f x <m2022-2023学年度第一学期高三年级期末教学质量检测试卷理科数学注意事项:1.答卷前,考生务必将自己的姓名、考场、座位号写在答题卡上,将条形码粘贴在规定区域.本试卷满分150分,考试时间120分钟.2.做选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将答题卡交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合,,则(){}2560A x x x =-->{}10B x x =->A B = A.B.C.D.()6,+∞()1,1-(),1-∞-()1,6【答案】A 【解析】【分析】求出集合中元素范围,再求即可.,A B A B ⋂【详解】或,{}{2560|1A x x x x x =-->=<-}6x >,{}{}101B x x x x =->=>()6,A B ∴=+∞ 故选:A.2. 设,则在复平面内对应的点位于()32i z =-1z A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】D 【解析】【分析】求出的代数形式,进而可得其对应的点所在象限.1z 【详解】,()()32i 32i 32i 1i 321321313i z ==--++-=其对应的点为,位于第四象限.32,1313⎛⎫- ⎪⎝⎭故选:D.3. 已知,,,则()31log 4a =322b -=2312c ⎛⎫= ⎪⎝⎭A. B. C. D.a b c>>a c b>>b c a>>c b a>>【答案】D 【解析】【分析】先确定与中间量0的大小关系,再利用指数函数的单调性来比较大小.【详解】,331log log 104a =<=,332232211220c b -⎛⎫⎛⎫=<= ⎪ ⎪⎭=⎝<⎭⎝故c b a >>故选:D.4. 已知A ,B ,C 三人都去同一场所锻炼,其中A 每隔1天去一次,B 每隔2天去一次,C 每隔3天去一次.若3月11日三人都去锻炼,则下一次三人都去锻炼的日期是()A. 3月22日 B. 3月23日C. 3月24日D. 3月25日【答案】B【解析】【分析】三人各自去锻炼的日期实际上是等差数列,利用等差数列知识进行求解.【详解】由题意,三人各自去锻炼的日期分别是等差数列,公差分别为2,3,4,最小公倍数为12,所以下一次三人都去锻炼的日期是3月23日.故选:B.5. 某公司为了解用户对其产品的满意度,从使用该产品的用户中随机调查了100个用户,根据用户对产品的满意度评分,得到如图所示的用户满意度评分的频率分布直方图.若用户满意度评分的中位数、众数、平均数分别为a ,b ,c ,则()A. B. C. D. a b c <<b a c<<a c b<<b<c<a【答案】B 【解析】【分析】根据众数,平均数,中位数的概念和公式,带入数字,求出后比较大小即可.【详解】解:由频率分布直方图可知众数为65,即,65b =由表可知,组距为10,所以平均数为:,450.15550.2650.25750.2850.1950.167⨯+⨯+⨯+⨯+⨯+⨯=故,记中位数为,67c =x 则有:,()100.015100.02600.0250.5x ⨯+⨯+-⨯=解得:,即,66x =66a =所以.b a c <<故选:B.6. 若函数与都在区间上单调递增,则的最大值()2sin f x x=()cos2g x x=(),m n n m -为()A. B. C. D. π4π3π2π【答案】C 【解析】【分析】分析在一个较大区间内的单调性,找出它们的公共增区间,分(),()f xg x (),m n 析出的最大值.n m -【详解】的周期为,的周期为,分析在内两个()2sin f x x=2π()cos2g x x=π5π[0,2函数的单调性,函数在上单调递增,()2sin f x x =π3π5π0,,222⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,函数在上单调递增,()cos2g x x =π3π,π,,2π22⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭所以函数与都在区间上单调递增,()2sin f x x =()cos2g x x =3π,2π2⎛⎫⎪⎝⎭且为的最大公共增区间3π,2π2⎛⎫⎪⎝⎭(),()f x g x 所以则,,所以的最大值为.max 2πn =min 3π2m =n m -3ππ2π22-=故选:C.7. 已知,()()4,2AB =()()1,0AC t t =>AB BC ⋅=A. B. C. 8D. 168-16-【答案】A 【解析】,再利用数量积的坐标运算求即可.t AB BC ⋅【详解】由已知()()()1,4,23,2BC AC AB t t =-=-=--=或(舍去,)4t ∴=0=t 0t >()()84,3,21242AB BC ∴=⋅=⋅--+=-故选:A.8. 设为直线,为平面,则的必要不充分条件是()a βa β⊥A. 直线与平面内的两条相交直线垂直a βB. 直线与平面内任意直线都垂直a βC. 直线在与平面垂直的一个平面内a βD. 直线与平面都垂直于同一平面a β【答案】C 【解析】【分析】根据题意知找一个由能推出的但反之不成立的一个结论.a β⊥【详解】根据题意知找一个由能推出的但反之不成立的一个结论.a β⊥对A :根据线面垂直的判定定理,若直线与平面内的两条相交直线垂直,则;a βa β⊥若,则直线与平面内的两条相交直线垂直,故A 错误;a β⊥a β对B :根据线面垂直的定义,直线与平面内任意直线都垂直是的充要条件,故a βa β⊥B 错误;对C :若,设,由面面垂直的判定知,故直线在与平面垂直的一a β⊥a α⊂αβ⊥a β个平面内;若直线在与平面垂直的一个平面内,不妨设平面,若取,则a βγβ⊥a γβ=⋂不成立,故C 正确;a β⊥对D :若,又,则,不可能有平面与平面垂直,故D 错误.a β⊥a α⊥//βαβα故选:C 9. 记为等差数列的前项和.已知,,则()n S {}n a n 55S =610a =A.B.312n a n =+520n a n =-C.D.2314n S n n=-231322n S n n=-【答案】D 【解析】【分析】先利用等差数列的通项公式和求和公式列方程求出,进而可得等差数列的通1,a d 项公式及求和公式,对照选项可得答案.【详解】设等差数列的公差为,{}n a d,解得51615105510S a d a a d =+=⎧∴⎨=+=⎩135d a =⎧⎨=-⎩,()()1153138n a a n d n n ∴=+-=-+-=-,()()2153132221132n S n n n n n n na d n -+=-=+=-⨯-故选:D.10. 已知,,则()π0,2α⎛⎫∈ ⎪⎝⎭22sin2cos21cos ααα=++tan2α=A. B. C. 2 D. 31312【答案】A 【解析】【分析】先利用倍角变形求得,再利用二倍角的正切公式求即可.tan αtan2α【详解】22sin2cos21cosααα=++ 222224sin cos cos sin cos sin cos ααααααα∴=-+++即,24sin cos 3cosααα=,,π0,2α⎛⎫∈ ⎪⎝⎭ cos 0α∴≠,即4sin 3cos αα∴=3tan 4α=,又22tan3241tan 2αα∴=-tan 0α>解得1tan 23α=故选:A.11. 已知抛物线,斜率为的直线与的交点为E ,F ,与轴的交点为.2:3C y x =32l C x H 若,()()1EH k HF k =>EF =k =A. 5 B. 4C. 3D. 2【答案】C 【解析】【分析】直线方程,由值,求得E ,F 的纵坐标,再由l 32y x b=+EF =b 求得值.EH k HF =k 【详解】设直线方程,,l 3:(0)2l y x b b =+<()()1122,,,E x y F x y ,,2,03H b ⎛⎫∴- ⎪⎝⎭112222,,,33EH b x y HF x b y ⎛⎫⎛⎫=---=+ ⎪ ⎪⎝⎭⎝⎭ ,112222,,,33EH k HF b x y k x b y ⎛⎫⎛⎫=∴---=+ ⎪ ⎪⎝⎭⎝⎭ ,12y ky ∴-=由得,,2323y x b y x ⎧=+⎪⎨⎪=⎩2220y y b -+=2(2)420b ∆=--⨯>,12122,2y y yy b ∴+==,||EF ∴===,=,123,32b y y ∴=-∴=-由解得或,12122,3y y y y +==-1213y y =-⎧⎨=⎩1231y y =⎧⎨=-⎩或(舍),3k ∴=13k =故选:C12. 已知三棱锥的四个顶点都在球的球面上,,,E ,F 分-P ABC O 4PA =2PB PC ==别是PA ,AB 的中点,,,,则球的体积为()90CEF ∠=︒PBAC ⊥PC PA ⊥O A.B. C. D.【答案】B 【解析】【分析】先利用线面垂直的判定定理证得面,再推到两两垂直,PB ⊥PAC ,,PB PA PC 进而将三棱锥补形成长方体,从而求得球的半径,由此得解.-P ABC O 【详解】因为E ,F 分别是PA ,AB 的中点,所以,//EF PB 又,即,所以,90CEF ∠=︒EF EC ⊥PB EC ⊥因为,面,所以面,PB AC ⊥,,AC EC C AC EC =⊂ PAC PB ⊥PAC 因为面,所以,,PA PC ⊂PAC ,PB PA PB PC ⊥⊥又,所以两两垂直,PC PA ⊥,,PB PA PC 故将三棱锥补形成长方体,如图,-P ABC -ADHG PCTB 则长方体的外接球与三棱锥的外接球相同,-ADHG PCTB -P ABC O设球的半径为,则,即,O R 2R ===R =所以球的体积为.O 34π3V R ==故选:B..【点睛】方法点睛:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.二、填空题:共4小题,每小题5分,共20分.13. 曲线在点处的切线方程为______.()()224e xf x x x =++()()0,0f 【答案】540x y -+=【解析】【分析】先求导,然后求出和,再利用点斜式求直线方程即可.()0f '()0f 【详解】由已知,()()()()2241e 24e 255e x x xf x x x x x x '+=+++++=,又,()05f '∴=()04f =所以曲线在点处的切线方程为,()()224e xf x x x =++()()0,0f 45y x -=即540x y -+=故答案为:540x y -+=14. 已知数列和满足,,,.{}n a {}n b 11a =12b =134n n n a a b +=-+134n n n b b a +=--则数列的通项______.{}n n a b +n n a b +=【答案】132n -⨯【解析】【分析】将条件中两式相加可得数列为等比数列,利用等比数列的通项公式求解{}n n a b +即可.【详解】,,134n n n a a b +=-+ 134n n n b b a +=--()1134342n n n n n n n n a b a b b a a b ++∴=-++-=++-又,113a b +=所以数列是以3为首项,2为公比的等比数列{}n n a b +132n n n a b -∴+=⨯故答案为:132n -⨯15. 甲、乙两队进行排球决赛,采取五场三胜制(当一队赢得三场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以获胜的概率是3:1______.【答案】0.21【解析】【分析】利用相互独立事件概率乘法公式和互斥事件概率加法公式直接求解.【详解】甲、乙两队进行排球决赛,采取五场三胜制(当一队赢得三场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以获胜的概率是:3:1.0.60.50.40.50.60.50.60.50.40.50.60.50.21P =⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=故答案为:0.21.【点睛】本题考查概率的求法,考查相互独立事件概率乘法公式和互斥事件概率加法公式等基础知识,考查运算求解能力,是基础题.16. 已知双曲线的左、右焦点分别为,,过且倾斜角为()2222:10x y C b a a b -=>>1F 2F 1F的直线与的两条渐近线分别交于A ,B 两点.若,则的离心率为______.4πC 2//BF OA C【解析】【分析】首先根据题意,设出直线的方程,之后与双曲线的渐近线联立,分别求出A ,B 两点的坐标,之后根据题中条件,得出A 是的中点,根据中点坐标公式,得2//BF OA 1F B 出其坐标间的关系,借助双曲线中的关系,求得该双曲线的离心率.,,a b c 【详解】设直线的方程为,两条渐近线的方程分别为和,l y x c =+b y x a =-by x a =分别联立方程组,求得,(,),(,ac bc ac bcA B a b a b b a b a -++--由,为的中点得A 是的中点,2//BF OA O 12F F 1F B 所以有,整理得,2ac acc b a a b -+=--+3b a =结合双曲线中的关系,可以的到,,,a bc c e a ===.三、解答题:共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.第17∼21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:60分.17. 的内角A ,B ,C 的对边分别为a ,b ,c ,设ABC .()22sin sin sin 3sin sin A C B A C+=+(1)求;B (2)若,求.623a b c =+sin A 【答案】(1)π3(2【解析】【分析】(1)将条件展开后利用正弦定理角化边,然后利用余弦定理求角;(2)利用正弦定理边化角,然后转化为关于角B 等式,整理得到,再求π1sin 63A ⎛⎫-=⎪⎝⎭出,利用展开求解即可.πcos 6A ⎛⎫- ⎪⎝⎭ππsin sin 66A A ⎛⎫=-+ ⎪⎝⎭【小问1详解】()22sin sin sin 3sin sin A C B A C+=+ 222sin 2sin sin sin sin 3sin sin A A C C B A C∴++=+即222sin sin sin sin sin A C B A C +-=由正弦定理得,222a cb ac +-=,又2221cos 222a c b ac B ac ac +-∴===()0,πB ∈;π3B ∴=【小问2详解】623a b c=+ 所以由正弦定理边化角得,6sin 2sin 3sin A B C =+,有,ππ6sin 2sin3sin 33A A ⎛⎫∴=++ ⎪⎝⎭9sin A A -=化简得,又,π1sin 63A ⎛⎫-= ⎪⎝⎭2π0,3A ⎛⎫∈ ⎪⎝⎭πππ,333A ⎛⎫∴-∈- ⎪⎝⎭,πcos 6A ⎛⎫∴-==⎪⎝⎭ππππππsin sin sin cos cos sin666666A A A A ⎛⎫⎛⎫⎛⎫∴=-+=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1132==18. 9年来,某地区第年的第三产业生产总值(单位:百万元)统计图如下图所示.根据x y 该图提供的信息解决下列问题.(1)在所统计的9个生产总值中任选2个,记其中不低于平均值的个数为,求的分X X 布列和数学期望;()E X (2)由统计图可看出,从第6年开始,该地区第三产业生产总值呈直线上升趋势,试从第6年开始用线性回归模型预测该地区第11年的第三产业生产总值.(附:对于一组数据,,…,,其回归直线的斜率和()11,x y ()22,x y (),n nx y ˆˆˆy bx a =+截距的最小二乘法估计分别为:,.()()()1122211ˆn niii ii i nni i i i x x y y x y nx ybx xx nx====---==--∑∑∑∑ ˆa y bx =-【答案】(1)分布列见解析,数学期望()34E X =(2)该地区第11年的第三产业生产总值约为134.6【解析】【分析】(1)求出平均值,得出不低于平均值的有3个,因此服从超几何分布,由此可X 计算出各概率得分布列,由期望公式可计算出期望;(2)由后面的四个数据求出线性回归直线方程,将代入回归方程即可得出预测值.11x =【小问1详解】依题知,9个生产总值的平均数为:,141620263342607898439++++++++=由此可知,不低于平均值的有3个,所以服从超几何分布,X ,()()23629C C ,0,1,2C k kP X k k -===所以,()0203629C C 11550C 3612P X -⨯====,()1213629C C 3611C 362P X -⨯====,()2223629C C 3112C 3612P X -⨯====分布列为:X 012P51212112所以;()5113013122124E X =⨯+⨯+⨯=【小问2详解】由后面四个数据得:,,67897.54x +++==4260789869.54y +++==,416427608789982178i ii x y==⨯+⨯+⨯+⨯=∑,42222216789230ii x==+++=∑所以,,217847.569.518.623047.57.5b -⨯⨯==-⨯⨯ 69.518.67.570a =-⨯=-所以线性回归方程为,18.670=-y x 当时,,11x =18.61170134.6=⨯-=y 所以该地区第11年的第三产业生产总值约为134.619. 如图,直四棱柱的底面是平行四边形,,,1111ABCD A B C D -14AA =2AB BC ==,,,分别是,,的中点.60BAD ∠=︒E F H 1A D 1BB BC (1)证明:平面;EF ⊥11BCC B (2)求平面与平面所成二面角的正弦值.1DC H DEF 【答案】(1)证明见解析(2【解析】【分析】(1)取的中点,连接、、,即可得到,再证明AD G BG EG BD //EF BG ,由直棱柱的性质证明,即可得到平面,从而得证;BG BC ⊥1BB BG ⊥BG ⊥11BCC B (2)建立空间直角坐标系,利用空间向量法计算可得.【小问1详解】取的中点,连接、、,AD G BG EG BD 又因为,分别是,的中点,E F 1A D 1BB 所以且,且,1//EG AA 112EG AA =1//BF AA 112BF AA =所以且,//EG BF EG BF =所以四边形为平行四边形,所以,BGEF //EF BG 又在直四棱柱的底面是平行四边形,,,1111ABCD A B C D -2AB BC ==60BAD ∠=︒所以为等边三角形,所以,又,所以,ABD △BG AD ⊥//AD BC BG BC ⊥又平面,平面,所以,1BB ⊥ABCD BG ⊂ABCD 1BB BG ⊥,平面,1BC BB B = 1,BC BB ⊂11BCC B 所以平面,BG ⊥11BCC B 所以平面.EF ⊥11BCC B 【小问2详解】如图建立空间直角坐标系,则,,,,()D ()1,0,0H ()12,0,4C ()0,0,2F,()2E所以,,,,()11,4DC =()0,DH =()1,0,2DE =-()1,2DF =-设平面的法向量为,则,令,则1DC H (),,n x y z =1400n DC x z n DH ⎧⋅=+=⎪⎨⋅==⎪⎩1z =,,所以,4x =-0y =()4,0,1n =-设平面的法向量为,则,令,则DEF (),,m a b c =2020n DE a c n DF a c ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ 1c =,,所以,2a =0b =()2,0,1m =设平面与平面所成二面角为,则,1DC H DEFθcos m n m nθ⋅===⋅ 所以,即平面与平面所成二面角的正弦值为sin θ==1DC H DEF.20. 已知点,,动点满足直线与的斜率之积为,()0,3M -()0,3N (),P x y PM PN 3-记的轨迹为曲线.P C (1)求的方程,并说明是什么曲线;C C (2)过坐标原点的直线交C 于A ,B 两点,点A 在第一象限,轴,垂足为,连AD y ⊥D 接并延长交于点.BD C H(i )证明:直线与的斜率之积为定值;AB AH (ii )求面积的最大值.ABD △【答案】(1)的方程为:,是一个长轴长为6,短轴长为C 22193y x +=()0x ≠C 的椭圆0x ≠(2)(i )证明见解析(ii 【解析】【分析】(1)直接利用斜率公式即可求解;(2)(i )设,根据坐标之间的联系,设直线的方程为()11,A x y ()110,0x y >>BD ,与联立消,运用韦达定理求出的坐标,再利用斜率1y kx y =+22193y x +=y ()22,H x y 公式求出,,然后代入化简即可证明;AH k ABk AB AH k k ⋅(ii )将点代入,利用基本不等式即可求解.()11,A x y ()110,0x y >>22193y x +=()0x ≠【小问1详解】依题知,,,,()0,3M -()0,3N (),P x y 所以,33,PM PN y y k k x x +-==又直线与的斜率之积为,PM PN 3-即,整理得:,333y y x x +-⨯=-22193y x +=()0x ≠因此是一个长轴长为6,短轴长为且的椭圆.C 0x ≠【小问2详解】(i )如图所示:设,,()11,A x y ()110,0x y >>()22,H x y 因为两点关于原点中心对称,所以,,A B ()11,B x y --因为轴,垂足为,所以,AD y ⊥D ()10,D y 所以直线的斜率,AB 11AB k y x =设直线的斜率为,则直线的方程为:,BD k BD 1y kx y =+由消整理得:,122193y kx y y x =+⎧⎪⎨+=⎪⎩y ()222113290k x ky x y +++-=因为点,是直线与的交点,()11,B x y --()22,H x y BD 22193y x +=所以,整理得:,2211193y x +=221193y x -=-由韦达定理得:,221111212222293,333ky y x x x x x k k k ---+=--==+++解得:,代入,12233x x k =+1y kx y =+解得:,即,221y kx y =+121233kx y y k -=+所以直线的斜率AH 1221112112333223AHkx y y x k k ky x x y k-+===---+所以,11113322AB AHy x k k x y ⎛⎫⋅=⋅-=- ⎪⎝⎭所以直线与的斜率之积为定值,其值为:.AB AH 32-(ii )由(i )知,1111122ABD S x y x y =⨯⨯=△因为在上,()11,A x y ()110,0x y >>22193y x +=()0x ≠所以,整理得:22111193x y y =+≥11x y ≤=当且仅当时,等号成立,11y =所以.ABD △【点睛】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.(3)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.21. 已知函数.()()ln 11f x x a x =--+(1)若存在极值,求的取值范围;()f x a (2)当时,讨论函数的零点情况.2a =()()sin g x f x x=+【答案】(1)()1,+∞(2)共有两个零点.()g x 【解析】【分析】(1)先对求导,再分别讨论和两种情况,判断的正负,()f x 1a ≤1a >()f x '可得的单调性,从而得解.()f x (2)构造函数,利用导数判断得的单调性,再结合零()()11cos 0h x x x x =-+>()g x '点存在定理得到在和上各有一个零点;再构造函数,利用导数讨论()g x 21,1e ⎛⎫ ⎪⎝⎭()1,π在和的零点情况,从而得解.()g x (]π,2π()2π,+∞【小问1详解】因为,所以,()()ln 11f x x a x =--+()()11(0)f x a x x '=-->当,即时,,则为单调递增函数,不可能有极值,舍去;10a -≤1a ≤()0f x ¢>()f x 当,即时,令,解得,10a ->1a >()0f x '=11x a =-当时,;当时,;101x a <<-()0f x ¢>11x a >-()0f x '<所以在上单调递增,在上单调递减,()f x 10,1a ⎛⎫ ⎪-⎝⎭1,1a ⎛⎫+∞ ⎪-⎝⎭所以在取得极大值,符合题意;()f x 11x a =-综上:,故实数的取值范围为.1a >a ()1,+∞【小问2详解】当时,,则,2a =()ln 1sin (0)g x x x x x =-++>()11cos g x x x '=-+令,则,()()11cos 0h x x x x =-+>()21sin h x x x '=--(i )当时,,则单调递减,即单调递减,(]0,πx ∈()0h x '<()h x ()g x '注意到,,()cos101g '=>()120ππg '=-<所以存在唯一的使,()01,πx ∈()00g x '=且当时,,单调递增,00x x <<()0g x '>()g x 当时,,单调递减,0πx x <≤()0g x '<()g x 注意到,,,则22211121sin 0e e e g ⎛⎫=--++< ⎪⎝⎭()1sin10g =>2ln πln e 2π1<=<-,()πln ππ10g =-+<所以在和上各有一个零点;()g x 21,1e⎛⎫⎪⎝⎭()1,π(ii )当时,,故,(]π,2πx ∈sin 0x ≤()ln 1g x x x ≤-+令,则,()()ln 1π2πx x x x ϕ=-+<≤()110x x ϕ'=-<所以在上单调递减,故,()x ϕ(]π,2π()()πln ππ10x ϕϕ<=-+<所以,故在上无零点;()()0g x x ϕ≤<()g x (]π,2π(iii )当时,,则,()2π,x ∈+∞sin 1x ≤()ln 2g x x x ≤-+令,则,所以在上单调递()()ln 22πm x x x x =-+>()110m x x =-<'()m x ()2π,+∞减,又,故,3ln 2πln e 32π2<=<-()()2πln 2π2π20m x m <=-+<所以,故在上无零点;()()0g x m x ≤<()g x ()2π,+∞综上:在和上各有一个零点,共有两个零点.