沪科版初中数学教案
初中数学沪科 教案
初中数学沪科教案一、教学目标:1. 让学生通过观察、操作、思考、交流等活动,掌握三角形的定义、性质和分类。
2. 培养学生运用数学知识解决实际问题的能力,提高学生的空间想象能力。
3. 引导学生感受数学与生活的联系,激发学生学习数学的兴趣。
二、教学内容:1. 三角形的定义:由三条线段首尾顺次连接所组成的图形。
2. 三角形的性质:三角形的内角和为180°,三角形的两边之和大于第三边。
3. 三角形的分类:锐角三角形、直角三角形、钝角三角形。
三、教学重点与难点:1. 重点:三角形的定义、性质和分类。
2. 难点:三角形分类的判断。
四、教学过程:1. 导入:通过展示生活中的三角形图片,如自行车的三角架、三角尺等,引导学生关注三角形在生活中的应用,激发学生学习三角形的兴趣。
2. 新课导入:介绍三角形的定义,引导学生通过观察、操作,总结三角形的性质。
3. 课堂讲解:讲解三角形的内角和定理,边长关系,以及如何判断三角形的类型。
4. 例题讲解:分析并解答典型的三角形问题,如判断一个四边形是否为三角形。
5. 课堂练习:让学生独立完成练习题,巩固所学知识。
6. 拓展与应用:引导学生运用所学知识解决实际问题,如测量三角形的面积。
7. 课堂小结:总结本节课所学内容,强调三角形的定义、性质和分类。
8. 布置作业:布置适量的课后练习,巩固所学知识。
五、教学方法:1. 采用问题驱动法,引导学生主动探究三角形的性质。
2. 运用多媒体辅助教学,展示三角形的相关图片和动画,提高学生的空间想象能力。
3. 采用小组合作学习,让学生在讨论中加深对三角形知识的理解。
4. 注重个体差异,针对不同学生给予适当的指导。
六、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 课后作业:检查学生的作业完成情况,评估学生对课堂所学知识的掌握程度。
3. 单元测试:进行单元测试,了解学生对三角形知识的整体掌握情况。
2023八年级数学沪科版教案5篇
2023八年级数学沪科版教案5篇2023八年级数学沪科版教案1一、学习目标:1.多项式除以单项式的运算法则及其应用.2.多项式除以单项式的运算算理.二、重点难点:重点:多项式除以单项式的运算法则及其应用难点:探索多项式与单项式相除的运算法则的过程三、合作学习:(一) 回顾单项式除以单项式法则(二) 学生动手,探究新课1. 计算下列各式:(1)(am+bm)÷m (2)(a2+ab)÷a (3)(4x2y+2xy2)÷2xy.2. 提问:①说说你是怎样计算的②还有什么发现吗(三) 总结法则1. 多项式除以单项式:先把这个多项式的每一项除以___________,再把所得的商______2. 本质:把多项式除以单项式转化成______________四、精讲精练例:(1)(12a3-6a2+3a)÷3a; (2)(21x4y3-35x3y2+7x2y2)÷(-7x2y);(3)[(x+y)2-y(2x+y)-8x]÷2x (4)(-6a3b3+ 8a2b4+10a2b3+2ab2)÷(-2ab2) 随堂练习:教科书练习五、小结1、单项式的除法法则2、应用单项式除法法则应注意:A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行.E、多项式除以单项式法则2023八年级数学沪科版教案2教学目标1.知识与技能能确定多项式各项的公因式,会用提公因式法把多项式分解因式.2.过程与方法使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解.3.情感、态度与价值观培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值.重、难点与关键1.重点:掌握用提公因式法把多项式分解因式.2.难点:正确地确定多项式的公因式.3.关键:提公因式法关键是如何找公因式.方法是:一看系数、二看字母.•公因式的系数取各项系数的公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.教学方法采用“启发式”教学方法.教学过程一、回顾交流,导入新知【复习交流】下列从左到右的变形是否是因式分解,为什么(1)2x2+4=2(x2+2);(2)2t2-3t+1=(2t3-3t2+t);(2)x2+4xy-y2=x(x+4y)-y2;(4)m(x+y)=mx+my;(3)x2-2xy+y2=(x-y)2.问题:1.多项式mn+mb中各项含有相同因式吗2.多项式4x2-x和xy2-yz-y呢请将上述多项式分别写成两个因式的乘积的形式,并说明理由.【教师归纳】我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法.二、小组合作,探究方法【教师提问】多项式4x2-8x6,16a3b2-4a3b2-8ab4各项的公因式是什么【师生共识】提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.三、范例学习,应用所学【例1】把-4x2yz-12xy2z+4xyz分解因式.解:-4x2yz-12xy2z+4xyz=-(4x2yz+12xy2z-4xyz)=-4xyz(x+3y-1)【例2】分解因式,3a2(x-y)3-4b2(y-x)2【思路点拨】观察所给多项式可以找出公因式(y-x)2或(x-y)2,于是有两种变形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,从而得到下面两种分解方法.解法1:3a2(x-y)3-4b2(y-x)2=-3a2(y-x)3-4b2(y-x)2=-[(y-x)2•3a2(y-x)+4b2(y-x)2]=-(y-x)2[3a2(y-x)+4b2]=-(y-x)2(3a2y-3a2x+4b2)解法2:3a2(x-y)3-4b2(y-x)2=(x-y)2•3a2(x-y)-4b2(x-y)2=(x-y)2[3a2(x-y)-4b2]=(x-y)2(3a2x-3a2y-4b2)【例3】用简便的方法计算:0.84×12+12×0.6-0.44×12.【教师活动】引导学生观察并分析怎样计算更为简便.解:0.84×12+12×0.6-0.44×12=12×(0.84+0.6-0.44)=12×1=12.【教师活动】在学生完全例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同四、随堂练习,巩固深化课本P167练习第1、2、3题.【探研时空】利用提公因式法计算:0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69五、课堂总结,发展潜能1.利用提公因式法因式分解,关键是找准公因式.•在找公因式时应注意:(1)系数要找公约数;(2)字母要找各项都有的;(3)指数要找最低次幂.2.因式分解应注意分解彻底,也就是说,分解到不能再分解为止.六、布置作业,专题突破课本P170习题15.4第1、4(1)、6题.板书设计2023八年级数学沪科版教案3教学目标:知识与技能1.掌握直角三角形的判别条件,并能进行简单应用;2.进一步发展数感,增加对勾股数的直观体验,培养从实际问题抽象出数学问题的能力,建立数学模型.3.会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论.情感态度与价值观敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识.教学重点运用身边熟悉的事物,从多种角度发展数感,会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论.教学难点会辨析哪些问题应用哪个结论.课前准备标有单位长度的细绳、三角板、量角器、题篇教学过程:复习引入:请学生复述勾股定理;使用勾股定理的前提条件是什么已知△ABC的两边AB=5,AC=12,则BC=13对吗创设问题情景:由课前准备好的一组学生以小品的形式演示教材第9页古埃及造直角的方法.这样做得到的是一个直角三角形吗提出课题:能得到直角三角形吗讲授新课:⒈如何来判断(用直角三角板检验)这个三角形的三边分别是多少(一份视为1)它们之间存在着怎样的关系就是说,如果三角形的三边为,,,请猜想在什么条件下,以这三边组成的三角形是直角三角形(当满足较小两边的平方和等于较大边的平方时)⒉继续尝试:下面的三组数分别是一个三角形的三边长a,b,c:5,12,13;6,8,10;8,15,17.(1)这三组数都满足a2+b2=c2吗(2)分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗⒊直角三角形判定定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.满足a2+b2=c2的三个正整数,称为勾股数.⒋例1一个零件的形状如左图所示,按规定这个零件中∠A和∠DBC都应为直角.工人师傅量得这个零件各边尺寸如右图所示,这个零件符合要求吗随堂练习:⒈下列几组数能否作为直角三角形的三边长说说你的理由.⑴9,12,15;⑵15,36,39;⑶12,35,36;⑷12,18,22.⒉已知∆ABC中BC=41,AC=40,AB=9,则此三角形为_______三角形,______是角.⒊四边形ABCD中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求这个四边形的面积.