苏教版七年级上数学代数式单元测试卷(含答案)

合集下载

【精选】苏科版七年级数学上册 代数式单元测试卷(含答案解析)

【精选】苏科版七年级数学上册 代数式单元测试卷(含答案解析)

一、初一数学代数式解答题压轴题精选(难)1.已知A=2x2+3xy-2x-1,B=x2-xy-1(1)化简:4A-(2B+3A),将结果用含有x、y的式子表示(2)若式子4A-(2B+3A)的值与字母x的取值无关,求的值【答案】(1)解:∵A=2x2+3xy-2x-1,B=x2-xy-1,∴4A-(2B+3A)=A-2B=2x2+3xy-2x-1-2(x2-xy-1)=5xy-2x+1(2)解:根据(1)得4A-(2B+3A)= 5xy-2x+1;∵4A-(2B+3A)的值与字母x的取值无关,∴4A-(2B+3A)=5xy-2x+1=(5y-2)x+1,5y-2=0,则y= .则y3+ A- B= y3+ (A-2B)= y3+ ×1= + = = .【解析】【分析】(1)先将4A-(2B+3A)化简,再将A,B的值分别代入代数式,去括号合并同类项化为最简形式即可;(2)根据(1)化简的结果,由4A-(2B+3A)的值与字母x的取值无关,得出5y-2=0,求解得出y的值,再将代数式中含A,B的项,逆用乘法分配律最后整体代入即可算出代数式的值。

2.解答题:(1)已知a,b互为相反数,c,d互为倒数,x的绝对值为1,求a+b+x2﹣cdx.(2)10箱苹果,如果每箱以30千克为准,超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:+2,+1,0,﹣1,﹣1.5,﹣2,+1,﹣1,﹣1,﹣0.5.这10箱苹果的总质量是多少千克?(3)小亮用50元钱买了10枝钢笔,准备以一定的价格出售,如果每枝钢笔以6元的价格为标准,超过的记作正数,不足的记作负数,记录如下:0.5,0.7,﹣1,﹣1.5,0.8,1,﹣1.5,﹣2.1,9,0.9.①这10枝钢笔的最高的售价和最低的售价各是几元?②当小亮卖完钢笔后是盈还是亏?【答案】(1)解:∵a,b互为相反数,c,d互为倒数,∴a+b=0,cd=1,∴a+b+x2﹣cdx=x2﹣x∵|x|=1,∴x=±1∴当x=1时,x2﹣x=0;当x=﹣1时,x2﹣x=2(2)解:2+1+0﹣1﹣1.5﹣2+1﹣1﹣1﹣0.5=﹣330×10+(﹣3)=897答:这10箱苹果的总质量是897千克.(3)解:①最高售价为6+9=15元最低售价为6﹣2.1=3.9元②6×10+0.5+0.7﹣1﹣1.5+0.8+1﹣1.5﹣2.1+9+0.8﹣50=16.3元答:小亮卖完钢笔后盈利16.3元.【解析】【分析】(1)根据相反数及倒数的性质即可得出a+b=0,cd=1,再根据绝对值的意义,由|x|=1,得x=±1,然后分别将a+b=0,cd=1,x=1与x=-1代入代数式,即可算出答案;(2)首先列出加法算式,算出10箱苹果,超过的千克数或不足的千克数,然后用10乘以标准质量再加上超过或不足的千克数即可算出答案;(3)用6元的基准价加上超过基准价的最大值即可得出这10枝钢笔的最高的售价,用6元的基准价加上超过基准价的最小值即可得出这10枝钢笔的最低的售价,用这十支钢笔的总售价减去进价和为正数则小亮赚钱,和为负数则小亮亏钱。

苏科版七年级数学上册 代数式单元综合测试(Word版 含答案)

苏科版七年级数学上册 代数式单元综合测试(Word版 含答案)

一、初一数学代数式解答题压轴题精选(难)1.先阅读下面文字,然后按要求解题.例:1+2+3+…+100=?如果一个一个顺次相加显然太繁,我们仔细分析这100个连续自然数的规律和特点,可以发现运用加法的运算律,是可以大大简化计算,提高计算速度的.因为1+100=2+99=3+98=…=50+51=101,所以将所给算式中各加数经过交换、结合以后,可以很快求出结果.解:1+2+3+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)= =5050.(1)补全例题解题过程;(2)计算a+(a+b)+(a+2b)+(a+3b)+…+(a+99b).【答案】(1)解:101×50(2)解:原式=50×(2a+99b)=100a+4950b.【解析】【分析】(1)根据算式可得共有50个101,据此解答即可.(2)仿照(1)利用加法的交换律和结合律进行计算即可.2.根据数轴和绝对值的知识回答下列问题(1)一般地,数轴上表示数m和数n两点之间的距离我们可用│m-n│表示。

例如,数轴上4和1两点之间的距离是________.数轴上-3和2两点之间的距离是________.(2)数轴上表示数a的点位于-4与2之间,则│a+4│+│a-2│的值为________.(3)当a为何值时,│a+5│+│a-1│+│a-4│有最小值?最小值为多少?【答案】(1)3;5(2)6(3)解:①a≤1时,原式=1-a+2-a+3-a+4-a=10-4a,则a=1时有最小值6;②1≤a≤2时,原式=a-1+2-a+3-a+4-a=8-2a,则a=2时有最小值4③2≤a≤3时,原式=a-1+a-2+3-a+4-a=4④3≤a≤4时,原式=a-1+a-2+a-3+4-a=2a-2;则a=3时有最小值4⑤a≥4时,原式=a-1+a-2+a-3+a-4=4a-10;则a=4时有最小值6综上所述,当a=2或3时,原式有最小值4.故答案为:(1)3;5;(2)6;(3)当a=2或3时,原式有最小值4.【解析】【解答】(1)解:数轴上表示1和4的两点之间的距离是3;表示-3和2的两点之间的距离是5( 2 )解:根据题意得:-4<a<2,即a+4>0,a-2<0则原式=a+4+2-a=6.【分析】(1)根据数轴上任意两点间的距离等于这两点所表示的数的差的绝对值即可直接算出答案;(2)根据数轴上所表示的数的特点得出-4<a<2,进而根据有理数的加减法法则得出a+4>0,a-2<0,然后根据绝对值的意义去绝对值符号,再合并同类项即可;(3)分①a≤1时,②1≤a≤2时,③2≤a≤3时,④3≤a≤4时,⑤a≥4时,五种情况,根据绝对值的意义分别取绝对值符号,再合并同类项得出答案,再比大小即可.3.电话费与通话时间的关系如下表:;(2)计算当a=100时,b的值.【答案】(1)解:依题可得:通话1分钟电话费为:0.2×1+0.8,通话2分钟电话费为:0.2×2+0.8,通话3分钟电话费为:0.2×3+0.8,通话4分钟电话费为:0.2×4+0.8,……∴通话a分钟电话费为:0.2×a+0.8,即b=0.8+0.2a.(2)解:∵a=100,∴b=0.8+0.2×100=20.8.【解析】【分析】(1)观察表格可知通话a分钟电话费为:0.2×a+0.8,即b=0.8+0.2a.(2)将a=100代入(1)中代数式,计算即可得出答案.4.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:(1)数轴上表示2和5的两点之间的距离是________,数轴上表示2和﹣3的两点之间的距离是________(2)数轴上表示x和﹣2的两点之间的距离表示为________.(3)若x表示一个有理数,且﹣4≤x≤﹣2,则|x﹣2|+|x+4|=________(4)若|x+3|+|x﹣5|=8,利用数轴求出x的整数值.【答案】(1)3;5(2)|x+2|(3)6(4)解:∵|x+3|+|x﹣5|=8,∴﹣3≤x≤5,∵x为整数,∴x=﹣3,﹣2,﹣1,0,1,2,3,4,5【解析】【解答】解:(1)数轴上表示2和5两点之间的距离是5﹣2=3,数轴上表示2和﹣3的两点之间的距离是2﹣(﹣3)=5;(2)数轴上表示x和﹣2的两点之间的距离表示为|x+2|;(3)若x表示一个有理数,且﹣4≤x≤﹣2,则|x﹣2|+|x+4|=6;故答案为:3,5;|x+2|;6.【分析】(1)根据数轴上两点间的距离是大数减小数,可得答案;(2)根据数轴上两点间的距离是大数减小数,可得答案;(3)根据线段上的点到线段的两端点的距离的和等于线段的距离,可得答案;(4)根据线段上的点到线段的两端点的距离的和等于线段的距离,可得答案.5.如图是用长度相等的小棒按一定规律摆成的一组图案.(1)第1个图案中有6根小棒;第2个图案中有________根小棒;第3个图案中有________根小棒;(2)第n个图案中有多少根小棒?(3)第25个图案中有多少根小棒?(4)是否存在某个符合上述规律的图案,由2032根小棒摆成?如果有,指出是滴几个图案;如果没有,请说明理由.【答案】(1)11;16(2)解:由图可知:第1个图案中有5+1=6根小棒,第2个图案中有2×5+2-1=11根小棒,第3个图案中有3×5+3-2=16根小棒,…,因此第n个图案中有5n+n-(n-1)=5n+1根(3)解:令n=25,得出,故第25个图案中有126根小棒(4)解:令,得出n=406.2,不是整数,故不存在符合上述规律的图案,由2032根小棒摆成【解析】【解答】(1)第2个图案中有11根小棒;第3个图案中有16根小棒;【分析】(1)(2)由图可知:第1个图案中有5+1=6根小棒,第2个图案中有2×5+2-1=11根小棒,第3个图案中有3×5+3-2=16根小棒,…由此得出第n个图案中有5n+n-(n-1)=5n+1根小棒;(3)把数据代入(2)中的规律求得答案即可;(4)利用(2)中的规律建立方程求得答案即可.6.把四张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个长为,宽为的长方形内,该长方形内部未被卡片覆盖的部分用阴影表示.(1)能否用只含的式子表示出图②中两块阴影部分的周长和?________(填“能”或“不能”);(2)若能,请你用只含的式子表示出中两块阴影部分的周长和;若不能,请说明理由. 【答案】(1)能(2)解:能,理由如下:设小长方形的长为a,宽为b,上面的长方形周长为:下面的长方形周长为:两式联立,总周长为:(由图可得)阴影部分总周长为【解析】【解答】解:(1)能;故答案为能;【分析】设图①小长方形的长为a,宽为b,由图②表示出上面与下面两个长方形的周长,求出之和,根据题意得到,代入计算即可得到结果.7.观察下列等式:31-30=2×30,32-31=2×31,33-32=2×32,(1)试写出第个等式,并说明第个等式成立的理由;(2)计算30+31+32+…+32018+32019的值.【答案】(1)根据题意得第n个等式为3n-3n-1=2×3n-1,证明如下:3n-3n-1=3×3n-1-3n-1=2×3n-1,所以成立;(2)31-30=2×30,32-31=2×31,33-32=2×32,…32019-32018=2×3201832020-32019=2×32019将这些等式相加得(31-30)+(32-31)+(33-32)+…+(32019-32018)+(32020-32019)=2×(30+31+32+…+32018+32019)故32020-30=2×(30+31+32+…+32018+32019)∴30+31+32+…+32018+32019=【解析】【分析】(1)通过观察即可发现:等式的左边是一个减法算式,被减数的底数是3,指数与等式的序号一致,减数的底数也是3,指数比等式的序号小1;等式的右边是一个乘法算式,一个因数是2 ,另一个因数与左边的减数一致,利用发现的规律即可得出通用公式:第n个等式为3n-3n-1=2×3n-1;(2)利用(1)发现的规律得出 31-30=2×30,32-31=2×31,33-32=2×32,…32019-32018=2×32018,32020-32019=2×32019根据等式的性质,将这些等式直接相加,得出32020-30=2×(30+31+32+…+32018+32019) ,从而根据等式的性质即可得出答案。

苏科版数学七年级上册 代数式同步单元检测(Word版 含答案)

苏科版数学七年级上册 代数式同步单元检测(Word版 含答案)

一、初一数学代数式解答题压轴题精选(难)1.双11购物节期间,某运动户外专营店推出满500送50元券,满800送100元券活动,先领券,再购物。

某校准备到此专营店购买羽毛球拍和羽毛球若干.已知羽毛球拍60元1个,羽毛球3元一个,买一个羽毛球拍送3个羽毛球.(1)如果要购买羽毛球拍8个,羽毛球50个,要付多少钱?(2)如果购买羽毛球拍x个(不超过16个),羽毛球50个,要付多少钱?用含x的代数式表示.(3)该校买了羽毛球50个若干个羽毛球拍,共花费712元,请问他们买了几个羽毛球拍.【答案】(1)解:60×8+(50-8×3)×3-50=508(元)(2)解:x≤6时,60x+(50-3x)×3=150+51x; 7≤x≤12时,60x+(50-3x)×3-50=100+51x; 13≤x≤16时,60x+(50-3x)×3-100=50+51x(3)解:设共买了x个羽毛球拍,根据题意得,60x+(50-3x)×3-50=712,解得,x=12. 答:共买了12个羽毛球拍.【解析】【分析】(1)根据题意直接列式计算。

(2)根据满500送50元券,满800送100元券活动,分三种情况讨论:x≤6时;7≤x≤12时;13≤x≤16时,分别用含x的代数式表示出要付的费用。

(3)根据一共花费712元,列方程求解即可。

2.某校要将一块长为a米,宽为b米的长方形空地设计成花园,现有如下两种方案供选择. 方案一:如图1,在空地上横、竖各铺一条宽为4米的石子路,其余空地种植花草.方案二:如图2,在长方形空地中留一个四分之一圆和一个半圆区域种植花草,其余空地铺筑成石子路.(1)分别表示这两种方案中石子路(图中阴影部分)的面积(若结果中含有π,则保留)(2)若a=30,b=20,该校希望多种植物美化校园,请通过计算选择其中一种方案(π取3.14).【答案】(1)解:方案一:∵石子路宽为4,∴S石子路面积=4a+4b-16,方案二:设根据图象可知S石子路面积=S长方形-S四分之一圆-S半圆=ab- πb2- π( b)2=ab- πb2(2)解:已知a=30,b=20,故方案一:S石子路面积=184m2, S植物=600-184=416m2;方案二:S石子路面积=129m2,则S植物=600-129=471m2.故答案为:择方案二,植物面积最大为471m2。

苏教版七年级上数学代数式单元测试卷(含答案)

苏教版七年级上数学代数式单元测试卷(含答案)

