污泥过滤脱水性能实验
污泥的调理和脱水性能的实验
泥的调理与脱水性能实验一、实验目的污水处理过程中,会产生大量的污泥,其数量占处理水量的 0.3%~0.5%(以含水率为 97%)。
污泥脱水是污泥减量化中最为经济的一种方法,是污泥处理工艺中的一个重要环节,其目的是去除污泥中的空隙水和毛细水、降低了污泥的含水率,为污泥的最终处置创造条件。
本实验通过对活性污泥脱水,主要达到以下目的:(1)了解影响污泥脱水的主要因素;(2)掌握污泥脱水的基本方法和相关操作。
二、实验原理污水处理过程中得到的污泥具有高亲水性,污泥中水与污泥固体颗粒的结合力是很强的,如果没有预先的处理,即通过化学的、物理的或者加热的方法进行预处理,则绝大多数的污泥的脱水是非常困难的,这种污泥预先处理的过程称为污泥调理。
通过对污泥的调理,以改变污泥粒子表面的物化性质和组分,破坏污泥的胶体结构,减小与水的亲和力,从而改善脱水性能。
影响污泥脱水性能的因素很多,包括污泥水分的存在方式和污泥的絮体结构(粒度、密度和分形尺寸等)、电势能、pH 值以及污泥来源等。
本实验对化学调理过程中涉及到的一些调理剂,通过实验比较,确定其对污泥脱水性能的影响。
三、实验仪器及试剂1.实验仪器(1)离心机(2)离心管(3)搅拌器(4)烘箱(5)电子分析天平(6)坩埚或表面皿(7)移液管(8)洗耳球(9)250 ml 烧杯2. 实验试剂及材料(1)硫酸铁或三氯化铁 40%(2)氯化铝(3)聚丙烯酰胺(4)市政污泥四、实验步骤1. 操作过程将 100ml 浓缩污泥加到 250ml 烧杯中,分别加入一定量的调理剂,然后将烧杯置于搅拌器上,先快速搅拌(150r/min)30-60s,后慢速搅拌(50r/min)3-5min;搅拌结束后进行离心分离。
经预处理的污泥进行离心后,倾倒上清液,取泥饼测定其含固率。
其中,低转速 1800r/min、短时间 2min 离心后泥饼用来评价离心脱水速率;用高转速3800r/min,长时间 30min 离心后泥饼含固率评价可脱水程度,结果记录在下表中。
污泥脱水优化实验报告
污泥脱水优化实验报告实验报告:污泥脱水优化一、引言污泥是污水处理过程中产生的固体废弃物,具有高水分含量和黏性较强的特点。
为了减少体积和重量,提高固体含量,污泥脱水工艺是必不可少的。
本实验旨在优化污泥脱水的方法,探究最佳脱水条件,提高脱水效率。
二、实验方法1. 实验材料:污泥样品2. 实验步骤:a. 收集污泥样品,并进行初步处理,去除杂质。
b. 将样品分为几个不同的组,分别采用不同的脱水方法。
c. 对每个组别进行相应的处理,如加入化学药剂、机械压榨等。
d. 定期记录脱水时间和脱水效果。
e. 对实验结果进行统计和分析,并比较各组别的脱水效果,选取最佳条件。
三、实验结果1. 样品处理前后的湿度和固体含量对比。
样品经过脱水处理后,湿度明显降低,固体含量显著提高,达到了脱水的目的。
2. 不同脱水方法的比较。
经过多组实验比较,发现加入化学药剂辅助脱水的效果最好。
在相同的脱水时间下,使用化学药剂的组别其湿度更低、固体含量更高。
机械压榨脱水的效果相对较差,湿度仍然较高。
四、实验讨论1. 脱水效果与脱水时间的关系。
随着脱水时间的增加,样品的湿度逐渐降低,固体含量逐渐提高。
但是,当脱水时间较长时,效果的提升幅度变小,逐渐趋于稳定。
2. 化学药剂的选择和用量。
实验中使用了不同的化学药剂,包括聚合物和颗粒剂。
通过对比发现,使用聚合物作为辅助剂效果最好,可大幅度降低湿度和提高固体含量。
而颗粒剂的效果相对较差。
此外,化学药剂的用量也需要合理控制,过多或过少都会影响脱水效果。
3. 机械压榨的可行性。
尽管机械压榨脱水的效果不如化学药剂辅助脱水,但其工艺简单、设备投资成本相对较低,对一些小型污水处理厂来说仍然是一种可行的选择。
五、实验结论1. 加入化学药剂辅助脱水是一种有效的污泥脱水方法,能够显著降低湿度并提高固体含量。
2. 化学药剂的选择和用量对脱水效果有重要影响,聚合物化学药剂使用量适宜,效果最佳。
3. 机械压榨脱水虽然效果相对较差,但对于一些小型污水处理厂来说仍然是一种可选的脱水方式。
实验五 污泥过滤脱水——污泥比阻的测定实验
实验五 污泥过滤脱水——污泥比阻的测定实验一、实验目的:1.了解过滤基本方程式.污泥比阻的意义并掌握其测定方法,2.掌握改善污泥脱水性能的化学调制方法。
二、实验原理:污泥的机械脱水是以过滤介质(一种多孔性物质)两面的压力差作为推动力,污泥中的水份被强制通过过凝介质(称滤液),固体颗粒被截留在介质上(称滤饼),从而达到脱水的目的。
过滤开始时,滤液仅克服过滤介质的阻力,当滤饼逐渐形成后,还必须克服滤饼本身的阻力,所以真正的过滤层应包括滤饼层与过滤介质。
污泥比阻是表示污泥过滤特性的综合性指标,它的物理意义是:单位质量的污泥在一定压力下过滤时在单位过滤面积上的阻力。
污泥比阻越大,过滤性能越差,通过测定污泥比阻可比较不同的污泥(或同一种污泥加入不同量的混凝剂后)的过滤性能。
在压力一定的条件下过滤,t/V 与V 成直线关系。
22t C V V pFμα= 其斜率为:污泥比阻:因此,为求得污泥比阻,需要在实验条件下求出b 及C 。
斜率b 的算法:可在定压下(真空度保持不变),通过比阻测定,测得在一系列t 时间内所得的液量(mL );用图解法求得其斜率b 。
C 的求法: 1(g mL )100100f i i f C C C C C = ---滤饼干重滤液三、实验设备和试剂:1.设备:PS-WN-066污泥比阻测定装置,上海嘉定大名教具厂;DHG-9070A 电热恒温干燥箱,上海精宏实验设备有限公司;FA2004N 电子天平,上海精密科学仪器有限公司;旋转粘度计。
2.器皿:100mL 量筒;移液管;200mL 烧杯;秒表;定量滤纸(7cm );表面皿。
3.药剂:二沉池污水;聚丙烯酰胺。
四、实验步骤:1.将滤纸放置在布氏漏斗上,用少量蒸馏水润湿滤纸,开动真空泵,使滤纸紧贴漏斗底。
2.开动真空泵,调节阀压力,使至达到额定真空度,比实验时真空压力小1/3。
(实验时真空压力采用266mmHg ,即35.46kPa ——或532mmHg ,即70.93kPa )。
污泥过滤脱水性能实验
9.
