中南大学线性代数课件64页PPT

合集下载

线性代数课件PPT

线性代数课件PPT
线性代数课件
目录 CONTENT
• 线性代数简介 • 线性方程组 • 向量与矩阵 • 特征值与特征向量 • 行列式与矩阵的逆 • 线性变换与空间几何
01
线性代数简介
线性代数的定义和重要性
1
线性代数是数学的一个重要分支,主要研究线性 方程组、向量空间、矩阵等对象和性质。
2
线性代数在科学、工程、技术等领域有着广泛的 应用,如物理、计算机科学、经济学等。
逆矩阵来求解特征多项式和特征向量等。
06
线性变换与空间几何
线性变换的定义和性质
线性变换的定义
线性变换是向量空间中的一种变换, 它将向量空间中的每一个向量映射到 另一个向量空间中,保持向量的加法 和标量乘法的性质。
线性变换的性质
线性变换具有一些重要的性质,如线 性变换是连续的、可逆的、有逆变换 等。这些性质在解决实际问题中具有 广泛的应用。
特征值与特征向量的应用
总结词
特征值和特征向量的应用非常广泛,包括物理、工程、经济等领域。
详细描述
在物理领域,特征值和特征向量可以描述振动、波动等现象,如振动模态分析、波动分析等。在工程 领域,特征值和特征向量可以用于结构分析、控制系统设计等。在经济领域,特征值和特征向量可以 用于主成分分析、风险评估等。此外,在机器学习、图像处理等领域也有广泛的应用。
经济应用
线性方程组可用于解决经济问题,如投入产出分析、 经济预测等。
03
向量与矩阵
向量的基本概念
向量的模
表示向量的长度或大小,记作|向量|。
ቤተ መጻሕፍቲ ባይዱ
向量的方向
由起点指向终点的方向,可以通过箭头表示。
向量的分量
表示向量在各个坐标轴上的投影,记作x、y、 z等。

《线性代数讲义》课件

《线性代数讲义》课件

在工程学中,性变换也得到了广泛的应用。例如,在图像处理中,可
以通过线性变换对图像进行缩放、旋转等操作;在线性控制系统分析中
,可以通过线性变换对系统进行建模和分析。
THANKS
感谢观看
特征向量的性质
特征向量与特征值一一对应,不同的 特征值对应的特征向量线性无关。
特征值与特征向量的计算方法
01
定义法
根据特征值的定义,通过解方程 组Av=λv来计算特征值和特征向 量。
02
03
公式法
幂法
对于某些特殊的矩阵,可以利用 公式直接计算特征值和特征向量 。
通过迭代的方式,不断计算矩阵 的幂,最终得到特征值和特征向 量。
矩阵表示线性变换的方法
矩阵的定义与性质
矩阵是线性代数中一个基本概念,它可以表示线性变 换。矩阵具有一些重要的性质,如矩阵的加法、标量 乘法、乘法等都是封闭的。
矩阵表示线性变换的方法
通过将线性变换表示为矩阵,可以更方便地研究线性 变换的性质和计算。具体来说,如果一个矩阵A表示 一个线性变换L,那么对于任意向量x,有L(x)=Ax。
特征值与特征向量的应用
数值分析
在求解微分方程、积分方程等数值问题时, 可以利用特征值和特征向量的性质进行求解 。
信号处理
在信号处理中,可以利用特征值和特征向量的性质 进行信号的滤波、降噪等处理。
图像处理
在图像处理中,可以利用特征值和特征向量 的性质进行图像的压缩、识别等处理。
05
二次型与矩阵的相似性
矩阵的定义与性质
数学工具
矩阵是一个由数字组成的矩形阵列,表示为二维数组。矩阵具有行数和列数。矩阵可以进行加法、数 乘、乘法等运算,并具有相应的性质和定理。矩阵是线性代数中重要的数学工具,用于表示线性变换 、线性方程组等。

中山大学-线性代数-矩阵的概念及基本运算64页PPT

中山大学-线性代数-矩阵的概念及基本运算64页PPT


27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇

30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!Biblioteka 6410、一个人应该:活泼而守纪律,天 真而不 幼稚, 勇敢而 鲁莽, 倔强而 有原则 ,热情 而不冲 动,乐 观而不 盲目。 ——马 克思