苏教版七年级上数学代数式单元测试卷(含答案)七年级上数学代数式单元测试班级:______________ 姓名:______________一、选择题1.计算-2x2+3x2的结果是()A。

x2B。

5x2C。

-5x2D。

-x22.足球每个m元,篮球每个n元,XXX为学校买了4个足球,7个篮球共需要()A。

(7m+4n)元B。

28mn元C。

(4m+7n)元D。

11mn元3.已知代数式-3xy与yx是同类项,那么m,n的值分别是()A。

n=-3,m=-1B。

n=-3,m=-3C。

n=3,m=5D。

n=2,m=34.下列各组代数式中,是同类项的是()A。

11xy,2B。

-5xy,yxC。

5ax,yxD。

8,x5.下列式子合并同类项正确的是()A。

3x+5y=8xyB。

3y-y=3C。

15ab-15ba=D。

7x-6x=x6.同时含有字母a、b、c且系数为1的五次单项式有() A。

1个B。

3个C。

6个D。

9个7.右图中表示阴影部分面积的代数式是()A。

ab+bcB。

c(b-d)+d(a-c)C。

ad+c(b-d)D。

ab-cd8.圆柱底面半径为3cm,高为2cm,则它的体积为() A。

97πcm3B。

18πcm3C。

3πcm3D。

18πcm39.下面选项中符合代数式书写要求的是()A。

5xy与2½B。

ay×3a2bC。

4a÷bD。

a×b+c10.已知a,b两数在数轴上的位置如图所示,则化简代数式a+b-a-1+b+2的结果是()A。

1B。

2b+3C。

2a-3D。

-111.在排成每行七天的月历表中取下一个3×3方块(图所示)。

若所有日期数之和为189,则n的值为()A。

21B。

11C。

15D。

912.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A。

最新苏科版数学七年级上册 代数式同步单元检测(Word版 含答案)

最新苏科版数学七年级上册 代数式同步单元检测(Word版 含答案)

一、初一数学代数式解答题压轴题精选(难)1.已知整式P=x2+x﹣1,Q=x2﹣x+1,R=﹣x2+x+1,若一个次数不高于二次的整式可以表示为aP+bQ+cR(其中a,b,c为常数).则可以进行如下分类①若a≠0,b=c=0,则称该整式为P类整式;②若a≠0,b≠0,c=0,则称该整式为PQ类整式;③若a≠0,b≠0,c≠0.则称该整式为PQR类整式;(1)模仿上面的分类方式,请给出R类整式和QR类整式的定义,若,则称该整式为“R类整式”,若,则称该整式为“QR类整式”;(2)说明整式x2﹣5x+5为“PQ类整式;(3)x2+x+1是哪一类整式?说明理由.【答案】(1)解:若a=b=0,c≠0,则称该整式为“R类整式”.若a=0,b≠0,c≠0,则称该整式为“QR类整式”.故答案是:a=b=0,c≠0;a=0,b≠0,c≠0(2)解:因为﹣2P+3Q=﹣2(x2+x﹣1)+3(x2﹣x+1)=﹣2x2﹣2x+2+3x2﹣3x+3=x2﹣5x+5.即x2﹣5x+5=﹣2P+3Q,所以x2﹣5x+5是“PQ类整式”(3)解:∵x2+x+1=(x2+x﹣1)+(x2﹣x+1)+(﹣x2+x+1),∴该整式为PQR类整式.【解析】【分析】(1)根据题干条件,可得若a=b=0,c≠0,则称该整式为“R类整式”;若a=0,b≠0,c≠0,则称该整式为“QR类整式”.(2)根据"PQ类整式"定义,由x2﹣5x+5=﹣2(x2+x﹣1)+3(x2﹣x+1) = ﹣2P+3Q,据此求出结论.(3)由x2+x+1=(x2+x﹣1)+(x2﹣x+1)+(﹣x2+x+1)= PQR,据此判断即可.2.从2开始,连续的偶数相加时,它们的和的情况如下表:S和n之间有什么关系?用公式表示出来,并计算以下两题:(1)2a+4a+6a+…+100a;(2)126a+128a+130a+…+300a.【答案】(1)解:依题可得:S=n(n+1).2a+4a+6a+…+100a,=a×(2+4+6+…+100),=a×50×51,=2550a.(2)解:∵2a+4a+6a+…+126a+128a+130a+…+300a,=a×(2+4+6+…+300),=a×150×151,=22650a.又∵2a+4a+6a+…+124a,=a×(2+4+6+…+124),=a×62×63,=3906a,∴126a+128a+130a+…+300a,=22650a-3906a,=18744a.【解析】【分析】(1)根据表中规律可得出当n个连续偶数相加时,它们的和S=n(n+1);由此计算即可得出答案.(2)根据(1)中公式分别计算出2a+4a+……+300a和2a+4a+……+124a的值,再用前面代数式的值减去后面代数式的值即可得出答案.,3.如图,在数轴上有两点A、B,点A表示的数是8,点B在点A的左侧,且AB=14,动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数:________ ;点P表示的数用含t的代数式表示为________ .(2)动点Q从点B出发沿数轴向左匀速运动,速度是点P速度的一半,动点P、Q同时出发,问点P运动多少秒后与点Q的距离为2个单位?(3)若点M为线段AP的中点,点N为线段BP的中点,在点P的运动过程中,线段MN 的长度是否会发生变化?若变化,请说明理由;若不变,求出线段MN的长.【答案】(1)解:8-14=-6;因此B点为-6;故答案为:-6;解:因为时间为t,则点P所移动距离为4t,因此点P为8-4t ;故答案为:8-4t(2)解:由题意得,Q 的速度为4÷2=2(秒)则点Q为-6-2t,又点P为8-4t;所以①P在Q的右侧时8-4t-(-2t-6)=2解得x=6②P在Q左侧时-2t-6-(8-4t)=2解得x=8答:动点P、Q同时出发,问点P运动6或8秒后与点Q的距离为2个单位.故答案为:6或8秒(3)解:①当P在A,B之间时,线段AP=8-(8-4t)=4t;线段BP=8-4t-(-6)=14-4t因点M为线段AP的中点,点N为线段BP的中点所以MP=AP=2t;NP=BP=7-2tMN=MP+NP=2t+7-2t=7②当P在P的左边时线段AP=8-(8-4t)=4t;线段BP=(-6)-(8-4t)=4t-14因点M为线段AP的中点,点N为线段BP的中点所以MP=AP=2t;NP=BP=2t-7MN=MP-NP=2t-(2t-7)=7因此在点P的运动过程中,线段MN的长度不变, MN=7【解析】【分析】(1)①由数轴上两点之间距离的规律易得B的值为8-14=16;②因为时间为t,则点P所移动距离为4t,因此易得P为8-4t(2)由题易得:Q 的速度为4÷2=2(秒)则点Q为-6-2t,又点P为8-4t;分别讨论P在Q 左侧或右侧的情况,由此列方程,易得结果为6或8秒;(3)结合(1)(2)易得当P在AB间以及P在B左边时的两种情况;当P在A,B之间时,线段AP=8-(8-4t)=4t;线段BP=8-4t-(-6)=14-4t;当P在P的左边时线段AP=8-(8-4t)=4t;线段BP=(-6)-(8-4t)=4t-14;利用中点性质,易得结果不变,为7.4.某服装厂生产一种夹克和T恤,夹克每件定价100元,T恤每件定价60元.厂方在开展促销活动期间,向客户提供两种优惠方案:① 买一件夹克送一件T恤;② 夹克和T恤都按定价的80%付款.现某客户要到该服装厂购买夹克30件,T恤x件(x >30).(1)若该客户按方案①购买,夹克需付款________元,T恤需付款________元(用含x的式子表示);若该客户按方案②购买,夹克需付款________元,T恤需付款________元(用含x的式子表示);(2)若x=40,通过计算说明按方案①、方案②哪种方案购买较为合算?(3)若两种优惠方案可同时使用,当x=40时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并说明理由.【答案】(1)3000;;2400;(2)解:当x=40时,方案①3000+60(40-30)=3600元方案②2400+48×40=4320元因为3600<4320,所以按方案①合算(3)解:先买30套夹克,此时T恤共有30件,剩下的10件的T恤用方案②购买,此时10件的T恤费用为:10×60×0.8=480,∴此时共花费了:3000+480=3480<3600 所以按方案①买30套夹克和T恤,再按方案②买10件夹克和T恤更省钱【解析】【解答】解:(1)方案①:夹克的费用:30×100=3000元,T恤的费用为:60(x-30)元;方案②:夹克的费用:30×100×0.8=2400元,T恤的费用为:60×0.8x=48x元;故答案为:(1)3000,60(x-30),2400,48x;【分析】(1)夹克每件定价100元,T恤每件定价60元根据向客户提供两种优惠方案,分别列式计算可求解。

苏教版七年级数学上册 第三单元代数式测试卷(含答案)

苏教版七年级数学上册 第三单元代数式测试卷(含答案)

苏教版七年级数学上册 第三单元代数式测试卷一、选择题(本大题共12小题,每小题3分,共36分) 1.下列说法正确的是:( ). A .单项式m 的次数是0B .单项式5×105t 的系数是5C .单项式223x π-的系数是23-D .-2 010是单项式2.在下列各式:12ab ,2a b+,ab 2+b +1,﹣9,x 3+x 2﹣3中,多项式有( )A .2个B .3个C .4个D .5个3.下列合并同类项正确的是( )①325a b ab += ;②33a b ab += ;③33a a -= ;④235325a a a +=;⑤330ab ab -=; ⑥23232332a b a b a b -= ;⑦235--=-A .①②③④B .④⑤⑥C .⑥⑦D .⑤⑥⑦4.下列各式中去括号正确的是( )A .a 2﹣(2a ﹣b 2﹣b )=a 2﹣2a ﹣b 2+bB .﹣(2x +y )﹣(﹣x 2+y 2)=﹣2x +y +x 2﹣y 2C .2x 2﹣3(x ﹣5)=2x 2﹣3x +5D .﹣a 3﹣[﹣4a 2+(1﹣3a )]=﹣a 3+4a 2﹣1+3a 5.已知mx 2y n ﹣1+4x 2y 9=0,(其中x ≠0,y ≠0)则m +n =( ) A .﹣6B .6C .5D .146.已知,2a b +=,3b c -=-,则代数式()ac b c a b +--的值是( ) A .5B .-5C .6D .-67.萱萱的妈妈下岗了,在国家政策的扶持下开了一家商店,全家每个人都要出一份力,妈妈告诉萱萱说,她第一次进货时以每件a 元的价格购进了35件牛奶;每件b 元的价格购进了50件洗发水,萱萱建议将这两种商品都以2a b+元的价格出售,则按萱萱的建议商品卖出后,商店( )A .赚钱B .赔钱C .不嫌不赔D .无法确定赚与赔 8.如果一个多项式的各项的次数都相同,那么这个多项式叫做齐次多项式.如:x 3+3xy 2+4xz 2+2y 3 是 3 次齐次多项式,若 a x+3b 2﹣6ab 3c 2 是齐次多项式,则 x 的值为( ) A .-1B .0C .1D .29.若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A .17B .67C .-67D .010.某天数学课上老师讲了整式的加减运算,小颖回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现一道题目:()()2222223355aab b a ab b a +---++=26b -,空格的地方被墨水弄脏了,请问空格中的一项是( ) A .+2abB .+3abC .+4abD .-ab11.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为mcm ,宽为ncm )的盒子底部(如图②)盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A .4m cmB .4n cmC .2(m +n) cmD .4(m -n) cm12.定义一种对正整数n 的“F ”运算:①当n 为奇数时()31F n n =+;②当n 为偶数时,()2knF n =(其中k 是使()F n 为奇数的正整数)……,两种运算交替重复进行,例如,取24n =时,其计算过程如上图所示,若13n =,则第2020次“F ”运算的结果是( )A .1B .4C .2020D .20202二、填空题(本大题共6小题,每小题3分,共18分.) 13.111113345222n n n n n n xx x x x x +-+--+++-=________.14.三个连续整数中,n 是最小的一个,这三个数的和为________.15.若代数式mx 2+y 2﹣5x 2+5的值与字母x 的取值无关,则m 的值为_____. 16.若关于a ,b 单项式()233n m ab --的系数是4-,次数是5,则m =_____,n =_____.17.已知p=(m+2)2m x ﹣(n ﹣3)xy |n|﹣1﹣y ,若P 是关于x 的四次三项式,又是关于y 的二次三项式,则32m n+的值为_____. 18.观察下列单项式:0,23x -,38x ,415x -,524x ⋯按规律写出第n 个单项式是________. 三、解答题(本大题共6小题,共46分.) 19.先化简,再求值:(1)22225(3)4(3)a b ab ab a b ---+ , 其中2a =-,3b =-.(2) 3()2()2x y x y --++,其中1x =-,3.4y =(3)2211312()()2323x x y x y -+---+,其中x =2,y =23-20.在边长为a 的正方形的一角减去一个边长为的小正方形(a >b ),如图①① ②(1)由图①得阴影部分的面积为 .(2)沿图①中的虚线剪开拼成图②,则图②中阴影部分的面积为 . (3)由(1)(2)的结果得出结论: = .(4)利用(3)中得出的结论计算:20172-2016221.有这样一道题:“先化简,再求值:3323323()7633631)02(a a b a b a a b a b a -+---+-+,其中133a =-,0.39b =-13小宝说:本题中“133a =-,0.39b =-”是多余的条件;小玉马上反对说:这个多项式中每一项都含有a 和b,不给出a,b 的值怎么能求出多项式的值呢?你同意哪名同学的观点?请说明理由.22.按如下规律摆放五角星:(1)填写下表:(2)若按上面的规律继续摆放,是否存在某个图案,其中恰好含有2017个五角星?23.已知222322A x xy y x y =-+++,224623B x xy y x y =-+--()1当2x=,15y=-时,求2B A-的值.()2若22(3)0x a y-+-=,且2B A a-=,求a的值.24.某商场销售一种西装和领带,西装每套定价800元,领带每条定价200元.国庆节期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该商场购买西装2套,领带x条(x>2).(1)若该客户按方式一购买,需付款元(用含x的式子表示);若该客户按方式二购买,需付款元.(用含x的式子表示)(2)若x=5,通过计算说明此时按哪种方案购买较为合算?(3)当x=5时,你能给出一种更为省钱的购买方案吗?请直接写出你的购买方案,并算出所需费用.25.今年,号称“千湖之省”的湖北正遭受大旱,为提高学生环保意识,节约用水,某校数学教师编制了一道应用题:为保护水资源,某市制定一套节水的管理措施,其中对居民生活用水收费作如下规定:()1若某用户六月份用水量为18吨,求其应缴纳的水费;()2记该用户六月份用水量为x吨,试用含x的代数式表示其所需缴纳水费y(单位:元).26.用如图所示的甲,乙,丙三块木板做一个长,宽,高分别为3a(cm),2a(cm)和20cm的长方体木箱,其中甲块木板锯成两块刚好能做箱底和一个长侧面,乙块木板锯成两块刚好能做一个长侧面和一个短侧面,丙块木板锯成两块刚好能做箱盖和剩下的一个短侧面(厚度忽略不计).(1)用含a的代数式分别表示甲,乙,丙三块木板的面积(代数式要求化简);(2)如果购买一块长12a(cm),宽120cm的长方形木板做这个箱子,那么只需用去这块木板的几分之几(用含a的代数式表示)?如果a=20呢?答案 一、选择题1.D 2.B 3.D 4.D 5.B 6.C 7.D 8.C 9.B 10.A 11.B 12.A 二、填空题13.1175322n nn x x x +-+-14.33n + 15.5.16.1- 417.56-18.()()1(1)11n n n n x ---+三、解答题19.(1)5(3a 2b-ab 2)-4(-ab 2+3a 2b)=15 a 2b-5 ab 2+4ab 2-12 a 2b=3 a 2b- ab 2 代入数值原式得-18;(2)3(x −y)−2(x+y)+2=3x −3y −2x −2y+2=x −5y+2,∵x=−1,y=34.,∴x −5y+2=−1−5×34.+2=−114.(3)22113122323x x y x y ⎛⎫⎛⎫-+---+ ⎪ ⎪⎝⎭⎝⎭=3x-y 2 代入数值得559.20.解:(1)图①阴影部分的面积为a 2-b 2.(2)图②阴影部分的面积为(2a +2b )(a -b )÷2=(a+b )(a -b ). (3)由(1)(2)可得出结论:a 2-b 2=(a+b )(a -b ). (4)20172-20162=(2017+2016)(2017-2016)=4033. 21.同意小宝的观点,理由如下:因为3323323()7633631)02(a a b a b a a b a b a -+---+-+= 3323323763363102a a b a b a a b a b a -+++--+=2,所以本题中133a =-,0.39b =-是多余的条件.22.解:(1)观察发现,第1个图形五角星的个数是,1+3=4, 第2个图形五角星的个数是,1+3×2=7,第3个图形五角星的个数是,1+3×3=10, 第4个图形五角星的个数是,1+3×4=13, … 依此类推,第n 个图形五角星的个数是,1+3×n =3n +1;(2)令3n +1=2017, 解得:n =672 故第672个图案恰好含有2017个五角星. 点睛:找规律题需要记忆常见数列 1,2,3,4……n 1,3,5,7……2n -1 2,4,6,8……2n 2,4,8,16,32……2n 1,4,9,16,25……2n 2,6,12,20……n (n +1)23.解:()1∵222322A x xy y x y =-+++,224623B x xy y x y =-+--,∴2B A -,()2222462322322x xy y x y x xy y x y =-+----+++,2222462346244x xy y x y x xy y x y =-+---+---75x y =--,当2x =,15y =-时,2B A -17255⎛⎫=-⨯-⨯- ⎪⎝⎭141=-+13=-,()2∵22(3)0x a y -+-=,∴20x a -=,30y -=,∴2x a =,3y =,∵2B A a -=,∴7572531415x y a a --=-⨯-⨯=--, ∴1415a a --=,解得1a =-.24.解:(1)客户要到该商场购买西装2套,领带x 条(x >2). 方案一费用:200(x-2)+1600=200x+1200; 方案二费用:(200x+1600)×90%=180x+1440; (2)当x=5时,方案一:200×5+1200=2200(元)方案二:180×5+1440=2340(元) 所以,按方案一购买较合算.(3)先按方案一购买2套西装获赠送2条领带,再按方案二购买3条领带. 所需费用为1600+200×3×90%=2140(元),是最省钱的购买方案.25.解:()1∵101850<<,∴应缴纳水费为:()1.51021810⨯+⨯-1516=+31=元;()210x ≤吨时, 1.5y x =,10x m <≤时,()1.51021025y x x =⨯+-=-,x m >时,()()1.5102103y m x m =⨯+-+-1522033m x m =+-+-35x m =--.26.(1)解:由题意得甲的面积为:3a ×20+3a ·2a=(6a 2+60a)cm 2. 乙的面积为:2a ×20+3a ×20=100acm 2. 丙的面积为:2a ×20+3a ·2a=(6a 2+40a )cm 2.(2)解:一块长12a(cm),宽120cm 的长方形木板的面积为:12a ×120=1440a ,需要去这块木板的226601006403501440360a a a a a a a +++++=;当a=20时,原式=320501136036⨯+=.。

