中考数学规律探究题
2023中考数学真题汇编29 规律探究题(含答案与解析)
![2023中考数学真题汇编29 规律探究题(含答案与解析)](https://img.taocdn.com/s3/m/45cc6445cd1755270722192e453610661ed95a22.png)
2023中考数学真题汇编·29规律探究题一、单选题1.(2023·重庆)用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,……,按此规律排列下去,则第⑧个图案用的木棍根数是()A .39B .44C .49D .542.(2023·重庆)用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为()A .14B .20C .23D .263.(2023·湖南常德)观察下边的数表(横排为行,竖排为列),按数表中的规律,分数202023若排在第a 行b 列,则a b 的值为()11122113223114233241……A .2003B .2004C .2022D .20234.(2023·云南)按一定规律排列的单项式:2345,a ,第n 个单项式是()AB 1n C nD 1n5.(2023·四川内江)对于正数x ,规定2()1x f x x ,例如:224(2)213f,1212212312f,233(3)312f ,1211313213f,计算:11111(1)1011009932f f f f f f(2)(3)(99)(100)(101)f f f f f ()A .199B .200C .201D .2026.(2023·山东)已知一列均不为1的数123n a a a a ,,,,满足如下关系:1223121111a a a a a a ,,34131111nn na a a a a a,,,若12a ,则2023a 的值是()A .12B .13C .3D .27.(2023·四川达州)如图,四边形ABCD 是边长为12的正方形,曲线11112DA B C D A 是由多段90 的圆心角的圆心为C ,半径为1CB ; 11C D 的圆心为D ,半径为 11111111,DC DA A B B C C D、、、的圆心依次为A B C D 、、、循环,则 20232023A B 的长是()A .40452B .2023C .20234D .20228.(2023·山东烟台)如图,在直角坐标系中,每个网格小正方形的边长均为1个单位长度,以点P 为位似中心作正方形123PA A A ,正方形456,PA A A ,按此规律作下去,所作正方形的顶点均在格点上,其中正方形123PA A A 的顶点坐标分别为 123,0,2,1,1,0P A A , 32,1A ,则顶点100A 的坐标为()A .31.34B .31,34C . 32,35D .32,09.(2023·山东日照)数学家高斯推动了数学科学的发展,被数学界誉为“数学王子”,据传,他在计算1234100 时,用到了一种方法,将首尾两个数相加,进而得到100(1100)12341002.人们借助于这样的方法,得到(1)12342n n n (n 是正整数).有下列问题,如图,在平面直角坐标系中的一系列格点 ,i i i A x y ,其中1,2,3,,,i n ,且,i i x y 是整数.记n n n a x y ,如1(0,0)A ,即120,(1,0)a A ,即231,(1,1)a A ,即30,a ,以此类推.则下列结论正确的是()A .202340aB .202443a C .2(21)26n a n D .2(21)24n a n 二、填空题10.(2023·四川成都)定义:如果一个正整数能表示为两个正整数m ,n 的平方差,且1m n ,则称这个正整数为“智慧优数”.例如,221653 ,16就是一个智慧优数,可以利用22()()m n m n m n 进行研究.若将智慧优数从小到大排列,则第3个智慧优数是;第23个智慧优数是.11.(2023·湖南岳阳)观察下列式子:21110 ;22221 ;23332 ;24443 ;25554 ;…依此规律,则第n (n 为正整数)个等式是.12.(2023·湖北随州)某天老师给同学们出了一道趣味数学题:设有编号为1-100的100盏灯,分别对应着编号为1-100的100个开关,灯分为“亮”和“不亮”两种状态,每按一次开关改变一次相对应编号的灯的状态,所有灯的初始状态为“不亮”.现有100个人,第1个人把所有编号是1的整数倍的开关按一次,第2个人把所有编号是2的整数倍的开关按一次,第3个人把所有编号是3的整数倍的开关按一次,……,第100个人把所有编号是100的整数倍的开关按一次.问最终状态为“亮”的灯共有多少盏?