26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
中山大学-线性代数-矩 阵的概念及基本运算
6、纪律是自由的第一条件。——黑格 尔 7、纪律是集体的面貌,集体的声音, 集体的 动作, 集体的 表情, 集体的 信念。 ——马 卡连柯
8、我们现在必须完全保持党的纪律, 否则一 切都会 陷入污 泥中。 ——马 克思 9、学校没有纪律便如磨坊没有水。— —夸美 纽斯

线性代数ppt

线性代数ppt
A 其中A是A的伴随阵.
推论 设A、B 都是n阶方阵,若AB E(或
BA E) , 则B A1.
3. 可逆矩阵的性质
1 若A可逆,则A1也可逆,且 A1 1 A.
2 若A可逆,数 0,则A可逆,且 A1 1 A1.
3 若A, B为同阶可逆矩阵,则AB也可逆,且 1
1 1
4 若A可逆,则AT也可逆 ,且 A A .
线性代数总复习
第一章 行列式
第一节 n阶行列式的定义
二阶行列式的计算方法
a11 a21
a12 a22
a11a22
a12a21.
三阶行列式的计算方法——沙路法
一些常用的行列式结果:
a11 a12 a1n
1.
0 a22 a2n
a11a22
ann
0 0 ann
1
2.
2
12 n
1
n
3.
(其中 为数);
3 AB C AB AC, B C A BA CA;
方阵的幂运算: (1) Ak Al Akl (2) ( Ak )l Akl
注意:ABk AkBk .
转置运算:
1 AT T A;
2 A BT AT BT ; 3 AT AT ; 4 ABT BT AT .
M
M
M
an1
an2
ann
则D等于下列两个行列式之和:
a11 a12 a1n
a11 a12 a1n
MMM
bi 2 bin ci1
M
M
M
ci 2 cin
M
M
an1 an2 ann
an1 an2 ann
性质1.6 把行列式的某一行(列)的各元素乘以 同一数然后加到另一行(列)对应的元素上去,行列 式不变. (倍加运算)

线性代数第一章ppt

线性代数第一章ppt
线性代数第一章
目录
CONTENTS
• 绪论 • 线性方程组 • 向量与向量空间 • 矩阵 • 特征值与特征向量
01
绪论
线性代数的定义与重要性
线性代数是数学的一个重要分支,主要研究线性方程组、向量空间、矩阵 等线性结构。它在科学、工程、技术等领域有着广泛的应用。
线性代数的重要性在于其提供了一种有效的数学工具,用于解决各种实际 问题中的线性关系问题,如物理、化学、生物、经济等。
向量空间中的零向量是唯一确定的,且对于任意 向量a,存在唯一的负向量-a。
向量空间的运算与性质
向量空间中的加法满足交换律和结合 律,即对于任意向量a和b,存在唯一 的和向量a+b;且对于任意三个向量a、 b和c,(a+b)+c=a+(b+c)。
向量空间中的数乘满足结合律和分配 律,即对于任意标量k和l,任意向量a 和b,存在唯一的结果k*(l*a)=(kl)*a 和(k+l)*a=k*a+l*a。
圆等。
经济学问题
线性方程组可以用来描述经济现象和 规律,例如供需关系、生产成本、利
润最大化等。
物理问题
线性方程组可以用来描述物理现象和 规律,例如力学、电磁学、热力学等。
计算机科学
线性方程组在计算机科学中有广泛的 应用,例如机器学习、图像处理、数 据挖掘等。
03
向量与向量空间
向量的定义与性质
01 向量是具有大小和方向的量,通常用有向线 段表示。 02 向量具有模长,即从起点到终点的距离。
特征值与特征向量的计算方法
定义法
幂法
谱分解法
根据特征值和特征向量的定义, 通过解方程组Ax=λx来计算特征 值和特征向量。这种方法适用于 较小的矩阵,但对于大规模矩阵 来说效率较低。