()g x 21,1e⎛⎫⎪⎝⎭()1,π【点睛】方法点睛:导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.(二)选考题:共10分.请考生在第22,23题中任选一题作答.并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22. 在直角坐标系中,曲线的参数方程为(s 为参数),直线的参数xOyC 2222,1s x s y ⎧-=⎪⎪+⎨⎪=⎪⎩l 方程为(为参数).1cos 2sin x t y t αα=-+⎧⎨=+⎩t (1)求和的直角坐标方程;C l (2)若曲线截直线所得线段的中点坐标为,求的面积.C l AB ()1,2-OAB 【答案】(1);22148x y +=()2x ≠-当时,直线的直角坐标方程为,cos 0α≠l tan 2tan y x αα=++当时,直线的参数方程为.cos 0α=l =1x -(2【解析】【分析】(1)将中的参数s 消去得曲线的直角坐标方程;2222,1s x s y ⎧-=⎪⎪+⎨⎪=⎪⎩C 根据代入消元法将直线的参数方程化为直角坐标方程,此时要注意分与l cos 0α≠两种情况.cos 0α=(2)将直线参数方程代入曲线的直角坐标方程,根据参数几何意义得之间关l C sin ,cos αα系,得的方程,设与轴的交点为,以为底为高求的面积.l l x M OMA By y -OAB 【小问1详解】由得,而,2222,1s x s y ⎧-=⎪⎪+⎨⎪=⎪⎩()()()()2222222221214811s s x ys s -+=+=++24221x s =->-+即曲线的直角坐标方程为,C ()221248x y x +=≠-由为参数),1cos (2sin x t t y t αα=-+⎧⎨=+⎩当时,消去参数,可得直线的直角坐标方程为,cos 0α≠t l tan 2tan y x αα=++当时,可得直线的参数方程为.cos 0α=l =1x -【小问2详解】将直线的参数方程代入曲线的直角坐标方程,l C 整理可得:.①22(1cos )4(sin cos )20t t ααα++--=曲线截直线所得线段的中点在椭圆内,则方程①有两解,设为,,C l (1,2)-1t 2t 则,故,解得.的倾斜角1224cos 4sin 01cos t t ααα-+==+cos sin 0αα-=tan 1α=l ∴为.45所以直线方程,直线与轴的交点为,,3y x =+x ()3,0M -12221cos t t α-=+,21AB t t ==-==,13sin 4522AOB S OM AB =⋅== 故.OAB [选修4-5:不等式选讲]23. 已知()()4f x x m x x x m =-+--(1)当时,求不等式的解集;2m =()0f x ≥(2)若时,,求的取值范围.(),2x ∈-∞()0f x <m 【答案】(1)[)2,+∞(2)[)2,+∞【解析】【分析】(1)根据,将原不等式化为,分别讨论2m =()|2||4|20x x x x -+--≥,,三种情况,即可求出结果;2x <24x ≤<4x ≥(2)分别讨论和两种情况,即可得出结果.2m ≥2m <【小问1详解】解:当时,,2m =()()242f x x x x x =-+--原不等式可化为;()|2||4|20x x x x -+--≥当时,原不等式可化为,即,解得,2x <(2)(4)(2)0x x x x -+--≥22(2)0x -≤2x =此时解集为;∅当时,原不等式可化为,解得,此时解集为24x ≤<(2)(4)(2)0x x x x -+--≥2x ≥;[)2,4当时,原不等式可化为,即,显然成立;此4x ≥(2)(4)(2)0x x x x -+--≥22(2)0x -≥时解集为;[)4,+∞综上,原不等式的解集为;[)2,+∞【小问2详解】解:当时,因为,所以由可得,2m ≥(,2)x ∞∈-()0f x <()(4)()0m x x x x m -+--<即,显然恒成立,所以满足题意;2()(2)0x m x -->2m ≥当时,,2m <4(),2()2()(2),x m m x f x x m x x m -≤<⎧=⎨--<⎩因为时,显然不能成立,所以不满足题意;2m x ≤<()0f x <2m <综上,的取值范围是.m [)2,+∞。
江西省临川第一中学2022-2023学年高三上学期期末考试理科数学试卷
卷面满分:150江西省临川一中2022—2023学年上学期期末考试高三年级数学理科试卷分考试试卷:120分钟命题人:黄维京审题人:上官学辉一、单选题(每题5分,共60分)1.设集合2{|230}A x Z x x =∈-- ,{0,1}B =,则A B =ð()A.{3,2,1}--- B.{1,2,3}- C.{1,0,1,2,3}- D.{0,1}2.在复平面内,复数z 1,z 2对应的向量分别是OA =(1,−2),OB =(−3,1),则复数z 1z 2对应的点位于()A .第一象限B .第二象限C.第三象限D.第四象限3.对于实数,条件G +1≠52,条件G ≠2且≠12,那么是的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.设a >0,b >0,且2a +b =1,则1a +2aa+b ()A.有最小值为4B.有最小值为22+1B.C.有最小值为14D.无最小值5.设a =57,b =c =log 3145,则a ,b ,c 的大小顺序是()A.b <a <cB.c <a <bC.b <c <aD.c <b <a6.已知(0,)4πα∈,4cos 25α=,则2sin (4πα+=()A.15B.25C.35 D.457.已知△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,且(a 2+b 2−c 2)⋅(acosB +bcosA)=abc ,则角C =()A.30°B.45°C.60°D.90°8.已知函数=l 2−B +3在0,1上是减函数,则实数的取值范围是()A.0,1B.1,4C.0,1∪1,4D.2,49.已知圆:(−3)2+(−4)2=4和两点o −3s 0),o 3s 0)(>0).若圆上存在点,使得∠B =90°,则的最小值为()A.6B .5 C.2 D.310.已知双曲线22−22=1>0,>0的左、右焦点分别为1,2,点的坐标为−2,0,点是双曲线在第二象限的部分上一点,且∠1B 2=2∠1B ,B 1⊥12,则双曲线的离心率为()A.3B.2C.32D.211.在△B 中,B =4,B =3,B =5,点在该三角形的内切圆上运动,若B =B+B (s 为实数),则+的最小值为()A.12B.13C.16D.1712.若函数的定义域为,且2+1偶函数,3−1关于点1,3成中心对称,则下列说法正确的个数为()①的一个周期为2②2x =2−2x③的一个对称中心为6,3④J119=57 A.1B.2C.3D.4二、填空题(每题5分,共20分)13.已知2100+236=1上一点,1,2分别是椭圆的左、右焦点,若∠1B 2=60°,则△B 12的面积为________.14.若(1−3x)n 展开式中第6项的二项式系数与系数分别为p 、q ,则pq =_________.15.如今中国被誉为基建狂魔,可谓是逢山开路,遇水架桥.公路里程、高铁里程双双都是世界第一.建设过程中研制出用于基建的大型龙门吊、平衡盾构机等国之重器更是世界领先.如图是某重器上一零件结构模型,中间最大球为正四面体BB 的内切球,中等球与最大球和正四面体三个面均相切,最小球与中等球和正四面体三个面均相切,已知正四面体BB 棱长为26,则模型中九个球的表面积和为__________.16.若函数op=3−o3+lnp的极小值点只有一个,则的取值范围是_________.三、解答题17.(12分)已知数列{}满足数列{r1−}为等比数列,1=1,2=2,且对任意的∈∗,r2=3r1−2.(1)求{}的通项公式;(2)=∙,求数列{}的前n项和S.18.(12分)如图,在直三棱柱B−111中,,,分别为线段11,1及B的中点,为线段1上的点,B=12B,B=8,B=6,三棱柱B−111的体积为240.(1)求点到平面1B的距离;(2)试确定动点的位置,使直线B与平面1B1所成角的正弦值最大.19.(12分)在一次购物抽奖活动中,假设某10张奖券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从这10张中任抽2张.(1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X(元)的分布列.20(12分)已知抛物线:2=2B,抛物线上两动点A x1,y1,B x2,y2,x1≠x2且x1+x2=6(1)若线段AB过抛物线焦点,且B=10,求抛物线C的方程.(2)若线段AB的中垂线与X轴交于点C,求∆ABC面积的最大值.21(12分)已知op =e+2−s op =2−B −,s ∈(1)若op 与op 在x=1处的切线重合,分别求,的值.(2)若∀∈s op −op ≥op −op 恒成立,求的取值范围.四、选做题(共10分,请考生在22,23题任选一题作答,如果多选,则按所做第一题计分)22.(10分)在平面直角坐标系xOy 中,已知直线312:12x l y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数)与圆23cos :(3sin x C y θθθ=+⎧⎨=⎩为参数)相交于A,B 两点.(1)求直线及圆C 的普通方程;(2)已知(1,0)F ,求||||FA FB +的值.23.(10分)已知0a >,0.b >(1)求证:3+3≥2+B 2;(2)若3a b +=,求14a b+的最小值.。
【市级检测】2017-2018学年河南省南阳市高三(上)期末数学试卷(理科)
2017-2018学年河南省南阳市高三(上)期末数学试卷(理科)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知:如图,集合U为全集,则图中阴影部分表示的集合是()A.∁U(A∩B)∩C B.∁U(B∩C)∩A C.A∩∁U(B∪C)D.∁U(A∪B)∩C 2.已知1+i是关于x的方程ax2+bx+2=0(a,b∈R)的一个根,则a+b=()A.﹣1 B.1 C.﹣3 D.33.已知双曲线C的一条渐近线的方程是:y=2x,且该双曲线C经过点,则双曲线C的方程是()A.B.C.D.4.已知:f(x)=asinx+bcosx,,若函数f(x)和g(x)有完全相同的对称轴,则不等式g(x)>2的解集是()A.B.C.D.5.已知各项均为正数的等比数列{a n},a3•a5=2,若f(x)=x(x﹣a1)(x﹣a2)…(x﹣a7),则f'(0)=()A.B.C.128 D.﹣1286.已知:,则目标函数z=2x﹣3y()A.z max=﹣7,z min=﹣9 B.,z min=﹣7C.z max=﹣7,z无最小值D.,z无最小值7.设f(x)=e1+sinx+e1﹣sinx,x1、,且f(x1)>f(x2),则下列结论必成立的是()A.x1>x2B.x1+x2>0 C.x1<x2D.>8.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的外接球的表面积S=()A.10πB.C.D.12π9.执行如图的程序框图,若输出S的值是2,则a的值可以为()A.2014 B.2015 C.2016 D.201710.我们把顶角为36°的等腰三角形称为黄金三角形.其作法如下:①作一个正方形ABCD;②以AD的中点E为圆心,以EC长为半径作圆,交AD延长线于F;③以D为圆心,以DF长为半径作⊙D;④以A为圆心,以AD长为半径作⊙A交⊙D于G,则△ADG为黄金三角形.根据上述作法,可以求出cos36°=()A.B.C.D.11.已知抛物线E:y2=2px(p>0),过其焦点F的直线l交抛物线E于A、B=﹣tan∠AOB,则p的值是()两点(点A在第一象限),若S△OABA.2 B.3 C.4 D.512.已知:m>0,若方程有唯一的实数解,则m=()A.B.C.D.1二、填空题:13. 1.028≈(小数点后保留三位小数).14.已知向量=(1,2),=(﹣2,﹣4),||=,若(+)=,则与的夹角为.15.已知:,则cos2α+cos2β的取值范围是.16.在四边形ABCD中,∠ABC=90°,,△ACD为等边三角形,则△ABC的外接圆与△ACD的内切圆的公共弦长=.三、解答题:17.(12.00分)已知数列{a n}的前n项和为S n,且满足a n=2S n+1(n∈N*).(1)求数列{a n}的通项公式;(2)若b n=(2n﹣1)•a n,求数列{b n}的前n项和T n.18.(12.00分)如图1,在平行四边形ABB1A1中,∠ABB1=60°,AB=4,AA1=2,C、C1分别为AB、A1B1的中点,现把平行四边形ABB1A11沿CC1折起如图2所示,连接B1C、B1A、B1A1.(1)求证:AB1⊥CC1;(2)若,求二面角C﹣AB 1﹣A1的正弦值.19.(12.00分)为评估设备M生产某种零件的性能,从设备M生产零件的流水线上随机抽取100件零件最为样本,测量其直径后,整理得到下表:经计算,样本的平均值μ=65,标准差=2.2,以频率值作为概率的估计值.(1)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为X,并根据以下不等式进行评判(p表示相应事件的频率):①p(μ﹣σ<X≤μ+σ)≥0.6826.②P(μ﹣σ<X≤μ+2σ)≥0.9544③P(μ﹣3σ<X≤μ+3σ)≥0.9974.评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙,若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁.试判断设备M的性能等级.(2)将直径小于等于μ﹣2σ或直径大于μ+2σ的零件认为是次品(i)从设备M的生产流水线上随意抽取2件零件,计算其中次品个数Y的数学期望E(Y);(ii)从样本中随意抽取2件零件,计算其中次品个数Z的数学期望E(Z).20.(12.00分)平面直角坐标系xOy中,已知椭圆的左焦点为F,离心率为,过点F且垂直于长轴的弦长为.(I)求椭圆C的标准方程;(Ⅱ)设点A,B分别是椭圆的左、右顶点,若过点P(﹣2,0)的直线与椭圆相交于不同两点M,N.(i)求证:∠AFM=∠BFN;(ii)求△MNF面积的最大值.21.(12.00分)已知函数,且函数f(x)的图象在点(1,﹣e)处的切线与直线x+(2e+1)y﹣1=0垂直.(1)求a,b;(2)求证:当x∈(0,1)时,f(x)<﹣2.[选修4-4:极坐标与参数方程选讲](本小题满分10分)22.(10.00分)在直角坐标系xOy中,直线l的参数方程为(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位),且以原点O为极点,以x轴非负半轴为极轴)中,圆C的方程为ρ=6sinθ.(1)求圆C的直角坐标方程;(2)若点P(1,2),设圆C与直线l交于点A,B,求|PA|+|PB|的最小值.[选修4-5:不等式选讲](本小题满分0分)23.已知a>0,b>0,函数f(x)=|x﹣a|+|x+b|的最小值为2.(1)求a+b的值;(2)证明:a2+a>2与b2+b>2不可能同时成立.2017-2018学年河南省南阳市高三(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知:如图,集合U为全集,则图中阴影部分表示的集合是()A.∁U(A∩B)∩C B.∁U(B∩C)∩A C.A∩∁U(B∪C)D.∁U(A∪B)∩C 【分析】阴影部分所表示的为在集合B中但不在集合A中的元素构成的部分,即在B中且在A的补集中.【解答】解:阴影部分所表示的为在集合A中但不在集合B,C中的元素构成的,故阴影部分所表示的集合可表示为A∩∁U(B∪C),故选:C.【点评】本题考查利用集合运算表示韦恩图中的集合、考查韦恩图是研究集合关系的常用工具.2.已知1+i是关于x的方程ax2+bx+2=0(a,b∈R)的一个根,则a+b=()A.﹣1 B.1 C.﹣3 D.3【分析】利用实系数方程的虚根成对定理,列出方程组,求出a,b即可.【解答】解:1+i是关于x的方程ax2+bx+2=0(a,b∈R)的一个根,一元二次方程虚根成对(互为共轭复数)..得:a=1,b=﹣2,a+b=﹣1.故选:A.【点评】本题考查实系数方程成对定理的应用,考查计算能力.3.已知双曲线C的一条渐近线的方程是:y=2x,且该双曲线C经过点,则双曲线C的方程是()A.B.C.D.【分析】设出双曲线方程代入点的坐标,然后求解双曲线方程即可.【解答】解:由题可设双曲线的方程为:y2﹣4x2=λ,将点代入,可得λ=﹣4,整理即可得双曲线的方程为.故选:D.【点评】本题考查双曲线的简单性质的应用以及双曲线方程的求法,考查计算能力.4.已知:f(x)=asinx+bcosx,,若函数f(x)和g(x)有完全相同的对称轴,则不等式g(x)>2的解集是()A.B.C.D.【分析】若函数f(x)和g(x)有完全相同的对称轴,则这两个函数的周期是一样的,即ω=1.通过解不等式g(x)>2求得x的取值范围.【解答】解:由题意知,函数f(x)和g(x)的周期是一样的,故ω=1,不等式g(x)>2,即,解之得:.故选:B.【点评】考查了正弦函数的对称性.根据函数的对称性求、求出ω是解决本题的关键.5.已知各项均为正数的等比数列{a n},a3•a5=2,若f(x)=x(x﹣a1)(x﹣a2)…(x﹣a7),则f'(0)=()A.B.C.128 D.﹣128【分析】令f(x)=x•g(x),其中g(x)=(x﹣a1)(x﹣a2)…(x﹣a7),利用函数的导数求解即可.【解答】解:令f(x)=x•g(x),其中g(x)=(x﹣a1)(x﹣a2)…(x﹣a7),则f'(x)=g(x)+x•g'(x),故,各项均为正数的等比数列{a n},a3•a5=2,,故.故选:B.【点评】本题考查函数的导数的应用,数列的简单性质的应用,考查转化思想以及计算能力.6.已知:,则目标函数z=2x﹣3y()A.z max=﹣7,z min=﹣9 B.,z min=﹣7C.z max=﹣7,z无最小值D.,z无最小值【分析】画出可行域,利用目标函数的几何意义,求解函数的最值即可.【解答】解:画出的可行域,如图:A(0,3),,C(4,5),目标函数z=2x﹣3y经过C时,目标函数取得最大值,z max=﹣7,没有最小值.故选:C.【点评】本题考查线性规划的简单应用,目标函数的最值考查数形结合的应用,是基础题.7.设f(x)=e1+sinx+e1﹣sinx,x1、,且f(x1)>f(x2),则下列结论必成立的是()A.x1>x2B.x1+x2>0 C.x1<x2D.>【分析】根据条件判断函数是偶函数,结合条件判断函数的单调性,进行判断即可.【解答】解:f(x)=f(﹣x),故f(x)是偶函数,而当时,f'(x)=cosx•e1+sinx﹣cosx•e1﹣sinx=cosx•(e1+sinx﹣e1﹣sinx)>0,即f(x)在是单调增加的.由f(x1)>f(x2),可得f(|x1|)>f(|x2|),即有|x1|>|x2|,即,故选:D.【点评】本题主要考查函数单调性的应用,根据条件判断函数的奇偶性和单调性是解决本题的关键.8.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的外接球的表面积S=()A.10πB.C.D.12π【分析】判断三视图复原的几何体的形状,通过已知的三视图的数据,求出该多面体的外接球的表面积.【解答】解析:该多面体如图示,外接球的半径为AG,HA为△ABC外接圆的半径,HG=1,,故,∴该多面体的外接球的表面积.故选:B.【点评】本题考查多面体的外接球的表面积的求法,考查空间几何体三视图、多面体的外接球等基础知识,考查空间想象能力、运算求解能力,考查函数与方程思想,是中档题.9.执行如图的程序框图,若输出S的值是2,则a的值可以为()A.2014 B.2015 C.2016 D.2017【分析】根据题意,模拟程序框图的运行过程,根据输出的S值即可得出该程序中a的值.【解答】解:模拟程序的运行,可得:S=2,k=0;满足条件k<a,执行循环体,可得:S=﹣1,k=1;满足条件k<a,执行循环体,可得:,k=2;满足条件k<a,执行循环体,可得:S=2,k=3;…,∴S的值是以3为周期的函数,当k的值能被3整除时,不满足条件,输出S的值是2,a的值可以是2016.故选:C.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,从而得出正确的结论,是基础题.10.我们把顶角为36°的等腰三角形称为黄金三角形.其作法如下:①作一个正方形ABCD;②以AD的中点E为圆心,以EC长为半径作圆,交AD延长线于F;③以D为圆心,以DF长为半径作⊙D;④以A为圆心,以AD长为半径作⊙A交⊙D于G,则△ADG为黄金三角形.根据上述作法,可以求出cos36°=()A.B.C.D.【分析】根据做法,图形如图所示,△ADG即为黄金三角形,不妨假设AD=AG=2,则,由余弦定理即可求出【解答】解:根据做法,图形如图所示,△ADG即为黄金三角形,不妨假设AD=AG=2,则,由余弦定理可得cos36°==故选:B.【点评】本题考查了黄金三角形的定义作法和余弦定理,属于中档题11.已知抛物线E:y2=2px(p>0),过其焦点F的直线l交抛物线E于A、B=﹣tan∠AOB,则p的值是()两点(点A在第一象限),若S△OABA.2 B.3 C.4 D.5【分析】利用三角形的面积推出,设A(x1,y1),B(x2,y2),则x1x2+y1y2=﹣3,通过,代入求解即可.【解答】解:,即,不妨设A(x1,y1),B(x2,y2),则x1x2+y1y2=﹣3,即有,又因为,故:p=2.故选:A.【点评】本题考查抛物线的简单性质的应用,直线与抛物线的位置关系的应用,是中档题.12.已知:m>0,若方程有唯一的实数解,则m=()A.B.C.D.1【分析】方法一:验证,当时,f(x)=lnx与g(x)=x2﹣x在点(1,0)处有共同的切线,即可;方法二:将方程整理得,设,则由题意,直线是函数f(x)的一条切线,不妨设切点为(x0,y0),列出方程组求解即可.【解答】解:方法一:验证,当时,f(x)=lnx与g(x)=x2﹣x在点(1,0)处有共同的切线y=x﹣1.方法二:将方程整理得,设,则由题意,直线是函数f(x)的一条切线,不妨设切点为(x0,y0),则有:,解之得:x0=1,y0=1,.故选:B.【点评】本题考查函数与方程的应用,求出方程的平方,直线与抛物线的位置关系的应用.二、填空题:13. 1.028≈ 1.172(小数点后保留三位小数).【分析】根据1.028=(1+0.02)8,利用二项式定理展开,可得它的近似值.【解答】解:1.028=(1+0.02)8=+++×0.023+…+≈=+++×0.023=1+8×0.02+28×0.0004+56×0.000008=1.172,故答案为:1.172【点评】本题主要考查二项式定理的应用,属于基础题.14.已知向量=(1,2),=(﹣2,﹣4),||=,若(+)=,则与的夹角为.【分析】设=(x,y),根据题中的条件求出x+2y=﹣,即=﹣,再利用两个向量的夹角公式求出cosθ的值,由此求得θ的值.【解答】解:设=(x,y),由向量=(1,2),=(﹣2,﹣4),||=,且(+)=,可得﹣x﹣2y=,即有x+2y=﹣,即=﹣,设与的夹角为等于θ,则cosθ===﹣.再由0≤θ≤π,可得θ=,故答案为:.【点评】本题主要考查两个向量的夹角公式的应用,求出=﹣是解题的关键,属于中档题15.已知:,则cos2α+cos2β的取值范围是.【分析】由已知利用二倍角公式化简可求cos2α+cos2β=3(cosβ﹣sinα),由,得sinα的范围,从而可求,进而得解.【解答】解:∵,∴cos2α+cos2β=1﹣2sin2α+2cos2β﹣1=2(sinα+cosβ)(cosβ﹣sinα)=3(cosβ﹣sinα),∵由,得,,易得:,∴,∴.故答案为:.【点评】本题主要考查了二倍角公式在三角函数化简求值中的应用,考查了正弦函数的性质及其应用,考查了计算能力和转化思想,属于基础题.16.在四边形ABCD中,∠ABC=90°,,△ACD为等边三角形,则△ABC的外接圆与△ACD的内切圆的公共弦长=1.【分析】以AC为x轴,AC的中点为坐标原点建立坐标系,分别求出△ABC的外接圆与△ACD的内切圆的方程,联立求得交点,利用两点间的距离公式求得两圆公共弦长.【解答】解:以AC为x轴,AC的中点为坐标原点建立坐标系,则A(﹣1,0),C(1,0),B(0,1),D(0,﹣),∴△ABC的外接圆的方程x2+y2=1,①△ACD的内切圆方程为,即,②联立①②可得两圆交点坐标为(,﹣),(,﹣),∴两圆的公共弦长为.故答案为:1.【点评】本题考查圆的方程的求法,考查圆与圆位置关系的应用,是中档题.三、解答题:17.(12.00分)已知数列{a n}的前n项和为S n,且满足a n=2S n+1(n∈N*).(1)求数列{a n}的通项公式;(2)若b n=(2n﹣1)•a n,求数列{b n}的前n项和T n.【分析】(1)当n=1时计算可知a1=﹣1,当n≥2时将a n=2S n+1与a n﹣1=2S n﹣1+1作差可知a n=﹣a n﹣1,进而可知数列{a n}是首项为﹣1,公比为﹣1的等比数列;(2)通过(1)可知,分n为奇偶两种情况讨论即可.【解答】解:(1)当n=1时,a1=2S1+1=2a1+1,解得a1=﹣1.当n≥2时,有:a n=2S n+1,a n﹣1=2S n﹣1+1,两式相减、化简得a n=﹣a n﹣1,所以数列{a n}是首项为﹣1,公比为﹣1的等比数列,从而.(2)由(1)得,当n为偶数时,b n+b n=2,;﹣1当n为奇数时,n+1为偶数,T n=T n+1﹣b n+1=(n+1)﹣(2n+1)=﹣n.所以数列{b n}的前n项和.【点评】本题考查数列的通项公式和前n项和公式,考查分类讨论的思想,注意解题方法的积累,属于中档题.18.(12.00分)如图1,在平行四边形ABB1A1中,∠ABB1=60°,AB=4,AA1=2,C、C1分别为AB、A1B1的中点,现把平行四边形ABB1A11沿CC1折起如图2所示,连接B1C、B1A、B1A1.