⒋习题1.3课堂小结:⒈直角三角形判定定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.⒉满足a2+b2=c2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.2023八年级数学沪科版教案4勾股定理的应用教学目标教学知识点:能运用勾股定理及直角三角形的判别条件(即勾股定理的逆定理)解决简单的实际问题.能力训练要求:1.学会观察图形,勇于探索图形间的关系,培养学生的空间观念.2.在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.情感与价值观要求:1.通过有趣的问题提高学习数学的兴趣.2.在解决实际问题的过程中,体验数学学习的实用性,体现人人都学有用的数学.教学重点难点:重点:探索、发现给定事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题.难点:利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题.教学过程1、创设问题情境,引入新课:前几节课我们学习了勾股定理,你还记得它有什么作用吗例如:欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需多长的梯子根据题意,(如图)AC是建筑物,则AC=12米,BC=5米,AB是梯子的长度.所以在Rt△ABC中,AB2=AC2+BC2=122+52=132;AB=13米.所以至少需13米长的梯子.2、讲授新课:①、蚂蚁怎么走最近出示问题:有一个圆柱,它的高等于12厘米,底面半径等于3厘米.在圆行柱的底面A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,需要爬行的的最短路程是多少(π的值取3).(1)同学们可自己做一个圆柱,尝试从A点到B点沿圆柱的侧面画出几条路线,你觉得哪条路线最短呢(小组讨论)(2)如图,将圆柱侧面剪开展开成一个长方形,从A点到B点的最短路线是什么你画对了吗(3)蚂蚁从A点出发,想吃到B点上的食物,它沿圆柱侧面爬行的最短路程是多少(学生分组讨论,公布结果)我们知道,圆柱的侧面展开图是一长方形.好了,现在咱们就用剪刀沿母线AA′将圆柱的侧面展开(如下图).我们不难发现,刚才几位同学的走法:(1)A→A′→B;(2)A→B′→B;(3)A→D→B;(4)A—→B.哪条路线是最短呢你画对了吗第(4)条路线最短.因为“两点之间的连线中线段最短”.②、做一做:教材14页。
数学沪科版七年级教案
数学沪科版七年级教案数学沪科版七年级教案数学沪科版七年级教案1教学目标1.了解的概念和的画法,掌握的三要素;2.会用上的点表示有理数,会利用比较有理数的大小;3.使学生初步了解数形结合的思想方法,培养学生相互联系的观点。
教学建议一、重点、难点分析本节的重点是初步理解数形结合的思想方法,正确掌握画法和用上的点表示有理数,并会比较有理数的大小.难点是正确理解有理数与上点的对应关系。
的概念包含两个内容,一是的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。
另外应该明确的是,所有的有理数都可用上的点表示,但上的点所表示的数并不都是有理数。
通过学*,使学生初步掌握用解决问题的方法,为今后充分利用“”这个工具打下基础.二、知识结构有了,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的重要思想方法,本课知识要点如下表:定义三要素应用数形结合规定了原点、正方向、单位长度的直线叫原点正方向单位长度帮助理解有理数的概念,每个有理数都可用上的点表示,但上的点并非都是有理数比较有理数大小,上右边的数总比左边的数要大在理解并掌握概念的基础之上,要会画出,能将已知数在上表示出来,能说出上已知点所表示的数,要知道所有的有理数都可以用上的点表示,会利用比较有理数的大小。
三、教法建议小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出的概念.是一条具有三个要素(原点、正方向、单位长度)的直线,这三个要素是判断一条直线是不是的根本依据。
与它所在的位置无关,但为了教学上需要,一般水*放置的,规定从原点向右为正方向。
要注意原点位置选择的任意性。
关于有理数与上的点的对应关系,应该明确的是有理数可以用上的点表示,但上的点与有理数并不存在一一对应的关系。
根据几个有理数在上所对应的点的相互位置关系,应该能够判断它们之间的大小关系。
沪科版七年级数学教案
沪科版七年级数学教案【篇一:0沪科版7年级数学上册教案汇编】第1章有理数1.1 正数和负数教学目标【知识与技能】1.会判断一个数是正数还是负数.2.会用正负数表示生活中常用的具有相反意义的量.【过程与方法】1.了解负数产生的背景是从实际需要产生的.2.培养学生的数学应用意识,渗透对立统一的辩证思想.【情感、态度与价值观】体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣.教学重难点【重点】了解正数与负数是由实际需要产生的并会用正负数表示生活中常用的具有相反意义的量.【难点】明白学习负数的必要性,能结合生活情境举出具有相反意义的量的典型例子.教学过程一、新课引入1.师:同学们,你们看过电视或听过广播中的天气预报吗?中国地形图上的温度阅读.(可让学生模拟预报)请大家来当小小气象员,记录温度计所示的气温:25℃,10℃,零下10℃,零下30℃.为书写方便,将测量气温写成25℃,10℃,-10℃,-30℃.2.师:同学们,我们已经学了哪些数,它们是怎样产生和发展起来的?教师引导学生说出:在生活中为了表示物体的个数或事物的顺序,产生了数1,2,3,?;为了表示“没有”,引入了数0;有时分配和测量的结果不是整数,需要用分数(小数)表示.总之,数是为了满足生产和生活的需要而产生和逐步发展起来的.二、讲授新课1.相反意义的量:师:同学们,在我们的日常生活中,常会遇到这样一些量(事情):例1:汽车向东行驶3千米和向西行驶2千米.例2:温度是零上10℃和零下5℃.例3:收入500元和支出237元.例4:水位升高1.2米和下降0.7米.例5:买进100辆自行车和卖出20辆自行车.(1)试着让学生考虑这些例子中出现的每一对量有什么共同特点.(都具有相反意义,向东和向西、零上和零下、收入和支出、升高和下降、买进和卖出都具有相反意义.)(2)你能举出几对日常生活中具有相反意义的量吗?2.正数和负数:(1)能用我们已学过的数表示这些具有相反意义的量吗?例如,零上5℃用5来表示,零下5℃呢?也用5来表示,行吗?说明:在天气预报图中,零下5℃是用-5℃来表示的.一般地,对于具有相反意义的量,我们可把其中一种意义的量规定为正,用过去学过的数来表示;把与它意义相反的量规定为负,用过去学过的数(零除外)前面放一个“-”(读作“负”)号来表示.以温度为例,通常规定零上为正,零下为负;零上10℃就用10℃表示,零下5℃则用-5℃来表示.(2)怎样表示具有相反意义的量呢?你们能否从天气预报出现的标记中得到一些启发呢?在例1中,我们如果规定向东为正,那么向西则为负.汽车向东行驶3千米记作3千米,向西2千米应记作-2千米.后面的例子让学生来说(注意词的表达).在以上的讨论中,出现了哪些新数?为了表示具有相反意义的量,上面我们引进了-5,-2,-237,-0.7等数.像这样的一些新数,叫做负数(negative number).过去学过的那些数(零除外),如10,3,500,1.2等,叫做正数(positive number).正数前面有时也可放一个“+”(读作“正”),如5可以写成+5.注意:零既不是正数,也不是负数.三、例题讲解【例1】 (1)与去年相比,某乡今年的水稻种植面积扩大了10hm(公顷),小麦的种植面积减少了5hm,油菜的种植面积不变,写出这三种农作物今年种植面积的增加量;(2)某市12315中心2011年国庆期间受理消费申诉件数:日用百货类比上年同期增长了10%,家用电子电器类比上年下降了20%,写出这两类消费商品申诉件数的增长率.22【答案】 (1)与去年相比,该乡今年的水稻种植面积增加了10hm,小麦种植面积增加了-5hm,油菜种植2面积增加了0hm.(2)与上年同期相比,消费商品申诉件数:日用百货类增长了10%,家用电子电器类增长了-20%.【例2】 (1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;(2)某年,下列国家的商品进出口总额比上年的变化情况是:美国减少6.4%, 德国增长1.3%,法国减少2.4%, 英国减少3.5%,意大利增长0.2%, 中国增长7.5%.写出这些国家这一年商品进出口总额的增长率.【答案】 (1)这个月小明体重增加2kg,小华体重增加-1kg,小强体重增加0kg.(2)六个国家这一年商品进出口总额的增长率是:美国 -6.4%, 德国 1.3%,法国 -2.4%, 英国 -3.5%,意大利 0.2%, 中国 7.5%.四、巩固练习1.-10表示支出10元,那么+50表示 ;如果零上5度记作5℃,那么零下2度记作 ;如果上升10m记作10m,那么-3m表示 ;太平洋中的马里亚纳海沟低于海平面达11 034米,可记作海拔米(即低于海平面11 034米).比海平面高50m的地方,它的高度记作海拔 ;比海平面低30m的地方,它的高度记作海拔 .【答案】 1.收入50元,-2℃,下降3m,-11034,+50m,-30m;2.0.05mm,-0.05mm.