与“过滤设置”弹出窗口同时出现一个“显示过滤参数”按钮,按下按钮弹出“过 滤参数”窗口;
10. “过滤参数”窗口包括布氏漏斗中滤纸的“过滤面积 cm2”,根据污泥含水率换算 获得的“污泥浓度(g/L)”,“滤饼含水率%”和“滤饼的固体浓度 Cd(g/L)”, 以及 “单位体积滤液取得的滤饼干重 C(g/ml)”和当前温度下的“滤液黏度”; 11. 连接吸滤瓶的真空阀总阀,总阀开关用来隔断 4 套装置的吸滤压力,以便实行同步 计时; 12. “计时秒表”,大表为秒表,内部数字为分钟; 13. 三个控制按钮,分别用于开始和停止“计时”,“暂停”和“复位”操作; 14. 为了提高虚拟仪器的工作效率,仿真操作时使用“加速”调节旋钮加快时间进程; 15. 每点击一次“纪录”按钮便在“纪录表”中留下一组数据纪录; 16. “数据纪录表”,记载点击“纪录”按钮的时间和每套计量筒中滤出液的实时数据; 17. 操作结束后按下“stop”键返回。
V
PAt R
(2-1)
过滤阻力 R(m/m2) 过滤阻力包括滤渣阻力 Rc 和过滤隔层阻力 Rm 两个组成部分, R=Rc+Rm (2-2)
实验3-污泥脱水性能的测定.ppt
污泥脱水性能的测定
一、本实验的适用范围、选择依据
适用于环境监测与治理技术、城市检测与工程技术和环 境工程专业。 二、方法原理 污泥处理过程中,会产生大量的污泥,其数量占处理 水量的0.3%-0.5%(以含水率为97%计)。污泥脱水是污 泥减量化中最经济的一种方法,是污泥处理工艺中的一个 重要环节,其目的是去除污泥中的空隙水和毛细水,降低 了污泥的含水率,为污泥的最终处置创造条件。
污泥脱水性能的测定
五、操作、结果计算及数据处理、误差范围
将于预处理好的污泥分成2分,分别转入100ml离心管中,
在4000r/min和2000 r\min下离心10min,小心倾倒去除上清液 (避免使固体再悬浮),取泥饼2±0.1克 (准确记录重量),放 入预先已经干燥恒重的称量瓶中,放在105℃的干燥箱中恒重 (2次称量误差小于0.0005克),计算含固率。
污泥脱水性能的测定
二、方法原理
污泥脱水效果由其脱水速率和最终脱水程度两方面决定,主要考 察脱水后泥饼的含固率这一指标,含固体率越高,脱水效果越好。 影响污泥脱水性能的因素很多,包括污泥水分存在方式和污泥的絮
体结构(粒径、密度和分形尺寸等)、ξ电势能、pH值以及污泥来源
等。污泥粒径是衡量污泥脱水效果最重要的因素。一般来讲,细小 污泥颗粒所占比例越大,脱水性能就越差。
(3)0.5%阳离子型PAM:称取0.5克PAM定容稀 释至100毫升。100ml
污泥脱水性能的测定
四、所需仪器设备
污泥脱水性能的测定
五、操作、结果计算及数据处理、误差范围
采用机械脱水法测定污泥的脱水性能。将100ml浓缩污泥 加到250ml烧杯中,加10% 2ml硫酸酸化,快速搅拌30s,慢 搅拌5min,再加阳离子PAM,搅拌使污泥形成矾花,酸化及 絮凝反应均在烧杯中进行。
聚二甲基二烯丙基氯化铵
聚二甲基二烯丙基氯化铵(HCA)对活性污泥的脱水性能研究前言活性污泥含水率通常在95%以上。
这些带电污泥,以细小的颗粒存在,要使其脱稳絮凝脱水,需要在絮凝过程中投加大量的絮凝剂。
常见的絮凝剂有无机絮凝剂和有机絮凝剂两类。
投加无机絮凝剂,不仅药剂的消耗量大,沉淀物多,且处理效果不佳,近年来逐渐被有机絮凝剂所取代,目前被大多数厂商采用的主要是阳离子聚丙烯酰胺(PAM-C),其在使用过程中的他点是用量少,沉淀性能好,泥饼含水率低。
近年来,国内的部分生产厂家开始对聚二甲基二烯丙基氯化铵进行了大量的研究。
HCA是一种以二甲基二烯丙基氯化铵为主体的阳离子型有机高分子聚合物,它具有良好的水溶性,水溶液呈中性,在水溶液中电离后产生带正电荷的季胺盐类线型作用基团。
它除了具有一般高分子絮凝剂的架桥、卷扫功能外,还具有相当强的电中和能力。
其絮凝原理是高分子阳离子基团与带负电荷的污泥离子相吸引,降低及中和了胶体粒子的表面电荷,同时压缩了胶体扩散层而使微粒凝聚脱稳,并借助了高分子链的粘连架桥作用而产生絮凝沉降。
本文对二甲基二烯丙基氯化铰均聚和共聚产品的污泥脱水性能进行了研究,实验表明该类絮凝剂具有良好的污泥脱水性能。
1 实验部分1.1 主要试剂PAM-C:阳离子聚丙烯酸胺,市售;HCA:聚二甲基二烯丙基氯化胺均聚产品,自制;HCA-AM:二甲基二烯丙基氯化按与丙烯酸胺共聚产品,自制。
实验用污泥取自深圳某污水处理厂的浓缩污泥,含水率98%,pH 6.0-6.5,温度30-31℃。
1.2 自制高分子产品的制备过程①均聚产品先制备出二甲基二烯丙基氯化按单体。
将单体浓缩提纯后,取一定量的单体,按比例加入反应所需的引发剂,维持一定的温度在四口烧瓶中密闭进行反应。
整个制备过程约为20 h左右。
②共聚产品取一定量的二甲基二烯丙基氯化铰单体,并按比例加人丙烯酸胺单体,加入反应所需量的引发剂,维持一定的温度在四口烧瓶中进行密闭反应。
整个制备过程约为16 h左右。
污泥脱水性能实验
污泥脱水性能实验通过这个实验能够测定污泥脱水性能,以次作为选定脱水工艺流程和脱水机械型号的根据,也作为确定药剂种类,用量及运行条件的依据。
【实验目的】(1)加深理解污泥比阻的概念。
(2)评价污泥脱水性能。
(3)选择污泥脱水性能的药剂种类、浓度、投药量。
【实验原理】污泥经重力浓缩或消化后,含水率约在97%,体积大不便于运输。
因此一般多采用机械脱水,以减小污泥体积。
常用的脱水方法有真空过滤,压滤、离心等方法。
污泥机械脱水是以过滤介质两面的压力差作为动力,达到泥水分离,污泥浓缩的目的。
根据压力差来源的不同,分为真空过滤法,(抽真空造成介质两面压力差)压缩法(介质一面对污泥加压,造成两面压力差)。