(1)求证:AB1⊥CC1;(2)若,求二面角C﹣AB 1﹣A1的正弦值.【分析】(1)取CC1的中点O,连接OA,OB1,AC1,说明AO⊥CC1,OB1⊥CC1,推出CC1⊥平面OAB1,然后证明AB1⊥CC1;(2)证明AO⊥OB1,以O为原点,以OC,OB1,OA为x,y,z轴建立空间直角坐标系,求出平面AB1C的法向量,平面A1B1A的法向量,利用空间向量的数量积求解二面角C﹣AB1﹣A1的正弦值即可.【解答】证明:(1)取CC1的中点O,连接OA,OB1,AC1,∵在平行四边形ABB1A1中,∠ABB1=60°,AB=4,AA1=2,C、C1分别为AB、A1B1的中点,∴△ACC1,△BCC1为正三角形,则AO⊥CC1,OB1⊥CC1,又∵AO∩OB1=O,∴CC1⊥平面OAB1,∵AB1⊂平面OAB1∴AB1⊥CC1;…4分(2)∵∠ABB1=60°,AB=4,AA1=2,C、C1分别为AB、A1B1的中点,∴AC=2,,∵,则,则三角形AOB1为直角三角形,则AO⊥OB1,…6分以O为原点,以OC,OB1,OA为x,y,z轴建立空间直角坐标系,则C(1,0,0),B1(0,,0),C1(﹣1,0,0),A(0,0,),则则,=(0,,),=(1,0,),设平面AB 1C的法向量为,则,令z=1,则y=1,,则,设平面A 1B1A的法向量为,则,令z=1,则x=0,y=1,即,…8分则…10分∴二面角C﹣AB1﹣A1的正弦值是.…12分.【点评】本题考查二面角的平面角的求法,直线与平面垂直的判定定理以及性质定理的应用,考查计算能力与空间想象能力.19.(12.00分)为评估设备M生产某种零件的性能,从设备M生产零件的流水线上随机抽取100件零件最为样本,测量其直径后,整理得到下表:经计算,样本的平均值μ=65,标准差=2.2,以频率值作为概率的估计值.(1)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为X,并根据以下不等式进行评判(p表示相应事件的频率):①p(μ﹣σ<X≤μ+σ)≥0.6826.②P(μ﹣σ<X≤μ+2σ)≥0.9544③P(μ﹣3σ<X≤μ+3σ)≥0.9974.评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙,若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁.试判断设备M的性能等级.(2)将直径小于等于μ﹣2σ或直径大于μ+2σ的零件认为是次品(i)从设备M的生产流水线上随意抽取2件零件,计算其中次品个数Y的数学期望E(Y);(ii)从样本中随意抽取2件零件,计算其中次品个数Z的数学期望E(Z).【分析】(Ⅰ)利用条件,可得设备M的数据仅满足一个不等式,即可得出结论;(Ⅱ)易知样本中次品共6件,可估计设备M生产零件的次品率为0.06.(ⅰ)由题意可知Y~B(2,),于是E(Y)=2×=;(ⅱ)确定Z的取值,求出相应的概率,即可求出其中次品个数Z的数学期望E (Z).【解答】解:(Ⅰ)P(μ﹣σ<X≤μ+σ)=P(62.8<X≤67.2)=0.8≥0.6826,P(μ﹣2σ<X≤μ+2σ)=P(60.6<X≤69.4)=0.94≥0.9544,P(μ﹣3σ<X≤μ+3σ)=P (58.4<X≤71.6)=0.98≥0.9974,因为设备M的数据仅满足一个不等式,故其性能等级为丙;…(4分)(Ⅱ)易知样本中次品共6件,可估计设备M生产零件的次品率为0.06.(ⅰ)由题意可知Y~B(2,),于是E(Y)=2×=;…(8分)(ⅱ)由题意可知Z的分布列为故E(Z)=0×+1×+2×=.…(12分)【点评】本题考查概率的计算,考查正态分布曲线的特点,考查数学期望,考查学生的计算能力,属于中档题.20.(12.00分)平面直角坐标系xOy中,已知椭圆的左焦点为F,离心率为,过点F且垂直于长轴的弦长为.(I)求椭圆C的标准方程;(Ⅱ)设点A,B分别是椭圆的左、右顶点,若过点P(﹣2,0)的直线与椭圆相交于不同两点M,N.(i)求证:∠AFM=∠BFN;(ii)求△MNF面积的最大值.【分析】(1)运用椭圆的离心率公式和过焦点垂直于对称轴的弦长,结合a,b,c的关系解得a,b,可得椭圆的方程;(II)方法一、(i)讨论直线AB的斜率为0和不为0,设A(x1,y1),B(x2,y2),AB方程为x=my﹣2,代入椭圆方程,运用韦达定理和判别式大于0,运用直线的斜率公式求斜率之和,即可得证;(ii)求得△MNF的面积,化简整理,运用基本不等式可得最大值.方法二、(i)由题知,直线AB的斜率存在,设直线AB的方程为:y=k(x+2),设A(x1,y1),B(x2,y2),联立椭圆方程,消去y,可得x的方程,运用韦达定理和判别式大于0,再由直线的斜率公式,求得即可得证;(ii)求得弦长|MN|,点F到直线的距离d,运用三角形的面积公式,化简整理,运用换元法和基本不等式,即可得到所求最大值.【解答】解:(1)由题意可得,令x=﹣c,可得y=±b=±,即有,又a2﹣b2=c2,所以.所以椭圆的标准方程为;(II)方法一、(i)当AB的斜率为0时,显然∠AFM=∠BFN=0,满足题意;当AB的斜率不为0时,设A(x1,y1),B(x2,y2),AB方程为x=my﹣2,代入椭圆方程,整理得(m2+2)y2﹣4my+2=0,则△=16m2﹣8(m2+2)=8m2﹣16>0,所以m2>2.,可得==.则k MF+k NF=0,即∠AFM=∠BFN;(ii)当且仅当,即m2=6.(此时适合△>0的条件)取得等号.则三角形MNF面积的最大值是.方法二(i)由题知,直线AB的斜率存在,设直线AB的方程为:y=k(x+2),设A(x1,y1),B(x2,y2),联立,整理得(1+2k2)x2+8k2x+8k2﹣2=0,则△=64k4﹣4(1+2k2)(8k2﹣2)=8﹣16k2>0,所以.,可得=∴k MF+k NF=0,即∠AFM=∠BFN;(ii),点F(﹣1,0)到直线MN的距离为,即有==.令t=1+2k2,则t∈[1,2),u(t)=,当且仅当,即(此时适合△>0的条件)时,,即,则三角形MNF面积的最大值是.【点评】本题考查椭圆的方程的求法,注意运用离心率公式和过焦点垂直于对称轴的弦长,考查直线和椭圆方程联立,运用韦达定理和判别式大于0,以及直线的斜率公式,考查基本不等式的运用:求最值,属于中档题.21.(12.00分)已知函数,且函数f(x)的图象在点(1,﹣e)处的切线与直线x+(2e+1)y﹣1=0垂直.(1)求a,b;(2)求证:当x∈(0,1)时,f(x)<﹣2.【分析】(1)由f(1)=﹣e,得a﹣b=﹣1,由f'(1)=2e+1,得到a﹣4b=2,由此能求出a,b.(2)f(x)<﹣2,即证,令g(x)=(2﹣x3)e x,,由此利用导数性质能证明f(x)<﹣2.【解答】解:(1)因为f(1)=﹣e,故(a﹣b)e=﹣e,故a﹣b=﹣1①;依题意,f'(1)=2e+1;又,故f'(1)=e(4a﹣b)+1=2e+1,故4a﹣b=2②,联立①②解得a=1,b=2;(2)由(1)得,要证f(x)<﹣2,即证;令g(x)=(2﹣x3)e x,,g'(x)=﹣e x(x3+3x2﹣2)=﹣e x(x+1)(x2+2x﹣2)令g'(x)=0,因为x∈(0,1),e x>0,x+1>0,故,所以g(x)在上单调递增,在单调递减.而g(0)=2,g(1)=e,当时,g(x)>g(0)=2当时,g(x)>g(1)=e故当x∈(0,1)时,g(x)>2;而当x∈(0,1)时,,故函数所以,当x∈(0,1)时,ϕ(x)<g(x),即f(x)<﹣2.【点评】本题考查导数的应用,考查导数的几何意义,考查不等式的证明,考查学生分析解决问题的能力,属于中档题.[选修4-4:极坐标与参数方程选讲](本小题满分10分)22.(10.00分)在直角坐标系xOy中,直线l的参数方程为(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位),且以原点O为极点,以x轴非负半轴为极轴)中,圆C的方程为ρ=6sinθ.(1)求圆C的直角坐标方程;(2)若点P(1,2),设圆C与直线l交于点A,B,求|PA|+|PB|的最小值.【分析】(I)利用x=ρcosθ,y=ρsinθ可将圆C极坐标方程化为直角坐标方程;(II)先根据(I)得出圆C的普通方程,再根据直线与交与交于A,B两点,可以把直线与曲线联立方程,用根与系数关系结合直线参数方程的几何意义,表示出|PA|+|PB|,最后根据三角函数的性质,即可得到求解最小值.【解答】解:(Ⅰ)由ρ=6sinθ得ρ2=6ρsinθ,化为直角坐标方程为x2+y2=6y,即x2+(y﹣3)2=9.(Ⅱ)将l的参数方程代入圆C的直角坐标方程,得t2+2(cosα﹣s inα)t﹣7=0.由△=(2cosα﹣2sinα)2+4×7>0,故可设t1,t2是上述方程的两根,所以,又直线l过点(1,2),故结合t的几何意义得|PA|+|PB|=|t1|+|t2|=|t1﹣t2|====2.所以|PA|+|PB|的最小值为2.【点评】此题主要考查参数方程的优越性,及直线与曲线相交的问题,在此类问题中一般可用联立方程式后用韦达定理求解即可,属于综合性试题有一定的难度.[选修4-5:不等式选讲](本小题满分0分)23.已知a>0,b>0,函数f(x)=|x﹣a|+|x+b|的最小值为2.(1)求a+b的值;(2)证明:a2+a>2与b2+b>2不可能同时成立.【分析】(1)运用绝对值不等式的性质可得f(x)的最小值为a+b,即可得到所求最小值;(2)运用反证法,结合二次不等式的解法,即可得证.【解答】解:(1)∵a>0,b>0,∴f(x)=|x﹣a|+|x+b|≥|(x﹣a)﹣(x+b)|=|a+b|=a+b,∴f(x)min=a+b,由题设条件知f(x)min=2,∴a+b=2;证明:(2)∵a+b=2,而,故ab≤1.假设a2+a>2与b2+b>2同时成立.即(a+2)(a﹣1)>0与(b+2)(b﹣1)>0同时成立,∵a>0,b>0,则a>1,b>1,∴ab>1,这与ab≤1矛盾,从而a2+a>2与b2+b>2不可能同时成立.【点评】本题考查绝对值不等式的性质以及不等式的证明,考查反证法的运用,以及运算能力和推理能力,属于中档题.。
浙江省宁波市高三数学上学期期末考试试题 理
宁波市2015学年度第一学期期末考试高三数学(理科)试卷参考公式:柱体的体积公式:V =Sh ,其中S 表示柱体的底面积,h 表示柱体的高.锥体的体积公式:V =31Sh ,其中S 表示锥体的底面积,h 表示锥体的高.球的表面积公式:S =4πR 2,其中R 表示球的半径. 球的体积公式:V =34πR 3,其中R 表示球的半径.第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}0,1,2,3,4M =,{}21log (2)2N x x =<+<,则=N M I( ▲ )A. {1} B . {2,3} C .{0,1} D . {2,3,4} 2.已知a R ∈,则“|1|||1a a -+≤”是“函数xy a = 在R 上为减函数”的( ▲ )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.已知向量(2,3),(1,2)a b ==-r r ,若2a b -r r 与非零向量ma nb +r r共线,则n m等于 ( ▲ )A .2- B.2 C.12-D.124.如图是一个几何体的三视图,则这个几何体的表面积是 ( ▲ )24244侧视图俯视图正视图A .84B .7682+C .7882+D .8082+5.已知平面α与平面β交于直线l ,且直线a α⊂,直线 b β⊂, 则下列命题错误..的是 ( ▲ ) A .若,a b αβ⊥⊥,且b 与l 不垂直,则a l ⊥ B .若αβ⊥,b l ⊥,则a b ⊥C .若a b ⊥,b l ⊥,且a 与l 不平行,则αβ⊥D .若a l ⊥,b l ⊥,则αβ⊥6.已知函数()sin(2)f x x ϕ=+,其中ϕ为实数,若()()6f x f π≤对任意x R ∈恒成立,且()()2f f ππ>,则()f x 的单调递增区间是 ( ▲ )A .,()36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦B .,()2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦ C . 2,()63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ D . ,()2k k k Z πππ⎡⎤-∈⎢⎥⎣⎦7.已知实数列{}n a 是等比数列,若2588a a a =-,则151959149a a a a a a ++ ( ▲ )A .有最大值12B .有最小值12C .有最大值52D .有最小值528. 已知12,F F 分别是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,其离心率为e ,点B 的坐标为(0,)b ,直线1F B 与双曲线C 的两条渐近线分别交于,P Q 两点,线段PQ 的垂直平分线与x 轴,直线1F B 的交点分别为,M R ,若1RMF ∆与2PQF ∆的面积之比为e ,则e 的值为 ( ▲ )A.6232C. 22第Ⅱ卷(非选择题 共110分)二、 填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分. 9.已知log 2,log 3a a m n ==,则2m na +=__▲__,用,m n 表示4log 6为__▲__.10.已知抛物线24x y =的焦点F 的坐标为__▲__,若M 是抛物线上一点,||4MF =,O 为坐标原点,则MFO ∠=__▲__.11.若函数221,0(),0(2),0x x x f x a x g x x ⎧++>⎪==⎨⎪<⎩为奇函数,则a =__▲__,((2))f g -= __▲__.12.对于定义在R 上的函数()f x ,如果存在实数a ,使得()()1f a x f a x +⋅-=对任意实数x R ∈恒成立,则称()f x 为关于a的“倒函数”.已知定义在R 上的函数()f x 是关于0和1的“倒函数”, 且当]1,0[∈x 时,)(x f 的取值范围为]2,1[,则当[1,2]x ∈时,()f x 的取值范围为__▲__,当]2016,2016[-∈x 时,()f x 的取值范围为__▲__.13. 已知关于x 的方程2220(,)x ax b a b R ++-=∈有两个相异实根,若其中一根在区间(0,1)内,另一根在区间(1,2)内,则41b a --的取值范围是__▲__. 14.若正数,x y 满足22421x y x y +++=,则xy 的最大值为__▲__. 15. 在ABC ∆中,10,30BAC ACB ∠=︒∠=︒ ,将直线BC 绕AC 旋转得到1B C ,直线AC 绕AB 旋转得到1AC ,则在所有旋转过程中,直线1B C 与直线1AC 所成角的取值范围为__▲__.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(本题满分14分)在ABC ∆中,角,,A B C 所对的边分别是,,a b c ,且2a =,242cossin 25B C A ++=. (Ⅰ)若满足条件的ABC ∆有且只有一个,求b 的取值范围; (Ⅱ)当ABC ∆的周长取最大值时,求b 的值.17.(本题满分15分) 如图,在多面体EF ABCD - 中,,ABCD ABEF 均为直角梯形,B2ABE ABC π∠=∠=,DCEF 为平行四边形,平面DCEF ⊥ 平面ABCD .(Ⅰ)求证:DF ⊥ 平面ABCD ;(Ⅱ)若ABD ∆是等边三角形,且BF 与平面DCEF, 求二面角A BF C --的平面角的余弦值.AE18.(本题满分15分)已知函数2()1f x x =-.(Ⅰ)对于任意的12x ≤≤,不等式24|()|4()|(1)|m f x f m f x +≤-恒成立,求实数m 的取值范围;(Ⅱ)若对任意实数1[1,2]x ∈,存在实数2[1,2]x ∈ ,使得122()|2()|f x f x ax =-成立,求实数a 的取值范围.19.(本题满分15分)已知12,F F 为椭圆22122:1(0)x y C a b a b+=>>的左、右焦点,2F在以Q 为圆心,1为半径的圆2C 上,且12||||2QF QF a += .(Ⅰ)求椭圆1C 的方程;(Ⅱ)过点(0,1)P 的直线1l1C 于,A B 两点,过P 与1l 直的直线2l 交圆2C 于,C D 点,M 为线段CD 中点,求MAB ∆面积的取值范围.20.(本题满分15分) 对任意正整数n ,设n a 是方程21xx n+=的正根. 求证:(Ⅰ)1n n a a +>;(Ⅱ)2311111112323n a a na n+++<++++L L .宁波市2015学年第一学期期末试卷高三数学(理科)参考答案说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容制订相应的评分细则.二、对计算题,当考生的题答在某一步出现错误时,如果后续部分的解答未改变该题的内容与难度,可视影响的程度决定后续部分的给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数.选择题和填空题不给中间分.一、选择题:本题考查基本知识和基本运算.每小题5分,满分40分. 1.A 2. B 3.C 4. B 5.D 6.C 7.D 8.A二、填空题: 本题考查基本知识和基本运算. 多空题每题6分,单空题每题4分,共36分.9. 12,2m n m + 10.(0,1),23π11. 0,-25 12.1[,1]2,1[,2]213. 13,22⎛⎫⎪⎝⎭14. 23- 15.5[,]1818ππ三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤. 16.(本题满分14分) 解:242cos sin 25B C A ++=41cos()sin 5B C A ⇒+++=即1sin cos 5A A ⇒-=- 又0A π<<,且22sin cos 1A A +=,有3sin 54cos 5A A ⎧=⎪⎪⎨⎪=⎪⎩……………………3分(1)若满足条件的ABC ∆有且只有一个,则有sin a b A =或a b ≥ 则b 的取值范围为10(0,2]{}3U ; ……………………7分 (2)设ABC ∆的周长为l ,由正弦定理得(sin sin )sin 102[sin sin()]3al a b c a B C AB A B =++=++=+++102[sin sin cos cos sin ]322(3sin cos )2210)B A B A B B B B θ=+++=++=++……………………10分 其中θ为锐角,且10sin 10310cos θθ⎧=⎪⎪⎨⎪=⎪⎩,max 2l =+cos 1010B B ==.……………………12分此时sin sin ab B A==……………………14分 (注:也可利用余弦定理2222cos a b c bc A =+-,结合基本不等式求解) 17.(本题满分15分)(Ⅰ)证明:因为2ABE ABC π∠=∠=,所以AB ⊥ 平面BCE又//EF CD ,所以//EF ABCD 平面,从而有////AB CD EF ,………………3分所以CD ⊥ 平面BCE ,从而CD CE ⊥, 又//CE DF ,所以CD DF ⊥, 又平面DCEF ⊥ 平面ABCD , 所以DF ⊥ 平面ABCD . ……………………7分 (Ⅱ)过C 作CH BE ⊥交BE 于H ,HK BF ⊥交BF 于K ,因为AB ⊥ 平面BCE ,所以 CH AB ⊥,从而F H BE C A ⊥平面, 所以CH BF ⊥,从而BF CHK ⊥平面 ,所以BF KH ⊥即HKC ∠为C BF E -- 的平面角,与 A BF C --的平面角互补. ……………10分 因为BC DCEF ⊥ ,所以BF 与平面DCEF 所成角为BFC ∠. 由tan CB BFC CF ∠===,所以2222CB CD CE =+ ,………12分由ABD ∆是等边三角形,知30CBD ∠=︒ ,所以CB =令CD a = ,所以,,CB CE ===,CH a CK ===.所以sin CH CKH CK ∠==,1os 4c CKH ∠=. 所以二面角A BF C --的平面角的余弦值为14-. ……………………15分ABA法二:因为,,CB CD CE 两两垂直,以C 为原点,,,CD CB CE 所在直线为,,x y z 轴,如图建立空间直角坐标系. 不妨设1CD =.因为BC DCEF ⊥ ,所以BF 与平面DCEF 所成角为BFC ∠ . 由tan CB BFC CF ∠===,所以2222CB CDCE =+ ,…………9分 由ABD∆是等边三角形,知30CBD ∠=︒,所以CB CE===(1,0,0),D BEF ………………11分CF CB ==u u u r u u u r ,(2,0,0),(1,BA BF ==u u u r u u u r平面ABF 的一个法向量1111(,,)n x y z =u r ,平面CBF 的一个法向量2222(,,)n x y z =u u r则 111120xx =⎧⎪⎨+=⎪⎩ 且22220x ⎧=⎪⎨+=⎪⎩取12(n n ==-u r u u r……………………13分则1212121cos ,4||||n n n n n n ⋅<>==⋅u r u u ru r u u r ur u u r . 二面角A BF C --的平面角与12,n n u r u u r的夹角互补.所以二面角A BF C --的平面角的余弦值为14-. ……………………15分18. 解:(Ⅰ)由24|()|4()|(1)|m f x f m f x +≤-对任意的12x ≤≤恒成立. 得22224(1)4(1)2m x m x x -+-≤-对任意的12x ≤≤恒成立.整理得22(41)240m x x +--≤对任意的12x ≤≤恒成立. ……………………3分即有222244x x m x-++≤对任意的12x ≤≤恒成立. 又22215[,]4241114244x x x x x -++⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭∈.故214m ≤,则实数m 的取值范围为11,22⎡⎤-⎢⎥⎣⎦. ……………………6分 (Ⅱ)11()(12)y f x x =≤≤的值域为1[0,3]D =, ……………………7分 令()|2()|g x f x ax =- 即2()|22|g x x ax =--.原问题等价于当[1,2]x ∈时,()g x 的值域为[0,]t ,其中3t ≥. ………………9分 令2()22,(12)h x x ax x =--≤≤ . (1)当14a≤时,即4a ≤时,(1)()(2)h h x h ≤≤. 所以(1)(2)0h h ≤且(1)3h ≤-或(2)3h ≥ . 即03a ≤≤且3a ≥ 或32a ≤. 所以302a ≤≤或3a =. ……………………11分 (2)当24a≥时,即8a ≥时,(2)()(1)h h x h ≤≤ 所以(1)(2)0h h ≤,无解; ……………………13分 (3)当124a<< ,即48a <<时,()()max{(1),(2)}4a h h x h h ≤≤因为(1)0h a =-< ,所以(2)620h a =-≥ ,从而3a ≤ 无解. …………………15分 综上,所求a 的取值范围为302a ≤≤或3a =. 19.(本题满分15分)xyMDCQB OAP解:(Ⅰ)圆2C 的方程为22(2)(1)1x y -+-=,此圆与x 轴相切,切点为(2,0)所以2c =,即222a b -= ,且2(2,0)F ,1(2,0)F - ……………………2分又12||||312QF QF a +=+=. ……………………4分 所以2a = ,2222b a c =-=所以椭圆1C 的方程为22142x y +=. ……………………6分 (Ⅱ)当1l 平行x 轴的时候,2l 与圆2C 无公共点,从而MAB ∆不存在; 可以设1:(1)l x t y =-,则2:10l tx y +-= .由22142(1)x y x t y ⎧+=⎪⎨⎪=-⎩消去x 得2222(2)240t y t y t +-+-= 则222122(1)(2t 8)||1|t AB t y y ++=+-=……………………8分 又圆心2,1)Q 到2l 的距离12211t d t =<+ 得21t < . ……………………10分又,MP AB QM CD ⊥⊥所以M 到AB 的距离即Q 到AB 的距离,设为2d , 即2222211d tt==++ . ……………………12分所以MAB ∆面积222124||22t S AB d t +=⋅=+令2[2,54)u t ∈=+ 则225(,2]22(2)2u S f u u u u===∈-- . 所以MAB ∆面积的取值范围为25(,2]. ……………………15分 20.(本题满分15分)证:由 21n n a a n+=,且0n a > 得 01n a <<.……………………3分 (Ⅰ)22111,11n n n n a a a a n n +++=+=+ 两式相减得221101n n n n a a a a n n++=-+-+ 2211111()()n n n n n n n n a a a a n na a a a n++++<-+-=-++. 因为110n n a a n+++>,故10n n a a +->,即1 .n n a a +> ……………………7分 法二:2114n n n a -++= ……………………3分 2114n n=++为单调 ……………………7分 (Ⅱ)因为 11n n a a n ⎛⎫+= ⎪⎝⎭, 所以11n n a a n=+, 由01n a << 得 111n a n<+ . ……………………10分 从而当2i ≥时, 21111111(1)(11)1i i a i i i i i -<+-=<-- ,121211111111(1)1(1)1111()1111nn i i i in i i a a i a a i i a n a ===-=-+-<-+--=-<∑∑∑ 所以2311111112323n a a na n +++<++++L L . ……………………15分。
山西省太原市2022届高三上学期期末数学(理)试题(解析版)
,
令 ,则 ;令 ,则 .