几位同学对该问题展开了讨论:甲:应分析每个开关被按的次数找出规律:乙:1号开关只被第1个人按了1次,2号开关被第1个人和第2个人共按了2次,3号开关被第1个人和第3个人共按了2次,……丙:只有按了奇数次的开关所对应的灯最终是“亮”的状态.根据以上同学的思维过程,可以得出最终状态为“亮”的灯共有盏.13.(2023·湖北恩施)观察下列两行数,探究第②行数与第①行数的关系:2 ,4,8 ,16,32 ,64,……①0,7,4 ,21,26 ,71,……②根据你的发现,完成填空:第①行数的第10个数为;取每行数的第2023个数,则这两个数的和为.14.(2023·黑龙江绥化)在求123100 的值时,发现:1100101 ,299101 ,从而得到123100 101505050 .按此方法可解决下面问题.图(1)有1个三角形,记作11a ;分别连接这个三角形三边中点得到图(2),有5个三角形,记作25a ;再分别连接图(2)中间的小三角形三边中点得到图(3),有9个三角形,记作39a ;按此方法继续下去,则123n a a a a.(结果用含n 的代数式表示)15.(2023·湖北十堰)用火柴棍拼成如下图案,其中第①个图案由4个小等边三角形围成1个小菱形,第②个图案由6个小等边三角形围成2个小菱形,……,若按此规律拼下去,则第n 个图案需要火柴棍的根数为(用含n 的式子表示).16.(2023·山西)如图是一组有规律的图案,它由若干个大小相同的圆片组成.第1个图案中有4个白色圆片,第2个图案中有6个白色圆片,第3个图案中有8个白色圆片,第4个图案中有10个白色圆片,…依此规律,第n 个图案中有个白色圆片(用含n 的代数式表示)17.(2023·四川遂宁)烷烃是一类由碳、氢元素组成的有机化合物,在生产生活中可作为燃料、润滑剂等原料,也可用于动、植物的养护.通常用碳原子的个数命名为甲烷、乙烷、丙烷、……、癸烷(当碳原子数目超过10个时即用汉文数字表示,如十一烷、十二烷……)等,甲烷的化学式为4CH ,乙烷的化学式为26C H ,丙烷的化学式为38C H ……,其分子结构模型如图所示,按照此规律,十二烷的化学式为.18.(2023·湖南怀化)在平面直角坐标系中,AOB 为等边三角形,点A 的坐标为 1,0.把AOB 按如图所示的方式放置,并将AOB 进行变换:第一次变换将AOB 绕着原点O 顺时针旋转60 ,同时边长扩大为AOB 边长的2倍,得到11A OB △;第二次旋转将11A OB △绕着原点O 顺时针旋转60 ,同时边长扩大为11A OB △,边长的2倍,得到22A OB △,….依次类推,得到20332033A OB ,则20232033A OB △的边长为,点2023A 的坐标为.19.(2023·山东枣庄)如图,在反比例函数8(0)y x x的图象上有1232024,,,P P P P 等点,它们的横坐标依次为1,2,3,…,2024,分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为1232023,,,,S S S S ,则1232023S S S S.20.(2023·湖南张家界)如图,在平面直角坐标系中,四边形ABOC 是正方形,点A 的坐标为(1,1), 1AA 是以点B 为圆心,BA 为半径的圆弧; 12A A 是以点O 为圆心,1OA 为半径的圆弧, 23A A 是以点C 为圆心,2CA 为半径的圆弧, 34A A 是以点A 为圆心,3AA 为半径的圆弧,继续以点B ,O ,C ,A 为圆心按上述作法得到的曲线12345AA A A A A称为正方形的“渐开线”,则点2023A 的坐标是.21.(2023·山东东营)如图,在平面直角坐标系中,直线l :y x 轴交于点1A ,以1OA 为边作正方形111A B C O 点1C 在y 轴上,延长11C B 交直线l 于点2A ,以12C A 为边作正方形2221A B C C ,点2C 在y 轴上,以同样的方式依次作正方形3332A B C C ,…,正方形2023202320232022A B C C ,则点2023B 的横坐标是.22.(2023·山东泰安)已知,12345678,,,OA A A A A A A A △△△都是边长为2的等边三角形,按下图所示摆放.点235,,,A A A 都在x 轴正半轴上,且2356891A A A A A A ,则点2023A 的坐标是.23.(2023·四川广安)在平面直角坐标系中,点1234A A A A 、、、在x 轴的正半轴上,点123B B B 、、在直线 03y x x上,若点1A 的坐标为 2,0,且112223334A B A A B A A B A △、△、△均为等边三角形.则点2023B 的纵坐标为.24.