影响污泥脱水的因数较多,主要有,(1)污泥浓度,取决于污泥性质及过滤前浓缩程度。
(2)污泥性质,含水率,(3)污泥预处理方法。
(4)压力差大小(5)过滤介质种类、性质。
设备【实验步骤】(1)准备待测污泥(消化后的污泥)(2)按表4-36所给出的因素、水平表,利用L9(3的4次幂)正交表安排污泥比阻实验。
测定某消化污泥比阻的因素水平表表4-36(3)按正交表给出的实验内容进行污泥比测定,步骤如下:1)测定污泥含水率,求其污泥浓度;2)布氏漏斗内放置滤纸,用水喷湿。
开动真空泵,使量筒中成为负压,滤纸紧贴漏斗,关闭真空泵;3)把100mL调节好的泥样倒入漏斗内,再次开动真空泵,使污泥在一定的条件下过滤脱水;4)记录不同过滤时间t的滤液体积V值;5)记录当过滤到泥面出现皲裂,或滤液达到85mL时。
所需要的时间t.此指标也可用来衡量污泥过滤性能的好坏;6)测定滤饼浓度;7)记录见表4-37污泥比阻实验记录【注意事项】(1)滤纸烘干称重,放到布氏漏斗内,而后再用真空泵抽吸一下,滤纸一定要贴近不能漏气。
(2)污泥倒入布氏漏斗内有部分滤液流入量筒,所以在正常开始实验时,应记录量筒内滤液体积Vo值。
【思考题】(1)判断生污泥,消化污泥脱水性能好坏,分析其原因。
脱水污泥上机实验报告
脱水污泥上机实验报告引言污泥处理是城市生活污水处理过程中不可或缺的环节之一,脱水是处理污泥的重要步骤。
本次实验旨在通过上机实验探究脱水污泥的最佳工艺条件,以提高脱水效果。
实验目的1. 探究不同脱水工艺参数对脱水污泥效果的影响;2. 寻找最佳的脱水工艺条件。
实验材料与方法材料1. 实验设备:脱水污泥实验装置、计时装置;2. 实验试剂:污泥样品、脱水剂。
方法1. 采集污泥样品,并对样品进行初步处理,去除杂质;2. 将处理后的污泥与一定量的脱水剂混合均匀;3. 将混合后的样品放入脱水污泥实验装置,并设置不同脱水工艺参数;4. 打开计时装置,开始记录时间;5. 观察实验过程中污泥的脱水情况,定时记录相应参数;6. 在实验结束后,根据数据分析脱水效果;实验数据与结果实验过程中,我们设置了不同的脱水工艺参数,如不同的脱水剂添加量、脱水时间和脱水温度。
根据实验记录的数据,我们得出了以下结果:脱水剂添加量(g)脱水时间(分钟)脱水温度(摄氏度)脱水效果-10 30 25 80%20 60 30 85%30 90 35 90%40 120 40 95%根据实验结果,我们可以得出以下结论:1. 脱水剂添加量与脱水效果呈正比关系,添加量越多,脱水效果越好;2. 脱水时间的延长有助于提高脱水效果,但时间过长可能会降低脱水效率;3. 脱水温度对脱水效果影响不大,即使在较低的温度下,脱水效果也能达到较高水平。
结论通过本次实验,我们得到了脱水污泥的最佳工艺条件为:脱水剂添加量为40g,脱水时间为120分钟,脱水温度为40摄氏度。
在这些条件下,脱水效果可以达到95%以上。
总结与展望脱水污泥的处理是城市污水处理中必不可少的环节,本次实验通过上机实验研究了不同脱水工艺参数对脱水效果的影响。
实验结果表明,脱水剂添加量、脱水时间和脱水温度都会对脱水效果产生影响。
下一步,我们可以进一步研究脱水剂的种类和添加量对脱水效果的影响,以进一步优化脱水工艺。
污泥脱水实验报告
污泥脱水实验报告污泥脱水实验报告引言:污泥是指在污水处理过程中产生的含有高浓度有机物和微生物的混合物。
污泥处理是污水处理过程中不可或缺的一环。
而污泥脱水则是将污泥中的水分去除,以减小体积、降低重量,并便于后续处理和处置。
本实验旨在探究不同脱水方法对污泥脱水效果的影响。
材料与方法:1. 实验所用污泥:从某污水处理厂收集的污泥样品。
2. 脱水方法:采用离心脱水法、压滤脱水法和热风干燥法进行对比实验。
3. 实验设备:离心机、压滤机、烘箱等。
实验过程:1. 离心脱水法:将污泥样品放入离心机中,设定适当的转速和时间,使污泥中的水分被离心力排出。
2. 压滤脱水法:将污泥样品放入压滤机中,施加适当的压力,使污泥中的水分通过滤布排出。
3. 热风干燥法:将污泥样品均匀地摊放在烘箱中,设定适当的温度和时间,使污泥中的水分蒸发并排出。
实验结果与讨论:通过实验,我们得到了不同脱水方法下的污泥脱水效果数据,并进行了分析和讨论。
离心脱水法:在离心脱水法下,我们发现转速和时间对脱水效果有重要影响。
当转速较低时,离心力不足以有效排除污泥中的水分;而当转速过高时,可能会导致污泥颗粒的破碎,从而影响脱水效果。
此外,适当的时间也是脱水效果的关键。
经过多次实验,我们确定了最佳的转速和时间组合,取得了较好的脱水效果。
压滤脱水法:压滤脱水法是一种常用的脱水方法,其脱水效果受到滤布的选择和施加的压力大小的影响。
我们尝试了不同类型的滤布,并发现某些滤布对脱水效果有着显著的改善作用。
此外,适当调节施加的压力也能够提高脱水效果。
然而,过高的压力可能会导致滤布的破损,从而降低脱水效果。
热风干燥法:热风干燥法是一种通过加热使污泥中的水分蒸发的方法。
我们在实验中尝试了不同的温度和时间组合,并观察了脱水效果的变化。
实验结果显示,适当的温度和时间可以显著提高脱水效果,但过高的温度可能会导致污泥中的有机物燃烧,从而影响脱水效果。
结论:通过本实验的比较和分析,我们可以得出以下结论:1. 不同的脱水方法对污泥的脱水效果有着显著影响,离心脱水法、压滤脱水法和热风干燥法各有其优缺点。
污泥脱水实验报告
污泥脱水实验报告引言污泥是一种由废水处理厂产生的固体废弃物,其含水量较高,对环境造成潜在危害。
因此,对污泥进行脱水处理是一项重要的任务。
本实验旨在探究不同处理方法对污泥脱水效果的影响,为污泥处理工艺的优化提供参考。
实验步骤1. 收集污泥样本从某废水处理厂收集了一份污泥样本作为实验材料。
确保样本的代表性,避免单一来源的偏差。
2. 确定不同处理方法本实验选取了三种常见的污泥脱水处理方法:压滤法、离心法和烘干法。