是 的单调递增区间; 是 的单调递减区间.
【小问2详解】
在 恒成立,
即 在 恒成立,
即 在 恒成立,
令 ,
在 上单调递增且 ,
时, , 时, ,
在 上单调递减,在 上单调递增,
在 处取得最小值,即 ,
令 ,
令 , 在 单调递减,
因为 ,当 时, ;当 时, .
D选项, 内的任何直线都与 平行,则 ,D选项正确.
故选:D
4.等比数列 中, ,则 的通项公式为()
A. B.
C 或 D. 或
【答案】C
【解析】
【分析】由已知,结合等比数列的通项公式可得 求公比,进而写出 的通项公式.
【详解】令公比 ,由题设有 ,
所以 ,解得 或 ,经检验符合题设
所以 ,可得 或 .
可取 ,
则 ,
故平面PAB与平面BDM所成锐二面角的余弦值为 .
21.已知函数 .
(1)求函数 的单调区间;
(2)若 恒成立,求实数 的取值范围.
【答案】(1) 单调递增区间是 ,单调递减区间是
(2)
【解析】
【分析】(1)导数后解不等式即可求解;
(2)将问题转化为 在 恒成立,再分别研究 与 的最值,再比较即可.
从1到10这十个数中任取三个数所有的取法,这三个数的和为奇数的取法,由古典概型概率计算公式可得答案.
【详解】设“从1到10这十个数中任取三个,这三个数的和为奇数”为事件 ,
从1到10这十个数中任取三个数有 种取法,
要使这三个数的和为奇数,须取的三个数中有2个偶数一个奇数,或者三个数都为奇数两种情况;1到10这十个数分成偶数一组,奇数一组各有5个,所以
72高三数学期末考试试题(理科)72
高三数学期末考试试题(理科)一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给 出的四个选项中,有且只有一项符合题目要求.)1、设集合21{|log 1},{|0},2x A x x B x A B x -=<=<=+ ( ) A 、}20|{<<x x B 、{|21}x x -<< C 、{|01}x x << D 、{|22}x x -<<2、已知n S 是数列}{n a 的前n 项和,n S n =+)1(log 2,则}{n a 是 ( )A 、等差数列B 、等比数列C 、既是等差数列又是等比数列D 、既不是等差数列又不是等比数列3、若函数()f x 的值域是]3,21[,则函数)(1)()(x f x f x F +=的值域是( ) A 、]3,21[ B 、]310,2[ C 、]310,25[ D 、]310,3[ 4、函数()(3)x f x x e =-的单调递增区间是( ) A 、)2,(-∞ B 、)3,0( C 、)4,1( D 、),2[+∞5、11x>是 1x <成立的( ) A 、充分不必要条件 B 、必要不充分条件C 、充要条件D 、非充分非必要条件6、若点A 的坐标为)2,3(,F 为抛物线x y 22=的焦点,点M 在该抛物线上移动,为使得||||MF MA +取得最小值,则点M 的坐标( )A 、)0,0(B 、)1,1(C 、)2,2(D 、)1,21( 7、已知椭圆22221(0,0)x y a b a b+=>>,过椭圆的右焦点作x 轴垂线交椭圆于B A ,两点,若以||AB 为直径的圆过坐标原点,则椭圆的离心率e 为( )A 、215-B 、213-C 、21D 、23 8、在ABC ∆中,22tan tan a B b A =,则ABC ∆一定是( )A 、直角三角形B 、等腰三角形C 、等腰三角形或直角三角形D 、等腰直角三角形9、已知向量)s i n 3,c o s 3(),sin 2,cos 2(ββαα==b a ,若a 与b 的夹角为︒60,则直线021s i n c o s =+-ααy x 与圆21)sin ()cos (22=++-ββx x 的位置关系是( ) A 、相切 B 、相交 C 、相离 D 、随βα,的值而定10、已知向量)5,2(),5,2(y x b y x a -== ,曲线1=⋅b a 上一点P 到)0,3(F 的距离为6,Q 为PF 中点,O 为坐标原点,则=||OQ ( )A 、1B 、2C 、5D 、1或511、若方程01)1(2=+++++b a x a x 的两根分别为椭圆和双曲线的离心率,则ab 的范围 是( )A 、12-<<-a bB 、1,2->-<a b a bC 、212-<<-a bD 、2,21-<->a b a b 12、已知曲线22:x y C =点)2,0(-A 及点),3(a B 从点A 观察点B 要使视线不被曲线C 挡住,则实数a 的范围( )A 、),4(+∞B 、)4,(-∞C 、),10(+∞D 、)10,(-∞二、填空题:(本大题共4小题,每小题5分,共20分)13、已知)(x f 为偶函数,且⎰-=6616)(dx x f ,则⎰=60)(dx x f __________。
江西省萍乡市2022-2023学年高三上学期期末考试数学理科试卷
准考证号姓名(在此卷上答题无效)萍乡市2022-2023学年度高三期末考试试卷理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页.满分150分,考试时间120分钟.注意事项:1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人的准考证号、姓名是否一致.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号.第Ⅱ卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答题无效.3.考试结束后,监考员将试题卷、答题卡一并收回.第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}1,0,1,2A =-,{}2,x B y y x A ==∈,则A B = A .{}1,2B .1,22⎡⎤⎢⎥⎣⎦C .[)1,2-D .{}12.已知i 为虚数单位,则复数11i+的实部与虚部之和为A .1-B .0C .1D .23.在各项均为正数的等差数列{}n a 中,23=a ,若235,1,3++a a a 成等比数列,则公差=d A .1-或2B .2C .1或2-D .14.已知m 和n 是空间中两条不同的直线,α和β是两个不重合的平面,下列命题正确的是A .若⊥m n ,n ⊂α,则α⊥m B .若m ⊂α,n ⊂β, αβ,则m n P C .若m αP ,⊥m n ,则α⊥n D .若α⊥m ,m β,则αβ⊥5.关于某校运动会5000米决赛前三名选手甲、乙、丙有如下命题:“甲得第一”为命题p ;“乙得第二”为命题q ;“丙得第三”为命题r .若∨p q 为真命题,∧p q 为假命题,()⌝∧q r 为假命题,则下列说法一定正确的为A .甲不是第一B .乙不是第二C .丙不是第三D .根据题设能确定甲、乙、丙的顺序6.在二项式6(2)-a x 的展开式中,若3x 的系数为160,则=aA .1-B .1C D .7.函数=y kx 与ln =y x 的图象有且只有一个公共点,则实数k 的取值范围为A .1=k B .1e=k C .1e=k 或0≤k D .1=k 或0≤k 8.分形是由混沌方程组成,其最大的特点是自相似性:当我们拿出图形的一部分时,它与整体的形状完全一样,只是大小不同.谢尔宾斯基地毯是数学家谢尔宾斯基提出的一个分形图形,它的构造方法是:将一个正方形均分为9个小正方形,再将中间的正方形去掉,称为一次迭代;然后对余下的8个小正方形做同样操作,直到无限次,如右上图.进行完二次迭代后的谢尔宾斯基地毯如右下图,从正方形ABCD 内随机取一点,该点取自阴影部分的概率为A .19B .1781C .29D .3179.已知()f x 是定义在R 上的奇函数,()'f x 是其导函数.当0≥x 时,()20'->f x x ,且()23=f ,则()()3113≥+f x x 的解集是A .[)2,+∞-B .[]2,2-C .[)2,+∞D .(],2∞--10.下列关于函数1()sin 2cos =+f x x x有关性质的描述,正确的是A .函数()f x 的最小正周期为2πB .函数()f x 的图象关于直线2π=x 对称C .函数()f x 的最小正周期为πD .函数()f x 的图象关于直线=πx 对称11.点M 为抛物线28=y x 上任意一点,点N 为圆22430+-+=x y x 上任意一点,P 为直线10---=ax y a 的定点,则+MP MN 的最小值为A .2B C .3D .2+12.已知函数()ln f x ax a =+,()e ln x g x x x =+-,若关于x 的不等式()()f x g x >在区间(0,)+∞内有且只有两个整数解,则实数a 的取值范围为A .(2e,e ⎤⎦B .2e (e,]2C .(23e ,e ⎤⎦D .23e e (,]23萍乡市2022-2023学年度高三期末考试试卷理科数学第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22,23题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.在平面直角坐标系中,角α的顶点在坐标原点,始边与x 轴的非负半轴重合,已知角α终边过点(2,1)-P ,则sin 2α=__________.14.在平面直角坐标系中,向量,a b 满足()()1,1,231,5=+=- a a b ,则⋅= a b __________.15.在∆ABC 中,内角,,A B C 的对边分别为,,a b c ,若∆ABC 的周长为7,面积为,且828ab c +=,则=c __________.16.已知球O 是棱长为1的正四面体的内切球,AB 为球O 的一条直径,点P 为正四面体表面上的一个动点,则⋅PA PB 的取值范围为__________.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)记n S 为数列1⎧⎫⎨⎬⎩⎭n a 的前n 项和,已知11=a ,()21⋅=-n n a S n n .(1)求数列{}n a 的通项公式;(2)求数列1321+⎧⎫⋅⎪⎪⎨⎬+⎪⎪⎩⎭n n a n 的前n 项和n T .18.(本小题满分12分)如图,在五面体ABCDE 中,ABC ∆为等边三角形,平面ABC ⊥平面ACDE ,且222AC AE ED ===,90∠=∠=︒DEA EAC ,F 为边BC 的中点.(1)证明: DF 平面ABE ;(2)求EF 与平面ABE 所成角的正弦值.19.(本小题满分12分)甲、乙两人参加某知识竞赛对战,甲答对每道题的概率均为12,乙答对每道题的概率均为(01)<<p p ,两人答每道题都相互独立.答题规则:第一轮每人三道必答题,答对得10分,答错不加分也不扣分;第二轮为一道抢答题,每人抢到的概率都为12,若抢到,答对得10分,对方得0分,答错得0分,对方得5分.(1)若乙在第一轮答题中,恰好答对两道必答题的概率为()f p ,求()f p 的最大值和此时乙答对每道题的概率0p ;(2)以(1)中确定的0p 作为p 的值,求乙在第二轮得分X 的数学期望.20.(本小题满分12分)已知椭圆E 的中心在原点,周长为8的∆ABC 的顶点()A 为椭圆E 的左焦点,顶点,B C 在E 上,且边BC 过E 的右焦点.(1)求椭圆E 的标准方程;(2)椭圆E 的上、下顶点分别为,M N ,点(),2P m (),0R ≠∈m m ,若直线,PM PN 与椭圆E 的另一个交点分别为点,S T ,求证:直线ST 过定点,并求该定点坐标.21.(本小题满分12分)已知函数()1ln e +-=x xf x a x.(1)若0=a ,求()f x 的极值;(2)若()1≥f x 恒成立,求实数a 的取值范围.请考生在第22、23两题中任选一题做答,只能做所选定的题目.如果多做,则按所做的第一个题记分.做答时用2B 铅笔在答题卡上把所选题号后方框涂黑.22.(本小题满分10分)选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,以原点O 为极点,x 轴正半轴为极轴建立极坐标系,已知曲线()()0100,,0:πθθθρ=∈≥C 与曲线22:4sin 30ρρθ-+=C 相交于,P Q 两点.(1)写出曲线2C 的直角坐标方程,并求出0θ的取值范围;(2)求11+OP OQ的取值范围.23.(本小题满分10分)选修4—5:不等式选讲已知函数()()10,0=--+>>f x a x b a b 的图象与x 轴围成的封闭图形的面积为1.(1)求实数,a b 满足的关系式;(2)若对任意R ∈x ,不等式()2<-f x x ab恒成立,求实数b 的取值范围.萍乡市2022—2023学年度高三期末考试理科数学参考答案及评分标准一、选择题(12×5=60分):ABBDC ;ACBCC ;AD .二、填空题(4×5=20分):13.45-;14.0;15.3;16.10,3⎡⎤⎢⎥⎣⎦.三、解答题(共70分):17.(1)由(21)n n a S n n =-得,(21)n n n n S a -=,当11(1)(23)2,n n n n n S a ----≥=,………(1分)两式相减得:11(21)(1)(23)n n n n n n n a a a ----=-,化简得:12123n n a n a n -+=-,………………(2分)21234211233212121239754112325275313n n n n n n n a a a a a a n n n n a a a a a a a a n n n -----+---=⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅=--- ,…(4分)当1n =时,2141113a ⋅-==,符合上式,………………………………………………(5分)故2413n n a -=;……………………………………………………………………………(6分)(2)由(1)知13=(21)321n n n a n n +⋅-⋅+,………………………………………………………(7分)1231133353(23)3(21)3n nn T n n -=⨯+⨯+⨯++-⨯+-⨯ 23413133353(23)3(21)3n n n T n n +=⨯+⨯+⨯++-⨯+-⨯ ,……………………………(9分)两式相减得1234121323232323(21)3n n n T n +-=⨯+⨯+⨯+⨯++⨯--⨯ 21113(13)32(21)362(1)313n n n n n -++⨯-=+⨯--⨯=-+-⨯-,……………(11分)故13(1)3n n T n +=+-⋅.………………………………………………………………………(12分)18.(1)证明:取AB 的中点为M ,连接ME ,MF ,…………………………………(1分)因为F 为边BC 的中点,所以MF AC ,1=2MF AC ,……………………………………(2分)又DE AC ,12DE AC =,所以MF DE ,且MF DE =,即四边形EDFM 为平行四边形,所以DF EM ,………………………………………(4分)又EM ABE ⊂平面,DF ABE ⊄平面,所以DF ABE 平面;………………………(6分)【用面面平行性质得到线面平行同样给分】(2)平面ABC ⊥平面ACDE ,ABC 平面平面ACDE AC =,EA AC ⊥,EA ⊂平面ACDE ,则EA ⊥平面ABC ,…………………………………(8分)过点F 作FN AB ⊥于N ,则FN EA ⊥,且EA AB A = ,则FN ABE ⊥平面,连接EN ,则EF 与平面ABE 所成角为FEN ∠,………………………………………(10分)由题知,在直角FNE ∆中,有2FN EN EF =,则sin4FN FEN EF ∠=即EF 与平面ABE .…………………(12分)【建立空间直角坐标系求解同样给分】19.(1)由题知,22233()(1)33f p C p p p p =⋅⋅-=-,…………………………………(2分)2()693(23)f p p p p p '=-=-,则()f p 在2(0,)3单调递增,在2(,1)3单调递减,……(4分)故()f p 的最大值为24(39f =,此时,023p =;…………………………………………(6分)(2)由题知,X 的所有可能取值为0,5,10,……………………………………………(7分)11115(0)232212P X ==⨯+⨯=,111(5)224P X ==⨯=,121(10)233P X ==⨯=,……(9分)则X 的分布列为:………………………………………………………………………………………………(10分)乙在第二轮得分X 的数学期望51155()0510124312E X =⨯+⨯+⨯=.…………………(12分)20.(1)根据椭圆定义可知48a =,2a =,……………………………………………(2分)c =,1b ==,…………………………………………………………………(3分)故椭圆E 的标准方程为2214x y +=;………………………………………………………(4分)(2)由题知,(0,1)M ,(0,1)N -,………………………………………………………(5分)直线:1xPM y m =+,与椭圆方程联立、化简得:22(4)80m x mx ++=,则284S m x m -=+,2244S m y m -=+,……………………………………………………………(7分)同理可得22436T m x m =+,223636T m y m -=+,…………………………………………………(8分)()()()22423212121441216192161612T S STT S m m y y m m k x x m m m m m -+---====-++,………………………(9分)直线222221284121:(1644162m m m m ST y x x m m m m ---=⋅++=⋅+++,………………………(11分)故直线ST 过定点1(0,)2.…………………………………………………………………(12分)X 0510P512141321.(1)0a =,1ln ()xf x x -=,22ln ()0x f x x-+'==,得2x e =,…………………(1分)则()()20,,()0,x e f x f x '∈<单调递减;()()2,,()0,x e f x f x '∈+∞>单调递增,……(3分)故()f x 的极小值为221()f e e =-,无极大值;……………………………………………(4分)(2)【法一】由题知,1ln x axe x x +-≥,0x >,令()1ln x g x axe x x =+--,则()1'()1x g x x ae x ⎛⎫=+- ⎪⎝⎭,…………………………………(5分)①当0a ≤时,'()0g x <,(1)0g ae =≤,则1x >时,()(1)0g x g <≤,不合题意;…(7分)②当0a >时,设0x 满足001x ae x =,则()g x 在()00,x 单调递减,在()0,x +∞单调递增,则min 0000()()ln 1x g x g x ax e x x ==--+,……………………………………………………………(9分)001x ae x = ,00001,ln ln x ax e a x x ∴=+=-,………………………………………………(10分)故min 000()()1ln 1ln 20g x g x x a x a ==-+++=+≥,解得21a e≥,…………………………(11分)综上所述,实数a 的取值范围为21[,)e +∞.………………………………………………(12分)【法二】由题知,ln 1xx x a xe +-≥,0x >,………………………………………………(5分)令ln 1()x x x g x xe+-=,则()21(2ln )'()x x x x g x x e+--=,…………………………………………(6分)设0x 满足002ln x x =+,则()g x 在()00,x 单调递增,在()0,x +∞单调递减,…………(8分)故0000max 000ln 11()()x x x x g x g x x e x e +-===,…………………………………………………(9分)002ln x x =+ ,020x x e -∴=,故0max 2011()x g x x e e ==,即21a e ≥,……………………(11分)综上所述,实数a 的取值范围为21[,)e+∞.………………………………………………(12分)【法三】由题知,ln 1xaxe x x ≥+-,即ln ln 1x x ae x x +≥+-,…………………………(6分)令ln t x x =+,t R ∈,即1t ae t ≥-,即1()t t a g t e-≥=,………………………………(8分)2'()t tg t e-= ,()g t ∴在(),2-∞单调递增,在()2,+∞单调递减,…………………(10分)故max 21()(2)a g t g e ≥==,即实数a 的取值范围为21[,)e+∞.…………………………(12分)22.(1)曲线2C 的直角坐标方程为2243x y y +-=-,即()2221x y +-=,……(2分)当02πθ=时,曲线1:0C x =与曲线2C 有两个交点,符合题意,………………………(3分)当02πθ≠时,曲线1C 的直角坐标方程为:0tan y x θ=,设()20,2C 到曲线1C 的距离为d ,则1d r ==,得0tan θ0tan θ<4分)又0(0,)θπ∈ ,02,33ππθ⎛⎫∴∈⎪⎝⎭;…………………………………………………………(5分)(2)将0θθ=代入2C 的极坐标方程得:204sin 30ρθρ-+=,…………………………(6分)设,P Q 两点对应的极径分别为12,ρρ,则120124sin ,3ρρθρρ+==,…………………(7分)1212124sin 111103OP OQ θρρρρρρρ+≥∴+=+== ,……………………………………………(9分)由(1)知02,33ππθ⎛⎫∈ ⎪⎝⎭,则04sin 11433OP OQ θ⎤+=∈⎥⎝⎦.………………………………(10分)23.(1)(),11,1ax a b x f x a x b ax a b x -+≤⎧=--+=⎨-++>⎩,…………………………………………(1分)()y f x = 与x 轴交点坐标分别为1,0,1,0b b a a ⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭,顶点坐标为()1,b ,……………(3分)21212b b S b a a∴=⨯⨯==,即2b a =;……………………………………………………(5分)(2)对于x R ∀∈,不等式左边=2221()121b x b f x x x b b b b--+==--+<-恒成立,……(6分)即对于x R ∀∈,121x x b b<-+-恒成立,…………………………………………………(7分)222111x x x x b b b-+-≥--+=- …………………………………………………………(8分)∴121b b <-,即211bb->或211b b-<-,…………………………………………………(9分)又0b > ,()()0,13,b ∴∈+∞ .…………………………………………………………(10分)命题:胡斌(市教研室)欧阳丽(芦溪中学)徐敏(莲花中学)江敏(萍乡三中)刘晓君(湘东中学)吕鋆(上栗中学)彭仕海(萍乡中学)审核:胡斌。