线性代数完整版ppt课件

线性代数完整版ppt课件
a11x1 a12x2 b1 a21x1 a22x2 b2
求解公式为
x1
x
2
b1a 22 a11a 22 a11b2 a11a 22
a12b2 a12a 21 b1a 21 a12a 21
请观察,此公式有何特点? Ø分母相同,由方程组的四个系数确定. Ø分子、分母都是四个数分成两对相乘再
主对角线 a 1 1 a 1 2 a 1 3
a 2 1 a 2 2 a 2 3
a11a22a33a12a23a31a13a21a32
副对角线 a 3 1 a 3 2 a 3 3
a13a22a31a12a21a33a11a23a32
称为三阶行列式.
二阶行列式的对角线法则
并不适用!
.
12
三阶行列式的计算 ——对角线法则
( a a a a ) x a b b a 12 12 12 21 2 12 11 21
当 a 1a 1 2 2a 1a 时2 2,1 该0 方程组有唯一解
x b1a22a12b2
1 a a a a
11 22
12 21
x2
a11b2 b1a21 a11a22a12a21
.
6
二元线性方程组
为列标,表明元素位于第j
列. 8
二阶行列式的计算 ——对角线法则
主对角线 a 1 1 副对角线 a 2 1
a 12 a 22
a11a22a12a21
即:主对角线上两元素之积-副对角线上两元素之积
.
9
二元线性方程组
a11x1 a12x2 a21x1 a22x2
b1 b2
若令
D a11 a12 a21 a22
显然 P n n ( n 1 ) ( n 2 )3 2 1 n !

中南大学线性代数ppt课件

中南大学线性代数ppt课件

2 5 1 9
0 2 6 2 12 0 0 1 1 3
1 2 0 2
0 0
1 4
4 6
1
0
0 2
0 0
3 4
2
6
0 0 1 1 3 0 0 1 1 3
1 0 0 3 2
0
1
0
2
3
0 0 1 1 3
3 2 X 2 3.
1 3
若要求YA
C
,则可对矩阵
A
C
1
E(i(k))
k

i

1
1
以 Em (i(k)) 左乘矩阵 A,
a11
a12
Em
(
i(
k
))
A
kai1
kai 2
am1 am2
a1n
kain

i

amn
相当于以数k 乘 A的第 i 行 (ri k);
类似地,以 En(i(k)) 右乘 矩阵 A,其结果 相当于以数 k 乘 A 的第 i 列 (ci k).
例3 已知 n 阶方阵 A 0 0 1
1,
0 0 0
1
n
求 A 中所有元素的代数余子式之和 Aij . i, j1
解: A 2 0,
A 可逆. 且 A* A A1.
2 0
2 1
2 1
2 1
1 0
0 1
0 0
0 0
A E 0 0 1 1 0 0 1 0
0 0 0 1 0 0 0 1
aj2
a jn

i

ai1
ai 2
ain

线性代数总复习讲义PPT课件

线性代数总复习讲义PPT课件
在金融学中,线性代数用于描述资产价格和风险等经济量,以及计算收益 率和波动率等金融指标。
在计算机科学中的应用
01
Байду номын сангаас
02
03
04
线性代数在计算机科学中也有 着广泛的应用,如图像处理、 机器学习和数据挖掘等领域。
线性代数在计算机科学中也有 着广泛的应用,如图像处理、 机器学习和数据挖掘等领域。
线性代数在计算机科学中也有 着广泛的应用,如图像处理、 机器学习和数据挖掘等领域。
100%
相似变换法
通过相似变换将矩阵对角化,从 而得到其特征值和特征向量。
80%
数值计算法
对于一些大型稀疏矩阵,可以使 用数值计算方法来计算其特征值 和特征向量。
特征值与特征向量的应用
01
在物理、工程等领域中,特征值和特征向量被广泛 应用于求解振动、波动等问题。
02
在图像处理中,特征值和特征向量被用于图像压缩 和图像识别。
二次型的应用与优化问题
总结词
了解二次型在解决优化问题中的应用
详细描述
二次型的一个重要应用是在解决优化问题中, 特别是在求解二次规划问题时。通过将问题 转化为二次型的形式,可以方便地应用各种 优化算法进行求解,如梯度下降法、牛顿法 等。此外,二次型在统计分析、机器学习等 领域也有着广泛的应用。
06
矩阵的逆与行列式的值
要点一
总结词
矩阵的逆和行列式的值是线性代数中的重要概念,它们在 解决线性方程组、向量空间和特征值等问题中有着广泛的 应用。
要点二
详细描述
矩阵的逆是矩阵运算的一个重要概念,它表示一个矩阵的 逆矩阵与其原矩阵相乘为单位矩阵。逆矩阵的存在条件是 矩阵的行列式值不为零。行列式的值是一个由n阶方阵构 成的代数式,表示n个未知数的n阶线性方程组的解的系数 。行列式的值可以用来判断线性方程组是否有解以及解的 个数。同时,行列式的值也与特征值和特征向量等问题密 切相关。