3. 压滤法实验将一定质量的污泥样本放入压滤机中,通过施加压力来脱水。
记录压滤时间和脱水后的污泥重量,计算脱水率。
4. 离心法实验将一定质量的污泥样本放入离心机中,以一定速度旋转。
记录离心时间和离心后的污泥重量,计算脱水率。
5. 烘干法实验将一定质量的污泥样本均匀铺展在烘干器中,通过加热脱水。
记录烘干时间和烘干后的污泥重量,计算脱水率。
6. 数据分析根据实验结果,比较不同处理方法的脱水效果,分析其优缺点和适用场景。
实验结果和讨论压滤法经过压滤法处理,污泥的脱水率为80%。
压滤法操作简便,适用于大规模处理,但脱水效果略低。
离心法经过离心法处理,污泥的脱水率为90%。
离心法脱水快速而彻底,但设备成本较高,适用于中小规模场景。
烘干法经过烘干法处理,污泥的脱水率为95%。
烘干法脱水效果最好,但需要较长时间和额外的能源消耗。
综合比较,烘干法在脱水效果上表现出较高的优势。
离心法适用于对处理时间要求较高的情况,而压滤法则适用于大规模处理。
结论本实验通过对污泥脱水的不同处理方法进行比较,发现烘干法是最有效的脱水方法,能够达到95%的脱水率。
离心法在脱水速度方面表现出较好的优势,脱水率为90%。
压滤法适用于大规模处理,但脱水效果稍逊。
通过此实验的结果,可以为污泥处理工艺的选择提供依据,从而提高废水处理厂的效率和环保性能。
参考文献[1] Smith, J. N. (2005). Sludge dewatering. Water Environment Research, 77(2), 149-157.[2] Liu, G., Liu, Y., & Zhou, T. (2012). Optimization of sludge dewatering process using centrifugation based on response surface methodology. Journal of Environmental Sciences, 24(2), 374-381.。
污泥过滤脱水实验报告
污泥过滤脱水实验报告随着人们对环境保护的重视,环保产业已成为国民经济的重要支柱之一。
随着社会的进步,人们的生活水平提高,对水资源和环境造成的压力也越来越大。
如何保护环境,如何解决污染问题,成为人们迫切关注的问题。
污泥过滤脱水实验是在污水处理工艺中针对污泥进行深度脱水处理试验,从而了解不同处理剂对污泥有不同损伤作用,通过实验分析,使人们更好地了解污泥深脱水技术特性。
本实验目的在于分析不同处理剂对污泥损伤作用是否一致,在设计过程中需重点考虑三个方面:絮凝剂对污泥的损伤作用、絮凝剂是否破坏污泥对水体的污染作用和絮凝剂是否破坏污泥对水中有机物的污染作用这三方面为依据进行设计,以便达到较好污水处理效果的目的。
一、实验背景随着国家对环境问题的重视,水资源问题日益突出,水资源短缺的问题也日益突出。
水资源短缺,我国水资源形势严峻,给人民生产和生活带来极大的不便,水质恶化的问题日益突出。
污水处理技术是一种污水净化过程,污水处理工艺主要包括三级生化处理,一级生化处理采用厌氧消化和好氧生化处理工艺;二级生化处理采用好氧生化处理工艺;三级生化处理采用深度脱水工艺;三级生化处理采用生化污泥厌氧消化技术。
针对不同处理工艺对污泥处理效果不同情况做试验比较分析,通过实验数据对各种处理工艺进行评价从而了解各工艺流程对污泥产生不同损伤作用情况。
二、试验设计实验采用两组试验设计,第一组试验采用泥饼的重量比和含水率来表征不同处理剂对污泥的损伤程度;第二组试验采用污泥含水率来表征不同处理剂对污泥有不同的作用过程。
由于污泥含水率随着污泥处理时间的延长而增大,而泥饼的重量比随污泥处理剂总量的增加而减小,因此通过实验设计来表征不同处理剂对污泥有不同的损伤作用程度。
采用多组试验设计可以得出污泥对不同处理剂有不同作用特点及相应变化规律。
为使实验更好地完成任务,实验设计采用随机取样和定时取样相结合的方式。
三、实验结果试验结果表明:不同絮凝剂对污泥的损伤作用存在差异,但都有很强的絮凝作用,且作用时间也基本相同,实验结果表明,不同处理剂对污泥均有不同的损伤作用。
实验七 污泥过滤脱水
实验七 污泥过滤脱水一、实验目的1.通过实验掌握污泥比阻的测定方法;2.掌握用布氏漏斗试验选择混凝剂;3.掌握确定污泥的最佳混凝剂投加量;二、实验原理污泥比阻是表示污泥过滤特性的综合性指标,它的物理意义是:单位重量的污泥在一定压力下过滤时在单位过滤面积上的阻力。
求此值的作用是比较不同的污泥(或同一种污泥加入不同量的混剂后)的过滤性能。
污泥比阻愈大,过滤性能愈差。
过滤时滤液体积V(ml)与推动力P(过滤时的压强降g/(cm 2),过滤面积F(cm 2),过滤时间t(s)成正比,而与过滤阻力R(cm ·S 2/ml),滤液粘度μ(g/cm 2·s)成反比。
)ml (RPF V t μ= (1) 过滤阻力包括滤渣阻力R c 和过滤隔层阻力R g 构成。
而阻力R 随滤渣层的厚度增加而增大,过滤速度则减少。
因此将(1)式改写成微分形式: )(g c R R PF dt dV +=μ (2)由于R g 比R c 相对说较小,为简化计算,姑且忽略不计。
F V C PF PF dt dV 'μαμαδ== (3)式中:α′:单位体积污泥的比阻。
δ:滤渣厚度C ′:获得单位体积滤液所得的滤渣体积。
如以滤渣干重代替滤渣体积,单位重量污泥的比阻代替单位体积污泥的比阻,则(3)式可改写为: CV PF dt dV μα2= (4)式中:α:污泥比阻,在CGS 制中,其量纲为(s 2/g),在工程单位制中其量纲为(cm/g)。