高三数学综合测试题(含答案)
高三数学试题〔理科〕一、选择题(本大题共12小题,每题5.0分,共60分) ABCD中,定点A对应的复数为i(i是虚数单位),向量BC 对应的复数为2+i,那么点D对应的复数为()A. 2 B. 2+2i C.-2 D.-2-2iy与x是否相关时,选择了4个不同的模型,它们的相关指数分别为:模型1的相关指数为0.98,模型2的相关指数为0.80,模型3的相关指数为0.50,模型4的相关指数为0.25.其中拟合效果最好的模型是().A.模型1 B.模型2 C.模型3 D.模型43.设随机变量X的分布列如下表,且E(X)=1.6,那么a-b=()A.0.2B.0.1C.-0.2D.-0.4x3-3x+m=0在[0,2]上有解,那么实数m的取值范围是()A. [-2,2] B. [0,2]C. [-2,0]D. (-∞,-2)∪(2,+∞)5.圆上9个点,每两点连一线段,所有线段在圆内的交点有()A.36个 B.72个 C.63个 D.126个f(x)=ax3+x+1有极值的一个充分而不必要条件是()A.a<0 B.a>0 C.a<-1 D.a<1〔n∈N*),且,那么() A.81 B.16 C.8 D.1a,得2分的概率为b,不得分的概率为c(a,b,c∈(0,1)),他投篮一次得分的均值为2(不计其他得分情况),那么ab的最大值为()A. B. C. D.9.高三毕业时,甲、乙、丙等五位同学站成一排合影留念,甲、乙二人相邻,那么甲、丙相邻的概率是()A. B. C. D.x与y之间的几组数据如表:假设根据如表数据所得线性回归直线方程为,假设某同学根据表中的前两组数据(1,0)和(2,2)求得的直线方程为,那么以下结论正确的选项是()A., B., C., D.,11.某人射击一发子弹的命中率为0.8,现在他射击19发子弹,理论和实践都说明,在这19发子弹中命中目标的子弹数X的概率满足P(X=k)=(k=0,1,2,…,19),那么他射完19发子弹后,击中目标的子弹最可能是 ()A.14发 B.15发 C.16发 D.15发或16发f(x)=ax3+bx2+cx+d(a≠0),假设a+b+c=0,导函数f′(x)满足f′(0)f′(1)>0,设f′(x)=0的两根为x1,x2,那么|x1-x2|的取值范围是()A.3233⎡⎫⎪⎢⎪⎣⎭,B.14,39⎡⎤⎢⎥⎣⎦C.1333⎡⎫⎪⎢⎪⎣⎭, D.1193⎡⎫⎪⎢⎣⎭,第II 卷非选择题二、填空题(本大题共4小题,每题5.0分,共20分)13.某人从某城市的A地乘公交车到火车站,由于交通拥挤,所需时间(单位:分钟)X~N(50,),那么他在时间段(30,70]内赶到火车站的概率为________.14.如图(1),在三角形ABC中,AB⊥AC,假设AD⊥BC,那么AB2=BD·BC;假设类比该命题,如图(2),三棱锥A-BCD中,AD⊥面ABC,假设A点在三角形BCD所在平面内的射影为M,那么有________.M=,那么M与1的大小关系是__________.x∈A,那么x∈,就称A是“具有伙伴关系〞的集合.集合M={-1,0,,,1,2,3,4}的所有非空子集中,具有伙伴关系的集合的个数为________.三、解答题(本大题共6小题,共70分)17.〔本小题共12分〕一元二次方程x2-ax+1=0(a∈R).(1)假设x=37+i44是方程的根,求a的值;(2)假设x1,x2是方程两个虚根,且|x1-1|>|x2|,求a的取值范围.18. 〔本小题共12分〕随着生活水平的提高,人们的休闲方式也发生了变化.某机构随机调查了n 个人,其中男性占调查人数的.男性中有一半的人的休闲方式是运动,而女性只有的人的休闲方式是运动.(1)完成如图2×2列联表:(2)假设在犯错误的概率不超过0.05的前提下,可认为“休闲方式有关与性别〞,那么本次被调查的人数至少有多少?(3)根据(2)的结论,本次被调查的人中,至少有多少人的休闲方式是运动?参考公式:=,其中n=a+b+c+d.参考数据:n为正整数,试比拟3·2n-1与n2+3的大小,分别取n=1,2,3,4,5加以试验,根据试验结果猜测一个一般性结论,并用数学归纳法证明.20.为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物.某人一次种植了n株沙柳.各株沙柳的成活与否是相互独立的,成活率为p,设ξ为成活沙柳的株数,数学期望E(ξ)为3,标准差为.(1)求n和p的值,并写出ξ的分布列;(2)假设有3株或3株以上的沙柳未成活,那么需要补种.求需要补种沙柳的概率.f(x)=(ax-x2)e x.(1)当a=2时,求f(x)的单调递减区间;(2)假设函数f(x)在(-1,1]上单调递增,求a的取值范围;(3)函数f(x)是否可为R上的单调函数?假设是,求出a的取值范围,假设不是,说明理由.f(x)=|x-a|+x.(1)当a=2时,求函数f(x)的值域;(2)假设g(x)=|x+1|,求不等式g(x)-2>x-f(x)恒成立时a的取值范围.答案解析【解析】此题可化归为:圆上9个点可组成多少个四边形,每个四边形的对角线的交点即为所求,所以,交点有=126(个)7.A 10. C11. D【解析】由≥且≥,解得15≤k≤16,即P(X=15)=P(X=16)最大【解析】由题意得f′(x)=3ax2+2bx+c,∵x1,x2是方程f′(x)=0的两个根,∴x1+x2=-,x1·x2=,∴|x1-x2|2=(x+x2)2-4x1·x2=.∵a+b+c=0,∴c=-a-b,∴|x1-x2|2==()2+·+.∵f′(0)·f′(1)>0,f′(0)=c=-(a+b),且f′(1)=3a+2b+c=2a+b,∴(a+b)(2a+b)<0,即2a2+3ab+b2<0,∵a≠0,两边同除以a2,得()2+3+2<0,解得-2<<-1.由二次函数的性质可得,当=-时,|x1-x2|2有最小值为,当趋于-1时,|x1-x2|2趋于,故|x1-x2|2∈[,),故|x1-x2|∈[,).13. 0.9544 14.=S△BCM·S△BCD15.【答案】M<1【解析】∴M==1.16.【答案】15【解析】具有伙伴关系的元素组有-1;1;,2;,3;共4组,所以集合M的所有非空子集中,具有伙伴关系的非空集合中的元素,可以是具有伙伴关系的元素组中的任一组、二组、三组、四组,又集合中的元素是无序的,因此,所求集合的个数为+++=15.17.解(1)一元二次方程x2-ax+1=0(a∈R),假设x=+i是方程的根,那么x=-i也是方程的根.(+i)+(-i)=a,解得a=.(2)x1,x2是方程x2-ax+1=0的两个虚根,不妨设x1=,x2=,a∈(-2,2),|x1-1|>|x2|,∴(-1)2+(-)2>()2+()2,∴a<1.综上,-2<a<1.18.【解】(1)依题意,被调查的男性人数为,其中有人的休闲方式是运动;被调查的女性人数为,其中有人的休闲方式是运动,那么2×2列联表如图。
高三数学第二次诊断性考试试题(理科)
四川省乐山市高中2021届高三第二次诊断性考试数学试题〔理科〕本试卷分第一卷〔选择题〕和第二卷〔非选择题〕两局部, 共150分, 考试时间120分钟。
第一卷〔选择题, 共60分〕考前须知:1. 答第一卷前, 考生务必将自己的姓名、准考证号、考试科目用钢笔和4B或5B铅笔写、涂写在答题卡上。
2.每题选出答案后, 用4B或5B铅笔把答题卡上对应题目的答案标号涂黑, 如需改动, 用橡皮擦擦干净后, 再涂选其它答案, 不准答在试题单上。
3.考试结束, 将本试卷和答题卡一并交回。
4. 参考公式:如果事件A.B互斥, 那么如果事件A.B相互独立, 那么如果事件A在一次试验中发生的概率是P, 那么次独立重复试验中恰好发生次的概率一、选择题: 本大题共12小题, 每题5分, 共60分, 在每题给出的四个选项中, 只有一项为哪一项符合题目要求的。
1. 复数〔〕A. B. C. 2 D. -22.设全集为U, 集合, 那么以下关系中正确的选项是〔〕A. M=NB.C.D.3. 设的等差中项, 那么的最小值为〔〕A. B. C. 1 D.4.命题;对任意;命题: 存在, 那么以下判断: ①且是真命题;②或是真命题;③是假命题;④是真命题, 其中正确的选项是〔〕A. ①④B. ②③C. ③④D. ②④5.函数的图象如以下图所示, 那么函数的递减区间是〔〕A.B.3[2,2],44k k k zππππ++∈C.5 [,],88k k k zππππ-+∈D.3 [,],44k k k zππππ-+∈6. 函数的反函数是等于〔〕A. 1B. -1C. -2D. 27.将编号为①②③④的四个小球放到三个不同的盒子内, 每个盒子至少放一个小球, 且编号为①②的小球不能放到同一个盒子里, 那么不同放法的种数为〔〕A. 24B. 18C. 30D. 368.如图, 在四边形ABCD中, , 设〔〕A. 4B. -4C. -2D. 69. 某工艺品厂为一次大型博览会生产甲、乙两种型号的纪念品, 所用的主要原料为A.B两种贵重金属, 生产一套甲型纪念品需用原料A和原料B的量分别为4盒和3盒, 生产一套乙型纪念品需用原料A和原料B的量分别为5盒和10盒, 假设甲型纪念品每套可获利700元, 乙型纪念品每套可获利1200元, 该厂月初一次性购进原料A.B的量分别为200盒和300盒, 那么该厂生产甲、乙两种纪念品各多少套才能使该厂月利润最大?〔〕A. 19, 25B. 20, 24C. 21, 23D. 22, 2210.三棱锥P—ABC的底面是以AB为斜边的等腰直角三角形, 且AB=2, PA=PB=PC=2, 那么该三棱锥的外接球面上, P、A两点的球面距离是〔〕A. B. C. D.11.长为11的线段AB的两端点都在双曲线的右支上, 那么AB中点M的横坐标的最小值为〔〕A. B. C. D.12.对于实数, 定义表示不超过大整数, 正数数列满足:, 其中为数列的前项的和, 那么〔〕A. 20B. 19C. 18D. 17第二卷〔非选择题, 共90分〕考前须知:1. 第II 卷用钢笔或圆珠笔直接答在试卷上。
贵州省铜仁市2023届高三上学期期末质量监测数学(理)试题含答案
铜仁市2022~2023学年度第一学期期末质量监测试卷高三数学(理科)本试卷共4页,23题(含选考题).全卷满分150分.考试用时120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑.答案写在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效.5.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{2,},{9,6}P x x y Q =+=,且P Q =,则整数x ,y 分别为()A.6,3B.6,3或93,22C.3,6D.3,6或93,222.若复数(512i)(cos isin )()z θθθ=-+∈R (其中i 是虚数单位),则||z =()A.5B.12C.13D.173.在三维空间中,三个非零向量,,OA OB OC 满足,,OA OB OB OC OC OA ⊥⊥⊥,则ABC 是()A.锐角三角形B.直角三角形C.钝角三角形D.直角或锐角三角形4.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金箠,长五尺,一头粗,一头细,在粗的一端截下1尺,重4斤,在细的一端截下1尺,重2斤,问依次每一尺各重多少斤?”根据上题的已知条件,若金箠由粗到细是均匀变化的,问第二尺与第四尺的重量之和为()A.6斤B.9斤C.9.5斤D.12斤5.已知抛物线2:4C y x =的焦点为F ,点A B ,是抛物线C 上不同两点,且A B ,中点的横坐标为3,则||||+=AF BF ()A .4B.5C.6D.86.已知实数x ,y 满足|1||1||2||2|6x x y y ++-+++-=,则2x y +的取值范围是()A.[3,3]- B.[3,4]- C.[4,4]- D.[6,6]-7.在棱长为1的正方体1111ABCD A B C D -中,下列结论错误的是()A.111A CB D ⊥B.若E 是棱BC 的中点,则//BD 平面11EB D C.正方体1111ABCD A B C D -的外接球的表面积为3π D.1ACD △的面积是348.已知等比数列{}n a 的各项均为正数且公比大于1,前n 项积为n T ,且354a a a =,则使得1n T >的n 的最小值为()A.5B.6C.7D.89.如图,在三棱锥A BCD -中,平面ABD ⊥平面CBD ,6AB BC CD AD BD =====,点M 在AC 上,2AM MC =,过点M 作三棱锥A BCD -外接球的截面,则截面圆周长的最小值为()A.12πB.10πC.8πD.10.已知p ,q 是方程()()2254560t t t t -+-+=的根,则函数32()1g x px qx x =++-在(,)-∞+∞上是递增函数的概率是()A.34B.712 C.716D.91611.已知12,F F 是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过1F 的直线l 与双曲线的左支交于点A ,与右支交于点B ,若12AF a =,则()A .2||AB AF > B.2||AB AF = C.2||AB AF < D.22||AB AF =12.设函数()f x '是奇函数()()f x x ∈R 的导函数,(1)0f -=,当0x >时,()()0xf x f x '->,则使得()0f x >成立的x 的取值范围是()A.(,1)(0,1)-∞-⋃B.(1,0)(1,)-⋃+∞C.(,1)(1,0)-∞-⋃- D.(0,1)(1,)⋃+∞二、填空题:本题共4小题,每小题5分,共20分,13.一支田径队有男女运动员98人,其中男运动员有56人.按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为42的样本,那么应抽取女运动员人数是____________.14.过点(1,1)P 的直线l 将圆22:(2)4M x y -+=分成两段弧,当劣弧所对圆心角最小时,直线l 的斜率k =__________.15.已知函数cos (02π)y x x =≤≤的图像与直线1y =所围区域的面积是ω,则函数cos sin y x x ωω=-的一个单调递减区间是_____________.16.已知函数()f x 是定义域为R 的偶函数,当0x ≤时,()[]f x x x =-(符号[]x 表示不超过x 的最大整数),若方程()log ||(0,1)a f x x a a =>≠有6个不同的实数解,则a 的取值范围是__________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.设ABC 的内角A ,B ,C 所对的边为a ,b ,c ,ABC 的面积为S .且有关系式:2cos2cos22cos 2sin sin A B C A B +=+.(1)求C ;(2)求证:2c ≥.18.如图,已知三棱柱111ABC A B C -中,平面11A ACC ⊥平面ABC ,90ABC ∠= ,30BAC ∠= ,114A A AC AC ===,E ,F 分别是11,AC A B 的中点.(1)证明:EF BC ⊥;(2)求二面角11C A C B --的正弦值.19.如今我们的互联网生活日益丰富,除了可以很方便地网购,网络外卖也开始成为不少人日常生活中重要的一部分,其中大学生更是频频使用网络外卖服务.A 市教育主管部门为掌握网络外卖在该市各大学的发展情况,在某月从该市大学生中随机调查了100人,并将这100人在本月的网络外卖的消费金额制成如下频数分布表(已知每人每月网络外卖消费金额不超过3000元):消费金额(单位:百元)[]0,5(]5,10(]10,15(]15,20(]20,25(]25,30频数2035251055()1由频数分布表可以认为,该市大学生网络外卖消费金额Z (单位:元)近似地服从正态分布()2,N μσ,其中μx (每组数据取区间的中点值,660σ=).现从该市任取20名大学生,记其中网络外卖消费金额恰在390元至2370元之间的人数为X ,求X 的数学期望;()2A 市某大学后勤部为鼓励大学生在食堂消费,特地给参与本次问卷调查的大学生每人发放价值100元的饭卡,并推出一档“勇闯关,送大奖”的活动.规则是:在某张方格图上标有第0格、第1格、第2格、…、第60格共61个方格.棋子开始在第0格,然后掷一枚均匀的硬币(已知硬币出现正、反面的概率都是12,其中01P =),若掷出正面,将棋子向前移动一格(从k 到1k +),若掷出反面,则将棋子向前移动两格(从k 到2k +).重复多次,若这枚棋子最终停在第59格,则认为“闯关成功”,并赠送500元充值饭卡;若这枚棋子最终停在第60格,则认为“闯关失败”,不再获得其他奖励,活动结束.①设棋子移到第n 格的概率为n P ,求证:当159n ≤≤时,{}1n n P P --是等比数列;②若某大学生参与这档“闯关游戏”,试比较该大学生闯关成功与闯关失败的概率大小,并说明理由.参考数据:若随机变量ξ服从正态分布()2,N μσ,则()0.6827P μσξμσ-<≤+=,()220.9545P μσξμσ-<+= ,()330.9973P μσξμσ-<+= .20.已知点()0,1F ,直线l :y =4,P 为曲线C 上的任意一点,且PF 是P 到l 的距离的12.(1)求曲线C 的方程;(2)若经过点F 且斜率为()0k k ≠的直线交曲线C 于点M 、N ,线段MN 的垂直平分线交y 轴于点H ,求证:FH MN为定值.21.已知函数()ln ()f x x a x a =-∈R .(1)讨论函数的单调性及极值,并判断方程e 2ln 0x x x ---=的实根个数;(2)证明:454e 4ln x x x x x +≥+.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4—4:坐标系与参数方程]22.已知极坐标系的极点在直角坐标系的原点处,极轴与x 轴的正半轴重合,直线l 的极坐标方程为cos 34πθρθ⎛⎫++= ⎪⎝⎭,曲线C 的参数方程是11,2112x t t y t t ⎧⎛⎫=+ ⎪⎪⎪⎝⎭⎨⎛⎫⎪=- ⎪⎪⎝⎭⎩(t 是参数).(1)求直线l 及曲线C 的直角坐标方程;(2)求直线l 被曲线C 截得弦AB 的长.[选修4—5:不等式选讲]23.设不等式|21||21|4x x ++-<的解集为,,M a b M ∈.(1)求证:115236a b -<;(2)试比较|2|a b -与|2|ab -的大小,并说明理由.铜仁市2022~2023学年度第一学期期末质量监测试卷高三数学(理科)本试卷共4页,23题(含选考题).全卷满分150分.考试用时120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑.答案写在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效.5.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{2,},{9,6}P x x y Q =+=,且P Q =,则整数x ,y 分别为()A.6,3B.6,3或93,22C.3,6D.3,6或93,22【答案】C 【解析】【分析】由集合相等元素对应相同解方程组.【详解】由集合相等的定义,有296x x y =⎧⎨+=⎩,解得9232x y ⎧=⎪⎪⎨⎪=⎪⎩,不合题意舍去,或269x x y =⎧⎨+=⎩,解得36x y =⎧⎨=⎩,满足题意.故选:C .2.若复数(512i)(cos isin )()z θθθ=-+∈R (其中i 是虚数单位),则||z =()A.5B.12C.13D.17【答案】C 【解析】【分析】根据复数的模的性质、模长公式和共轭复数的模的性质可求出结果.【详解】因为|||(512i)(cos isin )||512i ||cos isin |z θθθθ=-+=-⋅+=13=,所以||||13z z ==.故选:C .3.在三维空间中,三个非零向量,,OA OB OC满足,,OA OB OB OC OC OA ⊥⊥⊥ ,则ABC 是()A.锐角三角形B.直角三角形C.钝角三角形D.直角或锐角三角形【答案】A 【解析】【分析】根据已知条件推出0AC AB ⋅>,得CAB ∠为锐角.同理可得,ABC BCA ∠∠也为锐角.由此可得答案.【详解】因为,,OA OB OB OC OC OA ⊥⊥⊥,所以0,0,0OA OB OB OC OC OA ⋅=⋅==,()()AB AC OB OA OC OA ⋅=-⋅- 22||0OB OC OA OB OC OA OA OA =⋅-⋅-⋅+=> ,所以cos 0||||AB ACCAB AB AC ⋅∠=>⋅,即知CAB ∠为锐角.同理可知,ABC BCA ∠∠也为锐角.故ABC 是锐角三角形.故选:A .4.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金箠,长五尺,一头粗,一头细,在粗的一端截下1尺,重4斤,在细的一端截下1尺,重2斤,问依次每一尺各重多少斤?”根据上题的已知条件,若金箠由粗到细是均匀变化的,问第二尺与第四尺的重量之和为()A.6斤B.9斤C.9.5斤D.12斤【答案】A 【解析】【详解】由题意得,金箠的每一尺的重量依次成等差数列,从细的一端开始,第一段重2斤,第五段重4斤,由等差中项性质可知,第三段重3斤,第二段加第四段重326⨯=斤.5.已知抛物线2:4C y x =的焦点为F ,点A B ,是抛物线C 上不同两点,且A B ,中点的横坐标为3,则||||+=AF BF ()A .4B.5C.6D.8【答案】D 【解析】【分析】根据抛物线焦半径公式求解即可.【详解】解:由题知24p =,即2p =,设()()1122,,,A x y B x y ,因为A B ,中点的横坐标为3,所以126x x +=,所以,由抛物线焦半径公式得12||||628AF BF x x p +=++=+=故选:D .6.已知实数x ,y 满足|1||1||2||2|6x x y y ++-+++-=,则2x y +的取值范围是()A.[3,3]-B.[3,4]- C.[4,4]- D.[6,6]-【答案】C 【解析】【分析】根据绝对值三角不等式取等号的条件,将|1||1||2||2|6x x y y ++-+++-≥转化为11x -≤≤且22y -≤≤,再根据不等式的性质可求出结果.【详解】因为|1||1||(1)(1)|2x x x x ++-≥+--=,当且仅当(1)(1)0x x +-≤,即11x -≤≤时,等号成立,|2||2||(2)(2)|4y y y y ++-≥+--=,当且仅当(2)(2)0y y +-≤,即22y -≤≤时,等号成立,所以|1||1||2||2|6x x y y ++-+++-≥,当且仅当11x -≤≤且22y -≤≤时,等号成立,所以|1||1||2||2|6x x y y ++-+++-=等价于11x -≤≤且22y -≤≤,所以222x -≤≤,所以424x y -≤+≤.故选:C7.在棱长为1的正方体1111ABCD A B C D -中,下列结论错误的是()A.111A CB D ⊥B.