五、课堂小结正数和负数表示的是一对具有相反意义的量,哪种意义的量为正是可以任意规定的.如果把一种意义的量规定为正,则相反意义的量规定为负.常将“前进、上升、收入、零上温度”等规定为正,而把“后退、下降、支出、零下温度”等规定为负. 221.2 数轴、相反数和绝对值第1课时数轴教学目标【知识与技能】使学生知道数轴上有原点、正方向和单位长度,能将已知数在数轴上表示出来,能说出数轴上的已知点所表示的数,知道有理数都可以用数轴上的点表示.【过程与方法】在探索数轴画法的过程中,鼓励学生类比、猜想,初步理解数与形的结合.【情感、态度与价值观】向学生渗透对立统一的辩证唯物主义观点及数形结合的数学思想.教学重难点【重点】初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.【难点】正确理解有理数与数轴上点的对应关系.教学过程一、复习导入师:在上课之前老师先提几个问题,看大家学得怎样.1.有理数包括哪些数?0是正数还是负数?2.温度计的用途是什么?类似于这种用带有刻度的物体表示数的东西还有哪些(直尺、弹簧秤等)? 教学中,在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.演示从温度计抽象成数轴,激发学生学习的兴趣,使学生受到把实际问题抽象成数学问题的训练,同时把类比的思想方法贯穿于概念的形成过程.二、讲授新课1.师:请同学们阅读课本第7页,思考并讨论:(1)25℃用正数表示;0℃用数表示;零下10℃用负数表示.(2)数轴要具备哪三个要素?(3)原点表示什么数?原点右方表示什么数?原点左方表示什么数?(4)表示+2的点在什么位置?表示-3的点在什么位置?(5)原点向右0.5个单位长度的a点表示什么数?原点向左1个单位长度的b点表示什么数?2.数轴的画法.师生共同总结数轴的画法步骤:第一步:画一条直线(通常是水平的直线),在这条直线上任取一点o,叫做原点,用这点表示数0(相当于温度计上的0℃);第二步:规定这条直线的一个方向为正方向(一般取从左到右的方向,用箭头表示出来).相反的方向就是负方向(相当于温度计0℃以上为正,0℃以下为负);第三步:适当地选取一条线段的长度作为单位长度,也就是在0的右面取一点表示1,0与1之间的长就是单位长度(相当于温度计上1℃占1小格的单位长度).在数轴上从原点向右,每隔一个单位长度取一点,这些点依次表示1,2,3,??,从原点向左,每隔一个单位长度取一点,它们依次表示-1,-2,-3,??.3.数轴的定义.规定了原点、正方向和单位长度的直线叫做数轴.原点、正方向和单位长度是数轴的三要素,原点位置的选定、正方向的选择、单位长度大小的确定,都是根据需要人为规定的,此外,直线也不一定是水平的.动态演示各种类型的数轴,认识并掌握判断一条直线是不是数轴的依据.三、例题讲解师:同学们,下面我们一起来做几个例题.【例1】判断下图中所画的数轴是否正确;如不正确,指出错在哪里.分析原点、正方向、单位长度,数轴的这三要素缺一不可.【答案】都不正确,(1)缺少单位长度;(2)缺少正方向;(3)缺少原点;(4)单位长度不一致.【例2】说出下图所示的数轴上a、b、c、d各点表示的数.【答案】点c在原点表示0,点a在原点左边与原点距离2个单位长度,故表示-2.同理,点b表示-3.5.点d在原点右边与原点距离2个单位长度,故表示2.【例3】把下面各小题的数分别表示在三条数轴上: (1)2,-1,0,-3,+3.5;(2)-5,0,+5,15,20;(3)-1 500,-500,0,500,1 000.【答案】略.四、课堂小结教师引导学生小结:1.数轴是非常重要的数学工具,它使数和直线上的点建立了一一对应的关系,它揭示了数与形之间的内在联系;所有的有理数都可以用数轴上的点表示,但并不是数轴上的所有点都表示有理数.2.画数轴时,原点的位置以及单位长度的大小可根据实际情况适当选取,注意不要漏画正方向、不要漏画原点,单位长度一定要统一,数轴上数的排列顺序(尤其是负数)要正确.第2课时相反数教学目标【知识与技能】1.使学生了解互为相反数的几何意义.2.会求一个已知数的相反数;会对含有多重符号的数进行化简.【过程与方法】培养学生的观察、归纳与概括的能力,渗透数形结合思想.【情感、态度与价值观】通过由具体实例抽象概括的独立思考与合作学习的过程,培养学生积极参与、善于与他人合作交流的学习习惯.教学重难点【重点】理解相反数的代数定义与几何定义,熟练地求出一个已知数的相反数.【难点】多重符号的数的化简问题的理解.教学过程一、复习导入师:同学们,在上课之前,老师先出几个题目考考大家.1.在数轴上分别找出表示下列各数的点:6与-6,-3与3,-1.5与1.5.想一想:在数轴上,表示每对数的点有什么相同?有什么不同?2.观察数6与-6,-3与3,-1.5与1.5有何特点.观察每组数所对应的两个点的位置关系有什么规律. 学生归纳:每组中的每个数只有符号不同,它们所对应的两点分别在原点的两侧,到原点的距离相等.二、讲授新课师:下面我们一起来学习新课.1.发现并总结相反数的定义.只有符号不同的两个数称互为相反数.理解:代数定义:只有符号不同的两个数互为相反数.0的相反数是0.几何定义:在数轴上原点两旁,与原点的距离相等的两个点所表示的两个数互为相反数.0的相反数是0. 说明:“互为相反数”的含义是相反数是成对出现的,因而不能说“-6是相反数”.“0的相反数是0”是相反数定义的一部分.这是因为0既不是正数,也不是负数,它到原点的距离就是0,0是唯一的相反数仍等于它本身的数.三、例题讲解教师出示例题.【例1】判断下列说法是否正确:(1)-5是5的相反数.( )(2)5是-5的相反数.( )(3)5与-5互为相反数.( )(4)-5是相反数.( )【答案】(1)√ (2)√ (3)√ (4)3【例2】 (1)分别写出5、-7、-3、+11.2的相反数;(2)指出-2.4是什么数的相反数.【答案】 (1)5的相反数是-5.-7的相反数是7.-3的相反数是3.+11.2的相反数是-11.2.我们通常在一个数的前面添上“-”号,表示这个数的相反数.例如-(-4)=4,-(+5.5)=-5.5;同样,在一个数前面添上“+”号,表示这个数本身.例如+(-4)=-4,+(+12)=12.(2)-2.4是2.4的相反数.【例3】化简下列各数:(1)-(+10);(2)+(-0.15);(3)+(+3); (4)-(-20).【答案】 (1)-(+10)=-10;(2)+(-0.15)=-0.15;(3)+(+3)=+3=3;(4)-(-20)=20.四、巩固练习课本p10练习的第1~3题.【篇二:沪教版七年级数学上册教案】教学计划(20## 学年度第一学期)制定日期:20##-教学进度表(20## 学年度第一学期)一、教材内容:本册内容是精选学生终生学习必备的基础知识和基本技能,基于这些,本学期学生学习的基础内容时整式、分式、图形的运动等。
七年级数学教案沪科版
七年级数学教案沪科版【篇一:沪科版初中数学七年级第一学期教学案】初中数学七年级(上册)导学案第一章有理数课题:1.1 正数和负数(1)【学习目标】:1、掌握正数和负数概念;2、会区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。
【重点难点】:正数和负数概念【导学指导】:一、知识链接:1、小学里学过哪些数请写出来:、、。
2、阅读课本p1和p2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?二、自主学习1、正数与负数的产生(1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。
请你也举一个具有相反意义量的例子:。
(2)负数的产生同样是生活和生产的需要2、正数和负数的表示方法(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。
正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。
(2)活动两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示. (3)阅读p3练习前的内容 3、正数、负数的概念1)大于0的数叫做,小于0的数叫做。
2)正数是大于0的数,负数是的数,0既不是正数也不是负数。
【课堂练习】:1. p3第一题到第四题(直接做在课本上)。
2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________。
3.已知下列各数:?13,?2,3.14,+3065,0,-239; 54则正数有_____________________;负数有____________________。
初中沪科数学教案模板
一、教学目标1. 知识与技能目标:- 学生能够理解并掌握本节课所学的数学概念和公式。
- 学生能够运用所学知识解决实际问题。
2. 过程与方法目标:- 通过小组合作、讨论等方式,培养学生的合作意识和团队精神。
- 通过实际问题解决,提高学生的分析问题和解决问题的能力。
3. 情感态度与价值观目标:- 激发学生对数学学习的兴趣,培养学生积极向上的学习态度。
- 培养学生严谨的科学态度和勇于探索的精神。
二、教学重难点1. 教学重点:- 本节课的核心知识点,如概念、公式、定理等。
2. 教学难点:- 学生难以理解或掌握的内容,如复杂计算、抽象概念等。
三、教学准备1. 教师准备:- 教学课件、教学视频、实物教具等。
- 教学设计、教学反思等教学材料。
2. 学生准备:- 完成课前预习,对即将学习的内容有所了解。