苏科版数学七年级上册 代数式单元测试题(Word版 含解析)

苏科版数学七年级上册 代数式单元测试题(Word版 含解析)

一、初一数学代数式解答题压轴题精选(难)1.双11购物节期间,某运动户外专营店推出满500送50元券,满800送100元券活动,先领券,再购物。

某校准备到此专营店购买羽毛球拍和羽毛球若干.已知羽毛球拍60元1个,羽毛球3元一个,买一个羽毛球拍送3个羽毛球.(1)如果要购买羽毛球拍8个,羽毛球50个,要付多少钱?(2)如果购买羽毛球拍x个(不超过16个),羽毛球50个,要付多少钱?用含x的代数式表示.(3)该校买了羽毛球50个若干个羽毛球拍,共花费712元,请问他们买了几个羽毛球拍.【答案】(1)解:60×8+(50-8×3)×3-50=508(元)(2)解:x≤6时,60x+(50-3x)×3=150+51x; 7≤x≤12时,60x+(50-3x)×3-50=100+51x; 13≤x≤16时,60x+(50-3x)×3-100=50+51x(3)解:设共买了x个羽毛球拍,根据题意得,60x+(50-3x)×3-50=712,解得,x=12. 答:共买了12个羽毛球拍.【解析】【分析】(1)根据题意直接列式计算。

(2)根据满500送50元券,满800送100元券活动,分三种情况讨论:x≤6时;7≤x≤12时;13≤x≤16时,分别用含x的代数式表示出要付的费用。

(3)根据一共花费712元,列方程求解即可。

2.解答题:(1)已知a,b互为相反数,c,d互为倒数,x的绝对值为1,求a+b+x2﹣cdx.(2)10箱苹果,如果每箱以30千克为准,超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:+2,+1,0,﹣1,﹣1.5,﹣2,+1,﹣1,﹣1,﹣0.5.这10箱苹果的总质量是多少千克?(3)小亮用50元钱买了10枝钢笔,准备以一定的价格出售,如果每枝钢笔以6元的价格为标准,超过的记作正数,不足的记作负数,记录如下:0.5,0.7,﹣1,﹣1.5,0.8,1,﹣1.5,﹣2.1,9,0.9.①这10枝钢笔的最高的售价和最低的售价各是几元?②当小亮卖完钢笔后是盈还是亏?【答案】(1)解:∵a,b互为相反数,c,d互为倒数,∴a+b=0,cd=1,∴a+b+x2﹣cdx=x2﹣x∵|x|=1,∴x=±1∴当x=1时,x2﹣x=0;当x=﹣1时,x2﹣x=2(2)解:2+1+0﹣1﹣1.5﹣2+1﹣1﹣1﹣0.5=﹣330×10+(﹣3)=897答:这10箱苹果的总质量是897千克.(3)解:①最高售价为6+9=15元最低售价为6﹣2.1=3.9元②6×10+0.5+0.7﹣1﹣1.5+0.8+1﹣1.5﹣2.1+9+0.8﹣50=16.3元答:小亮卖完钢笔后盈利16.3元.【解析】【分析】(1)根据相反数及倒数的性质即可得出a+b=0,cd=1,再根据绝对值的意义,由|x|=1,得x=±1,然后分别将a+b=0,cd=1,x=1与x=-1代入代数式,即可算出答案;(2)首先列出加法算式,算出10箱苹果,超过的千克数或不足的千克数,然后用10乘以标准质量再加上超过或不足的千克数即可算出答案;(3)用6元的基准价加上超过基准价的最大值即可得出这10枝钢笔的最高的售价,用6元的基准价加上超过基准价的最小值即可得出这10枝钢笔的最低的售价,用这十支钢笔的总售价减去进价和为正数则小亮赚钱,和为负数则小亮亏钱。

【精选】苏科版七年级上册数学 代数式单元试卷(word版含答案)

【精选】苏科版七年级上册数学 代数式单元试卷(word版含答案)

一、初一数学代数式解答题压轴题精选(难)1.如图所示,在边长为a米的正方形草坪上修建两条宽为b米的道路.(1)为了求得剩余草坪的面积,小明同学想出了两种办法,结果分别如下:方法①:________ 方法②:________请你从小明的两种求面积的方法中,直接写出含有字母a,b代数式的等式是:________(2)根据(1)中的等式,解决如下问题:①已知:,求的值;②己知:,求的值.【答案】(1)(a-b)2;a2-2ab+b2;(a-b)2=a2-2ab+b2(2)解:①把代入∴,∴②原式可化为:∴∴∴【解析】【解答】解:(1)方法①:草坪的面积=(a-b)(a-b)= .方法②:草坪的面积= ;等式为:故答案为:,;【分析】(1)方法①是根据已知条件先表示出矩形的长和宽,再根据矩形的面积公式即可得出答案;方法②是正方形的面积减去两条道路的面积,即可得出剩余草坪的面积;根据(1)得出的结论可得出;(2)①分别把的值和的值代入(1)中等式,即可得到答案;②根据题意,把(x-2018)和(x-2020)变成(x-2019)的形式,然后计算完全平方公式,展开后即可得到答案.2.某超市在十一长假期间对顾客实行优惠,规定如下:一次性购物优惠办法少于100元不予优惠超过100元但低于500元超过100元部分给予九折优惠超过500元超过500元部分给予八折优惠________元:小明妈妈一次性购300元的衣服,她实际付款________元:如果他们两人合作付款,则能少付________元. (2)小芳奶奶在该超市一次性购物x元生活用品,当x大于或等于500时,她们实际付款________元(用含x的式子表示,写最简结果)(3)如果小芳奶奶两次购物货款合计900元,第一次购物的货款为a元(200<a<300),两次购物小芳奶奶实际付款多少元?(用含a的式子表示)(4)如何能更省钱,请给出一些建议.【答案】(1)190;280;10(2)(0.8x+60)(3)解:100+0.9(a-100)+100+0.9×(500-100)+0.8(900-a-500)=(0.1a+790)元. 答:两次购物小芳奶奶实际付款(0.1a+790)元。

【精选】苏科版七年级上册数学 代数式单元测试卷 (word版,含解析)

【精选】苏科版七年级上册数学 代数式单元测试卷 (word版,含解析)

一、初一数学代数式解答题压轴题精选(难)1.某校要将一块长为a米,宽为b米的长方形空地设计成花园,现有如下两种方案供选择. 方案一:如图1,在空地上横、竖各铺一条宽为4米的石子路,其余空地种植花草.方案二:如图2,在长方形空地中留一个四分之一圆和一个半圆区域种植花草,其余空地铺筑成石子路.(1)分别表示这两种方案中石子路(图中阴影部分)的面积(若结果中含有π,则保留)(2)若a=30,b=20,该校希望多种植物美化校园,请通过计算选择其中一种方案(π取3.14).【答案】(1)解:方案一:∵石子路宽为4,∴S 石子路面积=4a+4b-16,方案二:设根据图象可知S石子路面积=S长方形-S四分之一圆-S半圆=ab- πb2- π( b)2=ab- πb2(2)解:已知a=30,b=20,故方案一:S石子路面积=184m2, S植物=600-184=416m2;方案二:S石子路面积=129m2,则S植物=600-129=471m2.故答案为:择方案二,植物面积最大为471m2。

【解析】【分析】(1)方案一:由图形可得S石子路=两条石子路面积-中间重合的正方形的面积;方案二:由题意可得S石子路= S长方形-S四分之一圆-S半圆;(2)把a、b的值的代入(1)中的两种方案计算即可判断求解.2.民谚有云:“不到庐山辜负目,不食螃蟹辜负腹.”,又到了食蟹的好季节啦!某经销商去水产批发市场采购太湖蟹,他看中了A、B两家的某种品质相近的太湖蟹.零售价都为60元/千克,批发价各不相同.A家规定:批发数量不超过100千克,按零售价的92%优惠;批发数量超过100千克但不超过200千克,按零售价的90%优惠;超过200千克的按零售价的88%优惠.B家的规定如下表:数量范围(千克)0~50部分(含50)50以上~150部分(含150,不含50)150以上~250部分(含250,不含150)250以上部分(不含250)________元;(2)如果他批发x千克太湖蟹(150<x<200),则他在A家批发需要________元,在B 家批发需要________元(用含x的代数式表示);(3)现在他要批发170千克太湖蟹,你能帮助他选择在哪家批发更优惠吗?请说明理由.【答案】(1)4968;4890(2)54x;45x+1200(3)解:当x=170时,54x=54×170=9180,45x+1200=45×170+1200=8850,因为9180>8850,所以他选择在B家批发更优惠【解析】【解答】解:(1)A:90×60×92%=4968(元),B:50×60×95%+40×60×85%=4890(元)。