若E 是棱BC 的中点,则//BD 平面11EB D C.正方体1111ABCD A B C D -的外接球的表面积为3π D.1ACD △的面积是34【答案】D 【解析】【分析】对于A,连接11A C ,利用线面垂直的判定定理可得11B D ⊥平面11A CC ,即可判断;对于B ,利用线面平行的判定定理即可判断;对于C ,利用正方体外接球的直径长度为体对角线长度即可判断;对于D ,1ACD △为等边三角形,利用面积公式即可【详解】对于A ,连接11A C ,由正方体可得1CC ⊥平面111D C B A ,11B D ⊂平面1111D C B A ,所以111CC B D ⊥,在正方形1111B A 中,1111AC B D ⊥,因为1111CC A C C ⋂=,111,A C C C ⊂平面11A CC ,所以11B D ⊥平面11A CC ,因为1AC ⊂平面11A CC ,所以111A C B D ⊥,故A 正确;对于B ,因为11//BB DD ,11=BB DD ,所以四边形11BDD B 是平行四边形,所以11//BD B D ,因为BD ⊄平面11EB D ,11B D ⊂平面11EB D ,所以//BD 平面11EB D ,故B 正确;对于C,正方体1111ABCD A B C D -,所以外接球的表面积为234π3π2⎛⨯= ⎝⎭,故正确,对于D ,因为1ACD △是正三角形,其边长为,所以它的面积为213sin 6022⨯⨯︒=,即D 错误.故选:D .8.已知等比数列{}n a 的各项均为正数且公比大于1,前n 项积为n T ,且354a a a =,则使得1n T >的n 的最小值为()A.5 B.6C.7D.8【答案】D 【解析】【分析】设公比为q ,则1q >,由23544a a a a ==,得41a =,根据{}n a 为递增数列,推出1234567801a a a a a a a a <<<<=<<<<< ,再推出11T <,21T <,31T <,41T <,51T <,61T <,71T =,81T >可得结果.【详解】设公比为q ,则1q >,由23544a a a a ==,得41a =,因为1n n n a a q a +=>,所以{}n a 为递增数列,所以1234567801a a a a a a a a <<<<=<<<<< ,所以111T a =<,2121T a a =<,31231T a a a =<,412343431T a a a a T a T ==⋅=<,512345T a a a a a =121a a =<,6123456T a a a a a a =21261411a a a a a a ===<,71234567T a a a a a a a =717263544()()()1a a a a a a a a ===,8123456787881T a a a a a a a a T a a ==⋅=>,所以n 的最小为8.故选:D .9.如图,在三棱锥A BCD -中,平面ABD ⊥平面CBD ,6AB BC CD AD BD =====,点M 在AC 上,2AM MC =,过点M 作三棱锥A BCD -外接球的截面,则截面圆周长的最小值为()A.12πB.10πC.8πD.【答案】D 【解析】【分析】根据特设求出外接球的半径,再根据圆心到平面距离最大时,截面面积最小即可求解.【详解】由题意知,ABD △和BCD 为等边三角形,如图所示,取BD 中点为E ,连接,AE CE ,则AE BD ⊥,由平面ABD ⊥平面CBD ,平面ABD ⋂平面CBD BD =,故⊥AE 平面CBD ,AE ===,球心O 在平面BCD 的投影为BCD △的外心1O ,过O 作OH AE ⊥于H ,易得11,OH O E OO HE ∥∥,则在Rt OHA △中,OH AH ==,所以外接球半径R ==OM ,因为2,,2AH HE OH CE AM MC ==∥,所以H ,O ,M 三点共线,所以23MH CE OM MH OH ===-=,当M 为截面圆圆心时,截面圆的周长最小,此时,截面圆半径r ==,所以截面圆周长的最小值为2C r π==,故选:D .10.已知p ,q 是方程()()2254560t t t t -+-+=的根,则函数32()1g x px qx x =++-在(,)-∞+∞上是递增函数的概率是()A.34B.712 C.716D.916【答案】D 【解析】【分析】求出方程的解集,得出p ,q 的所有取值,再得到所求事件所需条件的p ,q 取值,即可得到所求事件的概率.【详解】因为方程()()2254560t t t t -+-+=的根的集合为{1,2,3,4},所以有{1,2,3,4},{1,2,3,4}p q ∈∈.记事件A 为“函数32()1g x px qx x =++-在(,)-∞+∞上是递增函数”.对函数32()1g x px qx x =++-求导,得2()321g x px qx +'=+.由题意,知2()3210g x px qx '=++≥在(,)-∞+∞上恒成立,有0p >,且()2221(2)434303q p q p p q ∆=-⨯=-≤⇒≥.当1q =时,有13p ≥,所以p 可以取到1,2,3,4这4个值;当2q =时,有43p ≥,所以p 可以取到2,3,4这3个值;当3q =时,有3p ≥,所以p 可以取到3,4这2个值;当4q =时,有163p ≥,所以p 的值不存在.综合以上,事件A 包含的基本事件共有4329++=种.因为{1,2,3,4},{1,2,3,4}p q ∈∈,所以所有的基本事件共有4416⨯=种.则所求事件的概率为9()16P A =.故选:D .11.已知12,F F 是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过1F 的直线l 与双曲线的左支交于点A ,与右支交于点B ,若12AF a =,则()A.2||AB AF > B.2||AB AF = C.2||AB AF < D.22||AB AF =【答案】B 【解析】【分析】由已知条件和双曲线的定义可得12AF a =,24AF a =,12F F =,2BF AB =,由122cos cos 0F AF BAF ∠+∠=,应用余弦定理,化简可得2AB AF =【详解】由双曲线定义和题设条件,得212AF AF a -=,c =,12F F =.如图所示,因为12AF a =,所以24AF a =.又由双曲线定义,得122BF BF a -=,因为112BF AF AB a AB =+=+,所以212BF BF a AB =-=.在12AF F △和2ABF △中,122πF AF BAF ∠+∠=,有122cos cos 0F AF BAF ∠+∠=,应用余弦定理,得222222121222122022AF AF F F AB AF BF AF AF AB AF +-+-+=,得222222224162802242AB AF AB a a a a a AB AF +-+-+=⋅⋅,化简得2122AF AB =,所以2AB AF =.故选:B .12.设函数()f x '是奇函数()()f x x ∈R 的导函数,(1)0f -=,当0x >时,()()0xf x f x '->,则使得()0f x >成立的x 的取值范围是()A.(,1)(0,1)-∞-⋃B.(1,0)(1,)-⋃+∞C.(,1)(1,0)-∞-⋃-D.(0,1)(1,)⋃+∞【答案】B 【解析】【分析】构函数函数()()f x F x x=,根据()f x 为奇函数,得()F x 为偶函数.求导并利用已知得到()F x 在(0,)+∞上单调递增,再根据()F x 为偶函数得到()F x 在(,0)-∞上单调递减,利用()F x 的单调性可求出结果.【详解】设()()f x F x x=,因为()f x 为奇函数,所以()()f x f x -=-,所以()()()()f x f x F x F x x x---===--,所以()F x 为偶函数,对()F x 求导得2()()()xf x f x F x x''-=,因为当0x >时,()()0xf x f x '->,所以()0F x '>,则()F x 在(0,)+∞上单调递增,又因为()F x 为偶函数,则()F x 在(,0)-∞上单调递减,因为(1)(1)(1)(1)011f f F F ---====,所以当0x >时,()()00()0(1)1f x f x F x F x x>⇒>⇒>=⇒>,当0x <时,()()00f x f x x>⇒<()0(1)F x F ⇒<=-10⇒-<<x ,所以使得()0f x >成立的x 的取值范围是(1,0)(1,)-⋃+∞.故选:B .二、填空题:本题共4小题,每小题5分,共20分,13.一支田径队有男女运动员98人,其中男运动员有56人.按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为42的样本,那么应抽取女运动员人数是____________.【答案】18【解析】【分析】求出男女运动员的比例,从而求出答案.【详解】女运动员的人数为985642-=,故男女运动员的人数比例为56:424:3=,所以女生应抽取3421843⨯=+人.故答案为:1814.过点(1,1)P 的直线l 将圆22:(2)4M x y -+=分成两段弧,当劣弧所对圆心角最小时,直线l 的斜率k =__________.【答案】1【解析】【分析】转化为PM l ⊥可求出结果.【详解】劣弧所对的圆心角最小时,劣弧所对的弦长最短,此时,PM l ⊥,因为(2,0)M ,所以1111012PMk k =-=-=--.故答案为:1.15.已知函数cos (02π)y x x =≤≤的图像与直线1y =所围区域的面积是ω,则函数cos sin y x x ωω=-的一个单调递减区间是_____________.【答案】711,88⎡⎤⎢⎥⎣⎦(答案不唯一)【解析】【分析】由割补法求出所围区域的面积得到ω,函数解析式化简后利用整体代入法求单调递减区间.【详解】如图所示,区域1S 与2S ,区域3S 与4S 组成的图形是中心对称图形,面积分别对应相等,故函数cos (0y x x =≤≤的图像与直线1y =所围区域的面积等于矩形OABC 的面积,由2πOA =,1OC =,矩形OABC 的面积为2π,所以2πω=.于是πcos sin cos 2πsin 2π2π4y x x x x x ωω⎛⎫=-=-=+ ⎪⎝⎭.由()π2π2π2ππZ 4k x k k ≤+≤+∈,解得()13Z 88k x k k -≤≤+∈.函数cos sin y x x ωω=-的单调递减区间是()13,Z 88k k k ⎡⎤-+∈⎢⎥⎣⎦令1k =,其中一个单调递减区间是711,88⎡⎤⎢⎣⎦.故答案为:711,88⎡⎤⎢⎥⎣⎦16.已知函数()f x 是定义域为R 的偶函数,当0x ≤时,()[]f x x x =-(符号[]x 表示不超过x 的最大整数),若方程()log ||(0,1)a f x x a a =>≠有6个不同的实数解,则a 的取值范围是__________.【答案】(2,3]【解析】【分析】当01a <<时,不符合题意;当1a >时,根据方程()log (0,1)a f x x a a =>≠有6个不同的实数解,结合图象可知函数[]y x x =-与log (0,1)a y x a a =>≠图象有6个交点,即可求解.【详解】由题意知,()log (0,1)a f x x a a =>≠有6个不同的实数解,即为函数[]y x x =-与log (0,1)a y x a a =>≠图象有6个交点.当01a <<时,显然不成立;当1a >时,如图所示,只需log 21log 31a a<⎧⎨≥⎩,解得23a <≤.故答案为:(]2,3.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.设ABC 的内角A ,B ,C 所对的边为a ,b ,c ,ABC 的面积为S .且有关系式:2cos2cos22cos 2sin sin A B C A B +=+.(1)求C ;(2)求证:2c ≥.【答案】(1)2π3C =(2)证明见解析【解析】【分析】(1)根据二倍角公式以及正弦定理和余弦定理得到1cos 2C =,再根据C 的范围可求出结果;(2)利用三角形的面积公式可得3ab =,再根据余弦定理以及不等式知识可证不等式成立.【小问1详解】因为2cos2cos22cos 2sin sin A B C A B +=+,所以()22212sin 12sin 21sin 2sin sin A B C A B -+-=-+,即222sin sin sin sin sin A B C A B +=-,由正弦定理得222a b c ab +-=-,所以2221cos 22a b c C ab +-==-,又因为0πC <<,所以2π3C =.【小问2详解】因为12πsin 323ab ab ==,由余弦定理,得2222π2cos3c a b ab =+-22a b ab =++23ab ab ab ≥+=,当且仅当a b =时等号成立,所以2c ≥.18.如图,已知三棱柱111ABC A B C -中,平面11A ACC ⊥平面ABC ,90ABC ∠= ,30BAC ∠= ,114A A AC AC ===,E ,F 分别是11,AC A B 的中点.(1)证明:EF BC ⊥;(2)求二面角11C A C B --的正弦值.【答案】(1)证明见解析(2【解析】【分析】(1)连接1A E ,根据题意得1A E AC ⊥,根据面面垂直的性质定理得1A E ⊥平面ABC ,1A E BC ⊥,根据线面垂直的判定定理得到BC ⊥平面1A EF ,再得到EF BC ⊥;(2)以E 为原点,在平面ABC 中,过点E 作AC 的垂线为x 轴,1,EC EA 所在直线分别为y 轴,z 轴,建立空间直角坐标系,利用平面的法向量可求出结果.【小问1详解】连接1A E ,∵E 是AC 的中点,11A A A C AC ==,∴1A E AC ⊥,又∵平面11A ACC ⊥平面ABC ,平面11A ACC ⋂平面ABC AC =,1A E ⊂平面11A ACC ,∴1A E ⊥平面ABC ,因为BC ⊂平面ABC ,∴1A E BC ⊥,又1,A F AB AB BC ⊥//,∴1BC A F ⊥,因为1A E ⊂平面1A EF ,1A F ⊂平面1A EF ,111A E A F A ⋂=,∴BC ⊥平面1A EF ,因为EF ⊂平面1A EF ,∴EF BC ⊥.【小问2详解】以E 为原点,在平面ABC 中,过点E 作AC 的垂线为x 轴,1,EC EA 所在直线分别为y 轴,z 轴,建立空间直角坐标系,1(0,2,0),(0,2,0)A B A C -,∴1((BA BC =-=,易知平面11ACC A 的法向量为(1,0,0)m =,设平面1A CB 的法向量为(,,)n x y z =,则100n BA y n BC y ⎧⋅=-+=⎪⎨⋅=+=⎪⎩ ,令x =,∴3,y z ==,∴n =,5cos ,5||m n m n m n ⋅<>==⋅∣,所以25sin ,5m n <>== .∴二面角11C A C B --的正弦值为255.19.如今我们的互联网生活日益丰富,除了可以很方便地网购,网络外卖也开始成为不少人日常生活中重要的一部分,其中大学生更是频频使用网络外卖服务.A 市教育主管部门为掌握网络外卖在该市各大学的发展情况,在某月从该市大学生中随机调查了100人,并将这100人在本月的网络外卖的消费金额制成如下频数分布表(已知每人每月网络外卖消费金额不超过3000元):消费金额(单位:百元)[]0,5(]5,10(]10,15(]15,20(]20,25(]25,30频数2035251055()1由频数分布表可以认为,该市大学生网络外卖消费金额Z (单位:元)近似地服从正态分布()2,N μσ,其中μ近似为样本平均数x (每组数据取区间的中点值,660σ=).现从该市任取20名大学生,记其中网络外卖消费金额恰在390元至2370元之间的人数为X ,求X 的数学期望;()2A 市某大学后勤部为鼓励大学生在食堂消费,特地给参与本次问卷调查的大学生每人发放价值100元的饭卡,并推出一档“勇闯关,送大奖”的活动.规则是:在某张方格图上标有第0格、第1格、第2格、…、第60格共61个方格.棋子开始在第0格,然后掷一枚均匀的硬币(已知硬币出现正、反面的概率都是12,其中01P =),若掷出正面,将棋子向前移动一格(从k 到1k +),若掷出反面,则将棋子向前移动两格(从k 到2k +).重复多次,若这枚棋子最终停在第59格,则认为“闯关成功”,并赠送500元充值饭卡;若这枚棋子最终停在第60格,则认为“闯关失败”,不再获得其他奖励,活动结束.①设棋子移到第n 格的概率为n P ,求证:当159n ≤≤时,{}1n n P P --是等比数列;②若某大学生参与这档“闯关游戏”,试比较该大学生闯关成功与闯关失败的概率大小,并说明理由.参考数据:若随机变量ξ服从正态分布()2,N μσ,则()0.6827P μσξμσ-<≤+=,()220.9545P μσξμσ-<+= ,()330.9973P μσξμσ-<+= .【答案】()116.372;()2①证明见解析;②闯关成功的概率大于闯关失败的概率,理由见解析.【解析】【分析】()1根据数据算出1050x =,由Z服从正态分布()21050,660N ,算出概率,即()20,0.8186X B ,进而算出X 的数学期望;()2①棋子开始在第0格为必然事件,01P =.第一次掷硬币出现正面,棋子移到第1格,其概率为12,即112P =.棋子移到第()259n n ≤≤格的情况是下列两种,即棋子先到第2n -格,又掷出反面,其概率为212n P -;棋子先到第n 1-格,又掷出正面,其概率为112n P -.所以211122n n n P P P --=+.即112(1)2n n n n P P P P ----=--,进而求证当159n ≤≤时,{}1n n P P --是等比数列;②由①知1112P -=-,12212P P ⎛⎫-=- ⎪⎝⎭,33212P P ⎛⎫-=- ⎪⎝⎭,L ,112nn n P P -⎛⎫-=- ⎪⎝⎭,得21111222n nP ⎛⎫⎛⎫⎛⎫-=-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以21111222nn P ⎛⎫⎛⎫⎛⎫=+-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ()12110,1,2,,5932n n +⎡⎤⎛⎫=--=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,算出相应概率判断出闯关成功的概率大于闯关失败的概率.【详解】解:()12500.27500.3512500.2517500.1x =⨯+⨯+⨯+⨯22500.05+⨯+27500.051050⨯=,因为Z 服从正态分布()21050,660N ,所以()()0.95450.6827390237020.95450.81862P Z P Z μσμσ-<≤=-<≤+=-.所以()20,0.8186X B ,所以X 的数学期望为()200.818616.372E X =⨯=.()2①棋子开始在第0格为必然事件,01P =.第一次掷硬币出现正面,棋子移到第1格,其概率为12,即112P =.棋子移到第()259n n ≤≤格的情况是下列两种,而且也只有两种:棋子先到第2n -格,又掷出反面,其概率为212n P -;棋子先到第n 1-格,又掷出正面,其概率为112n P -,所以211122n n n P P P --=+,即112(1)2n n n n P P P P ----=--,且1012P P -=-,所以当159n ≤≤时,数列{}1n n P P --是首项1012P P -=-,公比为12-的等比数列.②由①知1112P -=-,12212P P ⎛⎫-=- ⎪⎝⎭,33212P P ⎛⎫-=- ⎪⎝⎭,L ,112nn n P P -⎛⎫-=- ⎪⎝⎭,以上各式相加,得21111222n nP ⎛⎫⎛⎫⎛⎫-=-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以21111222nn P ⎛⎫⎛⎫⎛⎫=+-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ()12110,1,2,,5932n n +⎡⎤⎛⎫=--=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.所以闯关成功的概率为6060592121113232P ⎡⎤⎡⎤⎛⎫⎛⎫=--=-⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,闯关失败的概率为5959605811211111223232P P ⎡⎤⎡⎤⎛⎫⎛⎫==⨯--=+⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦.60595859602111111110323232P P ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫-=--+=->⎢⎥⎢⎥⎢⎥ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,所以该大学生闯关成功的概率大于闯关失败的概率.【点睛】本题考查了根据已知数据求平均数,正态分布求概率,等比数列的证明以及数学期望的求法,题目较为综合,属于难题.20.已知点()0,1F ,直线l :y =4,P 为曲线C 上的任意一点,且PF 是P 到l 的距离的12.(1)求曲线C 的方程;(2)若经过点F 且斜率为()0k k ≠的直线交曲线C 于点M 、N ,线段MN 的垂直平分线交y 轴于点H ,求证:FH MN为定值.【答案】(1)22134x y +=(2)见解析【解析】【分析】(1)设(),P x y ,根据题意列出方程整理即得;(2)直线的方程为1y kx =+,与曲线C 方程联立消去y 整理得:()2243690k xkx ++-=,检验判别式并利用弦长公式求得()2212143k MN k+=+,利用韦达定理和中点坐标公式及直线垂直时的斜率关系得到中垂线的方程,进而求得H 的坐标,得到()223143k FH k +=+,从而证得结论.【小问1详解】设(),P x y142y =-,整理得:22134x y +=,此即为曲线C 的方程;【小问2详解】经过点F 且斜率为()0k k ≠的直线的方程为1y kx =+,与曲线C 方程联立得:221134y kx x y =+⎧⎪⎨+=⎪⎩,消去y 整理得:()2243690k x kx ++-=,()()22236494314410k k k ∆=+⨯⨯+=+>恒成立,设()()1122,,,M x y N x y,则()212221214343k MN x k k+=-==++,122643kx x k +=-+,设线段MN 的中点为()00,T x y ,则12023243x x k x k +==-+,0024143y kx k =+=+,线段MN 的中垂线的斜率为1k-,方程为224134343ky x k k k ⎛⎫-=-+ ⎪++⎝⎭,令0x =,解得2143y k =+,即为点H 的纵坐标,∴()22231114343k FH k k+=-=++,∴()()222231143412143k FHk MN k k ++==++(为定值)21.