- 准备好笔记本、文具等学习用品。
四、教学过程1. 导入新课- 复习旧知识,引入新课题。
- 通过提问、讨论等方式,激发学生的学习兴趣。
2. 新课讲解- 介绍新知识,讲解概念、公式、定理等。
- 结合实例,讲解如何运用所学知识解决问题。
3. 小组合作- 将学生分成小组,进行小组讨论或实践活动。
- 引导学生运用所学知识,共同解决实际问题。
4. 课堂练习- 布置课堂练习题,让学生巩固所学知识。
- 教师巡视指导,解答学生疑问。
5. 总结与反思- 教师对本节课所学内容进行总结。
- 引导学生反思自己的学习过程,提出改进措施。
五、教学评价1. 课堂表现评价:- 观察学生在课堂上的参与度、合作意识等。
2. 作业评价:- 检查学生完成作业的情况,了解学生对知识的掌握程度。
3. 评价方式:- 采用学生自评、互评、教师评价等多种评价方式。
六、教学反思1. 教学内容是否符合学生的认知水平。
2. 教学方法是否有效,是否激发了学生的学习兴趣。
3. 学生在课堂上的参与度如何,学习效果如何。
4. 教师在教学过程中存在的问题及改进措施。
七、教学延伸1. 布置课后作业,巩固所学知识。
沪科版七年级数学教案案例
沪科版七年级数学教案案例教师在教学之后,要对自己的教学做出客观的分析和评判,总结出本节课的两点和成功的地方。
如教学活动设计公道,教法使用恰当,引人入胜等。
今天作者在这里给大家分享一些有关于最新沪科版七年级数学教案案例,期望可以帮助到大家。
最新沪科版七年级数学教案案例1小数乘分数教学内容:教材第8页例5,做一做,练习二1~4。
教学目标:1、在解决问题的进程中学习并掌控小数乘分数的运算方法。
2、经历小数乘分数的运算方法的探究进程。
3、体会算法多样化的数学思想,提高运算能力。
教学重点:掌控小数乘分数的运算方法。
教学难点:灵活挑选不同的运算方法,熟练地进行小数乘分数的运算。
教学进程:一、复习导入。
1、运算交换时让学生说一说运算方法和运算进程中的约分方法。
2、把下面的小数化成分数,分数化成小数。
1.2( ) 0.4( ) 3.5( ) 1.25( )让学生说一说怎样将一个小数化成分数?二、探索新知1、例题5:松鼠的尾巴长度约占身体长度的。
松鼠欢欢的身体长2.1分米,松鼠乐乐的身体长2.4分米。
(1)提取题中的已知条件和所求问题已知条件:①松鼠的尾巴长度约占身体长度的34,②松鼠欢欢的身体长2.1dm。
所求问题:松鼠欢欢的尾巴有多长?(2)肯定单位“1”,根据“松鼠的尾巴长度约占身体长度的34”可知,应把“松鼠欢欢的身体长”看作单位“1”,单位“1”已知,所求松鼠欢欢的尾巴有多长,就是求2.1dm的34是多少,用乘法运算,列式为2.1×34启示视察,这个算式和我们前面学习的分数乘法有什么不同?(3)探讨小数乘分数的运算方法。
提问:小数乘分数,可以怎样进行运算呢?想一想,试一试。
学生独立摸索,尝试运算。
组织交换,得出可以把2.1化成分数,也能够把化成小数。
汇报交换运算方法,教师结合交换情形进行板书。
小数化成分数: = = (分米)分数化成小数: =2.1×0.75=1.575(分米)3、解决问题二。
沪科版七年级数学全册教案模板
沪科版七年级数学全册教案沪科版七年级数学全册教案模板作为一名教学工作者,就难以避免地要准备教案,借助教案可以有效提升自己的教学能力。
写教案需要注意哪些格式呢?下面是小编精心整理的沪科版七年级数学全册教案模板,欢迎大家借鉴与参考,希望对大家有所帮助。
沪科版七年级数学全册教案模板1一、教学目标1、通过测量各种目标物影子长度的实践活动,使学生主动探索掌握影子长度与目标物实际高度之间的比例关系。
2、通过分组合作,培养学生动手动脑、解决实际问题的能力和团结协作精神。
3、通过活动,使学生感受到数学与现实生活的密切联系,进一步激发学习数学的兴趣,并在活动中培养创新精神。
二、教学过程(一)创设情境,激起兴趣1、播放动画片《聪明的阿凡提——卖树荫》片段(故事简介:一个炎热的下午,长工们正和阿凡提在巴依大老爷家门外的一棵大树下乘凉。
这时,巴依大老爷出现了,非常蛮横地要大家出100个钱买下树荫。
聪明的阿凡提一下就看穿了巴依贪婪的用心,决定将计就计,教训他一下。
于是大伙凑够了100个钱给了巴依,巴依心满意足地走了。
到了晚上,圆圆的月亮升上了天空,皎洁的月光照在大树上,大树长长的影子正好落在巴依大老爷的院子里和屋顶上。
长工们在阿凡提的带领下,涌进巴依的家里,有的还爬上了房顶。
巴依吓坏了,急忙赶大伙出去。
这时,阿凡提说:“树荫是我们花钱买下来的。
树荫移到哪里,我们就跟到哪里。
你要想让我们出去,就得给钱。
”巴依大老爷只好认输求饶,不仅退还了100个钱,还答应再也不阻挠大伙在树荫下乘凉了。
)师:故事看完了,你们觉得阿凡提怎么样?生:聪明机智,敢于同巴依大老爷作斗争,为穷人谋幸福师:可是,故事并没有结束。
巴依大老爷不甘心就此认输,一直在寻找着报复的机会。
过了几天,阿凡提有急事出了门,巴依便带着几个打手来到了树下,把乘凉的长工们撵到一边,然后命令打手们把大树砍倒。
附近只有这么一棵大树,枝叶茂密,正是长工们避暑的去处。
长工们纷纷恳求巴依大老爷不要砍树,这下正中了他的诡计。
沪科版初中数学教学设计
沪科版初中数学教学设计一、教学任务及对象1、教学任务本教学设计以沪科版初中数学课程为基准,围绕初中数学的核心知识点进行展开。
教学任务旨在帮助学生掌握数学基础知识,培养逻辑思维能力和解决问题的能力。
具体包括:实数的概念与运算、代数式的简化与求解、方程与不等式的应用、几何图形的性质与计算、统计与概率的基本知识等。
通过系统化的教学,使学生能够运用数学工具解决实际问题,并为进一步学习高中数学打下坚实基础。
2、教学对象本教学设计的对象为初中阶段的学生,他们已经具备了一定的数学基础,但仍需在知识体系、解题方法和学习习惯等方面进行培养和提高。
此外,考虑到学生的个体差异,教学过程中需关注学生的兴趣、能力和需求,因材施教,激发学生的学习兴趣,提高他们的自信心和自主学习能力。
在教学过程中,教师需关注学生的认知发展规律,结合实际情况,设计富有启发性和挑战性的教学活动,引导学生主动探究、积极思考,培养他们的数学素养和创新能力。
同时,注重培养学生的团队协作意识和沟通能力,使他们能够在合作中成长,为未来的学习和发展奠定基础。
二、教学目标1、知识与技能(1)掌握实数的概念、性质和运算规则,能够熟练进行实数的四则运算及混合运算;(2)理解和运用代数式的简化方法,能够求解代数式方程和不等式问题;(3)熟悉几何图形的性质和计算方法,能够解决与几何图形相关的问题;(4)掌握统计与概率的基本概念和计算方法,能够对实际问题进行数据分析;(5)提高数学阅读和写作能力,能够独立完成数学题目的阅读、分析和解答。
2、过程与方法(1)通过自主探究、合作交流等学习方式,培养学生主动发现问题、分析问题和解决问题的能力;(2)运用数学建模、数形结合等教学方法,提高学生将实际问题转化为数学问题的能力;(3)采用启发式教学,引导学生运用数学思维和方法,培养逻辑思维和创新能力;(4)借助信息技术手段,如数学软件、网络资源等,辅助学生进行数学学习和问题解决;(5)注重学习策略的指导,培养学生总结归纳、自我检测和调整学习方法的能力。
沪科版九年级数学上册教案5篇
沪科版九年级数学上册教案5篇沪科版九年级数学上册教案5篇教案是以系统方法为指导。
教案把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。
下面小编给大家带来关于沪科版九年级数学上册教案,方便大家学习沪科版九年级数学上册教案1教学目标1认识扇形统计图的特点和作用;2能联系百分数的意义,对扇形统计图提供的信息进行简单的分析。
3遇到不理解或不懂的地方,用下划线和?标记出来。
便于交流时提出。
4自己的建议体会方法可以在旁边作好批注。
教学重难点1认识扇形统计图的特点和作用;2能联系百分数的意义,对扇形统计图提供的信息进行简单的分析。
教学工具课件教学过程一快乐自学你喜欢运动吗?调查本班同学喜欢的运动项目。
根据下面的统计图:六(1)班最喜欢的运动项目统计图1说一说:从这幅统计图中你能获取哪些信息?2我知道这是一幅( )统计图,它的特点是( )。
3我最喜欢的运动项目是( ),它占全班人数的百分比是( )。
要想清楚地知道百分比这样的信息,我们可以选用( )统计图。
4一起来认识扇形统计图吧!自学教材第107页,注意拿笔勾画哦!.(1)计算出各运动项目占全班人数的百分比。
(2)从扇形统计图中,你又能获取哪些信息?(3)你还能提出什么问题?二合作探究。
讨论交流:扇形统计图是怎样来表示各个数据的?它有什么特点?1我发现扇形统计图中的( )代表单位“1”,表示( ),各个扇形面积表示( ),扇形的大小说明了( )。
2扇形统计图的特点是( )。
3生活中,你还从()见到过扇形统计图?三学习小结我们已曾经学过的统计图有条形统计图,它的特点是();还有()统计图,它的特点是不但可以表示各部分数量的多少,而且还可以清楚地看出数量的增减变化情况。
我们今天又学习了扇形统计图,它的特点是(),四智勇大闯关,我是小擂主1第一关:小练兵。
完成练习二十五的第12题。
2第二关完成练习二十五的第4题。
五学后反思1我的收获:2自我评价:我对我的课堂表现( ),因为()。
2024-2025学年沪科版初中数学九年级(下)教案第25章投影与视图25.2三视图(第2课时)