线性代数完整版ppt课件

线性代数完整版ppt课件
a 31 a 32 a 33 a13a22a31a12a21a33a11a23a32
规律:
1. 三阶行列式共有6项,即3!项.
2. 每一项都是位于不同行不同列的三个元素的乘积.
3. 每一项可以写成 a1p1a2p2(a3正p3负号除外),其中
是1、2、3的某个排列.
p1 p2 p3
4. 当 p1 p2 是p3偶排列时,对应的项取正号;
(方程组的系数行列式)
D1
b1 b2
a12 a22
D2
a11 a 21
b1 b2
则上述二元线性方程组的解可表示为
x1
b1a22 a11a22
a12b2 a12a21
D1 D
x2
a11b2b1a21 a11a22a12a21.
D2 D
10
例1
求解二元线性方程组
32x1x1 2xx22
12 1
3 2
1.4
.
14
例3 求解方程 1 1 1
2 3 x 0. 4 9 x2
解 方程左端 D 3 x 2 4 x 1 9 x 8 2 x 2 12 x25x6,
由 x25x60得
x2或 x3.
.
15
§2 全排列及其逆序数
问题 把 n 个不同的元素排成一列,共有多少种不同的 排法?
定义 把 n 个不同的元素排成一列,叫做这 n 个元素 的全排列. n 个不同元素的所有排列的种数,通常用 Pn 表示.
相减而得.
.
7
二元线性方程组
a11x1 a12x2 b1 a21x1 a22x2 b2
其求解公式为
x1
x
2
b1a 22 a11a 22 a11b2 a11a 22

线性代数ppt课件

线性代数ppt课件

VS
线性代数的特点
线性代数具有抽象性、实用性、广泛性等 特点,是数学中重要的分支之一。
线性代数的历史背景
线性代数的起源
线性代数起源于17世纪,主要目的 是为了解决线性方程组的问题。
线性代数的发展
随着数学的发展,线性代数逐渐成为 一门独立的数学分支,并在20世纪得 到了广泛的应用和发展。
线性代数的应用领域
转置矩阵
一个矩阵A的转置矩阵是满足$A^T_{ij}=A_{ ji}$的矩阵
行列式与高斯消元
03

行列式的定义及性质
总结词
行列式是线性代数中重要的工具之一,它具有特殊的性质和计算规则。
详细描述
行列式是由一组方阵中的元素按照一定规则组成的,它是一个方阵是否可逆的判断标准,同时也有一 些重要的性质和计算规则,如交换两行或两列、对角线上的元素相乘等。了解行列式的定义和性质是 学习线性代数的基础。
矩阵的运算规则
加法
两个相同大小的矩阵,对应位置的元素相加
数乘
用一个数乘以矩阵的每一个元素
减法
两个相同大小的矩阵,对应位置的元素相减
乘法
要求两个矩阵满足乘法运算的规则,即第一 个矩阵的列数等于第二个矩阵的行数
矩阵的逆与转置
逆矩阵
一个矩阵A的逆矩阵是满足$AA^{-1}=I$的矩阵,其中$I$是单位矩阵
高斯消元法的原理
总结词
高斯消元法是一种解线性方程组的直接方法 ,其原理是将方程组转化为阶梯形矩阵。
详细描述
高斯消元法的基本思想是通过一系列的行变 换将线性方程组转化为阶梯形矩阵,这样就 可以直接求解方程组。高斯消元法包括三种 基本的行变换:将两行互换、将一行乘以非 零常数、将一行加上另一行的若干倍。通过 这些行变换,我们可以将矩阵转化为阶梯形 矩阵,从而求解方程组。

中南大学线性代数PPT1-1-精选文档

中南大学线性代数PPT1-1-精选文档

(6)式称为数表(5)所确定的三阶行列式.
a11
a12
a13
D a21 a22 a23 .列标 a31 a32 a33 行标 三阶行列式的计算 a11 a12 a13 a 11 a 12
(1)沙路法 D a21 a22 a23 a31 a32 a33
a 21 a 31
a 22 a 32
a a a a a a a a D a 11 22 33 12 23 31 13 21 32 a a a a a a a a a . 11 23 32 12 21 33 13 22 31
称列)的数表
表达式 a a a a 称为数表( 4 )所确定的 11 22 12 21 a 11 a 12 行列式,并记作 ( 5 ) a 21 a 22

a 11 a 12 D a a a a . 11 22 12 21 a 21 a 22
二阶行列式的计算
主对角线 副对角线
对角线法则
两式相减消去 x ,得 2
( a a a a ) x b a a b ; 11 22 12 21 1 1 22 12 2
类似地,消去 x ,得 1 ( a a a a ) x a b b a , 11 22 12 21 2 11 2 1 21
方程组的解为 当 a a a a 0 时, 11 22 12 21