在定压下,在积分界线由)到t 及O 到V 内对(4)式积分,可得:V PF C V t ⋅=22μα (5)式(5)说明在定压下过滤,t/V 与V 成直线关系,其斜率为: 22/PF C V V t b μα==(6) C b K C b PF ===μα22因此,为求得污泥比阻,需要在实验条件下求出b 及C 。
b 的求法可在定压下(真空度保持不变)通过测定一系列的t ~V 数据,用图解法求得。
污泥的脱水性能实验
污泥的脱水性能实验一、实验目的污水处理过程中,会产生大量的污泥,其数量占处理水量的0.3%~0.5%(以含水率为97%)。
污泥脱水是污泥减量化中最为经济的一种方法,是污泥处理工艺中的一个重要环节,其目的是去除污泥中的空隙水和毛细水、降低了污泥的含水率,为污泥的最终处置创造条件。
本实验通过对活性污泥脱水,主要达到以下目的:(1)了解影响污泥脱水的主要因素;(2)掌握污泥脱水的基本方法和相关操作。
二、实验原理影响污泥脱水性能的因素很多,包括污泥水分的存在方式和污泥的絮体结构(粒度、密度和分形尺寸等)、电势能、pH值以及污泥来源等。
通过添加改性剂,在降低污泥含水量的同时,提高污泥的其他性能,从而便于后期处理。
添加矿化垃圾、粉煤灰和建筑垃圾等改性后,污泥含水率降低,同时污泥持水性降低,抗压强度、抗剪强度、渗透性能、密实度和压缩性均有改善。
改性剂对污泥臭味的改善作用,粉煤灰的最好,矿化垃圾次之,建筑垃圾较差。
三、实验设备与材料污泥取自污水处理厂的浓缩污泥调蓄罐。
实验前测定污泥试样的pH值以及含水率。
酸处理药剂选用硫酸,配制10%(质量分数)待用,调pH值所用的碱是氢氧化钠。
氢氧化钠配制成30%(质量分数)、10%的溶液待用。
有机絮凝剂为聚丙烯酰胺(PAM)。
主要仪器设备:离心脱水装置,酸度计等四、实验步骤将50ml浓缩污泥加到250ml烧杯中,加定量的硫酸酸化,快速搅拌30s,慢速搅拌2min,酸化时间5min;为了防止对设备的腐蚀,在加碱(实验中可选用氢氧化钠、氢氧化钙、氧化钙)调pH值至6,再加阳离子PAM使污泥形成矾花,酸化及絮凝反应均在烧杯中进行。
经预处理的污泥在1500r/min下离心2min (离心速度和离心时间可根据实际情况做适当调整),倾倒上清液,取泥饼测定其含固率。
对于离心脱水实验,低转速1800r/min、短时间2min离心后泥饼用来评价离心脱水速率,用高转速3800r/min,长时间30min离心后泥饼含固率评价可脱水程度,结果记录在表中五、实验结果六、实验结果讨论(1)使用不同的药剂调节对结果是否有影响?(2)离心机的使用有哪些注意事项?。
热水解预处理改善污泥脱水性能的实验研究
热水解预处理改善污泥脱水性能的实验研究杜元元;张雷;汪恂;晏发春【摘要】采用脱水污泥为材料,从热水解的原理出发,研究了不同的水热时间、温度、加碱量对污泥脱水性能的影响,并用Zeta电位、SEM、UV-Vis对污泥进行表征.实验结果表明,含水率85%的污泥,在120℃条件下热水解30 min,污泥的离心干基含水率从4.09降到了3.85;当投加碱(m(CaX2)/m(VS)=0.08)时,污泥的离心干基含水率下降明显,在160℃条件下热水解40 min,污泥离心干基含水率下降幅度达到9.4%和7.9%.【期刊名称】《工业安全与环保》【年(卷),期】2017(043)005【总页数】3页(P27-29)【关键词】污泥;热水解预处理;脱水性能【作者】杜元元;张雷;汪恂;晏发春【作者单位】武汉科技大学武汉430065;武汉科技大学武汉430065;武汉科技大学武汉430065;武汉科技大学武汉430065【正文语种】中文污泥由于含有大量胞外聚合物(EPS),导致脱水困难。
但通过热水解,可以使污泥絮体解体、内部及表面的胞外聚合物(EPS)溶解,从而使污泥中的间隙水被释放出来,成为游离水,更易于被脱除[1-3]。
国内外研究表明,经过热水解处理后的污泥,其减量化效果远好于直接机械脱水[4]。
以武汉市落步嘴污水处理厂脱水之后的污泥为研究对象,研究不同的水热时间、温度、加碱量和不同初始含水率对污泥脱水性能的影响。
1.1 实验材料活性污泥取自武汉市落步嘴污水处理厂的污泥脱水车间,含水率为80%左右。
取回的污泥搅拌均匀后置于冰箱(4 ℃)中保存、备用。
污泥的基本指标参照《城市污水处理厂污泥检验方法》CJ/T 221—2005测定,结果如表1所示。
实验前测量保存的污泥含水率,根据该含水率用蒸馏水配制85%,90%,95%含水率的配制污泥。
1.2 实验方法用注射器分别吸取70 mL配制的一定含水率的污泥于6个100 mL高压反应釜中,在不同的反应温度下(60~160 ℃),将反应釜放置于烘箱中处理不同的时间(10~60 min)。
污泥板框压滤脱水综合实验
污泥板框压滤脱水综合实验一、实验目的和任务1. 研究确定污泥调理、脱水的最佳投药种类和投药量2. 观察污泥调理效果,加深对污泥脱水方法与基本原理的理解3. 掌握仪器和隔膜板框压滤设备的结构性能、操作方法4. 掌握污泥机械脱水的常规指标测定方法,绘制过滤-时间曲线二、实验原理污泥中有机物含量高,造成污泥含水率高,脱水困难,必须经过调理后才能进行有效地脱水。
加入药品以促进污泥脱水并提高排水性能。
首先,选择不同的药剂对污泥进行调理以改善其脱水性能,然后将调理好的污泥用泵打入贮泥罐,再用空气压力将罐中的污泥输送到隔膜压滤机中进行固液分离。
当隔膜压滤机开始运行时,手动液压杆将位于压紧板和止推板之间的隔膜板、滤板及滤布压紧,使相邻板框之间构成滤室,周围密封,确保带有压力的滤浆在滤室内进行加压过滤。
过滤开始时,滤浆在空压机的推动下进入滤室内,滤浆借助空压机的压力进行固液分离。
图1 隔膜压榨工作原理固体颗粒由于滤布的阻挡留在滤室内形成滤饼,滤液经滤布沿滤板上的排水孔排出。
隔膜压滤机对滤饼进一步脱水采用压缩空气充填隔膜,由隔膜变形产生两维方向上的压力破坏颗粒间形成的拱桥,将残留在颗粒空隙间的滤液挤出,最大限度地降低滤饼的水分。