2020-2021学年苏科版七年级数学上册第3章《代数式》单元测试题含答案

2020-2021学年苏科版七年级数学上册第3章《代数式》单元测试题含答案

七年级上册第3章《代数式》单元测试卷满分120分姓名:___________班级:___________学号:___________题号一二三总分得分一.选择题(共10小题,满分30分,每小题3分)1.下列各式符合书写要求的是()A.B.n•2C.a÷b D.2πr22.下列式子中a,﹣xy2,,0,是单项式的有()个.A.2个B.3个C.4个D.5个3.下列运算结果是a2的是()A.a+a B.a+2C.a•2D.a•a4.下列合并同类项正确的是()A.a3+a2=a5B.3x﹣2x=1C.3x2+2x2=6x2D.x2y+yx2=2x2y5.对于3x2y﹣2x+3y﹣xy﹣1,小糊涂同学说了四句话,其中不正确的是()A.是一个整式B.由5个单项式组成C.次数是2D.常数项是﹣16.﹣(a2﹣b3+c4)去括号后为()A.﹣a2﹣b3+c4B.﹣a2+b3+c4C.﹣a2﹣b3﹣c4D.﹣a2+b3﹣c4 7.若a+2b=3,则代数式2a+4b的值为()A.3B.4C.5D.68.A和B都是三次多项式,则A+B一定是()A.三次多项式B.次数不高于3的整式C.次数不高于3的多项式D.次数不低于3的整式9.设A=x2﹣3x﹣2,B=2x2﹣3x﹣1,若x取任意有理数.则A与B的大小关系为()A.A<B B.A=B C.A>B D.无法比较10.如图所示,在这个数据运算程序中,若开始输入的x的值为2,结果输出的是1,返回进行第二次运算则输出的是﹣4,…,则第2020次输出的结果是()A.﹣1B.3C.6D.8二.填空题(共6小题,满分24分,每小题4分)11.在x+y,0,2>1,2a﹣b,2x+1=0中,代数式有个.12.若练习本每本a元,铅笔每支b元,那么代数式8a+3b表示的意义是.13.单项式2x m y3与﹣3xy3n是同类项,则m+n=.14.去括号:﹣(a+b﹣c)=.15.一个多项式A与x2﹣2x+1的和是2x﹣7,则这个多项式A为.16.一张长方形桌子需配6把椅子,按如图方式将桌子拼在一起,那么5张桌子需配椅子把.三.解答题(共8小题,满分66分)17.(6分)请你用实例解释下列代数式的意义.(1)﹣4+3;(2)3a;(3)()3.18.(12分)合并同类项:(1)15x+4x﹣10x(2)﹣p2﹣p2﹣p2(3)3x2y﹣3xy2+2yx2﹣y2x(4)19.(6分)先化简,再求值:5xy+2(2xy﹣3x2)﹣(6xy﹣7x2),其中x=﹣1,y=﹣2.20.(8分)如图,在一长方形休闲广场的四角都设计一块半径相同的四分之一圆的花坛,若圆形的半径为r米,广场长为a米,宽为b米.(1)请列式表示广场空地的面积;(2)若休闲广场的长为300米,宽为100米,圆形花坛的半径为20米,求广场空地的面积(π取3.14).21.(8分)已知代数式2x2+ax﹣y+6﹣bx2+3x﹣5y﹣1的值与字母x的取值无关,且A=4a2﹣ab+4b2,B=3a2﹣ab+3b2.(1)求a,b的值;(2)先化简代数式:3A﹣[2(3A﹣2B)﹣3(4A﹣3B)],再求该代数式的值.22.(8分)已知多项式M,N,其中M=2x2﹣x﹣1,小马在计算2M﹣N时,由于粗心把2M﹣N看成了2M+N求得结果为﹣3x2+2x﹣1,请你帮小马算出:(1)多项式N;(2)多项式2M﹣N的正确结果.求当x=﹣1时,2M﹣N的值.23.(8分)某超市出售茶壶和茶杯,茶壶每只定价48元,茶杯每只定价6元,该超市制定了两种优惠方案:①买一只茶壶送一只茶杯;②按总价的90%付款.某顾客需买茶壶3只,茶杯x(x>3)只.(1)若该客户按方案①购买,需付款多少元?(用含x的代数式表示)(2)若该客户按方案②购买,需付款多少元?(用含x的代数式表示)(3)讨论买15只茶杯时,按哪种方案购买较为合算?24.(10分)阅读下列材料:①=1﹣,=﹣,=…②③(1)写出①组中的第5个等式:,第n个等式:;(2)写出②组的第n个等式:;(3)利用由①②③组中你发现的等式规律计算:.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:A、中的带分数要写成假分数,故不符合书写要求;B、中的2应写在字母的前面且省略乘号,故不符合书写要求;C、应写成分数的形式,故不符合书写要求;D、符合书写要求.故选:D.2.解:式子中a,﹣xy2,,0,是单项式的有a,﹣xy2,0,一共3个.故选:B.3.解:a+a=2a,因此选项A不符合题意;a+2=a+2,因此选项B不符合题意;a•2=2a,因此选项C不符合题意;a•a=a2,因此选项D符合题意;故选:D.4.解:A、本选项不能合并,错误;B、3x﹣2x=x,本选项错误;C、3x2+2x2=5x2,本选项错误;D、x2y+yx2=2x2y,本选项正确.故选:D.5.解:式子3x2y﹣2x+3y﹣xy﹣1是一个整式,由五个单项式组成,其次数为3,常数项是﹣1.所以A、B、D正确,C错误.故选:C.6.解:原式=a2+b3﹣c4,故选:D.7.解:∵a+2b=3,∴原式=2(a+2b)=2×3=6,故选:D.8.解:A和B都是三次多项式,则A+B一定是次数不高于3的整式,故选:B.9.解:∵A=x2﹣3x﹣2,B=2x2﹣3x﹣1,∴B﹣A=(2x2﹣3x﹣1)﹣(x2﹣3x﹣2)=2x2﹣3x﹣1﹣x2+3x+2=x2+1,∵x2≥0,∴B﹣A>0,则B>A,故选:A.10.解:把x=2代入得:×2=1,把x=1代入得:1﹣5=﹣4,把x=﹣4代入得:×(﹣4)=﹣2,把x=﹣2代入得:×(﹣2)=﹣1,把x=﹣1代入得:﹣1﹣5=﹣6,把x=﹣6代入得:×(﹣6)=﹣3,把x=﹣3代入得:﹣3﹣5=﹣8,把x=﹣8代入得:×(﹣8)=﹣4,以此类推,∵(2020﹣1)÷6=336…3,∴第2020次输出的结果为﹣1,故选:A.二.填空题(共6小题,满分24分,每小题4分)11.解:代数式有x+y,0,2a﹣b,故答案为:312.解:8a+3b表示的意义是买8本练习本和3支铅笔需要的钱数,故答案为:买8本练习本和3支铅笔需要的钱数.13.解:由单项式2x m y3与﹣3xy3n是同类项,得m=1,3n=3,解得m=1,n=1.∴m+n=1+1=2.故答案为:2.14.解:原式=﹣a﹣b+c,故答案为:﹣a﹣b+c.15.解:2x﹣7﹣(x2﹣2x+1)=2x﹣7﹣x2+2x﹣1=﹣x2+4x﹣8.故答案为:﹣x2+4x﹣8.16.解:设n张桌子需配椅子a n(n为正整数)把.观察图形,可知:a1=6=2×1+4,a2=8=2×2+4,a3=10=2×3+4,∴a n=2n+4,∴a5=2×5+4=14.故答案为:14.三.解答题(共8小题,满分66分)17.解:(1)﹣4+3表示气温从﹣4℃,上升3℃后的温度;(2)3a表示一辆车以akm/h的速度行驶3小时的路程;(3)()3表示棱长为的正方体的体积.18.解:(1)15x+4x﹣10x=(15+4﹣10)x=9x(2)﹣p2﹣p2﹣p2=﹣3p2(3)3x2y﹣3xy2+2yx2﹣y2x=5x2y﹣4xy2(4)=a2b=a2b.19.解:原式=5xy+4xy﹣6x2﹣6xy+7x2=x2+3xy当x=﹣1,y=﹣2时,原式=(﹣1)2+3×(﹣1)(﹣2)=1+6=720.解:(1)矩形的面积为ab,四分之一圆形的花坛的面积为πr2,则广场空地的面积为ab﹣4×πr2=ab﹣πr2,答:广场空地的面积为(ab﹣πr2)米2;(2)由题意得:a=300米,b=100米,r=20米,代入(1)的式子得:300×100﹣π×202=30000﹣400π=30000﹣400×3.14=28744(米2),答:广场空地的面积为28744米2.21.解:(1)原式=2x2+ax﹣y+6﹣bx2+3x﹣5y﹣1=(2﹣b)x2+(a+3)x﹣6y+5,由题意可知:,解得:;(2)原式=3A﹣[6A﹣4B﹣12A+9B]=3A﹣(﹣6A+5B)=3A+6A﹣5B=9A﹣5B,又∵A=4a2﹣ab+4b2,B=3a2﹣ab+3b2,∴原式=9A﹣5B=9(4a2﹣ab+4b2)﹣5(3a2﹣ab+3b2)=36a2﹣9ab+36b2﹣15a2+5ab﹣15b2=21a2﹣4ab+21b2,当a=﹣3,b=2时,原式═21×(﹣3)2﹣4×(﹣3)×2+21×22=189+24+84=297.22.解:(1)根据题意得:N=﹣3x2+2x﹣1﹣2(2x2﹣x﹣1)=﹣3x2+2x﹣1﹣4x2+2x+2=﹣7x2+4x+1;(2)2M﹣N=2(2x2﹣x﹣1)﹣(﹣7x2+4x+1)=4x2﹣2x﹣2+7x2﹣4x﹣1=11x2﹣6x﹣3,当x=﹣1时,2M﹣N=11+6﹣3=14.23.解:(1)该客户按方案①购买,需付款:48×3+6(x﹣3)=6x+126答:该客户按方案①购买,需付款(6x+126)元.(2)该客户按方案②购买,需付款:(48×3+6x)×90%=5.4x+129.6答:该客户按方案②购买,需付款(5.4x+129.6)元.(3)当x=15时,6x+126=6×15+126=216(元)5.4x+129.6=5.4×15+129.6=210.6(元)因为216>210.6所以该客户按方案②购买较合算.答:该客户按方案②购买较合算.24.解:(1)①组中的第5个等式为:=﹣,第n个等式为:=﹣;故答案为:=﹣,=﹣;(2)②组的第n个等式为:=(﹣);故答案为:=(﹣);(3)原式=(1﹣)+(﹣)+…+(﹣)=×(1﹣)=.1、三人行,必有我师。