第25章投影与视图25.2 三视图第2课时棱柱的三视图教学反思教学目标1.了解棱柱的有关概念,进一步提高空间想象能力.2.画含有看不见棱的几何体的三视图.3.由三视图想象出立体图形后能进行简单的面积或体积的计算.教学重难点重点:棱柱的有关概念及其三视图.难点:由三视图想象出立体图形后能进行简单的面积或体积的计算.教学过程导入新课问题:小明学习了三视图的画法后,画出了一个几何体的三视图,如图所示.你能想象这个这个几何体的形状吗?师生活动:学生观察图片,思考,并进行口答.师生活动:学生思考,讨论,交流,教师引出本节课的课题.探究新知合作探究1.棱柱的定义相对的两个面是平行且全等的多边形的多面体叫做棱柱.侧棱与底面垂直的棱柱称为直棱柱.侧棱与底面不垂直的棱柱称为斜棱柱.底面是正多边形的直棱柱称为正棱柱.棱柱的底面是几边形,就称这个棱柱是几棱柱.2.棱柱的分类棱柱是按照什么特征进行分类的?例1 根据物体的三视图,描述物体的形状.【分析】由主视图可知,物体的正面是正五边形;由俯视图可知,由上向下看到物体有两个面的视图是矩形,它们的交线是一条棱(中间的实线表示),可见到,另有两条棱(虚线表示)被遮挡;由左视图可知,物体左侧有两个面是矩形,它们的交线是一条棱(中间的实线表示),可见到.综合各视图可知,物体的形状是正五棱柱.【归纳总结】虑整体图形.3.三视图的有关计算例2 按照三视图确定制作每个密封罐所需钢板的面积 (图中尺寸单位:师生活动:的侧面展开图,然后进行面积的计算.【解】由三视图可知,密封罐的形状是正六棱柱.密封罐的高为50 mm ,底面正六边形的直径为如图,是它的展开图.由展开图可知,制作一个密封罐所需钢板的面积为6×50×50+2×6×12×50×50sin 60°=6×502×1⎛ ⎝≈27 990(mm 2).教学反思【归纳总结】1.三种图形的转化:.↔↔三视图立体图展开图2. 由三视图求立体图形的面积的方法:(1) 先根据给出的三视图确定立体图形,并确定立体图形的长、宽、高. (2) 将立体图形展开成一个平面图形 (展开图),观察它的组成部分. (3) 最后根据已知数据,求出展开图的面积.【新知应用】例3 如图是一个几何体的三视图,根据所标数据,求该几何体的表面 积和体积.师生活动:学生根据求立体图形面积的方法,独立解决,并展示.教师根据学生展示情况进行讲解:由三视图可知该几何体是由圆柱、长方体组合而成.分别计算它们的表面积和体积,然后相加即可.【解】该图形上、下部分分别是圆柱、长方体,根据图中数据得: 表面积为20×32π+30×40×2+25×40×2+25×30×2=(5 900+640π)(cm 2),体积为25×30×40+102×32π=(30 000+3 200π)(cm 3).课堂练习1.( )第1题图A.四棱锥B.四棱柱C.三棱锥D.三棱柱2. 一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为( )教学反思第2 A. 6B. 8C. 12D. 24 3. 一个物体的俯视图是圆,则该物体有可能是_______.4. 在一仓库里堆放着若干相同的正方体货箱,仓库管理员将这堆货箱的三视图画了出来.箱.第4题图5. 如图是一个由若干个棱长为1 cm 的正方体构成的几何体的三视图. (1) 请写出构成这个几何体的正方体的个数为_______; (2) 计算这个几何体的表面积为_______.第5题图6. (1) 一个几何体的主视图和左视图如图所示,请补画这个几何体的俯视图.第6(2) 一个直棱柱的主视图和俯视图如图所示.描述这个直棱柱的形状,并补画它的左视图.第6题图(2)教学反思7.如图是一个几何体的三视图,试描述这个零件的形状,并求出此三视第7题图参考答案1.D2.B3.圆柱,球4.95.(1)5 (2)20 cm 26.解:(1第6题答图(1)(2第6题答图(2)7.解:由三视图知该几何体是一个组合体,上面是一个圆锥,下面是一个圆柱.该几何体的表面积为π×22+2π×2×2+π×2×4=20 π.课堂小结学生先自主回顾本节课所学主要内容,然后师生共同总结.布置作业教材第89页复习题B 组1~2题板书设计25.2 三视图 第2课时 棱柱的三视图教学反思2.三视图的有关计算教学反思(1)三种图形的转化:三视图立体图展开图.(2)由三视图求立体图形的面积的方法:①先根据给出的三视图确定立体图形,并确定立体图形的长、宽、高.②将立体图形展开成一个平面图形(展开图),观察它的组成部分.③最后根据已知数据,求出展开图的面积.。
沪科版七年级数学上册优秀教学案例:1.2数轴、相反数和绝对值
1.分组讨论:将学生分成小组,让他们在小组内讨论问题,共同探讨数的相反数和绝对值的概念及其关系。
2.小组汇报:每个小组选派代表,向全班汇报他们的讨论成果,培养学生的表达能力和团队合作意识。
3.评价与反馈:教师对小组合作的过程和成果进行评价,给予肯定和指导,促进学生的进一步发展。
(四)反思与评价
四、教学内容与过程
(一)导入新课
1.生活实例引入:通过一个简单的购物找零问题,让学生思考如何用数来表示商品的价格和找零金额,从而引出数轴的概念。
2.问题驱动:提出问题:“如何在坐标系中表示一个数?”引导学生思考数轴的作用和意义。
3.学生互动:邀请学生分享他们对数轴的已有知识,激发学生的学习兴趣和主动性。
1.作业布置:布置与本节课内容相关的作业,如数轴的绘制、相反数和绝对值的计算等,让学生在实践中巩固所学知识。
2.作业要求:明确作业的要求和提交时间,鼓励学生认真完成作业,培养他们的自主学习能力。
3.作业反馈:在作业提交后,及时给予学生反馈,指出他们的错误和不足,帮助他们纠正并提高。
作为一名特级教师,我深知教学内容与过程的重要性,它直接影响到学生的学习效果和能力的培养。因此,在教学过程中,我将注重启发式教学,引导学生主动探究,通过小组合作、讨论交流等方式,让学生充分参与课堂,提高他们的数学素养,使他们成为具有创新精神和实践能力的优秀人才。
4.反思与评价的环节:通过自我反思和同伴评价,让学生发现自己的优点和不足,明确今后的学习方向,促进他们的自我成长。
5.作业小结的设置:通过布置与课堂内容相关的作业,让学生在实践中巩固所学知识,培养他们的自主学习能力,同时及时给予反馈,提高他们的学习效果。
作为一名特级教师,我深知教学案例亮点的重要性,它们是教学过程中的关键环节,能够有效提升学生的学习兴趣和能力。在今后的教学中,我将继续探索和运用更多的教学策略和方法,为学生的全面发展贡献力量。
2024-2025学年沪科版初中数学九年级(下)教案第24章圆24.1旋转(第2课时)
第24章圆24.1 旋转第2课时中心对称教学目标1.认识中心对称和中心对称图形.2.通过观察、探索等过程,使学生更深刻地理解中心对称的性质,并体会图形之间的变换关系.3.运用讨论、交流等方式,发展学生的图形分析能力、化归意识和综合运用变换解决有关问题的能力.教学重难点重点:理解中心对称的概念,会识别中心对称图形.难点:会运用中心对称及中心对称图形的性质解决实际问题.教学过程复习巩固1.在这之前你学过哪些有关对称的知识?与大家交流一下.2.什么叫轴对称?3.旋转的性质:在一个图形和它经过旋转所得到的图形中,对应点到旋转中心的距离相等;两组对应点分别与旋转中心的连线所成的角相等,都等于旋转角;旋转中心是唯一不动的点.导入新课我们学习了旋转的定义与性质,知道把一个图形绕一个定点按某个方向转动一定的角度,这样的图形运动称为旋转,如果把一个图形绕某一个定点旋转180°,这样的图形运动是本节课学习的内容.探究新知1.中心对称师生活动:小组讨论(师生互学).问题情境:(学生交流)观察下面两副图,每副图中的图(1)经过怎样的运动变化就可以与图(2)重合?你还能举出一些类似的例子吗?与同伴交流.学生回答:两副图中,图(1)以一定点旋转180°就可以与图(2)重合.【归纳总结】中心对称:把一个图形绕着某一个定点旋转180°,旋转前后的两个图形关于这个点对称叫做中心对称,这个点就叫做它们的对称中心. 教学反思(1)(2)(1)(2)【提示】1.只有一个对称中心;2.旋转角必须是180度;3.是两个图形,且旋转后能够重合. 师生活动:轴对称与中心对称的对比.师生活动:小组讨论(师生互学).问题情境:下图中△A ′B′C′与△ABC 关于点O 成中心对称,你能从图中找到哪些等量关系?(1)OA =OA′,OB =OB′,OC =OC′;(2)△ABC ≌△A′B′C′. 【归纳总结】 中心对称的性质:成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平分. 师生活动:探究应用 (教师引导,学生互学)例1 如图,已知△ABC 和△A ′B ′C ′成中心对称,画出它们的对称中心.【探索分析】(引发学生思考)△ABC 和△A ′B ′C ′成中心对称,即从整体上看,此图是一幅中心对称图案,所以本题有两种解法.【解】(方法一)根据观察,B ,B ′及C ,C ′应是两组对应点,连接BB ′,CC ′,BB ′与CC ′相交于点O ,则O(方法二)B ,B ′是一对对应点,连接BB ′,找出BB ′的中点O ,则点O 即为对称中心.如图.【总结】(学生总结,老师点评)利用中心对称的特征,找准对应点.当两个图显,可采用测量的方法找对应点.3.中心对称作图例2 如图,点O 是线段AE 的中点,以点O 为对称中教学反思心,画出与五边形ABCDE 成中心对称的图形.【探索分析】要画出五边形ABCDE 关于点O 成中心对称的图形,只要画出A ,B ,C ,D ,E 五点关于点O 的对称点,再顺次连接各对应点即可.【解】如图,连接BO 并延长到B',使得OB'=OB ; 连接CO 并延长到点C',使得OC'=OC ; 连接DO 并延长到点D',使得OD'=OD ; 顺次连接AD',D'C',C'B',B'E .