影响污泥调理脱水的主要因素有污泥性质(含水率、有机物含量、pH、COD 及悬浮物含量)、药剂种类(有机、无机等)及水力条件。
通过实验选择最佳药剂种类和最佳投药量,考虑操作条件(调理时间、搅拌条件、进料时间、压力等)对脱水效果的影响。
另外,还需对隔膜板框污泥脱水效果进行评价,常用方法有物料衡算、泥饼含水率、脱水效率、湿密度、固体损失率等。
三、实验仪器及设备图2 污泥调理-隔膜压滤装置图1.污泥2.自吸泵3.调理罐4.搅拌电机5.球阀6.螺杆泵7.空压机8.贮泥罐9.放泥阀10.进泥阀11.流量计12.压力表13.隔膜板14.隔膜板框压滤机15.接水槽16.电子台秤17.压紧装置18.压力表四、实验过程隔膜板框污泥脱水过程分为准备工作、操作过程、注意事项、日常维护等部分。
污泥比阻抗——精选推荐
实验名称:污泥过滤脱水比阻抗的测定环工071班学号:0704100518姓名:李英一、实验目的1 通过实验掌握污泥比阻抗的测定方法。
2 掌握用布氏漏斗实验选择混凝剂的发法。
3 掌握确定污泥的最佳混凝剂投加量的试验方法。
二、实验原理衡量污泥脱水性能的研究常着眼于污泥过滤的难易,即滤速的快慢。
常用比阻抗值作为衡量污泥脱水性能的指标,比阻抗的意义是,单位质量的污泥在一定压力下过滤时在单位过滤面积上的阻力。
求污泥比阻抗的作用是比较不同的污泥的过滤性能。
比阻抗值大的污泥,越难过滤,脱水性能也越差。
测定比阻抗值,可以去诶的那个屋你的最佳混凝剂和其投量,最合理的过滤压力,从而导出过滤方程及计算过滤产率。
r=2PA^2*b/(µC) .b的求法,可在一定压力下通过测定一系列的t-V数据,用图解法求斜率。
C的求法,采用测定含水率的方法计算:C=1/[(100-Cn)/Cn-(100-Cb)/Cb] 。
Cb——100g滤饼中的干污泥量,g;Cn——100g污泥中的干污泥量,g。
投加混凝剂可以改善污泥的脱水性能,使污泥的比阻抗值减小。
无机混凝剂投加量一般认为污泥干质量的5%-10% 。
三、实验设备和试剂1 实验装置,包括:水射器、稳压瓶、泄压口、真空表,布氏漏斗,量筒,滤纸。
2 布氏漏斗3 量筒一个4 快速滤纸5 烘箱6 秒表7 称量瓶8 混凝剂四、实验步骤1 用配置好的混凝剂FeCl3调节污泥,剂量分别为0, 3,6,9,12,15ml,测定污泥的含水率,求出干固体浓度C。
2 在布氏漏斗中放置滤纸,用蒸馏水喷湿,再开动水射器,把量筒抽成负压,使滤纸紧贴漏斗,然后关闭水射器。
3 把100ml 调配好的泥样倒入漏斗,再次开动水射器,至额定真空度,作为零时间,进行污泥脱水实验。
4 开始启动秒表,并记录此时量筒内的滤液V0 。
5 每隔一定时间,记下量筒内相应的滤液量。
6 一直过滤至真空破坏,如真空长时间不破坏,则过滤20min后即可停止。
污水处理厂污泥脱水性能指标测试分析
为水的粘度,取 1. 005 g / ( cm·s) ; w 为过滤单位体积的滤液在过 滤介质上截留的固体质量,g / cm3 ,计算公式:
w=
1
。
1 - C0 - 1 - C
C0
C
2. 2 CST 的测定步骤
1) 取 100 mL 待测污泥按计算好的投配比投加药剂,搅拌至 污泥发生絮凝,并混合均匀; 2) 将仪器连接好,把滤纸从一侧贴底 插入,然后将 有 电 极 的 盖 板 盖 在 滤 纸 上,使 电 极 和 滤 纸 接 触,轻 压。过大的压力可能导致滤纸磨损; 3) 根据污泥性质选择过滤漏 斗直径。容易过滤的污泥选择 1 cm 的漏斗,增加渗透的时间; 比 较难过滤的污泥选择 1. 8 cm 的漏斗。本研究采用直径 1. 8 cm 的 漏斗; 4) 将漏斗插入电极塞,旋转漏斗,缓缓轻压,让滤纸受力均 匀; 5) 按下重启按钮,检查计数器读数为 0; 6) 把污泥注入漏斗,污 泥量以与漏斗口齐平为宜。如果 CST 测试结束,而漏斗中没有污 泥或者只有污泥小块,则测试需要重新进行; 7) 记录 CST。当重 启系统后,CST 数值将消失; 8) 拿起电极塞,取下漏斗,拿走滤纸, 用棉纸清洁各部件,水分完全擦拭干净。重复上述步骤测试下一 样品。
3 实验内容
3. 1 实验仪器
比阻测定采用的是上海江科实验设备有限公司生产的 PJK02 型
收稿日期: 2013-05-23 作者简介: 周章华( 1986- ) ,男,助理工程师; 曹艳峰( 1981- ) ,男,助理工程师; 袁 莉( 1982- ) ,女,工程师
第 39 卷 第 22 期 2013 年8 月
摘 要: 介绍了两个衡量污泥脱水性能的指标———污泥的比阻( R) 和污泥的毛细吸水时间( CST) ,阐述了两者的定义、原理及测定
污泥脱水性能的测定实验报告思考题
污泥脱水性能的测定实验报告思考题
以下是关于污泥脱水性能测定实验报告的思考题:
1. 什么是污泥脱水性能?为什么需要进行污泥脱水性能测定?
污泥脱水性能是指将污泥中的水分通过脱水设备进行处理,使其含水率下降的能力。
进行污泥脱水性能测定的原因是因为脱水后的污泥含水率直接影响着污泥的后续处理效果和运输成本,因此需要进行测定和评估以确定最适宜的脱水工艺。
2. 污泥脱水性能测定的常见方法有哪些?它们的优缺点分别是什么?
常见的污泥脱水性能测定方法有压榨法、离心法、真空过滤法和压力过滤法等。
这些方法的优缺点如下:
- 压榨法:操作简单,设备成本低,但脱水效果较差,污泥含水率较高。
- 离心法:处理速度快,脱水效果较好,但设备成本较高,操作较为复杂。
- 真空过滤法:适用于含有大量细菌的污泥,脱水效果好,但操作相对较为困难。
- 压力过滤法:速度快,脱水效果好,但设备成本较高,操作需要经验丰富的人员进行。
3. 在污泥脱水性能测定实验中,你认为哪些因素可能会影响到测定结果?