(2023·黑龙江)如图,在平面直角坐标系中,ABC 的顶点A 在直线1:3l y x上,顶点B 在x 轴上,AB 垂直x轴,且OB 顶点C 在直线2:l y 上,2BC l ;过点A 作直线2l 的垂线,垂足为1C ,交x 轴于1B ,过点1B 作11A B 垂直x 轴,交1l 于点1A ,连接11A C ,得到第一个111A B C △;过点1A 作直线2l 的垂线,垂足为2C ,交x 轴于2B ,过点2B 作22A B 垂直x 轴,交1l 于点2A ,连接22A C ,得到第二个222A B C △;如此下去,……,则202320232023A B C 的面积是.25.(2023·山东聊城)如图,图中数字是从1开始按箭头方向排列的有序数阵.从3开始,把位于同一列且在拐角处的两个数字提取出来组成有序数对: 3,5; 7,10; 13,17; 21,26; 31,37…如果单把每个数对中的第一个或第二个数字按顺序排列起来研究,就会发现其中的规律.请写出第n 个数对:.【参考答案与解析】1.【答案】B【解析】解:第①个图案用了459根木棍,第②个图案用了45214根木棍,第③个图案用了45319根木棍,第④个图案用了45424根木棍,……,第⑧个图案用的木棍根数是45844根,故选:B.2.【答案】B【解析】解:因为第①个图案中有2个圆圈,2311;第②个图案中有5个圆圈,5321;第③个图案中有8个圆圈,8331;第④个图案中有11个圆圈,11341;…,所以第⑦个图案中圆圈的个数为37120;故选:B.3.【答案】C【解析】观察表中的规律发现,分数的分子是几,则必在第几列;只有第一列的分数,分母与其所在行数一致,故202023在第20列,即20b ;向前递推到第1列时,分数为201912023192042,故分数202023与分数12042在同一行.即在第2042行,则2042a .∴2042202022.a b故选:C.4.【答案】C【解析】解:按一定规律排列的单项式:2345,a ,第n n,故选:C.5.【答案】C【解析】解:2 (1)1,11f∵12441212(2),,(2)2,112323212f f f f122331113(3),(3)2,113232313f f f f…2100200(100)1100101f ,1212100()11001011100f,1(100)()2100f f ,11111(1)(2)(3)(99)(100)(101)1011009932f f f f f f f f f f f 21001 201故选:C .6.【答案】A【解析】解:∵12a ,∴212312a ,3131132a ,411121312a,51132113a,…….;由此可得规律为按2、3 、12 、13四个数字一循环,∵20234505.....3 =,∴2023312a a ;故选A .7.【答案】A【解析】解:由图可知,曲线11112DA B C D A …是由一段段90度的弧组成的,半径每次比前一段弧半径12,112AD AA,111BA BB ,1132CB CC ,112DC DD ,12122AD AA,2221BA BB ,22322CB CC ,2222DC DD , ,1114(1)22n n AD AA n ,14(1)12n n BA BB n ,故 20232023A B 的半径为 202320231420231140452BA BB ,20232023A B 的弧长90404540451802.故选A 8.【答案】A【解析】解:∵ 121A ,, 412A ,, 703A ,, 1014A ,,L ,∴ 323n A n n ,,∵1003342 ,则34n ,∴ 1003134A ,,故选:A .9.【答案】B【解析】解:第1圈有1个点,即1(0,0)A ,这时10a ;第2圈有8个点,即2A 到 91,1A ;第3圈有16个点,即10A 到 252,2A ,;依次类推,第n 圈, 211,1n A n n ;由规律可知:2023A 是在第23圈上,且 202522,22A ,则 202320,22A 即2023202242a ,故A 选项不正确;2024A 是在第23圈上,且 202421,22A ,即2024212243a ,故B 选项正确;第n 圈, 211,1n A n n ,所以2122n a n ,故C 、D 选项不正确;故选B .10.【答案】1545【解析】解:依题意,当3m ,1n ,则第1个一个智慧优数为22318 当4m ,2n ,则第2个智慧优数为224214 当4m ,1n ,则第3个智慧优数为224115 ,当5m ,3n ,则第5个智慧优数为225316 当5m ,2n ,则第6个智慧优数为225221 当5m ,1n ,则第7个智慧优数为225324 ……6m 时有4个智慧优数,同理7m 时有5个,8m 时有6个,12345621第22个智慧优数,当9m 时,7n ,第22个智慧优数为2297814932 ,第23个智慧优数为9,6m n 时,2296813645 ,故答案为:15,45.11.【答案】21n n n n 【解析】解:∵21110 ;22221 ;23332 ;24443 ;25554 ;…∴第n (n 为正整数)个等式是 21n n n n ,故答案为: 21n n n n .12.