【精选】七年级数学代数式单元测试卷附答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学代数式解答题压轴题精选(难)

1.某超市在十一长假期间对顾客实行优惠,规定如下:

________元:小明妈妈一次性购300元的衣服,她实际付款________元:如果他们两人合作付款,则能少付________元. (2)小芳奶奶在该超市一次性购物x元生活用品,当x大于或等于500时,她们实际付款________元(用含x的式子表示,写最简结果)

(3)如果小芳奶奶两次购物货款合计900元,第一次购物的货款为a元(200<a<300),两次购物小芳奶奶实际付款多少元?(用含a的式子表示)

(4)如何能更省钱,请给出一些建议.

【答案】(1)190;280;10

(2)(0.8x+60)

(3)解:100+0.9(a-100)+100+0.9×(500-100)+0.8(900-a-500)=(0.1a+790)元. 答:两次购物小芳奶奶实际付款(0.1a+790)元。

(4)解:一次性购物能更省钱。

【解析】【解答】(1)解:小明的爷爷一次性购200元的保健食品,他实际付款100+0.9×(200-100)=190元:小明妈妈一次性购300元的衣服,她实际付款100+0.9×(300-100)=280元:如果他们两人合作付款,则能少付190+280-[100+0.9×(200+300-100)]=10元.

故答案为:190;280;10

( 2 )解:小芳奶奶在该超市一次性购物x元生活用品,当x大于或等于500时,她们实际付款100+360+0.8(x-500)=(0.8x+60)元.

故答案为:(0.8x+60)

【分析】(1)根据优惠办法"少于100元不予优惠,超过100元但低于500元,超过100元部分给予九折优惠"可球得实际付款;

(2)由"少于100元不予优惠,超过100元但低于500元,超过100元部分给予九折优惠,超过500元的,超过500元部分给予八折优惠"可列出代数式;

(3)分别求出两次购物小芳奶奶实际付款的钱数,相加即可求解;

(4)通过计算可知一次性购物能更省钱.

2.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.

(1)求前4个台阶上数的和是多少?

(2)求第5个台阶上的数是多少?

(3)应用求从下到上前31个台阶上数的和.

发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.

【答案】(1)解:由题意得前4个台阶上数的和是-5-2+1+9=3

(2)解:由题意得-2+1+9+x=3,

解得:x=-5,

则第5个台阶上的数x是-5

(3)解:应用:由题意知台阶上的数字是每4个一循环,

∵31÷4=7…3,

∴7×3+1-2-5=15,

即从下到上前31个台阶上数的和为15;

发现:数“1”所在的台阶数为4k-1

【解析】【分析】(1)由台阶上的数求出台阶上数的和即可;(2)根据题意和(1)的值,求出第5个台阶上的数x的值;(3)根据题意知台阶上的数字是每4个一循环,得到从下到上前31个台阶上数的和,得到数“1”所在的台阶数为4k-1.

3.用正方形硬纸板做三棱柱盒子,每个盒子的侧面为长方形,底面为等边三角形.

(1)每个盒子需________个长方形,________个等边三角形;

(2)硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).

现有相同规格的 19 张正方形硬纸板,其中的 x 张按方法一裁剪,剩余的按方法二裁剪.

①用含 x 的代数式分别表示裁剪出的侧面个数,底面个数;

②若裁剪出的侧面和底面恰好全部用完,求能做多少个盒子.

【答案】(1)3;2

(2)解:①∵裁剪x张时用方法一,

∴裁剪(19−x)张时用方法二,

∴侧面的个数为:6x+4(19−x)=(2x+76)个,

底面的个数为:5(19−x)=(95−5x)个;

②由题意,得

解得:x=7,

经检验,x=7是原分式方程的解,

∴盒子的个数为:

答:裁剪出的侧面和底面恰好全部用完,能做30个盒子.

【解析】【解答】(1)由图可知每个三棱柱盒子需3个长方形,2个等边三角形;

故答案为3,2.

【分析】(1)由图可知两个底面是等边三角形,侧面是长方形,所以需要2个等边三角形和3个长方形。

(2)①由题意知裁剪x张用方法一,则(19-x)张用方法二,再根据方法一二所得的侧面数与底面数列代数式。②根据每个三棱柱的底面数目与侧面数目的比列方程,求解x,由此计算出侧面总个数,即可求得盒子的个数。

4.阅读:将代数式x2+2x+3转化为(x+m)2+k的形式(其中m,k为常数),则x2+2x+3=x2+2x+1﹣1+3=(x+1)2+2,其中m=1,k=2.

(1)仿照此法将代数式x2+6x+15化为(x+m)2+k的形式,并指出m,k的值.

(2)若代数式x2﹣6x+a可化为(x﹣b)2﹣1的形式,求b﹣a的值.

【答案】(1)解:∵ x2+6x+15=x2+6x+32+6=(x+3)2+6,

∴m=3.k=6;

(2)解:∵x2﹣6x+a=x2﹣6x+9﹣9+a=(x﹣3)2+a﹣9=(x﹣b)2﹣1,

∴b=3,a﹣9=﹣1,即a=8,b=3,

∴b﹣a=﹣5.

【解析】【分析】(1)根据完全平方公式的结构,按照要求x2+6x+15=x2+6x+32+6=(x+3)2+6,可知m=3.k=6,从而得出答案.

(2)根据完全平方公式的结构,按照要求x2-6x+a=x2-6x+9-9+a=(x-3)2+a-9=(x-b)2-1,即可知b=3,a-9=-1,然后将求得的a、b的值代入b-a,并求值即可.注意完全平方公式:(a±b)2=a2±2ab+b2

5.将连续的偶数2,4,6,8……,排成如下表:

相关文档
最新文档