污泥脱水性能测定实验中,可能会被影响的因素主要包括以下几个方面:
- 检测设备或器材的精度和准确性。
- 进行实验的环境因素,比如温度、湿度、风速等。
- 采集的污泥样品的代表性和保持方法。
- 实验操作的技巧和经验程度。
- 实验中使用的脱水剂或药剂的浓度和质量等。
泥浆脱水固化实验报告(3篇)
第1篇一、实验目的本实验旨在研究不同絮凝剂对泥浆脱水固化的效果,以期为实际工程中泥浆的处理提供理论依据和技术支持。
二、实验材料与设备1. 实验材料:- 钻井废泥浆- 聚丙烯酰胺(PAM)- 聚合氯化铝(PAC)- 硅藻土- 无机絮凝剂(c1510)2. 实验设备:- 转子流量计- 搅拌器- 滤布- 脱水压滤机- 天平- 烘箱三、实验方法1. 样品制备:将钻井废泥浆稀释至质量分数为25%。
2. 絮凝剂添加:- 聚丙烯酰胺(PAM):150 mg/kg- 聚合氯化铝(PAC):0.5 g/L- 硅藻土:2%(质量分数)- 无机絮凝剂(c1510):1 g/L3. 搅拌:在加入絮凝剂后,使用搅拌器搅拌5分钟,使絮凝剂充分与泥浆混合。
4. 过滤:将混合后的泥浆过滤,收集滤液和泥饼。
5. 测定:- 泥饼含水率:使用天平称量泥饼和滤布的总质量,然后烘干泥饼至恒重,计算泥饼含水率。
- 滤液浊度:使用浊度仪测定滤液浊度。
四、实验结果与分析1. 泥饼含水率:- 聚丙烯酰胺(PAM)处理组:35.3%- 聚合氯化铝(PAC)处理组:40.5%- 硅藻土处理组:33.2%- 无机絮凝剂(c1510)处理组:38.1%从实验结果可以看出,聚丙烯酰胺和硅藻土处理组的泥饼含水率较低,说明这两种絮凝剂对泥浆脱水固化效果较好。
2. 滤液浊度:- 聚丙烯酰胺(PAM)处理组:30 NTU- 聚合氯化铝(PAC)处理组:45 NTU- 硅藻土处理组:25 NTU- 无机絮凝剂(c1510)处理组:35 NTU从实验结果可以看出,硅藻土处理组的滤液浊度最低,说明硅藻土对泥浆脱水的净化效果较好。
五、结论1. 聚丙烯酰胺和硅藻土对泥浆脱水固化效果较好,泥饼含水率和滤液浊度均较低。
2. 无机絮凝剂(c1510)和聚合氯化铝对泥浆脱水固化效果一般。
3. 本实验结果可为实际工程中泥浆的处理提供理论依据和技术支持。
六、建议1. 在实际工程中,可根据泥浆的性质和需求选择合适的絮凝剂进行脱水固化处理。
污泥比阻实验
污泥比阻实验一、实验目的1.进一步加深理解污泥比阻的概念。
2.评价污泥脱水性能。
二、实验原理污泥经重力浓缩或消化后,含水率约在97%左右,体积大不便于运输。
因此一般多采用机械脱水,以减小污泥体积。
常用的脱水方法有真空过滤,压滤,离心等方法。
污泥机械脱水是以过滤介质两面的压力差作为动力,达到泥水分离,污泥浓缩的目的。
根据压力差的来源不同,分为真空过滤法(抽真空造成介质两面压力差),压缩法(截止一面对污泥加压,造成两面压力差)。
影响污泥脱水的因素较多,主要有:(1) 污泥浓度,取决于污泥性质及过滤前浓缩程度。
(2) 污泥性质,含水率。
(3) 污泥预处理方法。
(4) 压力差大小。
(5) 过滤介质种类。
经过实验推导出过滤基本方程式:PARf μ2PA2 ωr μ+∙=V V t (6-1) 式中t----过滤时间,s;V----滤液体积,m 3;P----过滤压力,㎏/㎡;A----过滤面积,㎡;μ-----滤液的动力粘滞度,㎏·s /㎡;ω-----滤过单位体积的滤液在过滤介质上截流的固体重量,㎏/m 3;; r----比阻,S 2/g 或m/㎏;R f-------过滤介质阻抗,1/m 。
公式给出了在一定压力的条件下过滤,滤液的体积V 与时间t 的函数关系,指出了过滤面积A 、压力P 、污泥性能μ、r 值等对过滤的影响。
污泥比阻r 是表示污泥过滤特性的综合指标。
其物理意义是:单位重量的污泥在一定压力下过滤时,在单位过滤面积上的阻力,即单位过滤面积上滤饼单位干重所具有的阻力,其大小根据过滤基本方程式有:ωμ2b A PA r ∙∙=(m/㎏) (6-2) 由上式可知比阻是反映污泥脱水性能的重要指标,但由于上式是由实验推导出来,参数b 、 均要通过实验测定,不能用公式直接计算。
而b 为过滤基本方程式(6-1)中t/V ~V 直线斜率。
APA b ∙=2μωr (6-3) 故以定压下抽率实验为基础,测定以系列的t ~V 数据,即测定不同过滤时间t 时滤液量V,并以滤液量V 为横坐标,以t/V 为纵坐标,所得直线斜率为b 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C
(Q0 Qu )C d Qu
滤饼干重(g/mL)滤液
(2-9)
式中:Q0:污泥量,ml;Qu:滤液量,ml;
Cd:滤饼固体浓度,g/mL
基于液体平衡有: 基于固体平衡有:
Q0=Qu+Qd Q0C0=QuCu+QdCd
Qu
代入 (2-9)式,简化后得:
Q0 (C0 Cd ) Cu Cd
实验原理 基本概念和计算公式
污泥比阻是表示污泥过滤特性的综合性指标,它的物理意义是:单位质量的污泥在一定 压力下过滤时在单位过滤面积上的阻力。求此值的作用是比较不同的污泥(或同一污泥 加入不同量的混合剂后)的过滤性能。污泥比阻愈大,过滤性能愈差。 过滤时滤液体积 V (m3)与推动力 P(过滤时的压强降 Pa (N/m2)),过滤面积 A(m2),过滤 时间 t(s)成正比,而与过滤阻力 R(m/m2),滤液动力粘滞度,(N· s/m2)成反比。
图 2-1 污泥比阻测定实验装置图
1–真空泵;2–吸滤瓶;3–真空调节阀;4–真空表;5–布式漏斗;6–吸滤垫;7–计量管
图 2-2 污泥比阻测定的 4 漏斗装置组合图
污泥比阻测定实验的方法如下:
1.测定污泥的含水率,求出其固体浓度 C0; 2.配制 FeCl3(2g/l)和 Al2(SO4)3(2g/l)混凝剂; 3.加入 FeCl3 混凝剂调节污泥(每组加一种混凝剂量),加量分别为干污泥重的 0%(不加混 凝剂)2%,4%,6%,8%,10%。 4.在布氏漏斗上(直径 65~80mm)放置滤纸,用水润湿,贴紧周底。 5.开动真空泵,调节真空压力,大约比实验压力小 1/3(实验时真空压力采用 266mmHg 或 532mmHg)关掉真空泵。
污泥比阻的测定实验
仿真实验指导书
蔡建安 编著 安徽工业大学
污泥过滤脱水—污泥比阻的测定实验
实验目的
(1)通过实验掌握污泥比阻的测定方法; (2)认识污泥比阻的物理意义,建立不同类型和来源污泥比阻的数量概念; (3)掌握污泥脱水前调理预处理的概念,用布氏漏斗实验选择混凝剂,改变污泥过滤 性能 (即比阻值),从技术经济角度,确定污泥的最佳混凝剂投加量。
t rCV V 2 PA 2
(2-5)
在定压下,在积分界线,时间由 0 到 t,及 0 到 V 积分,t/V 与 V 成直线关系,其斜率 为:
b
解出
rC
2 PA 2
(2-6)
r
b.2 PA 2 b K C C
2 PA 2
(2-7)
K
(2-8)
因此,为求得污泥比阻,需要在实验条件下求出b及C。 根据定义
虚拟仪器测量界面与使用方法
一套配备了 4 个布氏漏斗的“组合式污泥比阻测定”虚拟仪器装置工作界面如图 2-3 所 示,界面中各个控件的功能和具体用法说明如下:
9
10
8
7
2
13
12
14
15
5
4
17
6
11
1
16
3
图 2-3 组合式污泥比阻测定(配备 4 套布氏漏斗)虚拟仪器工作界面
1. 2. 3.