图形EB'C'D'A 就是以点O 为对称中心、与五边形ABCDE 成中心对称的图形.4.中心对称图形 问题情境:将下面的图形绕O 点旋转180°,你有什么发现?平行四边形 【解】旋转后与原图形完全重合.【思考】(学生交流)上面的课堂练习中,得到的图形,又具有什么特征? 【归纳总结】中心对称图形:把一个图形绕某一个定点旋转180°,如果旋转后的图形能和原来的图形重合,那么这个图形叫做中心对称图形,这个定点就是对称中心.【注意】中心对称图形是指一个图形.判断下列图形是不是中心对称图形?如果是,那么对称中心在哪?师生活动:拓展延伸(学生自学).例3 如图,长方形ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交AD 和BC 于点E ,F ,AB =2,BC =3,试教学反思求图中阴影部分的面积.【探索分析】由于矩形是中心对称图形,所以依题意可知△BOF 与△DOE 关于点O 成中心对称,则图中阴影部分的三个三角形可以转化到Rt △ADC 中,于是阴影部分的面积即可求得.【解】因为矩形ABCD 是中心对称图形, 所以△BOF 与△DOE 关于点O 成中心对称,所以图中阴影部分的三个三角形就可以转化到Rt △ADC 中. 又因为AB =2,BC =3,所以S Rt △ADC =12×3×2=3,即图中阴影部分的面积为3. 【总结】(学生总结,老师点评)利用中心对称的性质将阴影部分转化到一个直角三角形中来解决,使问题更简单.课堂练习1.观察下列四个平面图形,其中中心对称图形有( )① ② ③ ④第1题图A.2个B.1个C.4个D.3个2.如图所示,已知长方形的长为10 cm ,宽为4 cm ,则图中阴影部分的面积为( )A.20 cm 2B.15 cm 2C.10 cm 2D.25 cm 2第2题图 第3题图3 .在方格纸中选择标有序号的一个小正方形涂上颜色,与图中阴影部分构成中心对称图形,应选 .4.请你用无刻度的直尺画一条直线把下面的图形分成面积相等的两部分,你怎样画?第4题图 第5题图5.如图所示,线段AC ,BD 相交于点O ,且AB ∥CD ,AB =CD ,此图形是中心对称图形吗?试说明你的理由.6.世界上因为有了圆,万物才显得富有生机,以下来自现实生活的图形中都有圆,它们看上去是那么的美丽与和谐,这正是因为圆具有轴对称性和中心对称性.请问以下三个图形中是轴对称图形的有 ,是中心对称图形的有 .教学反思② ③第6题图参考答案1. D 解析:题图①②③是中心对称图形.2. A 解析:根据题意可知,长方形的面积=10×4=40(cm 2),再根据中心对称的性质知,图中阴影部分的面积即是长方形面积的一半,则图中阴影部分的面积=12×40=20(cm 2). 故选A.3. ④4. 解:(答案不唯一)如图所示.① ② ③第4题答图点拨:对于这种由两个中心对称图形组成的复合图形平分面积时,可以把这个图形进行割补,然后找到它们的对称中心,再过对称中心作直线.5. 解:此图形是中心对称图形.理由如下:由AB ∥CD ,AB =CD ,可证得△AOB ≌△COD ,所以此图形是中心对称图形.6. 解:轴对称图形为①②③,中心对称图形为①③.布置作业教材第6页练习板书设计24.1 旋 转 第2课时 中心对称1.中心对称2.中心对称的性质 3中心对称图形4.中心对称图形的性质5.中心对称与中心对称图形的联系与区别 教学反思。
2023-2024学年沪科版七年级数学上册教案:2.1代数式教案
2023-2024学年沪科版七年级数学上册教案:2.1代数式教案一. 教材分析沪科版七年级数学上册2.1代数式教案,本节课的主要内容是让学生了解代数式的概念,掌握代数式的表示方法和基本运算。
通过本节课的学习,让学生能够理解和运用代数式解决实际问题。
二. 学情分析学生在之前的学习中已经掌握了整数、分数和小数的基本运算,但对代数式的概念和表示方法可能较为陌生。
因此,在教学过程中,需要引导学生逐步理解代数式的含义,并通过实际例子让学生掌握代数式的表示方法和基本运算。
三. 教学目标1.了解代数式的概念,掌握代数式的表示方法。
2.能够进行代数式的基本运算。
3.能够运用代数式解决实际问题。
四. 教学重难点1.代数式的概念和表示方法。
2.代数式的基本运算。
五. 教学方法采用讲授法、示例法、练习法、讨论法等多种教学方法,引导学生逐步理解代数式的概念,掌握代数式的表示方法和基本运算。
六. 教学准备教师准备PPT、教案、练习题等相关教学材料。
七. 教学过程1.导入(5分钟)教师通过PPT展示一些实际问题,引导学生思考如何用数学语言来表示这些问题。
例如,小明买了2个苹果和3个香蕉,一共花了多少钱?用数学语言如何表示?2.呈现(10分钟)教师通过PPT介绍代数式的概念,讲解代数式的表示方法。
例如,a表示一个未知数,b表示另一个未知数,代数式可以表示为a+b。
3.操练(10分钟)教师给出一些代数式的例子,让学生进行基本运算。
例如,计算2a+3b的值。
4.巩固(10分钟)教师通过PPT展示一些练习题,让学生独立完成,巩固代数式的基本运算。
5.拓展(10分钟)教师引导学生思考如何运用代数式解决实际问题。
例如,已知一个正方形的边长为a,求它的面积。
6.小结(5分钟)教师对本节课的内容进行总结,强调代数式的概念和表示方法,以及基本运算。
7.家庭作业(5分钟)教师布置一些代数式的练习题,让学生巩固所学知识。
教师在黑板上板书本节课的主要内容,方便学生复习。
数学沪科版七年级教案4篇
数学沪科版七年级教案4篇数学沪科版七年级教案篇1【学习目标】1.让学生经历有理数大小比较法则的获得过程,帮助学生积累教学活动经验.2.掌握有理数大小的比较法则,会用法则进行有理数大小的比较.【学习重点】利用数轴比较两个有理数的大小,利用绝对值比较两个负数的大小.【学习难点】两个负数大小的比较.行为提示:创景设疑,帮助学生知道本节课学什么.行为提示:教会学生看书,自学时对于书中的问题一定要认真探究,书写答案.教会学生落实重点.情景导入生成问题旧知回顾:1.什么是绝对值?答:在数轴上,表示数a的点到原点的距离叫做数a的绝对值.2.正数、负数、0的绝对值分别是什么?答:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.自学互研生成能力知识模块一用数轴比较有理数的大小阅读教材P14~P15的内容,回答下列问题:问题:如何用数轴比较数的大小?正数与负数比较谁大?0与负数比较哪个大?答:数轴上不同的两个点表示的数,右边点表示的数总比左边点表示的数大.正数大于0,0大于负数,正数大于负数.方法指导:引导学生学会在数轴上比较数的大小,体会右边的数总比左边大.学习笔记:行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学——帮扶学——组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.典例:如图所示,根据有理数a、b、c在数轴上的位置,比较a、b、c的大小关系正确的是(A)A.abcB.acbC.bcaD.cba仿例1:数a在数轴上对应的点如图所示,则a、-a、-1的大小关系是(C)A.-aC.a-1-a D.a-a-1仿例2:把下列各数在数轴上表示出来,并用“”连接各数.-1.5,-0.5,-3.5,-5.解:将这些数在数轴上表示出来,如图:从数轴上可看出:-5-3.5-1.5-0.5.知识模块二用法则比较有理数的大小阅读教材P15的内容,回答下列问题:问题:两个负数怎样比较大小?答:可在数轴上比较,也可根据“两个负数比较大小,绝对值大的反而小”来比较.典例:比较大小:(1)-2.11;(2)-3.2-4.3;(3)-1213; (4)-140.仿例1:比较-12、-13、14的大小结果正确的是(A)A.-12-1314B.-1214-13C.14-13-12D.-13-1214仿例2:比较下列各对数的大小:(1)-(-3)与|-2|;解:∵-(-3)=3,|-2|=2,∴-(-3)|-2|;(2)-(-6)与|-6|.解:∵-(-6)=6,|-6|=6,∴-(-6)=|-6|.变例:整数x满足|x|3,则x=-2、-1、0、1、2,负整数x满足3|x|≤6,则x=-4、-5、-6.交流展示生成新知1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一用数轴比较有理数的大小知识模块二用法则比较有理数的大小检测反馈达成目标【当堂检测】见所赠光盘和学生用书【课后检测】见学生用书课后反思查漏补缺1.收获:_____________________________________________________________________ ___2.困惑:_____________________________________________________________________ ___数学沪科版七年级教案篇2教学目的:(一)知识点目标:1.了解正数和负数在实际生活中的应用。
沪科版初中数学示范课教案
沪科版初中数学示范课教案教学目标:1. 知识与技能:理解有理数的乘除法概念,掌握有理数乘除法的运算方法,能够熟练地进行有理数的乘除运算。
2. 过程与方法:通过实例分析,引导学生发现有理数乘除法的规律,培养学生的逻辑思维能力和运算能力。
3. 情感态度价值观:培养学生对数学的兴趣,感受数学在生活中的应用,培养学生的团队合作精神。
教学内容:1. 有理数的乘法:同号有理数的乘法、异号有理数的乘法、零的乘法。
2. 有理数的除法:同号有理数的除法、异号有理数的除法、零的除法。