苏教版七年级上册第三章《代数式》单元测试卷 含答案

苏教版七年级上册第三章《代数式》单元测试卷   含答案

七年级上册第三章《代数式》单元测试卷满分:120分姓名:___________班级:___________考号:___________题号一二三总分得分一.选择题(共10小题,满分30分,每小题3分)1.下列各式不是代数式的是()A.3+x=y B.3 C.πr2D.2.下面各组是同类项的是()A.3x和﹣2y B.﹣3a2b和2ab2C.3a2和2a3D.﹣3mn和2mn3.一批电脑进价为a元,提价20%后出售,则售价为()A.a×(1+20%)B.a×(1﹣20%)C.a×20% D.a÷20%4.关于整式的概念,下列说法正确的是()A.的系数是B.32x3y的次数是6C.3是单项式D.﹣x2y+xy﹣7是5次三项式5.多项式﹣3x2y+x2﹣1的次数和项数分别是()A.3,3 B.2,3 C.﹣3,2 D.3,26.下面计算正确的()A.﹣3x﹣3x=0 B.x4﹣x3=xC.x2+x2=2x4D.﹣4xy+3xy=﹣xy7.若代数式x2+2x的值为2,则代数式4x2+8x的值为()A.4 B.8 C.﹣4 D.﹣88.下面去括号正确的是()A.2y+(﹣x﹣y)=2y+x﹣y B.a﹣2(3a﹣5)=a﹣6a+10C.y﹣(﹣x﹣y)=y+x﹣y D.x2+2(﹣x+y)=x2﹣2x+y9.小文在计算某多项式减去2a2+3a﹣5的差时,误认为是加上2a2+3a﹣5,求得答案是a2+a﹣4(其他运算无误),那么正确的结果是()A.﹣a2﹣2a+1 B.﹣3a2﹣5a+6 C.a2+a﹣4 D.﹣3a2+a﹣410.观察下列按一定规律排列的图标:则第2020个图标是()A.B.C.D.二.填空题(共8小题,满分24分,每小题3分)11.代数式a×1应该写成.12.在式子①﹣x2,②﹣2xy,③xy2﹣x2,④⑤﹣x,⑥,⑦0中,整式有个.13.把多项式x3﹣7x2y+y3﹣4xy2+1按x的升幂排列为.14.已知﹣3x1﹣2a y b+2与是同类项,则a b=.15.已知a2+a﹣3=0,则2024﹣a2﹣a=.16.如果多项式4x3+2x2﹣(kx2+17x﹣6)中不含x2的项,则k的值为.17.如果多项式4x2+7x2+6x﹣5x+3与ax2+bx+c(其中a,b,c是常数)相等,则a+b+c=.18.如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为3,第2幅图形中“●”的个数为3+5,第3幅图形中“●”的个数为3+5+7,…,以此类推,第10幅图中“●”的个数为.三.解答题(共8小题,满分66分)19.(5分)根据你的生活与学习经验,对代数式3x+2y作出两种解释.20.(6分)已知多项式﹣x2y2m+1+xy﹣6x3﹣1是五次四项式,且单项式πx n y4m﹣3与多项式的次数相同,求m,n的值.21.(8分)合并同类项:(1)5m+2n﹣m﹣3n (2)3a2﹣1﹣2a﹣5+3a﹣a222.(10分)先去括号,再合并同类项(1)2(2b﹣3a)+3(2a﹣3b)(2)4a2+2(3ab﹣2a2)﹣(7ab﹣1)23.(12分)先化简,再求值:(1)5a2+bc+abc﹣2a2﹣bc﹣3a2+abc,其中a=2,b=3,c=﹣;(2)6(x+y)2﹣9(x+y)+(x+y)2+7(x+y),其中x+y=.24.(8分)已知A=2x2﹣6ax+3,B=﹣7x2﹣8x﹣1,按要求完成下列各小题.(1)若A+B的结果中不存在含x的一次项,求a的值;(2)当a=﹣2时,求A﹣3B的结果.25.(8分)如果关于x、y的单项式2ax c y与单项式3bx3y是同类项,并且2ax c y+3bx3y=0(xy≠0),当m的倒数是﹣1,n的相反数是时,求(2a+3b)99+m c﹣n c的值.26.(9分)阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2的结果是.(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值;拓广探索:(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:A、因为3+x=y包含数量关系,所以不是代数式,而是二元一次方程.B、是一个数字,属于代数式.C、πr2是一个代数式.D、是代数式.故选:A.2.解:A、字母不同不是同类项,故本选项不合题意;B、相同的字母的指数不同,不是同类项,故本选项不合题意;C、相同的字母的指数不同,不是同类项,故本选项不合题意;D、所含字母相同,并且相同字母的指数也相同,是同类项,本选项符合题意;故选:D.3.解:售价为a×(1+20%)元.故选:A.4.解:A、﹣的系数为﹣,错误;B、32x3y的次数是9,错误;C、3是单项式,正确;D、多项式﹣x2y+xy﹣7是三次三项式,错误;故选:C.5.解:多项式﹣3x2y+x2﹣1的次数和项数分别是:3,3.故选:A.6.解:A、﹣3x﹣3x=﹣6x,错误;B、x4与x3不是同类项,不能合并,错误;C、x2+x2=2x2,错误;D、﹣4xy+3xy=﹣xy,正确;故选:D.7.解:∵x2+2x=2,∴4x2+8x=4(x2+2x)=8.故选:B.8.解:A、2y+(﹣x﹣y)=2y﹣x﹣y,故选项A错误;B、a﹣2(3a﹣5)=a﹣6a+10,故选项B正确;C、y﹣(﹣x﹣y)=y+x+y,故选项C错误;D、x2+2(﹣x+y)=x2﹣2x+2y,故选项D错误.故选:B.9.解:根据题意,这个多项式为(a2+a﹣4)﹣(2a2+3a﹣5)=a2+a﹣4﹣2a2﹣3a+5=﹣a2﹣2a+1,则正确的结果为(﹣a2﹣2a+1)﹣(2a2+3a﹣5)=﹣a2﹣2a+1﹣2a2﹣3a+5=﹣3a2﹣5a+6,故选:B.10.解:观察图形发现:每4个图标为一组,∵2020÷4=505,∴第2020个图标是第505组的第4个图标,故选:D.二.填空题(共8小题,满分24分,每小题3分)11.解:a×1应该写成,故答案为:.12.解:所列代数式中整式有①﹣x2,②﹣2xy,③xy2﹣x2,⑥,⑦0这5个,故答案为:5.13.解:按x的升幂排列为:x3﹣7x2y+y3﹣4xy2+1=y3+1﹣4xy2﹣7x2y+x3,或x3﹣7x2y+y3﹣4xy2+1=1+y3﹣4xy2﹣7x2y+x3.故答案为:y3+1﹣4xy2﹣7x2y+x3;或1+y3﹣4xy2﹣7x2y+x3.14.解:∵﹣3x1﹣2a y b+2与是同类项,∴1﹣2a=7,b+2=4,解得a=﹣3,b=2,∴a b=(﹣3)2=9.故答案为:9.15.解:∵a2+a﹣3=0,∴a2+a=3,∴2024﹣a2﹣a=2024﹣(a2+a)=2024﹣3=2021,故答案为:2021.16.解:合并得4x3+2x2﹣(kx2+17x﹣6)=4x3+(2﹣k)x2﹣17x+6,根据题意得2﹣k=0,解得k=2.故答案是:2.17.解:由题意得:4x2+7x2+6x﹣5x+3=11x2+x+3,∵11x2+x+3与ax2+bx+c(其中a,b,c是常数)相等,∴a=11,b=1,c=3,∴a+b+c=11+1+3=15,故答案为:15.18.解:a1=3=1×3,a2=8=2×4,a3=15=3×5,a4=24=4×6,…,a n=n(n+2);所以第10幅图形中“●”的个数为10×(10+2)=120.故答案为:120.三.解答题(共8小题,满分66分)19.解:(1)某水果超市推出两款促销水果,其中苹果每斤x元,香蕉每斤y元,小明买了3斤苹果和2斤香蕉,共花去(3x+2y)元钱;(2)一个篮球的价格为x元,一个足球的价格为y元,购买了3个篮球和2个排球,共花去(3x+2y)元钱.20.解:∵多项式﹣x2y2m+1+xy﹣6x3﹣1是五次四项式,且单项式πx n y4m﹣3与多项式的次数相同,∴2+2m+1=5,n+4m﹣3=5,解得m=1,n=4.21.解:(1)原式=(5﹣1)m+(2﹣3)n=4m﹣n;(2)原式=(3﹣1)a2+(3﹣2)a﹣(1+5)=2a2+a﹣6.22.解:(1)2(2b﹣3a)+3(2a﹣3b)=4b﹣6a+6a﹣9b=﹣5b;(2)4a2+2(3ab﹣2a2)﹣(7ab﹣1)=4a2+6ab﹣4a2﹣7ab+1=﹣ab+1.23.解:(1)5a2+bc+abc﹣2a2﹣bc﹣3a2+abc,=(5a2﹣2a2﹣3a2)+(abc+abc)+(bc﹣bc)=abc,当a=2,b=3,c=﹣时,原式=2×3×(﹣)=﹣1;(2)6(x+y)2﹣9(x+y)+(x+y)2+7(x+y),=7(x+y)2﹣2(x+y)当x+y=时,原式=7×﹣2×=﹣=0.24.解:(1)∵A=2x2﹣6ax+3,B=﹣7x2﹣8x﹣1,∴A+B=2x2﹣6ax+3﹣7x2﹣8x﹣1=﹣5x2﹣(6a+8)x+2,由A+B结果中不含x的一次项,得到6a+8=0,解得:a=﹣;(2)∵A=2x2﹣6ax+3,B=﹣7x2﹣8x﹣1,a=﹣2,∴A﹣3B=2x2﹣6ax+3+21x2+24x+3=23x2+(24﹣6a)x+6=23x2+36x+6.25.解:∵m的倒数是﹣1,n的相反数是,∴m=﹣1,n=,∵关于x、y的单项式2ax c y与单项式3bx3y是同类项,∴c=3,∵2ax c y+3bx3y=0,∴2a+3b=0,∴(2a+3b)99+m c﹣n c=099+(﹣1)3﹣=.26.解:(1)∵3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2=(3﹣6+2)(a﹣b)2=﹣(a﹣b)2;故答案为:﹣(a﹣b)2;(2)∵x2﹣2y=4,∴原式=3(x2﹣2y)﹣21=12﹣21=﹣9;(3)∵a﹣2b=3,2b﹣c=﹣5,c﹣d=10,∴a﹣c=﹣2,2b﹣d=5,∴原式=﹣2+5﹣(﹣5)=8.。

最新苏科版数学七年级上册 代数式单元综合测试(Word版 含答案)

最新苏科版数学七年级上册 代数式单元综合测试(Word版 含答案)

一、初一数学代数式解答题压轴题精选(难)1.某超市在十一长假期间对顾客实行优惠,规定如下:________元:小明妈妈一次性购300元的衣服,她实际付款________元:如果他们两人合作付款,则能少付________元. (2)小芳奶奶在该超市一次性购物x元生活用品,当x大于或等于500时,她们实际付款________元(用含x的式子表示,写最简结果)(3)如果小芳奶奶两次购物货款合计900元,第一次购物的货款为a元(200<a<300),两次购物小芳奶奶实际付款多少元?(用含a的式子表示)(4)如何能更省钱,请给出一些建议.【答案】(1)190;280;10(2)(0.8x+60)(3)解:100+0.9(a-100)+100+0.9×(500-100)+0.8(900-a-500)=(0.1a+790)元. 答:两次购物小芳奶奶实际付款(0.1a+790)元。

(4)解:一次性购物能更省钱。

【解析】【解答】(1)解:小明的爷爷一次性购200元的保健食品,他实际付款100+0.9×(200-100)=190元:小明妈妈一次性购300元的衣服,她实际付款100+0.9×(300-100)=280元:如果他们两人合作付款,则能少付190+280-[100+0.9×(200+300-100)]=10元.故答案为:190;280;10( 2 )解:小芳奶奶在该超市一次性购物x元生活用品,当x大于或等于500时,她们实际付款100+360+0.8(x-500)=(0.8x+60)元.故答案为:(0.8x+60)【分析】(1)根据优惠办法"少于100元不予优惠,超过100元但低于500元,超过100元部分给予九折优惠"可球得实际付款;(2)由"少于100元不予优惠,超过100元但低于500元,超过100元部分给予九折优惠,超过500元的,超过500元部分给予八折优惠"可列出代数式;(3)分别求出两次购物小芳奶奶实际付款的钱数,相加即可求解;(4)通过计算可知一次性购物能更省钱.2.为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收贵的价目表如下(注:水费按月份结算,m3表示立方米)5m3和8m3,则应收水费分别是________元和________元.(2)若该户居民3月份用水量am3(其中6<a≤10),则应收水费多少元?(用含a的式子表示,并化简)(3)若该户层民4、5两个月共用水14m3(5月份用水量超过4月份),设4月份用水xm3,求该户居民4、5两个月共交水费多少元?(用含x的式子表示,并化简)【答案】(1)10;20(2)解:由依题意得:6×2+(a﹣6)×4=4a﹣12(元)答:应收水费(4a﹣12)元。

2022年苏科版数学七年级上册《代数式》单元检测卷 解析版

2022年苏科版数学七年级上册《代数式》单元检测卷  解析版

2022年苏科版七年级上册《代数式》单元检测卷(满分120分)班级:__________姓名:__________学号:__________成绩:__________ 一.选择题(共10小题,满分30分,每小题3分)1.下列整式中,单项式是()A.3a+1B.2x﹣y C.3a D.2.下列各式中,符合代数式书写规则的是()A.B.C.D.2y÷z3.下列各式中,是5x2y的同类项的是()A.x2y B.﹣3x2yz C.3a2b D.5x34.下列说法中,不正确的是()A.﹣ab2c的系数是﹣1,次数是4B.﹣1是整式C.6x2﹣3x+1的项是6x2、﹣3x,1D.2πR+πR2是三次二项式5.下列对代数式a﹣的描述,正确的是()A.a与b的相反数的差B.a与b的差的倒数C.a与b的倒数的差D.a的相反数与b的差的倒数6.下列计算正确的是()A.2ab﹣2ba=0B.a2b﹣ab2=0C.a3+a2=a5D.2a+3b=5ab 7.下列变形正确的是()A.﹣(a+2)=a﹣2B.﹣(2a﹣1)=﹣2a+1C.﹣a+1=﹣(a﹣1)D.1﹣a=﹣(a+1)8.已知x﹣2y=2,则代数式3x﹣6y+2014的值是()A.2016B.2018C.2020D.20219.若x+y=2,z﹣y=﹣3,则x+z的值等于()A.5B.1C.﹣1D.﹣510.如图是用黑色棋子摆成的美丽图案,按照这样的规律摆下去,第10个这样的图案需要黑色棋子的个数为()A.148B.152C.174D.202二.填空题(共8小题,满分32分,每小题4分)11.﹣2x2y单项式的次数是.12.将多项式3mn3﹣4m2n2+2﹣5m3n按m的降幂排列为.13.计算x+7x﹣5x的结果等于.14.笔记本的单价是x元,圆珠笔的单价是y元,买4本笔记本和2支圆珠笔共需元.15.如果单项式3x m y与﹣5x3y n是同类项,那么m+n=.16.添括号:﹣x﹣1=﹣().17.若多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,则mn=.18.观察下列一组数:﹣,,﹣,,﹣,…,它们是按一定规律排列的,那么这一组数的第n个数是.三.解答题(共7小题,满分58分)19.(10分)计算:(1)(5a+4c+7b)+(5c﹣3b﹣6a)(2)(2a2b﹣ab2)﹣2(ab2+3a2b)20.(6分)先化简,再求值:6x2﹣3(2x2﹣4y)+2(x2﹣y),其中,x=﹣1,y=.21.(8分)某校七年级(1)(2)(3)(4)四个班的学生在植树节这天共植树(x+5)棵.其中(1)班植树x棵,(2)班植树的棵数比(1)班的2倍少40棵,(3)班植树的棵数比(2)班的一半多30棵.(1)求(1)(2)(3)班共植树多少棵?(用含x的式子表示)(2)若x=40,求(4)班植树多少棵?22.(8分)已知两个多项式A、B,A+B=2x2+6,A=3x2+x+5.(1)用含x的式子表示B.(2)当x=2时,求2A+3B的值.23.(8分)老师在黑板上写了一个正确的演算过程,随后用手掌捂住了方框内的整式,形式如下:+[m2﹣5(mn﹣m2)+2mn]=﹣2(mn﹣3m2)(1)求所捂的整式;(2)当m=1,n=﹣2时,求所捂的整式的值.24.(9分)观察以下等式:第1个等式:×(1+)=2﹣,第2个等式:×(1+)=2﹣,第3个等式:×(1+)=2﹣,第4个等式:×(1+)=2﹣.第5个等式:×(1+)=2﹣.…按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.25.(9分)对于题目:“已知x2﹣2x﹣1=0,求代数式3x2﹣6x+2020的值”,采用“整体代入”的方法(换元法),可以比较容易的求出结果.(1)设x2﹣2x=y,则3x2﹣6x+2020=(用含y的代数式表示).(2)根据x2﹣2x﹣1=0,得到y=1,所以3x2﹣6x+2020的值为.(3)用“整体代入”的方法(换元法),解决下面问题:已知a+﹣5=0,求代数式的值.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:A、3a+1是多项式,不是单项式,故本选项不符合题意;B、2x﹣y是多项式,不是单项式,故本选项不符合题意;C、3a是单项式,故本选项符合题意;D、是多项式,不是单项式,故本选项不符合题意;故选:C.2.解:A、符合代数式书写规则.B、不符合代数式书写规则,应该为;C、不符合代数式书写规则,应该为﹣;D、不符合代数式书写规则,应改为;故选:A.3.解:A.5x2y与x2y,所含的字母相同:x、y,它们的指数也相同,所以它们是同类项,故本选项符合题意;B.5x2y与﹣3x2yz,所含的字母不尽相同,所以它们不是同类项,故本选项不合题意;C.5x2y与3a2b,所含的字母不相同,所以它们不是同类项,故本选项不合题意;D.5x2y与5x3,所含的字母不尽相同,所以它们不是同类项,故本选项不合题意.故选:A.4.解:A、﹣ab2c的系数是﹣1,次数是4,故A正确;B、﹣1是整式,故B正确;C、6x2﹣3x+1的项是6x2、﹣3x,1,故C正确;D、2πR+πR2是二次二项式,故D错误;故选:D.5.解:用数学语言叙述代数式a﹣为a与b的倒数的差,故选:C.6.解:A、2ab﹣2ba=0,故原题计算正确;B、a2b和ab2不是同类项,不能合并,故原题计算错误;C、a3和a2不是同类项,不能合并,故原题计算错误;D、2a和3b不是同类项,不能合并,故原题计算错误;故选:A.7.解:A、原式=﹣a﹣2,故本选项变形错误.B、原式=﹣a+1,故本选项变形错误.C、原式=﹣(a﹣1),故本选项变形正确.D、原式=﹣(a﹣1),故本选项变形错误.故选:C.8.解:∵x﹣2y=2,∴原式=3(x﹣2y)+2014=3×2+2014=2020,故选:C.9.解:∵x+y=2,z﹣y=﹣3,∴(x+y)+(z﹣y)=2+(﹣3),整理得:x+y+z﹣y=2﹣3,即x+z=﹣1,则x+z的值为﹣1.故选:C.10.解:根据图形,第1个图案有12枚棋子,第2个图案有22枚棋子,第3个图案有34枚棋子,…第n个图案有2(1+2+…+n+2)+2(n﹣1)=n2+7n+4枚棋子,故第10个这样的图案需要黑色棋子的个数为102+7×10+4=100+70+4=174(枚).故选:C.二.填空题(共8小题,满分32分,每小题4分)11.解:﹣2x2y单项式的次数是1+2=3,故答案为:3.12.解:按m的降幂排列:﹣5m3n﹣4m2n2+3mn3+2,故答案为:﹣5m3n﹣4m2n2+3mn3+2.13.解:x+7x﹣5x=(1+7﹣5)x=3x.故答案为:3x.14.解:根据题意可得:(4x+2y).故答案为:(4x+2y).15.解:∵单项式3x m y与﹣5x3y n是同类项,∴m=3,n=1,∴m+n=3+1=4.故答案为:4.16.解:﹣x﹣1=﹣(x+1).故答案为:x+1.17.解:∵多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,∴n﹣2=0,1+|m﹣n|=3,∴n=2,|m﹣n|=2,∴m﹣n=2或n﹣m=2,∴m=4或m=0,∴mn=0或8.故答案为:0或8.18.解:观察下列一组数:﹣=﹣,=,﹣=﹣,=,﹣=﹣,…,它们是按一定规律排列的,那么这一组数的第n个数是:(﹣1)n.故答案为:(﹣1)n.三.解答题(共7小题,满分58分)19.解:(1)(5a+4c+7b)+(5c﹣3b﹣6a)=5a+4c+7b+5c﹣3b﹣6a=﹣a+4b+9c;(2)(2a2b﹣ab2)﹣2(ab2+3a2b)=2a2b﹣ab2﹣2ab2﹣6a2b=﹣4a2b﹣3ab2.20.解:原式=6x2﹣6x2+12y+2x2﹣2y=2x2+10y,当x=﹣1,y=时,原式=2×1+10×=2+5=7.21.解:(1)x+2x﹣40+(2x﹣40)+30=x+2x﹣40+x﹣20+30=(4x﹣30)棵.故(1)(2)(3)班共植树(4x﹣30)棵;(2)(x+5)﹣(4x﹣30)=x+5﹣4x+30=(x+35),当x=40时,原式=20+35=55.故(4)班植树55棵.22.解:(1)∵A+B=2x2+6,A=3x2+x+5,∴B=(2x2+6)﹣A,=2x2+6﹣(3x2+x+5),=﹣x2﹣x+1;(2)2A+3B,=2(3x2+x+5)+3(﹣x2﹣x+1),=6x2+2x+10﹣3x2﹣3x+3,=3x2﹣x+13.当x=2时,原式=3x2﹣x+13=12﹣2+13=23.23.解:(1)根据题意得:所捂的整式为:﹣2(mn﹣3m2)﹣[m2﹣5(mn﹣m2)+2mn] =﹣2mn+6m2﹣m2+5mn﹣5m2﹣2mn=mn∴所捂的整式为mn.(2)∵所捂的整式为mn∴当m=1,n=﹣2时,mn=1×(﹣2)=﹣2∴所捂的整式的值为﹣2.24.解:(1)第6个等式:×(1+)=2﹣;(2)猜想的第n个等式:×(1+)=2﹣.证明:∵左边=×==2﹣=右边,∴等式成立.故答案为:×(1+)=2﹣;×(1+)=2﹣.25.解:(1)∵x2﹣2x=y,∴3x2﹣6x+2020=3(x2﹣2x)+2020=3y+2020;故答案为:3y+2020;(2)∵y=1,∴3x2﹣6x+2020=3y+2020=3×1+2020=2023;故答案为:2023;(3)设,则.∵,∴b﹣5=0,解得:b=5.∴.。