真空泵的真空压力控制调节旋钮,顺时针旋转使真空压力加大; 真空压力表,单位为 10kPa,调节真空泵控制旋钮①可观察压力表读数的变化; 实验温度设定,由于不再另外测量滤液的动力黏度,使用同温度下水的黏度进行计 算;
(3) 以 t/V 为纵坐标,V 为横坐标作图,求 b。 (4) 根据原污泥的含水率及滤饼的含水率求出 C。 (5) 列表计算比阻值 α(表 6-2 比阻值计算表)。 (6) 以比阻为纵坐标,混凝剂投加量为横坐标,作图求出最佳投加量。
表 2-2 比阻值计算表
污 泥 含 水 比 /%
污 泥 固 体 浓 度 /(g/cm3)
五、整理实验结果 1.测定并记录实验基本参数: 2.将布氏漏斗实验所得数据按表 1 记录并计算。 3.以 t/V 为纵坐标,V 为横坐标作图,求 b。 4.根据原污泥的含水率及滤饼的含水率求出 C。 5.列表计算比阻值 (表 2 比阻值计算表) 6.以比阻为纵坐标混凝剂投加量为横坐标作图求出最佳投加量。
思考题
(1)判断生污泥、消化污泥脱水性能好坏,分析其原因。
(2)测定污泥比阻在工程上有何实际意义。 (3) 响? 在(2-4) 积分的实验结果中,忽略掉过滤隔层阻力 Rm 对于斜率b(2-6)有何影
b 是t/V 与V 的斜率,可在定压下(真空度保持不变)通过测定一系列的t~V
用线性回归法求得。
数据,对t/V与 V
C 是单位体积滤液取得的滤饼干重, 根据定义求C值的方法, 必须量测滤饼的厚度方可求得; 但在实验过程中量测滤饼厚度是很困难的, 且不易量准, 故改用测滤饼含水比或滤饼固体浓度的 方法求C值:
4. 5. 6.
吸滤瓶一端连接真空泵,一端连接计量筒,起稳定压力和隔离液体的作用; 滤液计量筒,接纳和对滤出液进行计量; 4 个真空阀分别连接一套布氏漏斗与计量筒装置,任意关闭其中一组,会自动拆除 本套布氏漏斗装置,而不影响其他布氏漏斗装置的测量;
7. 8.
布氏漏斗及其密封塞;点击后显示布氏漏斗内部液面⑧,并弹出“过滤设置”窗口; 布氏漏斗内部结构和设定过滤参数: 包括污泥来源、 混凝剂选择和投量、 污泥体积, 污泥含水率和布氏漏斗直径;
实验装置、试剂与方法
进行污泥比阻测定实验需要污泥比阻测试仪器以及相应的污泥浓度测试仪器等,包括(1) 基本实验装置(如图2-1);(2)秒表,滤纸;(3)烘箱;(4) 混凝剂如FeCl3、A12(SO4)3;(5)布 氏漏斗。
对于优化混凝剂配方和投入量的系列实验,使用单一布氏漏斗的实验装置显然效率 太低,因此可采用一套真空泵、吸滤瓶配多个布氏漏斗的组合式污泥比阻测定装置进行 实验如图 2-2 所示。
这里 r 是污泥过滤比阻抗 m/kg; 由于在过滤过程中,滤液体积和过滤阻力都是变化的,以微分形式表达成:
dV PA 2 dt (r C V Rm A)
(2-4)
式中:dV/dt=过滤速度,m3/s;V=滤出液体积,m3;t=过滤时间,s;P=过滤压力,N/m2; A=过滤面积,m2;C=单位面积滤出液所得滤饼干重,kg/m3;r=污泥过滤比阻抗,m/kg; Rm=过滤开始时单位过滤面积上过滤介质的阻力, m/m2; μ=滤出液的动力粘滞度, N· s/m2。当过滤压力 P 为的常数时,略去过滤隔层阻力 Rm 的影响则可积分得:
(2-10)
C
Cd C0 g/ml Cd C0
(2-11)
式中:C0:污泥固体浓度,g/mL
Cu:滤液固体浓度,g/mL Qd:滤饼量,ml。
如果使用滤饼含水率测定,
C0 1 100 Gt 100 C C C
滤饼干量(g/ml)滤液
(2-12)
式中:C0:100g 污泥中的干污泥量; C:100g 滤饼中的干污泥量。 例如污泥含水比 97.7%,滤饼含水率为 80%
V
PAt R
(2-1)
过滤阻力 R(m/m2) 过滤阻力包括滤渣阻力 Rc 和过滤隔层阻力 Rm 两个组成部分, R=Rc+Rm (2-2)
通常过滤隔层阻力 Rm 要远小于滤渣阻力 Rc;而阻力滤渣 Rc 随滤渣层的厚度增加而增 大,过滤速度则减少。由于滤渣层的厚度难以测量,所以用滤液的滤渣浓度求得 C'V/A, 因此: Rc = rC'V/A (2-3)
9.
与“过滤设置”弹出窗口同时出现一个“显示过滤参数”按钮,按下按钮弹出“过 滤参数”窗口;
10. “过滤参数”窗口包括布氏漏斗中滤纸的“过滤面积 cm2”,根据污泥含水率换算 获得的“污泥浓度(g/L)”,“滤饼含水率%”和“滤饼的固体浓度 Cd(g/L)”, 以及 “单位体积滤液取得的滤饼干重 C(g/ml)”和当前温度下的“滤液黏度”; 11. 连接吸滤瓶的真空阀总阀,总阀开关用来隔断 4 套装置的吸滤压力,以便实行同步 计时; 12. “计时秒表”,大表为秒表,内部数字为分钟; 13. 三个控制按钮,分别用于开始和停止“计时”,“暂停”和“复位”操作; 14. 为了提高虚拟仪器的工作效率,仿真操作时使用“加速”调节旋钮加快时间进程; 15. 每点击一次“纪录”按钮便在“纪录表”中留下一组数据纪录; 16. “数据纪录表”,记载点击“纪录”按钮的时间和每套计量筒中滤出液的实时数据; 17. 操作结束后按下“stop”键返回。
实验报告记载及数据处理
(1)测定并记录实验基本参数 实验日期
原污泥的含水率及固体浓度 C0 实验真空度/mmHg 不加混凝剂的滤饼的含水率 加混凝剂滤饼的含水率 (2) 将布氏漏斗实验所得数据按表 2-1 记录并计算。
表 2-1 布氏测斗实验所得数据
滤液量 V=V -V0/mL
’
/(s/mL)
备注
C 1 1 0.0260g/ml 100 2.3 100 20 38.48 2.3 20
不同污泥比阻和调理预处理
常见不同类型污泥的比阻如表 2-1 所示。
表 2-1 常见不同类型污泥的比阻 污泥种类 比阻值(×1012m/kg)