已知函数()ln ()f x x a x a =-∈R .(1)讨论函数的单调性及极值,并判断方程e 2ln 0x x x ---=的实根个数;(2)证明:454e 4ln x x x x x +≥+.【答案】(1)单调性及极值见解析,原方程有唯一实根(2)证明见解析【解析】【分析】(1)利用导数分类讨论函数的单调性,求解极值,结合单调性的结论判断方程的实根个数;(2)不等式变形为4ln 4e ln 1(0)x x x x x -≥-+>,换元后即证e 1≥+t t ,构造函数利用导数求解函数最值即可得证.【小问1详解】()ln (R)f x x a x a =-∈,函数定义域为(0,)+∞,()1a x af x x x-'=-=,当0a ≤时,()0f x '>,()f x 在(0,)+∞上单调递增,无极值;当0a >时,(0,)x a ∈时,()0f x '<,(,)x a ∈+∞时,()0f x '>,()f x 在(0,)a 上单调递减,在(,)a +∞上单调递增,有极小值()(1ln )f a a a =-.方程e 2ln 0x x x ---=可变形为e ln x x x x --=+,即e ln e ln x x x x --+=+,当1a =-时,()ln f x x x =+,有()e()xf f x -=,()f x 在(0,)+∞上单调递增,则有e xx -=,函数e x y -=和y x =的图像只有一个交点,且交点位于第一象限,所以e x x -=在()0,∞+上有唯一实根,故原方程有唯一实根.【小问2详解】证明:由0x >知,所要证的不等式等价于44e ln 1(0)xx x x x+≥+>,等价于4ln 4e ln 1(0)x x x x x -≥-+>.(*)令4ln t x x =-,则不等式(*)等价于e 1≥+t t (**).构造函数()e 1()t f t t t =--∈R ,求导,得()e 1t f t =-'.当0t <时,()0f t '<,函数()f t 是减函数;当0t >时,()0f t '>,函数()f t 是增函数.所以min ()()(0)0f t f t f ≥==.即(**)成立.故原不等式成立.【点睛】1.导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.2.利用导数解决含参函数的单调性问题时,一般将其转化为不等式恒成立问题,解题过程中要注意分类讨论和数形结合思想的应用.3..证明不等式,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4—4:坐标系与参数方程]22.已知极坐标系的极点在直角坐标系的原点处,极轴与x 轴的正半轴重合,直线l 的极坐标方程为cos 34πθρθ⎛⎫++= ⎪⎝⎭,曲线C 的参数方程是11,2112x t t y t t ⎧⎛⎫=+ ⎪⎪⎪⎝⎭⎨⎛⎫⎪=- ⎪⎪⎝⎭⎩(t 是参数).(1)求直线l 及曲线C 的直角坐标方程;(2)求直线l 被曲线C 截得弦AB 的长.【答案】(1)230x y --=,221x y -=;(2.【解析】【分析】(1)根据给定方程,利用极坐标与直角坐标的互化公式和消去参数方程中参数求解作答.(2)联立直线l 与曲线C 的直角坐标方程,利用弦长公式求解作答.【小问1详解】因为cos 34πθρθ⎛⎫++= ⎪⎝⎭,则22cos sin cos 322θθρθ⎛⎫-+= ⎪⎝⎭,即2cos sin 3ρθρθ-=,把cos ,sin x y ρθρθ==代入得,230x y --=,所以直线l 的直角坐标方程是230x y --=;由112112x t t y t t ⎧⎛⎫=+ ⎪⎪⎪⎝⎭⎨⎛⎫⎪=- ⎪⎪⎝⎭⎩变形得,22222211241124x t t y t t ⎧⎛⎫=++ ⎪⎪⎪⎝⎭⎨⎛⎫⎪=+- ⎪⎪⎝⎭⎩,则有221x y -=,所以曲线C 的直角坐标方程是221x y -=.【小问2详解】把直线l 的方程23y x =-,代入曲线C 的方程:221x y -=,得22(23)1x x --=,即2312100x x -+=,2Δ12120240=-=>,设()()1122,,,A x y B x y ,则1212104,3x x x x +==,于是AB ===所以直线l 被曲线C 截得弦AB.[选修4—5:不等式选讲]23.设不等式|21||21|4x x ++-<的解集为,,M a b M ∈.(1)求证:115236a b -<;(2)试比较|2|a b -与|2|ab -的大小,并说明理由.【答案】(1)证明见解析(2)|2||2|a b ab -<-,理由见解析【解析】【分析】(1)分11112222、、≤--<<≥x x x 讨论去绝对值求出集合M ,再利用绝对值三。
高三数学试题(理科)
高三数学试题(理科)本试卷分Ⅰ、Ⅱ两卷,第Ⅰ卷1至2页,第Ⅱ卷3到6页,共150分,考试时间120分注意事项:1.考生必须将自己的姓名、学号、考试科目用铅笔涂写在答题卡上,并在答卷前将班别、姓名、学号、等填写在试卷上.2.第一大题每小题选出答案后,用铅笔把答题卡上对应的答案标号涂黑. 3.请用蓝色或黑色钢笔或圆珠笔答卷.考试结束后,试卷必须全部上交.参考公式:如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B ) 如果事件A 在一次试验中的发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率为:P n (k )=C n k P k (1-p )n-k球的表面积公式为:S=4πR 2,其中R 表示球的半径. 球的体积公式为:V=34πR 3,其中R 表示球的半径. 第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的4个选项中,只有一项是符合题目要求的.1.已知U 为全集,若集合A 、B 、C 满足A ∩B=A ∩C ,则可以推出( ) A . B=C B .A ∪B=A ∪C C .A ∪(U C B)=A ∪(U C C) D .(U C A)∪B=(U C A)∪C 2.函数g (x )满足g (x )g (-x )=1,且g (x )≠1,g (x )不恒为常数,则函数f (x)=g(x)+1g(x)-1( )A .是奇函数不是偶函数B .是偶函数不是奇函数C .既是奇函数又是偶函数D .既不是奇函数也不是偶函数3.已知函数f (x)=223(1)131(1)x x x x x x ⎧+->⎪-⎨⎪+≤⎩,则f –1(3)=( ) A .10 B .12 C . 23 D . -124.设f (x)=1()0x x ⎧⎨⎩为有理数(为无理数),使所有x 均满足x ·f (x)≤g (x)的函数g(x)是( )A .g (x)=sinxB .g (x)=xC .g (x)=x 2D .g (x)=|x| 5.二项式(1x-)n 展开式中含有x 4项,则n 的可能取值是( )A .5B .6C .3D .76.设OA u u u v =a v ,OB uuu v =b v ,OC u u u v =c v ,当c v =λa v +μb v (λ,μ∈R),且λ+μ=1时,点C 在( )A .线段AB 上 B .直线AB 上C .直线AB 上,但除去点AD . 直线AB 上,但除去点B7.从17个相异的元素中选出2a -1个不同元素的选法记为P ,从17个相异的元素中选出2a 个不同元素的选法记为Q ,从18个相异的元素中选出12个不同元素的选法记为S ,若P+Q=S ,则a 的值为( )A . 6B . 6或8C .3D .3或68.若一个平面与正方体的12条棱所成的角均为θ,那么cos θ等于( ) A.3 B .3 C .2 D.69.设OM u u u u v =(1,12),ON u u u v =(0,1),则满足条件0≤OP uuu v ·OM u u u u v ≤1,0≤OP uuu v ·ON u u u v ≤1的10.已知函数f k图象上相邻的一个最大值点与一个最小值点恰好在x 2+y 2=k 2上,则f (x)的最小正周期为( )A .1B .2C .3D .411.2003年12月,全世界爆发“禽流感”,科学家经过深入的研究终于发现了一种细菌M在杀死“禽流感”病毒N 的同时能够自我复制,已知1个细菌M 可以杀死1个病毒N ,并生成2个细菌M ,那么1个细菌M 和2047个“禽流感”病毒N 最多可生成细菌M 的数值是( )A . 1024B .2047C .2048D .204912.已知抛物线的一条过焦点F 的弦PQ ,点R 在直线PQ 上,且满足OR uuu v =12(OP uuu v +OQ uuu v),R 在抛物线准线上的射影为S ,设α,β是ΔPQS 中的两个锐角,则下面4个式子中不一定正确的是( )A .tan α·tan β=1B .sin α+sinC .cos α+cos β>1D .|tan(α-β)|>tan2αβ+高三(1-12班)数学试题(理科)班别____________ 学号______________ 姓名___________ 得分___________第II 卷 (非选择题 共90分)二、填空题13.把函数sin y x x =-的图象,按向量(),m n =-va (m >0)平移后所得的图象关于y 轴对称,则m 的最小正值为__________________14.若关于x 的不等式2-2x >|x -a | 至少有一个负数解,则a 的取值范围为__________________. 15.利用函数f (t)=12+3sin[2365π(t -81)]可用来估计某一天的白昼时间的长短,其中f (t)表示白昼的小时数,t 是某天的序号,t=0表示1月1日,依此类推0≤t ≤365,若二月份28天,则这一地区一年中白昼最长的大约是 月 日.16.在平面几何里,有勾股定理“设ΔABC 的两边AB 、AC 互相垂直,则AB 2+AC 2=BC 2”.拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出的正确结论是:“设三棱锥O -ABC 的三个侧面OAB 、OAC 、OBC 两两相互垂直, 则______________________________________________.” 三、解答题:本大题6个小题,共74分17.(本小题满12分)已知A 、B 是ΔABC 的两个内角,a v sin 22A B A B i j +-+v v ,其中i j v v 、为互相垂直的单位向量,若||a =v.(Ⅰ) 试问tanA ·tanB 是否为定值? 若为定值,请求出;否则请说明理由. (Ⅱ) 求tanC 的最大值,并判断此时三角形的形状.18. (本小题12分)设数列{a n }的前n 项和为S n ,已知a 1=1,S n =na n ﹣2n(n ﹣1),(n ∈N*)(Ⅰ) 求证数列{a n }为等差数列,并写出通项公式; (Ⅱ) 是否存在自然数n ,使得40032321=++++nS S S S n Λ?若存在,求出n 的值; 若不存在,说明理由;19.(本小题满分12分)甲、乙两人进行乒乓球比赛,在每一局比赛中,甲获胜的概率为P . (Ⅰ)如果甲、乙两人共比赛4局,甲恰好负2局的概率不大于其恰好胜3局的概率,试求P的取值范围; (Ⅱ)如果P=13,当采用3局2胜制的比赛规则时,求甲获胜的概率.20. (本小题满分12分)在正四棱柱ABCD —A 1B 1C 1D 1中,侧棱是底面边长的2倍,P 是侧棱CC 1上的一点. (Ⅰ)求证:不论P 在侧棱CC 1上任何位置,总有BD ⊥AP ;(Ⅱ)若CC 1=3C 1P ,求平面AB 1P 与平面ABCD 所成二面的余弦值. (Ⅲ)当P 点在侧棱CC 1上何处时,AP 在平面B 1AC 上的射影是∠B 1AC 的平分线.21. (本小题满分14分)已知点Q 位于直线3x =-右侧,且到点()1,0F -与到直线3x =-的距离之和等于4. (Ⅰ) 求动点Q 的轨迹C ;(Ⅱ) 直线l 过点()1,0M 交曲线C 于A 、B 两点,点P 满足1()2FP FA FB =+u u u r u u u r u u u u r ,0EP AB =u u ur u u u r g ,又OE uuu r=(0x ,0),其中O 为坐标原点,求0x 的取值范围;(Ⅲ) 在(Ⅱ)的条件下,PEF ∆能否成为以EF 为底的等腰三角形?若能,求出此时直线l 的方程;若不能,请说明理由.ABCDA 1 D 1C 1 B 1P22.(本小题满分12分)已知函数f(x)满足f(x+y)= f(x)·f(y)且f(1)=1 2 .(Ⅰ)当n∈N+时,求f(n)的表达式.(Ⅱ)设a n=n·f(n),n∈N+,求证a1+a2+…+a n<2.答案:1.D 由A ∩B=A ∩C 知B ,C 在A 内部的元素相同,由韦恩图可得. 2.A3.C 2231x x x +--=(1)(3)1x x x -+-=x+3 依题意 当x>1时 f(x)>4当x ≤1时 f(x)=3x+1≤4 令t= f -1(3) ∴f(t)=3<4 即3t+1=3 ∴t=234.D 将f(x)拆成:当x 是有理数时,f(x)=1;当x 是无理数时,f(x)=0,然后一一验证即可5.C 展开式的通项为r nC (1x)n-r ·(-)r =(-1)r ·r n C 4()3r n r x --(r=0,1,2,…n )即存在自然数r ,使43r -(n -1) =4即7r=3n+12且n ≥r,故选C. 6.B ∵n+μ=1 ∴λ=1-μ,∵c v =λa v +μb v =a v +μ(b v -a v )=a v +μAB u u u v∴AC u u u v =c v -a v =μAB u u u v ,即AC u u u v 与AB u u u v共线.7.D 法一:反代法.分别取a=6,8代入验证。
河南天一大联考2022-2023学年高三上学期1月期末联考理科数学试题含答案
绝密★启用前大联考2022-2023学年高三年级上学期期末考试理科数学考生注意:1.答题前,考生务必将自己的姓名、考生号填写在试卷和答题卡上,并将考生号条形码粘贴在答题卡上的指定位置.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}(){}12,ln 67A x x B x y x ===-∣∣ ,则A B ⋂=()A.716x x ⎧⎫<⎨⎬⎩⎭∣ B.726x x ⎧⎫<⎨⎬⎩⎭∣ C.{}12xx ∣ D.76x x ⎧⎫>⎨⎬⎩⎭∣2.已知在复平面内,复数12,z z 所对应的点分别为()()2,5,3,7--,则12iz z ⋅=()A.2929i --B.2929i-C.2929i+ D.2929i -+3.已知向量()(),1,2,1m t n t ==- ,若222|2|4m n m n -=+ ,则2t =()B.1C.22D.124.为了解某专业大一新生的学习生活情况,辅导员将该专业部分学生一周的自习时间(单位:h )统计后制成如图所示的统计图,据此可以估计该专业所有学生一周自习时间的中位数为()A.24.25B.24C.23.75D.23.255.已知在正方体1111ABCD A B C D -中,11,AD A D 交于点O ,则()A.OB ⊥平面11ACC AB.OB ⊥平面11A B CDC.OB ∥平面11CD B D.1OB BC ⊥5.为了处理大数的运算,许凯与斯蒂菲尔两位数学家都想到了构造双数列模型的方法,如计算256×4096时,我们发现256是8个2相乘,4096是12个2相乘,这两者的乘积,其实就是2的个数做一个加法,所以只需要计算8+12=20,进而找到下表中对应的数字1048576,即25640961048576⨯=.记()128log 64598820000000log 8192a =⨯+,则a ∈()n0123456789102n 12481632641282565121024n111219202122232425⋯2n2048409652428810485762097152419430483886081677721633554432⋯A.()1,0- B.()2,1-- C.()3,2-- D.()4,3--6.已知点((0,,0,M N -,若在直线:0(0,0)l mx ny m n -=>>上存在点A ,使得AM AN -=)A.m n >+B.m n <+C.m >D.m <8.已知正数,a b 满足3a b +=,若5a b ab λ+ 恒成立,则实数λ的取值范围为()A.81,2∞⎛⎤- ⎥⎝⎦B.27,4∞⎛⎤- ⎥⎝⎦C.81,4∞⎛⎤- ⎥⎝⎦D.27,2∞⎛⎤- ⎥⎝⎦9.若112324log (21)a b c -+==+,则,,a b c 的大小关系不可能为()A.c b a >>B.c a b >>C.b a c>> D.b c a>>10.已知抛物线2:4C y x =的焦点为F ,过点F 的两条直线12,l l 分别与抛物线C 交于点11,A B 和22,A B ,且点12,A A 在x 轴的上方,则直线1212,A A B B 在x 轴上的截距之积为()A.4B.3C.2D.111.已知正四棱锥S ABCD -的外接球半径为3,底面边长为2,2SA >.若SC 垂直于过点A 的平面α,则平面α截正四棱锥S ABCD -所得的截面面积为()A.433B.463C.423D.8312.已知在ABC 中,222sin 2sin 4sin B C A +=,若2ABC S BC λ(ABC S 表示ABC 的面积)恒成立,则实数λ的取值范围为()A.,6∞⎫+⎪⎪⎣⎭ B.,3∞⎫+⎪⎪⎣⎭ C.,8∞⎫+⎪⎪⎣⎭ D.,4∞⎫+⎪⎪⎣⎭二、填空题:本题共4小题,每小题5分,共20分.13.25(31)(1)x x --的展开式中5x 的系数为__________.14.已知函数()()sin ,sin ,033f x x g x x ωπωπωωω⎛⎫⎛⎫=+=-> ⎪⎪⎝⎭⎝⎭,若()f x 与()g x 的图象的对称轴相同,则ω的一个值为__________.15.在通用技术课程上,老师教大家利用现有工具研究动态问题.如图,老师事先给学生准备了一张坐标纸及一个三角板,三角板的三个顶点记为,,,2,4A B C AC AB BC ===.现移动边AC ,使得点,A C 分别在x 轴、y 轴的正半轴上运动,则OB (点O 为坐标原点)的最大值为__________.16.已知0a >,函数()()ln 1ln(1)af x x a x x a x ⎡⎤=+--++⎣⎦在其定义域()1,∞-+上单调递减,则实数a =__________.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知等差数列{}n a 的前n 项和为n S ,且412716,28a a S +==.(1)求{}n a 的通项公式;(2)若数列{}n b 满足43nnn a a b =,且{}n b 的前n 项和为n T ,求满足不等式31n n a T ⋅->的n 的值.18.(12分)如图所示,四棱锥S ABCD -的底面ABCD 为矩形,且2,AB AD SD =⊥平面,ABCD SAD 为等腰直角三角形,M 是线段AB 上靠近B 的四等分点.(1)求证:平面SCM ⊥平面SBD ;(2)求直线SA 与平面SCM 所成角的正弦值.19.(12分)近年来,各地电商行业迅速发展,电商行业的从业人数也相应增长.现将某地近5年电商行业的从业人数统计如下表所示.第x 年12345从业人数y (万人)58111115(1)若y 与x 线性相关,求y 与x 之间的回归直线方程ˆˆˆy bx a =+;(2)若甲、乙、丙、丁4名大学生毕业后进人电商行业的概率分别为2133,,,3244,且他们是否进人电商行业相互独立.记这4人中最终进人电商行业的人数为X ,求X 的分布列以及数学期望.参考公式:在线性回归方程ˆˆˆy bx a =+中,121ˆˆˆ,niii nii x ynxy bay bx xnx ==-==--∑∑.20.(12分)已知函数()()3222xx f x e x ax a R =+--∈.(1)设函数()()2f x axm x x+=,判断()m x 的单调性;(2)若当0x时,关于x 的不等式()3cos 2xf x x + 恒成立,求a 的取值范围.21.(12分)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为22,过右焦点的直线l 与椭圆C 交于,M N 两点,且当l x ⊥轴时,MN =(1)求椭圆C 的方程;(2)若直线l 的斜率存在且不为0,点,M N 在x 轴上的射影分别为,P Q,且()04,,,R y N P 三点共线,求证:RMN 与RPQ 的面积相同.(二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)已知在平面直角坐标系xOy 中,直线l 的参数方程为2,3x t y ⎧=⎪⎨=-⎪⎩(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为()1cos22sin ρθθ+=,点P 的极坐标为28,3π⎛⎫⎪⎝⎭.(1)求直线l 的极坐标方程以及曲线C 的直角坐标方程;(2)记M 为直线l 与曲线C 的一个交点,其中4OM <,求OMP 的面积.23.[选修4-5:不等式选讲](10分)已知函数()()224,243f x x m x g x x x =++-=-+.(1)若3m =,求不等式()7f x >的解集;(2)若12,x R x R ∀∈∃∈,使得()()12f x g x成立,求实数m 的取值范围.大联考20222-2023学年高三年级上学期期末考试理科数学•答案一、选择题:本题共12小题,每小题5分,共60分.1.答案B命题意图本题考查函数的定义域及集合的运算.解析依题意,7{670}6B xx x x ⎧⎫=->=>⎨⎬⎩⎭∣∣,则726A B xx ⎧⎫⋂=<⎨⎬⎩⎭∣ .2.答案A命题意图本题考查复数的几何意义、复数的四则运算.解析依题意,()()1225i 37i 614i 15i 352929i2929i i i i iz z +⋅--⋅---+-====--.3.答案D命题意图本题考查平面向量的数量积及其应用.解析依题意,()()()22,22,14,1m n t t t -=--= ,故2221614441t t t +=+++,则212t =.4.答案C命题意图本题考查样本的数字特征、频率分布直方图.解析依题意,()0.020.040.102 2.51a a ++++⨯=,解得0.08a =,故前3块小矩形的面积分别为0.05,0.25,0.4,则所求中位数为0.50.050.2522.523.750.16--+=.5.答案C命题意图本题考查空间线面的位置关系.解析作出图形如图所示,连接BD ,因为111,BD B D OD B C ∥∥,所以平面OBD ∥平面11CD B ,故OB ∥平面11CD B ,其他三个选项易知是错误的.6.答案B命题意图本题考查对数的运算、数学文化.