【精选】苏科版数学七年级上册 代数式单元测试卷(解析版)

【精选】苏科版数学七年级上册 代数式单元测试卷(解析版)

一、初一数学代数式解答题压轴题精选(难)1.双11购物节期间,某运动户外专营店推出满500送50元券,满800送100元券活动,先领券,再购物。

某校准备到此专营店购买羽毛球拍和羽毛球若干.已知羽毛球拍60元1个,羽毛球3元一个,买一个羽毛球拍送3个羽毛球.(1)如果要购买羽毛球拍8个,羽毛球50个,要付多少钱?(2)如果购买羽毛球拍x个(不超过16个),羽毛球50个,要付多少钱?用含x的代数式表示.(3)该校买了羽毛球50个若干个羽毛球拍,共花费712元,请问他们买了几个羽毛球拍.【答案】(1)解:60×8+(50-8×3)×3-50=508(元)(2)解:x≤6时,60x+(50-3x)×3=150+51x; 7≤x≤12时,60x+(50-3x)×3-50=100+51x; 13≤x≤16时,60x+(50-3x)×3-100=50+51x(3)解:设共买了x个羽毛球拍,根据题意得,60x+(50-3x)×3-50=712,解得,x=12. 答:共买了12个羽毛球拍.【解析】【分析】(1)根据题意直接列式计算。

(2)根据满500送50元券,满800送100元券活动,分三种情况讨论:x≤6时;7≤x≤12时;13≤x≤16时,分别用含x的代数式表示出要付的费用。

(3)根据一共花费712元,列方程求解即可。

2.民谚有云:“不到庐山辜负目,不食螃蟹辜负腹.”,又到了食蟹的好季节啦!某经销商去水产批发市场采购太湖蟹,他看中了A、B两家的某种品质相近的太湖蟹.零售价都为60元/千克,批发价各不相同.A家规定:批发数量不超过100千克,按零售价的92%优惠;批发数量超过100千克但不超过200千克,按零售价的90%优惠;超过200千克的按零售价的88%优惠.B家的规定如下表:________元;(2)如果他批发x千克太湖蟹(150<x<200),则他在A家批发需要________元,在B 家批发需要________元(用含x的代数式表示);(3)现在他要批发170千克太湖蟹,你能帮助他选择在哪家批发更优惠吗?请说明理由.【答案】(1)4968;4890(2)54x;45x+1200(3)解:当x=170时,54x=54×170=9180,45x+1200=45×170+1200=8850,因为9180>8850,所以他选择在B家批发更优惠【解析】【解答】解:(1)A:90×60×92%=4968(元),B:50×60×95%+40×60×85%=4890(元)。

【精选】苏科版数学七年级上册 代数式同步单元检测(Word版 含答案)

【精选】苏科版数学七年级上册 代数式同步单元检测(Word版 含答案)

一、初一数学代数式解答题压轴题精选(难)1.任何一个整数N,可以用一个的多项式来表示:N= .例如:325=3×102+2×10+5.一个正两位数的个位数字是x,十位数字y.(1)列式表示这个两位数;(2)把这个两位数的十位上的数字与个位上的数字交换位置得到一个新的两位数,试说明新数与原数的和能被11整除.(3)已知是一个正三位数.小明猜想:“ 与的差一定是9的倍数。

”请你帮助小明说明理由.(4)在一次游戏中,小明算出、、、与等5个数和是3470,请你求出这个正三位数.【答案】(1)解:10y+x(2)解:根据题意得:10y+x+10x+y=11(x+y),则所得的数与原数的和能被11整除(3)解:∵ - =100a+10b+c-(100b+10c+a)=99a-90b-9c =9(11a-10b-c),∴与的差一定是9的倍数(4)解:∵ + + + + + =3470+ ∴222(a+b+c)=222×15+140+ ∵100<<1000,∴3570<222(a+b+c)<4470,∴16<a+b+c≤20.尝试发现只有a+b+c=19,此时 =748成立,这个三位数为748.【解析】【分析】(1)由已知一个正两位数的个位数字是x,十位数字y ,因此这个两位数是:十位上的数字×10+个位数的数字。

(2)根据题意将新的两位数和原两位数相加,再化简,即可得出结果。

(3)分别表示出两个三位数,再求出它们的差,就可得出它们的差是否为9的倍数。

(4)根据题意求出a+b+c的取值范围,再代入数据进行验证即可。

2.(1)一个两位正整数,a表示十位上的数字,b表示个位上的数字(a≠b,ab≠0),则这个两位数用多项式表示为(含a、b的式子);若把十位、个位上的数字互换位置得到一个新两位数,则这两个两位数的和一定能被整除,这两个两位数的差一定能被整除.(2)一个三位正整数F,各个数位上的数字互不相同且都不为0.若从它的百位、十位、个位上的数字中任意选择两个数字组成6个不同的两位数.若这6个两位数的和等于这个三位数本身,则称这样的三位数F为“友好数”,例如:132是“友好数”.一个三位正整数P,各个数位上的数字互不相同且都不为0,若它的十位数字等于百位数字与个位数字的和,则称这样的三位数P为“和平数”;①直接判断123是不是“友好数”?②直接写出共有个“和平数”;③通过列方程的方法求出既是“和平数”又是“友好数”的数.【答案】(1)解:这个两位数用多项式表示为10a+b,(10a+b)+(10b+a)=10a+b+10b+a=11a+11b=11(a+b),∵11(a+b)÷11=a+b(整数),∴这个两位数的和一定能被数11整除;(10a+b)﹣(10b+a)=10a+b﹣10b﹣a=9a﹣9b=9(a﹣b),∵9(a﹣b)÷9=a﹣b(整数),∴这两个两位数的差一定能被数9整除,故答案为:11,9(2)解:①123不是“友好数”.理由如下:∵12+21+13+31+23+32=132≠123,∴123不是“友好数”;②十位数字是9的“和平数”有198,297,396,495,594,693,792,891,一个8个;十位数字是8的“和平数”有187,286,385,584,682,781,一个6个;十位数字是7的“和平数”有176,275,374,473,572,671,一个6个;十位数字是6的“和平数”有165,264,462,561,一个4个;十位数字是5的“和平数”有154,253,352,451,一个4个;十位数字是4的“和平数”有143,341,一个2个;十位数字是3的“和平数”有132,231,一个2个;所以,“和平数”一共有8+(6+4+2)×2=32个.故答案为32;③设三位数既是“和平数”又是“友好数”,∵三位数是“和平数”,∴y=x+z.∵是“友好数”,∴10x+y+10y+x+10x+z+10z+x+10y+z+10z+y=100x+10y+z,∴22x+22y+22z=100x+10y+z,∴12y=78x﹣21z.把y=x+z代入,得12x+12z=78x﹣21z,∴33z=66x,∴z=2x,由②可知,既是“和平数”又是“友好数”的数是396,264,132.【解析】【分析】(1)分别求出两数的和与两数的差即可求解;(2)①根据“友好数”的定义即可判断求解;②根据“和平数”的定义列举出所有的“和平数”即可求解;③设三位数既是“和平数”又是“友好数”,根据“和平数”的定义,得出y=x+z.再由“友好数”的定义,得出10x+y+10y+x+10x+z+10z+x+10y+z+10z+y=100x+10y+z,化简即为12y=78x−21z.把y=x+z代入,整理得出z=2x,然后从②的数字中挑选出符合要求的数即可.3.民谚有云:“不到庐山辜负目,不食螃蟹辜负腹.”,又到了食蟹的好季节啦!某经销商去水产批发市场采购太湖蟹,他看中了A、B两家的某种品质相近的太湖蟹.零售价都为60元/千克,批发价各不相同.A家规定:批发数量不超过100千克,按零售价的92%优惠;批发数量超过100千克但不超过200千克,按零售价的90%优惠;超过200千克的按零售价的88%优惠.B家的规定如下表:数量范围(千克)0~50部分(含50)50以上~150部分(含150,不含50)150以上~250部分(含250,不含150)250以上部分(不含250)价格(元)零售价的95%零售价的85%零售价的75%零售价的70%________元;(2)如果他批发x千克太湖蟹(150<x<200),则他在A家批发需要________元,在B 家批发需要________元(用含x的代数式表示);(3)现在他要批发170千克太湖蟹,你能帮助他选择在哪家批发更优惠吗?请说明理由.【答案】(1)4968;4890(2)54x;45x+1200(3)解:当x=170时,54x=54×170=9180,45x+1200=45×170+1200=8850,因为9180>8850,所以他选择在B家批发更优惠【解析】【解答】解:(1)A:90×60×92%=4968(元),B:50×60×95%+40×60×85%=4890(元)。

七年级数学上册 第3章 代数式 单元测试卷(苏科版 2024年秋)

七年级数学上册 第3章 代数式 单元测试卷(苏科版 2024年秋)