教学重点:1. 有理数的乘除法运算方法。
2. 有理数乘除法在实际问题中的应用。
教学难点:1. 有理数乘除法的运算规律。
2. 有理数乘除法在实际问题中的应用。
教学过程:一、导入(5分钟)1. 复习相关知识:回顾有理数的概念,以及加减法的运算方法。
2. 提问:同学们,我们已经学习了有理数的加减法,那么有理数的乘除法又是如何运算的呢?今天我们来探讨这个问题。
二、新课讲解(20分钟)1. 有理数的乘法:(1)同号有理数的乘法:同号相乘,取相同符号,并把绝对值相乘。
(2)异号有理数的乘法:异号相乘,取相反符号,并把绝对值相乘。
(3)零的乘法:任何数与零相乘,都等于零。
2. 有理数的除法:(1)同号有理数的除法:同号相除,取相同符号,并把绝对值相除。
(2)异号有理数的除法:异号相除,取相反符号,并把绝对值相除。
(3)零的除法:零除以任何非零数,都等于零。
3. 实例分析:通过具体例子,让学生理解并掌握有理数乘除法的运算规律。
三、课堂练习(15分钟)1. 请同学们完成教材P37的练习题1-4。
2. 教师挑选几道题目进行讲解,解答学生的疑问。
四、总结与拓展(10分钟)1. 总结:本节课我们学习了有理数的乘除法,掌握了有理数乘除法的运算规律。
2. 拓展:引导学生思考有理数乘除法在实际问题中的应用,例如购物时计算折扣、计算面积等。
五、课后作业(课后自主完成)1. 请同学们完成教材P37的练习题5-8。
教案初中数学沪科版
教案:初中数学沪科版教学内容:本节课我们将学习初中数学沪科版七年级下册第二章《方程与不等式》中的第一节《一元一次方程》。
教学目标:1. 知识与技能:理解一元一次方程的概念,学会解一元一次方程。
2. 过程与方法:通过自主学习、合作交流的方式,培养学生的逻辑思维能力和解决问题的能力。
3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的耐心和自信心。
教学重点:1. 一元一次方程的概念。
2. 一元一次方程的解法。
教学难点:1. 一元一次方程的解法。
教学准备:1. 教师准备PPT,内容包括一元一次方程的定义、解法及例题。
2. 学生准备笔记本,用于记录学习内容。
教学过程:一、导入(5分钟)1. 引导学生回顾小学学过的等式和不等式,激发学生的学习兴趣。
2. 提问:你们知道方程吗?方程有什么特点?二、自主学习(10分钟)1. 让学生自主阅读教材,理解一元一次方程的定义。
2. 学生分享学习心得,教师点评并总结。
三、课堂讲解(15分钟)1. 教师讲解一元一次方程的定义,强调关键词“未知数”、“等式”。
2. 教师讲解一元一次方程的解法,包括“加减法”、“乘除法”和“移项”。
3. 教师举例演示解一元一次方程的过程,让学生跟随操作。
四、合作交流(10分钟)1. 学生分组,互相讨论如何解一元一次方程。
2. 每组选出一个代表,分享解题方法和解题过程。
3. 教师点评并总结,解答学生疑问。
五、练习巩固(10分钟)1. 教师出示练习题,让学生独立完成。
2. 教师挑选部分学生的作业进行点评,指出错误并指导改正。
六、课堂小结(5分钟)1. 教师引导学生回顾本节课所学内容,总结一元一次方程的定义和解法。
2. 学生分享学习收获,教师给予鼓励和评价。
七、课后作业(课后自主完成)1. 请学生总结一元一次方程的解法,并写在日记本上。
2. 完成课后练习题,巩固所学知识。
教学反思:本节课通过自主学习、合作交流、课堂讲解、练习巩固等环节,让学生掌握了一元一次方程的概念和解法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
沪科版初中数学教案【篇一:沪科版初一数学下册全册教案】按住ctrl键单击鼠标打开配套名师解题讲课视频播放沪科版七下数学学案课题:6.1 平方根、立方根(1)第一课时平方根主备人:王刚喜审核人:杨明使用时间:2011年2月日班姓名:学习目标:1.了解平方根的概念,会用根号表示数的平方根.2.了解开平方与平方互为逆运算,会用平方根的概念求某些非负数的平方根.学习重点:了解开方与乘方互为逆运算,能熟练地用平方根求某些非负数的平方根.学习难点:平方根的意义。
一、学前准备【旧知回顾】12.填空:(-3)2;(-)2; -32= 。
52a总结:任意有理数的平方是数.即≥0 。
.....(-a)2与-a2的意义不相同。
3.我们知道:4的平方是1616,所以16.257的平方是25; 49 19 ;【新知预习】1、平方根的定义:一般的,,也叫做。
记作:2、平方根的性质:(1)正数有个平方根,且它们互为。
(2)0的平方根是。
(3)负数。
3、想一想,填一填:(2)-25的平方根,理由是。
(3)因为2=_____,(-2)=______,所以2和-2都是_____的平方根. 22二、探究活动【初步感悟】②平方得81的数是,因此81的平方根是.4③ 9的平方根是;的正的平方根是;1.44的负的平9方根是.归纳定义:【讨论提高】① 3有个平方根,它们互为数,记作.② 0有个平方根,0的平方根是.③ -4、-8、-36有平方根吗?为什么?总结:一个数的平方根有几个?(平方根的性质)应用:若 a+1平方根是 0 ,则 a = ;若a+1 没有平方根,那么 a .①4是16的平方根;()② 16的平方根是4; ( )③(-3)2的平方根是3. () ④1的平方根是1; ( )⑤9的平方根是3;( ) ⑥只有一个平方根的数是0;( )【例题研讨】例1.求下列各数的平方根:(1)0.25;(2)162;(3)15;(4)(-2) (5)10-2. 81例2.求下列各式中的x的值⑴x2=196;⑵5x2-10=0;⑶36(x-3)-25=0. 2(1)-64 ;(2) (-4)2;(3)-5-2 ;(4).【课题自测】2.下列说法中正确的是…………………………………………………()3.能使x-5有平方根的是……………………………()a.x≥0b.x0c. x5d. x≥54.一个数如果有两个平方根,那么这两个平方根之和是…………()a.大于0b.等于0c.小于0d.大于或等于05.289的平方根是(-4)2的平方根是,三、自我测试1.如果一个数的平方根等于它本身,那么这个数是.2.-9是数a的一个平方根,那么数a的另一个平方根是,数a 是 .3.如果一个数的平方根是a+1与2a-13,那么这个数是5、求下列各数的平方根16(1)(2)-7 (3)15(4)(-5)2 816.求下列各式中的x.(1)x2=49;⑵(x-1)2=25;(3)4(2x+1)2-9=0四、应用与拓展方根2.若-b是a的平方根,则下列各式中正确的是………………()a. b=a2b. a=b2c.b=-a2d.a=-b25.若正数a的两个平方根的积为-9,则a= . 25课题:6.1平方根、立方根(2)第二课时算术平方根主备人:王刚喜审核人:杨明使用时间:2011年2月日班姓名:学习目标:1.了解算术平方根的概念,会用根号表示数的算术平方根;2. 会用平方运算求某些非负数的算术平方根;3.能运用算术平方根解决一些简单的实际问题.学习重点:会用平方运算求某些非负数的算术平方根,能运用算术平方根解决一些简单的实际问题.学习难点:区别平方根与算术平方根一、学前准备【旧知回顾】1.下列说法正确的是()c.任何一个非负数的平方根都不大于这个数 d.2是4的平方根 2.一个数的平方根是它本身,则这个数是()3.若a的一个平方根是b,则它的另一个平方根是4.已知x2=11,则x=;已知x2=(-)2,则x= 364【新知预习】1、算术平方根的定义:。
记作:2、平方根和算术平方根之间的关系3、想一想,填一填:1.填空:(1)0的平方根是_______,算术平方根是______.(2)25的平方根是_______,算术平方根是______.1(3)的平方根是_______,算术平方根是______. 64二、探究活动【初步感悟】1、判断下列说法是否正确:(1)6是36的平方根;()(2)36的平方根是6;()(3)36的算术平方根是6;()(4)() (-3)2的算术平方根是3;(5)-3的算术平方根是3;()提醒:注意平方根与算术平方根之间的区别和联系。
【讨论提高】(1)25的算术平方根是_______,平方根是_______;(-4)2的平方根是_________,算术平方根是 .【篇二:沪科版九年级数学上教案】学期:2009至2010学年度第一学期学科:初中数学年级:九年级(上册)授课班级:2013年9月2009至2010学年度第一学期教学计划2009至2010学年度第一学期教学进度表23.1 二次函数教学目标:(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯重点难点:能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
教学过程:一、试一试1.设矩形花圃的垂直于墙的一边ab的长为xm,先取x的一些值,算出矩形的另一边bc22.x 3.我们发现,当ab的长(x)确定后,矩形的面积(y)也随之确定, y是x的函数,试写出这个函数的关系式,ab?ab,bc2对于2,可让学生分组讨论、交流,然后各组派代表发表意见。
形成共识,x的值不可以任意取,有限定范围,其范围是0 <x <10。
对于3,教师可提出问题,(1)当ab=xm时,bc长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函数关系式.二、提出问题某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。