3 2 3 ( 4 ) 7 0 , D 2 1
D 1
12 2 1
3 12 21 , 14 , D2 2 1 1
D 2 21 14 D 1 3. 2, x 2 x1 7 D D 7
二、三阶行列式
定义

线性代数及其应用PPT课件

线性代数及其应用PPT课件

金融数据的线性模型分析
线性回归模型
利用线性代数中的矩阵运算和线性方 程组求解方法,对金融数据进行回归 分析,预测未来趋势。
主成分分析
通过线性代数中的特征值和特征向量 计算,将金融数据降维,提取主要影 响因素,便于分析和决策。
图像处理中的矩阵运算
图像变换
利用矩阵运算对图像进行缩放、旋转 、平移等几何变换,实现图像的精确 控制。
征值和Байду номын сангаас征向量。
特征值计算 的算法
特征值计算是矩阵分析中的重要内容,可以用于解决 许多实际问题,如振动分析、控制论、经济学等。
数据降维与可视化
数据降维的必要性
数据降维的方法
可视化的意义
可视化的工具和技术
在处理高维数据时,数据的维 度可能非常高,导致数据难以 分析和处理。数据降维可以将 高维数据降为低维数据,便于 分析和可视化。
矩阵分解与特征值计算
矩阵分解是将一个复杂的矩阵分解为几个简单的、易 于处理的矩阵,以便进行计算和分析。
输入 矩阵标分题解的
方法
常见的矩阵分解方法包括LU分解、QR分解、SVD分 解等。这些方法可以将一个矩阵分解为一个下三角矩 阵、一个上三角矩阵和一个正交矩阵等。
矩阵分解的 定义
特征值计算 的应用
特征值计算的常用算法有QR算法、Jacobi方法、 Power方法等。这些算法可以用于计算给定矩阵的特
数值计算稳定性
数值计算稳定性
在进行数值计算时,由于计算机的舍入误差,可能会导致 计算结果的误差。线性代数中的一些算法和技巧可以帮助 提高数值计算的稳定性,减少误差。
数值稳定性的评估
评估数值稳定性的方法包括观察计算结果的收敛性和稳定 性,以及比较不同算法的误差和稳定性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
给出一组规则,从A中(已获得的)元素出发,依照这些 规则所获得的元素,仍然是A中的元素。这是构造A的 关键部分。
⑶ 极小化
谁 如果集合S A也满足⑴和⑵,则S = A 。这说明, A中 不 的每个元素都可以通过有限次使用⑴和⑵来获得(或称A 是 是满足条款(1)和(2)的最小集合),它保证所构造出的集
7/63
集合的比较运算
定理4.1.1设A和B是集合, A=B当且仅当A B和 BA( 的反对称性)
证明: ABBA
x(x∈Ax∈B)x(x∈Bx∈A) x((x∈Ax∈B)(x∈Bx∈A)) x(x∈Ax∈B) A=B
8/63
集合的比较运算
定义4.1.5 设A和B是集合,
如果AB且A≠B, 那么称A是B的真子集,记作
A={a|a∈I∧0<a∧a<5}, {a|a∈I∧1≤a≤50}
A={x|P(x)}, B={x|Q(x)}
若P(x)Q(x),则A = B
若P(x)Q(x),则A B
递归定义法
10/63
递归定义法(归纳定义)
用这种方法定义一个非空集合A时,一般应包括以 下三个部分:
⑴ 基本项
谁 属已于知A某,些即元S素0 (常A 。用这S0表是示构由造这A的些基元础素,组并成保的证非非空空集。合) 是 ⑵ 递归项
3/63
元素与集合的关系
a是集合A的一个元素, 则记为a∈A,读做“a属 于A”, 或说“a在A中”
a不是集合A的一个元素, 则记为aA,读做“a
不属于A”, 或说“a不在A中” 集合的元素可以是一个集合
例:A={a,b,c,{a,b}} 则{a,b}∈A且{a,b} A
4/63
有限集与无限集
长度为0的串叫做空串,记为Λ(或ε)
x和y都是在Σ上的符号串,x连结(或叫并置, 毗连)y, 记为xy
x=a1a2…an,y=b1b2…bm 则 xy=a1a2…anb1b2…bm x=Λ则 xy=y
z=xy
x是z的词头, y是z的词尾 如果x≠z, 称x为真词头 如果y≠z,称y为真词尾 如果w=xyz, 则y是w的子串, 如果y≠w,称y为真子串
笼统地说,一些可以互相区分的任意对象(统称为元素)聚集在一 起形成的整体就叫做集合,用大写的英文字母表示,如A,B…
这些对象就是这个集合的元素(或称成员) ,一般用小写字母表示, 如a,b…
集合中的元素不计次序
{a,b,c,a}={c,b,a,d}
集合中的元素不计重度
{x,y,x} ={x,y} ={x,x,x,y}
AB , 读作“B真包含A”或“A真包含于B”,即
ABA BA≠B x(x∈Ax∈B)x(x∈Ax∈B) x(x∈Ax∈B)(x(x∈Ax∈B)x(x∈B x∈A)) (x(x∈Ax∈B)x(x∈Ax∈B))(x(x∈A x∈B) x(x∈Bx∈A))
x(x∈Ax∈B) x(x∈BxA)
9/63
5/63
空集与全集
显然,空集是不含有任何元素的有限集, 常用符号Φ 表示
定义4.1.2 全集
恒用E表示,是指包含了讨论中涉及的全体元 素的特殊集合
全集也是有相对性的,不同的问题有不同的全集, 即使是同一个问题也可以有不同的全集
6/63
集合的比较运算
定义4.1.3 集合相等(外延公理)
两个集合A和B相等, 即A=B, 当且仅当它们有相同的成员
合A是唯一的。
11/63