七年级数学上册 第3章 代数式 单元测试卷(苏科版 2024年秋)一、选择题(每小题3分,共24分)1.下列各式中,符合代数式书写要求的是( )A . x ·5B .-12abC .123xD .4m ×n2.下列计算正确的是( )A .4a -2a =2B .2ab +3ba =5abC . a +a 2=a 3D .5x 2y -3xy 2=2xy3.[2024常州期中]下列去括号正确的是( )A . a -(-3b +2c )=a -3b +2cB .-(x 2+y 2)=-x 2-y 2C . a 2+(-b +c )=a 2-b -cD .2a -3(b -c )=2a -3b +c 4.长方形菜地长a m ,宽b m ,如果长增加x m ,那么新菜地增加的面积为( )A . a (b +x )m 2B . b (a +x )m 2C . ax m 2D . bx m 25.[2023南通]若a 2-4a -12=0,则2a 2-8a -8的值为( )A .24B .20C .18D .166.计算3+3+…+3⏟ m 个3+4×4×…×4⏟ n 个4的结果是( )A .3m +n 4B . m 3+4nC .3m +4nD .3m +4n7.[2024江阴期末]下列说法正确的是( )A .单项式-23πa 2b 的系数是-23 B .单项式-12ah 2的次数是3 C .2x 2+3xy -1是四次三项式D .25与x 5是同类项8.[2024盐城大丰区期中]已知有2个完全相同的边长为a ,b 的小长方形和1个边长为m ,n 的大长方形,小明把这2个小长方形放置在大长方形中,如图,小明经过推理得知,要求出图中阴影部分的周长之和,只需知道a ,b ,m ,n 中的一个量即可,则要知道的那个量是( )A . aB . bC . mD . n二、填空题(每小题3分,共30分) 9.单项式-5πx 2y 6的系数是 .10.多项式3x 2+2xy 2-1的次数是 .11.若一个代数式与-2a +b 的和是a +2b ,则这个代数式是 . 12.若-5x a +1y 4与8x 4y 2b 是同类项,则ab 的值为 .13.[新考法·整体代入法2023·泰州]若2a-b+3=0,则2(2a+b)-4b的值为.14.[2024苏州期末]当k=时,多项式x2+(k-1)xy-3y2-2xy-5中不含xy项.15.[真实情境题体育赛事]2024年4月21日,安阳马拉松赛燃情开跑.为防止选手个人信息泄露,马拉松参赛选手随身穿戴的计时芯片会把选手参赛号码利用公式加密后上传.某选手参赛号码为1 626,如果加密公式为选手参赛号码乘n再加6,则利用公式加密后上传的数据为.16.[新考法定义计算法]对于两个非零数x,y,定义一种新的运算:x*y=ax+by,若1*(-1)=2,则(-3)*3的值为.17.[新考法·程序计算法2024·淮安期末]根据如图的计算程序,若输入x的值为-5,则输出的值为.18.[新视角规律探究题] 如图是一组有规律的图案,它由若干个大小相同的圆片组成.第1个图案中有4个白色圆片,第2个图案中有6个白色圆片,第3个图案中有8个白色圆片,第4个图案中有10个白色圆片,…依此规律,第n个图案中有个白色圆片(用含n的代数式表示).三、解答题(共66分)19.(6分)[母题教材P101复习题T3]化简:(1)2a2+3ab-a2-4ab;(2)(3m2-n2)-2(m2-2n2).20.(5分) [母题教材P101复习题T4]先化简,再求值:3(4a2b-ab2)-2(-ab2+3a2b),其,b=-3.中a=1621.(8分)老师在黑板上写了一个正确的演算过程,随后用手掌捂住了多项式,形式如下:+2(a2+4ab+4b2)=5a2+2b2.(1)求手掌捂住的多项式;|=0,请求出所捂住的多项式的值.(2)若a,b满足(a+1)2+|b-1222.(8分)[2024苏州工业园区期中]如图,从一个长方形中剪下两个大小相同的正方形(有关线段的长如图所示,单位:米),留下一个“T”形图形(阴影部分).(1)用含x,y的代数式表示“T”形图形的周长;(2)若将此图作为某施工图,“T”形图形的周边需围上单价为每米20元的栅栏,原长方形周边的其余部分需围上单价为每米15元的栅栏.若x=1,y=3,请计算整个施工所需的造价.23.(9分)[2024连云港期中]已知代数式A=6x2+3xy+2y,B=3x2-2xy+5x.(1)求A-2B;(2)当x=-3,y=-6时,求A-2B的值;4(3)若A-2B的值与x的取值无关,求y的值.24.(9分)[新考法类比法] 阅读材料:我们知道,5x-x+2x=(5-1+2)x=6x,类似地,我们把(a+b)看成一个整体,则4(a +b)+3(a+b)-5(a+b)=(4+3-5)(a+b)=2(a+b).“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a-b)2看成一个整体,化简3(a-b)2-6(a-b)2+2(a-b)2的结果是;(2)若x2-2y=4,求3x2-6y-23的值;(3)若a-2b=3,2b-c=-5,c-d=10,求(a-c)+(2b-d)-(2b-c)的值.25.(9分)[2024南京雨花台区月考]观察下表回答问题:x…-2 -1 0 1 2 …2x+1 …-3 m 1 3 5 …-x-3 …-1 -2 -3 -4 n…(1)根据表中信息可知m=,n=;(2)表中2x+1的值的变化规律是x的值每增加1,2x+1的值就增加2;类似地,-x-3的值的变化规律是x的值每增加1,-x-3的值就;(3)当x的值从a增加到a+1时,猜想关于x的代数式kx-4(k为一次项的系数,且k≠0)的值会怎样变化,请通过计算加以说明.26.(12分)[2024盐城大丰区期末]如果a+b=10,那么我们称a与b是关于10的“圆满数”.(1)7与是关于10的“圆满数”,8-x与是关于10的“圆满数”(用含x的代数式表示);(2)若a=2x2-4x+3,b=1-2(x2-2x-3),判断a与b是否是关于10的“圆满数”,并说明理由;(3)若c=kx-1,d=5-2x,且c与d是关于10的“圆满数”,x与k都是正整数,求k的值.参考答案一、1.B 2.B 3.B 4.D 5.D 6.D 7.B8.D 点拨:如图,由图和已知可知AB =a ,EF =b ,AC =n -b ,GE =n -a ,所以阴影部分的周长之和=2(AB +AC )+2(GE +EF )=2(a +n -b )+2(n -a +b )=2a +2n -2b +2n -2a +2b =4n ,所以要求出图中阴影部分的周长之和,只需知道n 一个量即可.故选D .二、9.-5π6 10.3 11.3a +b 12.6 13.-6 14.315.1 626n +6 16.-6 17.22 18.2(n +1) 三、19.解:(1)原式=a 2-ab .(2)原式=(3m 2-n 2)-(2m 2-4n 2) =3m 2-n 2-2m 2+4n 2 =m 2+3n 2.20.解:原式=12a 2b -3ab 2+2ab 2-6a 2b =6a 2b -ab 2.当a =16,b =-3时,原式=6×136×(-3)-16×9=-12-32=-2.21.解:(1)根据题意得(5a 2+2b 2)-2(a 2-4ab +4b 2) =5a 2+2b 2-2a 2+8ab -8b 2=3a 2+8ab-6b 2,故手掌捂住的多项式为3a 2+8ab -6b 2.(2)因为(a +1)2+|b -12|=0,所以a +1=0,b -12=0,解得a =-1,b =12.将a =-1,b =12代入3a 2+8ab -6b 2,得3a 2+8ab -6b 2=3-4-32=-2. 5,故手掌捂住的多项式的值为-2.5.22.解:(1)“T”形图形的周长为2×[(2x +y )+(y +y +x )]=6(x +y )米.(2)20×6(x +y )+15×4y =120x +120y +60y =120x +180y . 当x =1,y =3时,原式=120×1+180×3=660. 所以整个施工所需的造价为660元. 23.解:(1)A -2B=6x 2+3xy +2y -2(3x 2-2xy +5x ) =6x 2+3xy +2y -6x 2+4xy -10x =7xy +2y -10x .(2)当x =-34,y =-6时,A -2B =7×(-34)×(-6)+2×(-6)-10×(-34)=632-12+152=27. (3)A -2B =7xy +2y -10x =(7y -10)x +2y .因为A -2B 的值与x 的取值无关,所以7y -10=0. 所以y =107. 24.解:(1)-(a -b )2(2)因为x 2-2y =4, 所以3x 2-6y -23 =3(x 2-2y )-23 =3×4-23 =-11.(3)因为a -2b =3,2b -c =-5,c -d =10, 所以(a -c )+(2b -d )-(2b -c ) =a -c +2b -d -2b +c =(a -2b )+(2b -c )+(c -d ) =3+(-5)+10=8. 25.解:(1)-1;-5 (2)减小1(3)因为k (a +1)-4-(ka -4)=ka +k -4-ka +4=k ,所以当k >0,x 的值从a 增加到a +1时,关于x 的代数式kx -4的值增加k ; 当k <0,x 的值从a 增加到a +1时,关于x 的代数式kx -4的值减少|k |(或减少-k ).26.解:(1)3;2+x(2)a 与b 是关于10的“圆满数”.理由如下: 因为a +b =2x 2-4x +3+1-2(x 2-2x -3) =2x 2-4x +3+1-2x 2+4x +6 =10,所以a 与b 是关于10的“圆满数”. (3)因为c 与d 是关于10的“圆满数”, 所以c +d =10,即kx -1+5-2x =10,整理得(k -2)x =6. 因为x 与k 都是正整数,所以当k =3时,x =6;当k =4时,x =3; 当k =5时,x =2;当k =8时,x =1.所以k的值为3,4,5,8.。

【精选】苏科版七年级数学上册 代数式同步单元检测(Word版 含答案)

【精选】苏科版七年级数学上册 代数式同步单元检测(Word版 含答案)

一、初一数学代数式解答题压轴题精选(难)1.已知A=2x2+3xy-2x-1,B=x2-xy-1(1)化简:4A-(2B+3A),将结果用含有x、y的式子表示(2)若式子4A-(2B+3A)的值与字母x的取值无关,求的值【答案】(1)解:∵A=2x2+3xy-2x-1,B=x2-xy-1,∴4A-(2B+3A)=A-2B=2x2+3xy-2x-1-2(x2-xy-1)=5xy-2x+1(2)解:根据(1)得4A-(2B+3A)= 5xy-2x+1;∵4A-(2B+3A)的值与字母x的取值无关,∴4A-(2B+3A)=5xy-2x+1=(5y-2)x+1,5y-2=0,则y= .则y3+ A- B= y3+ (A-2B)= y3+ ×1= + = = .【解析】【分析】(1)先将4A-(2B+3A)化简,再将A,B的值分别代入代数式,去括号合并同类项化为最简形式即可;(2)根据(1)化简的结果,由4A-(2B+3A)的值与字母x的取值无关,得出5y-2=0,求解得出y的值,再将代数式中含A,B的项,逆用乘法分配律最后整体代入即可算出代数式的值。

2.用正方形硬纸板做三棱柱盒子,每个盒子的侧面为长方形,底面为等边三角形.(1)每个盒子需________个长方形,________个等边三角形;(2)硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).现有相同规格的 19 张正方形硬纸板,其中的 x 张按方法一裁剪,剩余的按方法二裁剪.①用含 x 的代数式分别表示裁剪出的侧面个数,底面个数;②若裁剪出的侧面和底面恰好全部用完,求能做多少个盒子.【答案】(1)3;2(2)解:①∵裁剪x张时用方法一,∴裁剪(19−x)张时用方法二,∴侧面的个数为:6x+4(19−x)=(2x+76)个,底面的个数为:5(19−x)=(95−5x)个;②由题意,得解得:x=7,经检验,x=7是原分式方程的解,∴盒子的个数为:答:裁剪出的侧面和底面恰好全部用完,能做30个盒子.【解析】【解答】(1)由图可知每个三棱柱盒子需3个长方形,2个等边三角形;故答案为3,2.【分析】(1)由图可知两个底面是等边三角形,侧面是长方形,所以需要2个等边三角形和3个长方形。

【精选】苏科版七年级上册数学 代数式单元综合测试(Word版 含答案)

【精选】苏科版七年级上册数学 代数式单元综合测试(Word版 含答案)

一、初一数学代数式解答题压轴题精选(难)1.某校要将一块长为a米,宽为b米的长方形空地设计成花园,现有如下两种方案供选择. 方案一:如图1,在空地上横、竖各铺一条宽为4米的石子路,其余空地种植花草.方案二:如图2,在长方形空地中留一个四分之一圆和一个半圆区域种植花草,其余空地铺筑成石子路.(1)分别表示这两种方案中石子路(图中阴影部分)的面积(若结果中含有π,则保留)(2)若a=30,b=20,该校希望多种植物美化校园,请通过计算选择其中一种方案(π取3.14).【答案】(1)解:方案一:∵石子路宽为4,∴S石子路面积=4a+4b-16,方案二:设根据图象可知S石子路面积=S长方形-S四分之一圆-S半圆=ab- πb2- π( b)2=ab- πb2(2)解:已知a=30,b=20,故方案一:S石子路面积=184m2, S植物=600-184=416m2;方案二:S石子路面积=129m2,则S植物=600-129=471m2.故答案为:择方案二,植物面积最大为471m2。

【解析】【分析】(1)方案一:由图形可得S石子路=两条石子路面积-中间重合的正方形的面积;方案二:由题意可得S石子路= S长方形-S四分之一圆-S半圆;(2)把a、b的值的代入(1)中的两种方案计算即可判断求解.2.如图(1)2020年9月的日历如图1所示,用1×3的长方形框出3个数.如果任意圈出一横行左右相邻的三个数,设最小的数为x,用含x的式子表示这三个数的和为________;如果任意圈出一竖列上下相邻的三个数,设最小的数为y,用含y的式子表示这三个数的和为________(2)如图2,用一个2×2的正方形框出4个数,是否存在被框住的4个数的和为96?如果存在,请求出这四个数中的最小的数字;如果不存在,请说明理由(3)如图2,用一个3×3的正方形框出9个数,在框出的9个数中,记前两行共6个数的和为a1,最后一行3个数的和为a2.若|a1﹣a2|=6,请求出正方形框中位于最中心的数字m的值.【答案】(1)3x+3;3y+21(2)解:设所框出的四个数最小的一个为a,则另外三个分别是:(a+1)、(a+7)、(a+8),则a+(a+1)+(a+7)+(a+8)=96,解得,a=20,由图2知,所框出的四个数存在,故存在被框住的4个数的和为96,其中最小的数为20(3)解:根据题意得,a1=m+(m﹣1)+(m+1)+(m﹣7)+(m﹣6)+(m﹣8)=6m ﹣21,a2=(m+7)+(m+6)+(m+8)=3m+21,∵|a1﹣a2|=6,∴|(6m﹣21)﹣(3m+21)|=6,即|3m﹣42|=6,解得,m=12(因12位于最后一竖列,不可能为9数的中间一数,舍去)或m=16,∴m=16.【解析】【解答】(1)解:如果任意圈出一横行左右相邻的三个数,设最小的数为x,则三数的和为:x+(x+1)+(x+2)=x+x+1+x+2=3x+3;如果任意圈出一竖列上下相邻的三个数,设最小的数为y,则三数和为:y+(y+7)+(y+14)=y+y+7+y+14=3y+21.故答案为:3x+3;3y+21【分析】(1)由三个数的大小关系,表示另两个数,再求和并化简即可;(2)设最小数为a,并用a的代数式表示所框出的四个数的和,再根据四个数和为96可列方程,解方程,若方程有符合条件的解,则存在,反之不存在;(3)且m表示出a1和a2,再由|a1−a2|=6列方程求解.3.A和B两家公司都准备向社会招聘人才,两家公司招聘条件基本相同,只有工资待遇有如下差别:A公司,年薪20000元,每年加工龄工资200元;B公司,半年薪10000元,每半年加工龄工资50元.(1)第二年的年待遇:A公司为________元,B公司为________元;(2)若要在两公司工作n年,从经济收入的角度考虑,选择哪家公司有利(不考虑利率等因素的影响)?请通过列式计算说明理由.【答案】(1)20200;20250(2)解:A公司:20000+200(n-1)=200n+19800B公司:10000+50(2n-2)+10000+50(2n-1)=200n+19850,∴从应聘者的角度考虑的话,选择B家公司有利.【解析】【解析】(1)解:A公司招聘的工作人员第二年的工资收入是:20000+200=20200元;B公司招聘的工作人员第二年的工资收入是:1000+50×2+1000+50×3=20250元;【分析】(1)根据第二年的年待遇等于年薪+工龄工资,即可算出;(2)分别表示出第n年在A,B两家公司工作的年收入,再比较大小即可。