将这种商品的售价降低多少时,能使销售利润最大?在这个问题中,可提出如下问题供学生思考并回答: 1.商品的利润与售价、进价以及销售量之间有什么关系? [利润=(售价-进价)3销售量]2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元? [10-8=2(元),(10-8)3100=200(元)] 3.若每件商品降价x 元,则每件商品的利润是多少元?一天可销售约多少件商品?[(10-8-x);(100+100x)]4.x的值是否可以任意取?如果不能任意取,请求出它的范围, [x 的值不能任意取,其范围是0≤x≤2]5.若设该商品每天的利润为y元,求y与x的函数关系式。
[y=(10-8-x) (100+100x)(0≤x≤2)]将函数关系式y=x(20-2x)(0 <x <10=化为:y=-2x2+20x(0<x<10)(1)将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为:y=-100x2+100x+20d(0≤x≤2)(2)三、观察;概括1.教师引导学生观察函数关系式(1)和(2),提出以下问题让学生思考回答;(1)函数关系式(1)和(2)的自变量各有几个?(各有1个)(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?(分别是二次多项式)(3)函数关系式(1)和(2)有什么共同特点?(都是用自变量的二次多项式来表示的)(4)本章导图中的问题以及p1页的问题2有什么共同特点?让学生讨论、交流,发表意见,归结为:自变量x为何值时,函数y取得最大值。
22.二次函数定义:形如y=ax+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.四、课堂练习1.(口答)下列函数中,哪些是二次函数? 2-134-3x1 12题。
2,许多实际问题可以转化为二次函数来解决,请你联系生活实际,编一道二次函数应用题,并写出函数关系式。
六、作业布置教材p4 习题23.12,3,4,5,6 其他:七、个性化设计与课后反思:【篇三:沪教版八年级数学上册教案】第11章平面直角坐标系11.1 平面上点的坐标第1课时平面上点的坐标(一)教学目标【知识与技能】1.知道有序实数对的概念,认识平面直角坐标系的相关知识,如平面直角坐标系的构成:横轴、纵轴、原点等.2.理解坐标平面内的点与有序实数对的一一对应关系,能写出给定的平面直角坐标系中某一点的坐标.已知点的坐标,能在平面直角坐标系中描出点.3.能在方格纸中建立适当的平面直角坐标系来描述点的位置.【过程与方法】1.结合现实生活中表示物体位置的例子,理解有序实数对和平面直角坐标系的作用.2.学会用有序实数对和平面直角坐标系中的点来描述物体的位置.【情感、态度与价值观】通过引入有序实数对、平面直角坐标系让学生体会到现实生活中的问题的解决与数学的发展之间有联系,感受到数学的价值.重点难点【重点】认识平面直角坐标系,写出坐标平面内点的坐标,已知坐标能在坐标平面内描出点.【难点】理解坐标系中的坐标与坐标轴上的数字之间的关系.教学过程一、创设情境、导入新知师:如果让你描述自己在班级中的位置,你会怎么说?生甲:我在第3排第5个座位.生乙:我在第4行第7列.师:很好!我们买的电影票上写着几排几号,是对应某一个座位,也就是这个座位可以用排号和列号两个数字确定下来.二、合作探究,获取新知师:在以上几个问题中,我们根据一个物体在两个互相垂直的方向上的数量来表示这个物体的位置,这两个数量我们可以用一个实数对来表示,但是,如果(5,3)表示5排3号的话,那么(3,5)表示什么呢?生:3排5号.师:对,它们对应的不是同一个位置,所以要求表示物体位置的这个实数对是有序的.谁来说说我们应该怎样表示一个物体的位置呢?生:用一个有序的实数对来表示.师:对.我们学过实数与数轴上的点是一一对应的,有序实数对是不是也可以和一个点对应起来呢? 生:可以.教师在黑板上作图:我们可以在平面内画两条互相垂直、原点重合的数轴.水平的数轴叫做x轴或横轴,取向右为正方向;竖直的数轴叫做y轴或纵轴,取向上为正方向;两轴交点为原点.这样就构成了平面直角坐标系,这个平面叫做坐标平面.师:有了平面直角坐标系,平面内的点就可以用一个有序实数对来表示了.现在请大家自己动手画一个平面直角坐标系.学生操作,教师巡视.教师指正学生易犯的错误.教师边操作边讲解:如图,由点p分别向x轴和y轴作垂线,垂足m在x轴上的坐标是3,垂足n在y轴上的坐标是5,我们就说p点的横坐标是3,纵坐标是5,我们把横坐标写在前,纵坐标写在后,(3,5)就是点p的坐标.在x轴上的点,过这点向y轴作垂线,对应的坐标是0,所以它的纵坐标就是0;在y轴上的点,过这点向x轴作垂线,对应的坐标是0,所以它的横坐标就是0;原点的横坐标和纵坐标都是0,即原点的坐标是(0,0).教师多媒体出示:师:如图,请同学们写出a、b、c、d这四点的坐标.生甲:a点的坐标是(-5,4).生乙:b点的坐标是(-3,-2).生丙:c点的坐标是(4,0).生丁:d点的坐标是(0,-6).师:很好!我们已经知道了怎样写出点的坐标,如果已知一点的坐标为(3,-2),怎样在平面直角坐标系中找到这个点呢?教师边操作边讲解:在x轴上找出横坐标是3的点,过这一点向x轴作垂线,横坐标是3的点都在这条直线上;在y轴上找出纵坐标是-2的点,过这一点向y轴作垂线,纵坐标是-2的点都在这条直线上;这两条直线交于一点,这一点既满足横坐标为3,又满足纵坐标为-2,所以这就是坐标为(3,-2)的点.下面请同学们在方格纸中建立一个平面直角坐标系,并描出a(2,-4),b(0,5),c(-2,-3),d(-5,6)这几个点.学生动手作图,教师巡视指导.三、深入探究,层层推进师:两个坐标轴把坐标平面划分为四个区域,从x轴正半轴开始,按逆时针方向,把这四个区域分别叫做第一象限、第二象限、第三象限和第四象限.注意:坐标轴不属于任何一个象限.在同一象限内的点,它们的横坐标的符号一样吗?纵坐标的符号一样吗?生:都一样.师:对,由作垂线求坐标的过程,我们知道第一象限内的点的横坐标的符号为+,纵坐标的符号也为+.你能说出其他象限内点的坐标的符号吗?生:能.第二象限内的点的坐标的符号为(-,+),第三象限内的点的坐标的符号为(-,-),第四象限内的点的坐标的符号为(+,-).师:很好!我们知道了一点所在的象限,就能知道它的坐标的符号.同样的,我们由点的坐标也能知道它所在的象限.一点的坐标的符号为(-,+),你能判断这点是在哪个象限吗?生:能,在第二象限.四、练习新知师:现在我给出几个点,你们判断一下它们分别在哪个象限.教师写出四个点的坐标:a(-5,-4),b(3,-1),c(0,4),d(5,0).生甲:a点在第三象限.生乙:b点在第四象限.生丙:c点不属于任何一个象限,它在y轴上.生丁:d点不属于任何一个象限,它在x轴上.师:很好!现在请大家在方格纸上建立一个平面直角坐标系,在上面描出这些点.学生作图,教师巡视,并予以指导.五、课堂小结师:本节课你学到了哪些新的知识?生:认识了平面直角坐标系,会写出坐标平面内点的坐标,已知坐标能描点,知道了四个象限以及四个象限内点的符号特征.教师补充完善.教学反思物体位置的说法和表述物体的位置等问题,学生在实际生活中经常遇到,但可能没有想到这些问题与数学的联系.教师在这节课上引导学生去想到建立一个平面直角坐标系来表示物体的位置,让学生参与到探索获取新知的活动中,主动学习思考,感受数学的魅力.在教学中我让学生由生活中的实例与坐标的联系感受坐标的实用性,增强了学生学习数学的兴趣.第2课时平面上点的坐标(二)教学目标【知识与技能】进一步学习和应用平面直角坐标系,认识坐标系中的图形.【过程与方法】通过探索平面上的点连接成的图形,形成二维平面图形的概念,发展抽象思维能力.【情感、态度与价值观】培养学生的合作交流意识和探索精神,体验通过二维坐标来描述图形顶点,从而描述图形的方法. 重点难点【重点】理解平面上的点连接成的图形,计算围成的图形的面积.【难点】不规则图形面积的求法.教学过程一、创设情境,导入新知师:上节课我们学习了平面直角坐标系的概念,也学习了已知点的坐标,怎样在平面直角坐标系中把这个点表示出来.下面请大家在方格纸上建立一个平面直角坐标系,并在上面标出a(5,1),b(2,1),c(2,-3)这三个点.学生作图.教师边操作边讲解:二、合作探究,获取新知师:现在我们把这三个点用线段连接起来,看一下得到的是什么图形?生甲:三角形.生乙:直角三角形.师:你能计算出它的面积吗?生:能.教师挑一名学生:你是怎样算的呢?师:很好!1教师边操作边讲解:大家再描出四个点:a(-1,2),b(-2,-1),c(2,-1),d(3,2),并将它们依次连接起来看看形成的是什么图形? 学生完成操作后回答:平行四边形.师:你能计算它的面积吗?生:能.教师挑一名学生:你是怎么计算的呢?师:如果我们取x轴正半轴上的点为起始点,按逆时针顺序,你能说出这个图形是由哪些点顺次连接成的吗?生:能.(6,0),(4,2),(4,4),(2,4),(0,6),(-2,4),(-4,4)??师:很好!你怎样向另一个同学描述这样一个八角星,让他画出来呢?生:在坐标系里画出点(6,0),(4,2),(4,4),(2,4),(0,6),(-2,4),(-4,4),??,然后把它们顺次连接成一个封闭的图形.三、练习新知师:我们现在已经建立了点与图形之间的联系,能用点来表示图形了.我们来看这样一个例子,已知△abc三个顶点的坐标分别为a(-1,1),b(4,1),c(6,4),求△abc的面积.教师找一名学生板演,其余学生在下面做,然后集体订正得到:。