【答案】 111n n 【解析】解:∵21312 ;22413 ;23514 ;……∴ 2211n n n ,∴ 2111n n n .故答案为: 111n n 13.【答案】10【解析】所有灯的初始状态为“不亮”,按奇数次,则状态为“亮”,按偶数次,则状态为“不亮”;因数的个数为奇数的自然数只有完全平方数,1-100中,完全平方数为1,4,9,16,25,36,49,64,81,100;有10个数,故有10盏灯被按奇数次,为“亮”的状态;故答案为:10.14.【答案】1024202422024【解析】第一行数的规律为(2)n ,∴第①行数的第10个数为10(2)1024 ;第二行数的规律为(2)1n n ,∴第①行数的第2023个数为2023(2) ,第②行数的第2023个数为2023(2)2024 ,∴202422024 ,故答案为:1024;202422024 .15.【答案】22n n /22n n 【解析】解:依题意, 1231,5,9,14143n a a a a n n ,,∴123n a a a a 21432122n n n n n n ,故答案为:22n n .16.【答案】66n /66n【解析】解:当1n 时,有 2114 个三角形;当2n 时,有 2216 个三角形;当3n 时,有 2318 个三角形;第n 个图案有 2122n n 个三角形,每个三角形用三根,故第n 个图案需要火柴棍的根数为66n .故答案为:66n .17.【答案】22n 【解析】解:第1个图案中有4个白色圆片4221 ,第2个图案中有6个白色圆片6222 ,第3个图案中有8个白色圆片8223 ,第4个图案中有10个白色圆片10224 ,,∴第(1)n n 个图案中有 22n 个白色圆片.故答案为: 22n .18.【答案】1226C H 【解析】解:甲烷的化学式为4CH ,乙烷的化学式为26C H ,丙烷的化学式为38C H ……,碳原子的个数为序数,氢原子的个数为碳原子个数的2倍多2个,十二烷的化学式为1226C H ,故答案为:1226C H .19.【答案】20232202220222,2【解析】解:∵AOB 为等边三角形,点A 的坐标为 1,0,∴1OA ,∵每次旋转角度为60 ,∴6次旋转360 ,第一次旋转后,1A 在第四象限,12OA ,第二次旋转后,2A 在第三象限,222OA ,第三次旋转后,3A 在x 轴负半轴,332OA ,第四次旋转后,4A 在第二象限,442OA ,第五次旋转后,5A 在第一象限,552OA ,第六次旋转后,6A 在x 轴正半轴,662OA ,……如此循环,每旋转6次,点A 的对应点又回到x 轴正半轴,∵202363371 ,点2023A 在第四象限,且202320232OA ,如图,过点2023A 作2023A H x 轴于H ,在2023Rt OHA 中,202360HOA ,∴202320232022202320231cos 2cos60222OH OA HOA ,20232022202320232023sin 22A H OA HOA,∴点2023A 的坐标为202220222,2.故答案为:20232,202220222,2.20.【答案】2023253【解析】当1x 时,1P 的纵坐标为8,当2x 时,2P 的纵坐标为4,当3x 时,3P 的纵坐标为83,当4x 时,4P 的纵坐标为2,当5x 时,5P 的纵坐标为85,…则11(84)84S ;2881(4)433S ;3881(2)233S ;481(22558S ; (881)n S n n;1238888888844228335111n nS S S S n n n n ,∴12320238202320242532023S S S S .故答案为:2023253.21.【答案】2023,1 【解析】∵A 点坐标为 1,1,且1A 为A 点绕B 点顺时针旋转90 所得,∴1A 点坐标为 2,0,又∵2A 为1A 点绕O 点顺时针旋转90 所得,∴2A 点坐标为 0.2 ,又∵3A 为2A 点绕C 点顺时针旋转90 所得,∴3A 点坐标为 3,1 ,又∵4A 为3A 点绕A 点顺时针旋转90 所得,∴4A 点坐标为 1,5,由此可得出规律:n A 为绕B 、O 、C 、A 四点作为圆心依次循环顺时针旋转90 ,且半径为1、2、3、 、n ,每次增加1.∵202355053 ,故2023A 为以点C 为圆心,半径为2022的2022A 顺时针旋转90 所得,故2023A 点坐标为 2023,1 .故答案为: 2023,1 .22.