七年级数学上册《第三章 代数式》单元测试卷及答案-苏科版

七年级数学上册《第三章 代数式》单元测试卷及答案-苏科版

七年级数学上册《第三章 代数式》单元测试卷及答案-苏科版(考试时间:60分钟 总分:100分)一、选择题1.下列用代数式表示“比x 的三倍还少5的数”正确的是( )A .35x -B .53x -C .35x +D .53x -⨯2.下列整式中,是二次单项式的是( )A .21x +B .xyC .2x yD .3x -3.已知两个等式425m n p m -=-=-,则2p n -的值为( )A .3-B .3C .6D .6-4.下列单项式中,xy 2的同类项是( )A .x 3y 2B .x 2yC .2xy 2D .2x 2y 35.()2--=( )A .2B .2-C .12D .12-6.设2221M a a =++,2327N a a =-+其中a 为实数,则M 与N 的大小关系是( )A .M N ≥B .M N >C .N M ≥D .N M >7.已知我省2022年上半年的GDP 总值为a 万亿元,2022年下半年的GDP 总值比2022年上半年增长7.5%,预计2023年上半年的GDP 总值比2022年下半年增长6.8%,若预计我省2023年上半年的GDP 总值为b 万亿元,则a ,b 之间的关系是( ) A .(1 6.8%)(17.5%)b a =++ B .2(17.5%)b a =+ C .(1 6.8%)(17.5%)a b =--D .(17.5% 6.8%)b a =++8.下列计算正确的是( )A .336x y xy +=B .()()22224x y x y x y +-=- C .()222x y x xy y -=-+D .()2266x y x y -=-9.若()a --为正数,则a 为( )A .正数B .负数C .0D .不能确定10.把图1中周长为16cm 的长方形纸片分割成四张大小不等的正方形纸片A 、B 、C 、D 和一张长方形纸片E ,并将它们按图2的方式放入周长为24cm 的的长方形中.设正方形C 的边长为cm x ,正方形D 的边长为cm y .则下结论中正确的是( )A .正方形C 的边长为1cmB .正方形A 的边长为3cmC .正方形B 的边长为4cmD .阴影部分的周长为20cm二、填空题11.“x 加上y 的平方的和”,用代数式表示是 .12.某商品原价为a 元,经营者连续两次提价,两次分别提价10%.后因市场物价调整,又一次性降价20%,则这种商品的现价是 元.13.已知2210x x --=,则3231052027x x x -++的值等于 . 14.若234m a b -与615n a b +是同类项,则m n += .三、解答题15.已知:a b 、 互为相反数,c d 、 互为倒数,m 是最小的正整数,求代数式2022()32a b cd m +-+的值.16.已知有理数a ,b ,c 在数轴上对应点的位置如图所示,化简:2a b c a +++.17.已知一个数比a 的6倍大3,另一个数比a 的7倍小5.求前一个数减去后一个数的差.四、综合题18.为体现党和政府对农民健康的关心,解决农民看病难问题,某市全面实行新型农村合作医疗,对住院农民的医疗费实行分段报销制、下面是某市新型农村合作医疗制度中卫生院住院医疗费用报销比例:医药费报销比例 500元以下(含500元) 不予报销 500元(不含)以上至5000元 65% 5000元(不含)以上至20000元75%20000(不含)元以上65%(如:某住院病人花去医疗费6000元,报销金额为()()500050065%6000500075%3675-⨯+-⨯=(元)) (1)农民刘老汉因脑中风住院花去医疗费5600元,他可以报销多少元? (2)写出医疗费为()20000x x >元时的报销金额.19.毕业季,某文具批发店购进足够数量的甲、乙两种纪念册,已知每天这两种纪念册的销售量共为200本,这两种纪念册的成本和售价如下:纪念册 成本(元/本) 售价(元/本) 甲 12 16 乙1518设每天销售甲种纪念册x 本.(1)用含x 的式子表示该文具批发店每天销售这两种纪念册的成本,并化简; (2)当x=110时,求该文具批发店每天销售这两种纪念册获得的利润.20.阅读材料:我们知道42(421)3x x x x x -+=-+=,类似地,我们把()a b +看成一个整体,则4()2()()(421)()3()a b a b a b a b a b +-+++=-++=+ “整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛,尝试应用:(1)把2()a b -看成一个整体,求出2223()6()2()a b a b a b -+---的结果. (2)已知224x y -=,求23621x y --的值.21.某同学做一道数学题,已知两个多项式A 、B ,221B x y xy x =--+试求A B +.这位同学把A B +误看成A B -,结果求出的答案为26421x y xy x +--.(1)请你替这位同学求出A B +的正确答案;(2)当x 取任意数值,7A B -的值是一个定值时,求y 的值.参考答案与解析1.【答案】A【解析】【解答】解:由题意可得:35x -.故答案为:A.【分析】根据题意直接列出代数式即可。

苏科版七年级数学上册 代数式单元综合测试(Word版 含答案)

苏科版七年级数学上册 代数式单元综合测试(Word版 含答案)

一、初一数学代数式解答题压轴题精选(难)1.先阅读下面文字,然后按要求解题.例:1+2+3+…+100=?如果一个一个顺次相加显然太繁,我们仔细分析这100个连续自然数的规律和特点,可以发现运用加法的运算律,是可以大大简化计算,提高计算速度的.因为1+100=2+99=3+98=…=50+51=101,所以将所给算式中各加数经过交换、结合以后,可以很快求出结果.解:1+2+3+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)= =5050.(1)补全例题解题过程;(2)计算a+(a+b)+(a+2b)+(a+3b)+…+(a+99b).【答案】(1)解:101×50(2)解:原式=50×(2a+99b)=100a+4950b.【解析】【分析】(1)根据算式可得共有50个101,据此解答即可.(2)仿照(1)利用加法的交换律和结合律进行计算即可.2.某超市在十一长假期间对顾客实行优惠,规定如下:一次性购物优惠办法少于100元不予优惠超过100元但低于500元超过100元部分给予九折优惠超过500元超过500元部分给予八折优惠________元:小明妈妈一次性购300元的衣服,她实际付款________元:如果他们两人合作付款,则能少付________元. (2)小芳奶奶在该超市一次性购物x元生活用品,当x大于或等于500时,她们实际付款________元(用含x的式子表示,写最简结果)(3)如果小芳奶奶两次购物货款合计900元,第一次购物的货款为a元(200<a<300),两次购物小芳奶奶实际付款多少元?(用含a的式子表示)(4)如何能更省钱,请给出一些建议.【答案】(1)190;280;10(2)(0.8x+60)(3)解:100+0.9(a-100)+100+0.9×(500-100)+0.8(900-a-500)=(0.1a+790)元. 答:两次购物小芳奶奶实际付款(0.1a+790)元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第11题图
七年级上数学代数式单元测试
班级 姓名
一、选择题
1.计算-2x 2+3x 2的结果是 ( ) A.-5x 2
B.5x 2
C.-x 2
D.x 2
2.足球每个m 元,篮球每个n 元,桐桐为学校买了4个足球,7个篮球共需要( ) A.(7m+4n)元 B.28mn 元 C.(4m+7n)元
D.11mn 元
3.已知代数式-3x m-1y 3
与y n x n+1
是同类项,那么m,n 的值分别是 ( ) A. n=-3,m=-1
B. n=-3,m=-3
C. n=3,m=5
D. n=2,m=3
4.下列各组代数式中,是同类项的是( )
A .5x 2
y 与
15xy B .-5x 2y 与15yx 2 C .5ax 2与15
yx 2 D .83与x 3
5.下列式子合并同类项正确的是 ( )
A .3x +5y =8xy
B .3y 2-y 2
=3
C .15ab -15ba =0
D .7x 3-6x 2
=x 6.同时含有字母a 、b 、c 且系数为1的五次单项式有( )
A .1个
B .3个
C .6个
D .9个 7.右图中表示阴影部分面积的代数式是 ( ) A .ab +bc B .c(b -d)+d(a -c) C .ad +c(b -d) D .ab -cd
8.圆柱底面半径为3 cm ,高为2 cm ,则它的体积为( )
A .97π cm 2
B .18π cm 2
C .3π cm 2
D .18π2 cm 2
9.下面选项中符合代数式书写要求的是( )
A .213
cb 2
a
B .ay·3
C .24
a b
D .a×b+c
10.已知,a b 两数在数轴上的位置如图所示,则化简代数式12a b a b +--++的结果 是( )
A.1
B.23b +
C.23a -
D.-1
11.在排成每行七天的月历表中取下一个33⨯方块(如
图所示).若所有日期数之和为189,则n 的值为( ) A.21
B.11
C.15
D.9
12. 下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中
一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共
有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为( )
A.21
B.24
C.27
D.30 二、填空题
13.体育委员带了500元钱去买体育用品,已知一个足球a 元,一个篮球b 元,则代数式500-3a-2b 表示的意义为 。

14.已知当x=1时,2ax 2
+bx 的值为3,则当x=2时,ax 2
+bx 的值为 。

15.若关于x 的多项式3x 3
+2x 2
-mx 2
+5x-1与多项式3x 3
+nx+3x-1相等,则m n
= 。

16.a 是某数的十位数字,b 是它的个位数字,则这个数可表示为_______.
17.若A =x 2-3x -6,B =2x 2
-4x +6,则3A -2B =_______
18.单项式5.2×105a 3
bc 4
的次数是_______,单项式-
23
πa 2
b 的系数是_______. 19.代数式x 2-x 与代数式A 的和为-x 2
-x +1,则代数式A =_______.
20.已知21×2=21+2,32×3=32+3,43×4=43+4,…,若a b ×10=a
b
+10(a 、b 都是正整数),
则a +b 的值是_______.
21.当
时,代数式13
++qx px 的值为 2 005,则当时,代数式13
++qx px 的值为
__________.
22.已知甲、乙两种糖果的单价分别是x 元/千克和12元/千克.为了使甲、乙两种糖果分别销售与把它们混合成什锦糖后再销售的收入保持不变,则由20千克甲种糖果和y 千克乙种糖果混合而成的什锦糖的单价应是 元/千克.
三、解答题
23.合并同类项.
(1)5(2x -7y)-3(4x -10y); (2) (5a -3b)-3(a 2
-2b);
(3)3(3a 2-2ab)-2(4a 2
-ab) (4) 2x -[2(x +3y)-3(x -2y)] 24.化简并求值. (1)
,其中


(2),其中.
25.用同样大小的黑色棋子按如图所示的规律摆放:
(1)第5个图形有多少颗黑色棋子?
(2)第几个图形有2016颗黑色棋子?请说明理由.
26.有这样一道计算题:“计算(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)的值,其中x
=1
2
,y=-1”,甲同学把x=
1
2
看错成x=-
1
2
,但计算结果仍正确,你说是怎么一回事?
27.某市出租车收费标准:3 km以内(含3 km)起步价为8元,超过3 km后每1 km加收1.8元.(1)若小明坐出租车行驶了6 km,则他应付多少元车费?
(2)如果用s表示出租车行驶的路程,m表示出租车应收的车费,请你表示出s与m之间的数量关系(s>3).
28.一种蔬菜x千克,不加工直接出售每千克可卖y元;如果经过加工质量减少了20%,价格增加了40%,问:(1)x千克这种蔬菜加工后可卖多少钱?
(2)如果这种蔬菜有1 000千克,不加工直接出售每千克可卖1.50元,加工后原1 000千克这种蔬菜可卖多少钱?比不加工多卖多少钱?
29、观察图,解答下列问题.(本题10分)
(1)图中的小圆圈被折线隔开分成六层,第一层有1个小圆圈,第二层有3个圆圈,第三层有5个圆圈,……,第六层有11个圆圈.如果要你继续画下去,那么第八层有几个小圆圈?第n层呢?
(2)某一层上有65个圆圈,这是第几层?
(3)数图中的圆圈个数可以有多种不同的方法.
比如:前两层的圆圈个数和为(1+3)或22,
由此得,1 + 3 = 22.
同样,
由前三层的圆圈个数和得:1 + 3 + 5 = 32.
由前四层的圆圈个数和得:1 + 3 + 5 + 7 = 42.
由前五层的圆圈个数和得:1 + 3 + 5 + 7 + 9 = 52.
……
根据上述请你猜测,从1开始的n个连续奇数之和是多少?用公式把它表示出来.
(4)计算:1 + 3 + 5 + … + 99的和;
(5)计算:101 + 103 + 105 + … + 199的和.
参考答案
一、选择题
1.D 2.C 3.C 4.B 5.C 6.C 7.C 8.B 9.C 10.B 11.A 12.B 二、填空题
13.因为买一个足球a 元,一个篮球b 元.所以3a 表示体育委员买了3个足球,2b 表示体育委员买了2个篮球,所以代数式500-3a-2b 表示体育委员买了3个足球、2个篮球后剩余的钱. 14.:6 15.4 16.10a +b 17.-x 2
-x -30 18.8;-
23
π 19.-2x 2
+1 20.19 21.-2003 22.
y
y
x ++201220
三、解答题23.(1)-2x -5y (2)-3a 2
+5a +3b (3)a 2
-4ab (4)3x -12y 24.解:(1)对原式去括号、合并同类项,
得()()2233214632181--++=----=--x y x y x y x y x y . 将2,0.5==-x y 代入得
.
(2)对原式去括号、合并同类项,
得()
()()2
2
2
2
3422234222⎡⎤--+-+=-++-+⎣⎦a ab a a ab a ab a a ab
222344424=-++--=--a ab a a ab a a .
将2=-a 代入得22
242(2)4(2)2480--=-⨯--⨯-=-⨯+=a a . 25.(1)第5个图形有18颗黑色棋子. (2)
=671,所以第671个图形有2016颗黑色棋子.
26.原式=-2y 3
,与x 无关
27.(1)他应付13.4•元车费 (2)m =1.8s +2.6 28.解:(1)千克这种蔬菜加工后质量为千克,价格为
元.
故千克这种蔬菜加工后可卖
(元).
(2)加工后可卖1.12×1 000×1.5=1 680(元),
(元),
比不加工多卖180元.
29、(1)15、2n -1(2)33(3)n 2
、1+3+5+… +(2n -1)= n 2
(4)2500 (5)7500。

相关文档
最新文档