如果全集是整数集合I, 那么能为3 整除的正 整数集合S的谓词定义如下:
S { x|x 0 y (x 3 y )}
同样集合S能归纳地定义如下: (1) (基础)3∈S; (2) (归纳)如果x∈S和y∈S, 那么x+y∈S; (3) (极小性)S的元素都是由有限次应用条款(1)和(2)得出的。
集合的表示 集合应该是充分定义(良定)的
列举法
完全列举
部分列举
将集合中的元素一一列出,写在大括号内
A={1, 2, 3, 4}, B={a,b,c,d},C={…,-4,-2,0,2,4,…}
谓词描述法(指定原理)
用谓词公式描述元素的共同属性
一般形式:
S被称为谓词P的广延
S={a|P(a)}表示a∈S当且仅当P(a)是真
主要内容
第4章 集合
4.1 集合的概念与表示 4.2 集合的运算 4.3 Venn氏图及容斥原理 4.4 集合的划分 4.5 自然数集与数学归纳法
第5章 二元关系
第6章 函数
1/63
第4章 集合(Set)
4.1 集合的概念与表示
集合的概念
又称为类、族或搜集 是数学中最基本的概念之一 不可精确定义(原始概念) 集合的描述
是Σ上的串 (c) 如果Σ={a, b, …, z,_} , 这里“_”是代表空白。那
么that_was_long_ago是Σ上的串, 习惯上印成that was long ago (d) 如果Σ={0,1}, 那么000,010,011010等都是Σ上的串
13/63
x是Σ上的一个字, 如果x=a1a2…an, (n∈N, 1≤i≤n, ai∈Σ), 那么x中的符号个数n称为x的长度, 记为‖x‖
定义4.1.1 设A是一个集合。
1. 用A或#A表示A含有的元素的个数,称做A 的基数,或阶。
2. 若#A =0,则称为空集;否则称为非空集。 3. 若#A为一非负整数,则称A为有限集;否则
称为无限集。 例:
A={a,b,{a, b}} |A|=3;|{A}|=1
基数为n的非空有Байду номын сангаас集称为n元(或n阶)集合
A = B x(xAxB) x(xA→xB)∧x(xB→xA)
否则,用A≠B表示集合A和B不相等,即
A ≠ B x(xAxB) 定义4.1.4 设A和B是集合,
如果A的每一元素是B的一个元素, 那么A是B的子集,也称B
是A的母集(或称扩集),记为AB, 读做“B包含A”或“A包含 于B”,即
ABx(xA→xB)
12/63
字母表与串
设Σ表示一个有限的非空的符号(字符)集合、我们 称Σ为字母表。由字母表Σ中有限个字符拼接起来 的符号串叫做字母表Σ上的一个字(或叫串) 例
(a) 如果Σ={a,b, …, z}, 那么is, then都是Σ上的字 (b) 如果Σ={你, 我, 人, 工, …, 是}, 那么“你是工人”
相关文档
最新文档