解析因为()()645988524288,1048576,2000000016777216,33554432∈∈,故()2log 64598819,20∈,()2log 2000000024,25∈,则()()2log 6459882000000043,45⨯∈,则()()128143log 64598820000000log 6459882000000015,33⎛⎫⨯=-⨯∈-- ⎪⎝⎭,而222log 8192log 2log 409613=+=,故42,3a ⎛⎫∈-- ⎪⎝⎭,故选B.7.答案C命题意图本题考查双曲线的定义与性质.解析由题可知点A 在双曲线22:162y x C -=的下支上,故直线l 与曲线C 有交点.而曲线C的渐近线为y =,直线:m l y x n =,故mn>,即m >.8.答案B命题意图本题考查基本不等式.解析依题意,44a b b aλ+ .而()4455444444222333a b a b a b a b b a a b a b a b b a b a ⎛⎫++ ⎪+++++⎝⎭+==()2224()273124a b a b ++== ,当且仅当a b =,即33,22a b ==时前后两个不等号中的等号同时成立,所以λ的取值范围为27,4∞⎛⎤- ⎥⎝⎦.9.答案B命题意图本题考查函数的图象与性质.解析令函数()()()()112324,log ,(21),x f x g x x h x x m x k -+===+=,在同一直角坐标系中分别作出()()()(),,,y f x y g x y h x y m x ====的大致图象,如图所示,观察可知,可能有b a c >>(()m x 的图象为1l 时)、b c a >>(()m x 的图象为2l 时)c b a >>、(()m x 的图象为3l 时),故选B.10.答案D命题意图本题考查抛物线的方程、直线与抛物线的综合性问题.解析由题可知()1,0F .设直线11A B 的方程为1x my =+,联立21,4,x my y x =+⎧⎨=⎩可得2440y my --=,则根据根与系数的关系可设()()221111111,2,,2A t t B t t ---,同理可设()()221222222,2,,2A t t B t t ---,则直线12A A 的斜率12122A A k t t =+,直线12A A 的方程为()2221222y t x t t t -=-+,令0y =,得12x t t =-,即直线12A A 在x 轴上的截距为12t t -.同理可得,直线12B B 在x 轴上的截距为121t t -,所以直线1212,A A B B 在x 轴上的截距之积为1.11.答案A命题意图本题考查空间几何体的表面积与体积.解析设正四棱锥S ABCD -的高为h ,其外接球的半径为R .因为22()2R h R =-+,解得h =或63h =.当63h =时,23SA ==<,不符合题意;当h =时,SA AC SC ===所以SAC 为等边三角形.取SC 的中点E ,连接AE ,则AE SC ⊥,且AE =设平面α⋂直线SB F =,平面α⋂直线SD H =,则,EF SC EH SC ⊥⊥.在SBC中,由余弦定理可得3cos 4BSC ∠==,所以42cos 3SE SF BSC ∠==.在SBD 中,FH BD ∥,故23FH SF BD SB ==,故24233FH BD ==.在四边形AFEH 中,AE FH ⊥,故12AFEH S AE =.14243233FH ==12.答案A命题意图本题考查正余弦定理、三角形的面积公式及导数的应用.解析记角,,A B C 所对的边分别为,,a b c .因为222sin 2sin 4sin B C A +=,所以由正弦定理可得22224b c a +=.()()222222222222222224422141sin 21cos sin 2442ABC b c a b c bc A bc b c A S b c A aa a abc ⎡⎤⎛⎫+--⎢⎥⎛⎫ ⎪-⎢⎥ ⎪⎝⎭⎛⎫⎣⎦==== ⎪ ⎪⎝⎭+ ⎪⎝⎭.()()2222222224424422223241641529416442b c b c b c b c b cb c b c b c ⎡⎤+⎢⎥-⎢⎥--⎣⎦==⋅+++令22c t b =,则()2228711116441ABC t S a t t ⎡⎤-⎛⎫=⨯-⎢⎥ ⎪++⎝⎭⎣⎦,令()271441t g t t t -=++,则()31114(21)t g t t -=+',故当110,14t ⎛⎫∈ ⎪⎝⎭时,()0g t '>,当11,14t ∞⎛⎫∈+ ⎪⎝⎭时,()0g t '<,故max 1149()1472g t g ⎛⎫== ⎪⎝⎭,故2max 106ABC S a ⎛⎫= ⎪⎝⎭ ,则实数λ的取值范围为10,6∞⎫+⎪⎪⎣⎭.二、填空题:本题共4小题,每小题5分,共20分.13.答案121命题意图本题考查二项式定理.解析22(31)961x x x -=-+,故所求5x 的系数为215559C 6C C 121⋅+⋅+=.14.答案32(其他符合条件的答案也给分)命题意图本题考查三角函数的图象与性质.解析因为()f x 与()g x 的图象的对称轴相同,所以()33k k ωπωππ=-+∈Z ,故()32k k ω=∈Z ,因为0ω>,故()*32kk ω=∈N 15.答案1命题意图本题考查数学文化.解析如图,取AC 的中点E ,因为OAC 为直角三角形,故112OE AC ==.由于ABC 为直角三角形,故BE ==显然OB OE BE + ,当且仅当,,O B E 三点共线时等号成立,故OB的最大值为1.16.答案2命题意图本题考查利用导数研究函数的性质.解析依题意,()()ln 12f x a x x +'=-,故对任意的()()()1,,ln 120x f x a x x ∞∈-+=+-' 恒成立.设()()ln 12g x a x x =+-,则()2121a x g x x ⎡⎤⎛⎫--- ⎪⎢⎥⎝⎭⎣⎦'=+,由0a >知,11,2a ->-∴当1,12a x ⎛⎫∈-- ⎪⎝⎭时,()0g x '>,当1,2a x ∞⎛⎫∈-+ ⎪⎝⎭时,()()0,g x g x <'∴在1,12a ⎛⎫-- ⎪⎝⎭上单调递增,在1,2a ∞⎛⎫-+ ⎪⎝⎭上单调递减,()g x ∴在12ax =-时取得最大值.又()00,g =∴对任意的()()()1,,0x g x g ∞∈-+ 恒成立,即()g x 的最大值为()0,102ag ∴-=,解得2a =.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.命题意图本题考查等差数列的通项公式、错位相减法、数列的性质.解析(1)设等差数列{}n a 的公差为d ,则41217121416,72128,a a a d S a d +=+=⎧⎨=+=⎩解得11a d ==,.故n a n =.(2)依题意,43n nnb =,故2311231433333n n n n n T --⎛⎫=⋅+++++ ⎪⎝⎭ ,则2341112314333333n n n n n T +-⎛⎫=⋅+++++ ⎪⎝⎭ ,两式相减可得2311111121111463344213333333313n n n n n n n n n T +++⎡⎤⎛⎫- ⎪⎢⎥+⎛⎫⎝⎭⎢=⋅++++-=⋅-=- ⎪⎝⎭⎢⎥-⎢⎥⎣⎦,解得2333n nn T +=-.故31n n a T ⋅->可转化为()2313nn n +>.令()233n nn n d +=,则()()()2111125234250333n n n nn n n n n n n d d ++++++--+-=-=<,故1n n d d +<,即{}n d 单调递减.注意到31d =,所以满足条件的n 的值为1,2.18.命题意图本题考查空间面面的位置关系、向量法求空间角.解析(1)因为SD ⊥平面,ABCD CM ⊂平面ABCD ,所以SD CM ⊥.因为14BM AB =,所以2AB BC AD BM==.所以Rt CBM ∽Rt BAD ,所以BMC BDA ∠∠=,所以90BMC ABD ∠∠+= ,即BD CM ⊥.又SD BD D ⋂=,所以CM ⊥平面SBD .因为CM ⊂平面SCM ,故平面SCM ⊥平面SBD .(2)以D 为原点,,,DA DC DS 所在直线分别为,,x y z 轴建立如图所示的空间直角坐标系D xyz -,不妨设4AB =,则()()()()0,4,0,0,0,2,2,3,0,2,0,0C S M A ,所以()()()0,4,2,2,,2,0,2SC CM SA =-=-=-.设平面SCM 的法向量为(),,n x y z = ,则20,420,n CM x y n SC y z ⎧⋅=-=⎪⎨⋅=-=⎪⎩令1x =,则()1,2,4n =..记直线SA 与平面SCM 所成的角为θ,则sin cos ,14SA n SA n SA nθ⋅==== .19.命题意图本题考查回归直线方程、离散型随机变量的分布列及数学期望.解析(1)依题意,581111153,105x y ++++===,而55211516334475173,149162555iii i i x yx ===++++==++++=∑∑,故51522151735310ˆˆ2.3,10 2.33 3.155535i i i i i x y xy b a xx ==--⨯⨯====-⨯=-⨯-∑∑,故所求回归直线方程为ˆ 2.3 3.1yx =+.(2)依题意,X 的所有可能取值为0,1,2,3,4.()111110324496P X ==⨯⨯⨯=,()122111111111319313244324432449632P X C ==⨯⨯⨯+⨯⨯⨯+⨯⨯⨯⨯==,()11222111213111311133292C C 324432443244324496P X ==⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯=,()1221312133113339133C 3244324432449632P X ==⨯⨯⨯⨯+⨯⨯⨯+⨯⨯⨯==,()2133183432449616P X ==⨯⨯⨯==,所以X 的分布列为X01234P 19633229961332316故()132913380123496329632163E X =⨯+⨯+⨯+⨯+⨯=.20.命题意图本题考查利用导数研究函数的性质.解析(1)由题可知()2e ,02x x m x x x x =-+≠,则()()()()221e e 111xx x m x x x x x -⎛⎫=+-=-+ ⎝'⎪⎭,故当0x <时,()0m x '<,当01x <<时,()0m x '<,当1x >时,()0m x '>,故()m x 在(),0∞-和()0,1上单调递减,在()1,∞+上单调递增.(2)依题意,当0x 时,()2e cos 20*x x x ax --- 恒成立.令()[)2e 2cos ,0,x g x x ax x x ∞=---∈+,则()e 22sin xg x x a x -+'=-.令()[)e 22sin ,0,x h x x a x x ∞=--+∈+,则()e cos 2x h x x =+-'.令()[)e cos 2,0,x r x x x ∞=+-∈+,则()e sin 0x r x x =->',故()r x 在[)0,∞+上单调递增,则()()00r x r =,故()h x 在[)0,∞+上单调递增,则()()012h x h a =- .当12a 时,()()0120h x h a =- ,此时()g x 单调递增,从而()()00g x g = ,满足题意.当12a >时,令()e e x s x x =-,则()e e x s x '=-,当(),1x ∞∈-时,()()0,s x s x '<单调递减,当()1,x ∞∈+时,()()0,s x s x '>单调递增,所以()()10s x s = ,即e e x x ,当且仅当1x =时取等号.所以()()e 22sin e 212xg x x a x x a =--+>---',从而()1212e 2120e 2e 2a a g a ++⎛⎫>-⋅--= ⎪--⎝⎭'.又()()0120,g a g x '=-<'在[)0,∞+上单调递增,故存在唯一的实数0120,e 2a x +⎛⎫∈ ⎪-⎝⎭,使得()00g x '=,且当()00,x x ∈时,()()0,g x g x '<单调递减,所以当()00,x x ∈时,()()00g x g <=,不合题意,舍去.综上所述,实数a 的取值范围为1,2∞⎛⎤- ⎥⎝⎦.21.命题意图本题考查椭圆的方程、直线与椭圆的综合性问题.解析(1)设椭圆C 的半焦距为(0)c c >.依题意,2c e a ===,故2212b a =①.联立22221,,x y a b x c ⎧+=⎪⎨⎪=⎩解得2b y a =±,故22b MN a ==②.联立①②,解得2a b ==,故椭圆C 的方程为22184x y +=.(2)易知椭圆的右焦点为()2,0.设直线l 的方程为()()20y k x k =-≠.由()222,28y k x x y ⎧=-⎨+=⎩得()2222128880k x k x k +-+-=,设()()1122,,,M x y N x y ,则22121222888,1212k k x x x x k k-+==++.因为MP x ⊥轴,所以()1,0P x .直线NP 的方程为()2121y y x x x x =--,所以()212144,y x R x x ⎛⎫- ⎪-⎝⎭.因为NQ x ⊥轴,所以()2,0Q x .因为()()()211122124,4MQ RQ y x y k k x x x x x -==---,所以()()()2112121244RQ MQ y x y k k x x x x x --=----()()()()()()211221224244k x x k x x x x x --+--=--()()()121221262164kx x x x x x x ⎡⎤=⋅+--⎣⎦--()()222221222488841212k k k x x x k k ⎛⎫-=⋅-- ⎪--++⎝⎭()()2222212163112412k k k k x x x k -+--=⋅--+0=,所以,,Q M R 三点共线.因为NQ PM ∥,所以PQM PMN S S = ,而PMR PMR S S = ,所以RMN 与RPQ 的面积相同.22.命题意图本题考查参数方程、极坐标方程、普通方程、直角坐标方程之间的转化.解析(1)由直线l 的参数方程可得直线l6y +=,将cos ,sin x y ρθρθ==cos sin 2cos 66πθρθρθ⎛⎫+=-= ⎪⎝⎭,故直线l 的极坐标方程为cos 36πρθ⎛⎫-= ⎪⎝⎭.而曲线():1cos22sin C ρθθ+=,即22cos 2sin ρθθ=,则22cos sin ρθρθ=,故曲线C 的直角坐标方程为2y x =.(2)由260,,y y x +-==⎪⎩可得3x y ⎧=⎪⎨=⎪⎩或12.x y ⎧=-⎪⎨=⎪⎩因为4OM <,所以点)M,转化为极坐标为3M π⎛⎫ ⎪⎝⎭.由于点P 的极坐标为28,3π⎛⎫ ⎪⎝⎭,故OMP 的面积18sin 1223S π=⨯⨯=.23.命题意图本题考查绝对值不等式的求解.解析(1)依题意,2347x x ++->.当32x <-时,2347x x --+->,解得2x <-,故2x <-;当342x - 时,2347x x ++->,解得0x >,故04x < ;当4x >时,2347x x ++->,解得83x >,故4x >.综上所述,不等式()7f x >的解集为{2x x <-∣或0}x >.(2)依题意,()244422m m f x x m x x x =++-++-+ ,当2m x =-时,取“=”,故min ()42m f x =+.()222432(1)1g x x x x =-+=-+.因为12,x x ∀∈∃∈R R ,使得()()12f x g x 成立,故412m + ,故412m +- 或412m + ,则10m - 或6m - ,故实数m 的取值范围为][(),106,∞∞--⋃-+.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Q,过点 P(0,2) 且斜率为 k 的直线与圆 Q 相交于不同的两点 A,B。 (1)求 k 的取值范围; (2)是否存在常数 k ,使得向量 OA OB 与 PQ 共线?如果存在,求 k 的值;如果不存
在,请说明理由。 20、(本小题满分 12 分)已知函数 f (x) ax ln x ,其中 a 为实常数。设 e 为自然对数的底 数。
D、{x | 2 x 2}
2、已知 Sn 是数列{an}的前 n 项和, log2 (Sn 1) n ,则{an}是 (
)
A、等差数列
B、等比数列
C、既是等差数列又是等比数列
D、既不是等差数列又不是等比数列
3、若函数 f (x) 的值域是[1 ,3] ,则函数 F (x) f (x) 1 的值域是(
长。
24、(本小题满分 10 分)选修 4-5:不等式选讲
关于 x 的不等式 ax 1 ax a 4 。
(1)当 a 2 时,求此不等式的解集。 (2)若此不等式的解集为 R ,求实数 a 的取值范围。
4
17、(本小题满分
12
分)已知函数
f
(x)
r m
r n
,其中
r m
(sin x
cos x,
3 cosx) ,
r m
(cosx
sin x,2sin x) ,其中
0
,若
f
(x)
相邻两对称轴间的距离等于
。
2
(1)求 的值;
(2) 在 ABC 中, a,b, c 分别是角 A、B、C 的对边, a 3,b c 3, f ( A) 1,求
(1)当 a 1时,求 f (x) 的极值;
3
(2)若 f (x) 在区间 (0, e] 上的最大值为 3 ,求 a 的值。 21、(本小题满分 12 分)在平面直角坐标系 xOy 中,点 P 到两点 (0, 3), (0, 3) 的距离之和
等于 4,设点 P 的轨迹为 C,直线 y kx 1与 C 交于 A,B 两点。 (1)写出 C 的方程; (2)若 OA OB ,求 k 的值;
高三数学期末考试试题(理科)
一、选择题:(本大题共 12 小题,每小题 5 分,共 60 分,在每小题给
出的四个选项中,有且只有一项符合题目要求.)
1、设集合
A
{x
|
log2
x
1},
B
{x
|
x 1 x2
0},
AI
B
(
)
A、{x | 0 x 2}
B、{x | 2 x 1}
C、{x | 0 x 1}
1
A、直角三角形
B、等腰三角形
C、等腰三角形或直角三角形
D、等腰直角三角形
9、已知向量
r a
(2 cos ,2sin
r ), b
(3 cos
,3sin
)
,若
r a
与
r b
的夹角为
60 ,则直线
x cos y sin 1 0 与圆 (x cos )2 (x sin )2 1 的位置关系是( )
x2 a2
y2 b2
1
(a
0, b
0) ,过椭圆的右焦点作 x 轴垂线交椭圆于
A, B 两点,若以
| AB | 为直径的圆过坐标原点,则椭圆的离心率 e 为( )
A、 5 1 2
B、 3 1 2
C、 1 2
8、在 ABC 中, a2 tan B b2 tan A ,则 ABC 一定是( )
D、 3 2
3
3
2
①点 ( 5 ,0) 是函数 f (x) 图象的一个对称中心; 12
②直线 x 是函数 f (x) 图象的一条对称轴; 3
③函数 f (x) 的最小正周期是 ;
④将函数 f (x) 的图象向右平移 个单位后,对应的函数是偶函数。
6
其中所有正确结论的序号是
。
三、解答题:(解答应写出必要的文字说明、 证明过程及演算步骤.)
ABC 的面积。
18、(本小题满分
12
分)已知数列{an}的首项 a1
2 3 , an1
2an , n an 1
1,2,3L
L
(1)证明:数列{ 1 1}是等比数列; an
(2)求数列 {an } 的通项公式。
19、(本小题满分 12 分)在平面直角坐标系 xOy 中,已知圆 x2 y 2 12x 32 0 的圆心为
C、充要条件
B、必要不充分条件 D、非充分非必要条件
6、若点 A 的坐标为 (3,2) , F 为抛物线 y 2 2x 的焦点,点 M 在该抛物线上移动,为使得
| MA | | MF | 取得最小值,则点 M 的坐标( )
A、 (0,0)
B、 (1,1)
C、 (2,2)
D、 (1 ,1) 2
7、已知椭圆
2
2
A、相切
B、相交
C、相离
D、随 , 的值而定
10、已知向量
r a
(
x
,
2
y
r ), b
( x ,
5
2
y
)
,曲线
r a
r b
1上一点 P 到 F (3,0) 的距离为
6, Q 为
5
PF 中点, O 为坐标原点,则| OQ | ( )
A、1
B、2
C、5
D、1 或 5
11、若方程 x 2 (1 a)x 1 a b 0 的两根分别为椭圆和双曲线的离心率,则 b 的范围 a
)
2
f (x)
A、[1 ,3] 2
B、 [2, 10 ] 3
C、[5 ,10] 23
4、函数 f (x) (x 3)ex 的单调递增区间是( )
D、 [3, 10 ] 3
A、 (,2)
B、 (0,3)
C、 (1,4)
D、 [2,)
5、 1 1 是 x 1成立的( ) x A、充分不必要条件
则 b6b8 __________。
15、已知函数
y
f
(x) 的定义域为
R,且
f
(x)
f
(x) ,
f (1 2
x)
f
Hale Waihona Puke (1 2x) ,则f (1) f (2) f (3) f (4) f (5) __________。
16、设函数 f (x) cos x cos(x ) sin x sin(x ) 1,有下列结论:
是( )
A、 2 b 1 a
B、 b 2 , b 1
a
a
C、 2 b 1 a2
D、 b 1 , b 2 a 2a
12、已知曲线 C : y 2x2 点 A(0,2) 及点 B(3, a) 从点 A 观察点 B 要使视线不被曲线 C 挡住,
则实数 a 的范围( )
A、 (4,)
(3)若点 A 在第一象限,证明:当 k 0 时,恒有| OA || OB |。
请考生在第 22、23、24 三题中任选一题做答,如果多做,则按所做的第
一个题记分。
22、(本小题满分 10 分)选修 4-1:几何证明选讲 如图所示, AB 是⊙ O 的直径, F 为⊙ O 上的点, BAF 的平分线 CA 交⊙ O 于点 C , 过点 C 作 CD AF ,交 AF 的延长线于点 D ,作 CM AB ,垂足为点 M ,求证: (1) CD 是⊙ O 的切线。 (2) AM MB DF DA 。
B、 (,4)
C、 (10,)
D、 (,10)
二、填空题:(本大题共 4 小题,每小题 5 分,共 20 分)
6
6
13、已知 f (x) 为偶函数,且 6 f (x)dx 16 ,则 0 f ( x)dx __________。
14、各项不为零的等差数列{an}中,有 a7 2 2(a3 a11 ) ,数列{bn}是等比数列,且 b7 a7 ,
23、(本小题满分 10 分)选修 4-4:坐标系与参数方程
直角坐标系中,已知曲线
C
的参数方程为:
x
y
1 4 cos 2 4sin
(为参数)
;在极坐标系中,
已知直线 l 过点 A(1, ) ,且倾斜角为 3 。 4
(1)求直线 l 的极坐标方程。
(2)以极点为直角坐标系的原点,极轴为 x 轴的正半轴,求直线 l 被曲线 C 截得的线段