【答案】20221【解析】解:当0y ,0 1x ,∴点 11,0A ,∵111A B C O 是正方形,∴11111OA A B OC ,∴点 11,1B ,∴点1B 的横坐标是1,当1y 时,1313x,∴点213A,∵2221A B C C 是正方形,∴2212211A B C C A C ∴点21,233B,即点2B 的横坐标是313,当2y时,2223x,∴点34,2333A,∵3332A B C C 是正方形,∴332332433A B C C A C ,∴点3B 2413,……以此类推,则点2023B 的横坐标是202213故答案为:202231323.【答案】 2023,【解析】解:由图形可得: 2356892,0,3,0,5,0,6,0,8,0,9,0,A A A A A A 如图:过1A 作1A B x 轴,∵12,OA A ∴111cos601,sin 60OB OA A B OA ∴ 1A ,同理: 4774,,,10,,A A A∴3133131,0,3,0,3n n n A n A n A n 31n 为偶数, 3131,n A n 为奇数;∵202336741 ,2023为奇数,∴ 20232023,A .故答案为 2023,.24.【答案】2【解析】解:如图,过点1A 作1A M x轴,交直线 0y x x 于点M ,过点1B 作1B C x 轴于点C,12,0A ∵,12OA ,当2x 时,233y,即1,M A M111tan A M A OM A O 130A OM ,112A B A ∵ 是等边三角形,211121160,A A B A A A B ,11130O O A M B A ,1112A B OA,111sin 6022A B B C ,即点1B的纵坐标为22,同理可得:点2B的纵坐标为223B的纵坐标为324B的纵坐标为42归纳类推得:点n B的纵坐标为22n n (n 为正整数),则点2023B的纵坐标为202322故答案为:225.【答案】2【解析】解:∵OB∴B ,∵AB x 轴,∴点A的横坐标为∵1:3l y x ,∴点A的纵坐标为33 ,∴tan AB AOB OB ∴30AOB ,∵2:l y ,∴设 ,C C C x y,则C C y ,∴tan CCy BOC x ∴60BOC ,∴1cos602OC OB,3sin 602BC OB ∵130AOC BOC AOB ,∴1AOB AOC ,∴OA 平分BOC ,∵12AC l ,AB OB ,∴1263AC AB,∵1AB AC ,OA OA ,∴1Rt Rt OAB OAC ≌,∴1OC OB ,∴11CC OC OC∴12ABC OAB ACC BOCS S S S1112222∵2BC l ,∴90BCO ,∴906030CBO ,∵112B C l ,2BC l ,222B C l ,∴2112B B C C B C ∥∥,∴112230C B O C B O CBO ,∴1122C B O C B O CBO AOB ,∴1AO AB ,112AO A B ,∵AB x 轴,11A B x 轴,∴112OB OB ,1212OB OB ,∵AB x 轴,11A B x 轴,22A B x 轴,∴1122AB A B A B ∥∥,∴11112AB OB A B OB ,22214AB OB A B OB ,∵2112B B C C B C ∥∥,∴11112BC OB B C OB ,22214BC OB B C OB ,∴1111AB BCA B B C ,∵111903060ABC A B C ,∴111ABC A B C ∽△△,同理222ABC A B C ∽,∴1114A B C ABC S S , 22222242A B C ABC ABC S S S ,∴ 2222n n n n n A B C ABC ABC S S S ,∴2023202320232202322A B C S故答案为:226.【答案】221,22n n n n 【解析】解:每个数对的第一个数分别为3,7,13,21,31,…即:121 ,231 ,341 ,451 ,561 ,…则第n 个数对的第一个数为: 2111n n n n ,每个数对的第二个数分别为5,10,17,26,37,…即:221 ;231 ;241 ;251 ;261 …,则第n 个数对的第二个位: 221122n n n ,∴第n 个数对为:221,22n n n n ,故答案为:221,22n n n n .。
中考数学探究规律题型总结6.周期型
![中考数学探究规律题型总结6.周期型](https://img.taocdn.com/s3/m/ba6ddb1ab84ae45c3b358cea.png)
6.周期型1.电子跳蚤游戏盘是如图所示的678ABC AB AC BC ∆===,,,.如果跳蚤开始时在BC 边的0P 处,02BP =.跳蚤第一步从0P 跳到AC 边的1P (第一次落点)处,且10CP CP =;第二步从1P 跳到AB 边的2P (第一次落点)处,且21AP AP =;第三步从2P 跳到BC 边的3P (第三次落点)处,且32BP BP =;……;跳蚤按上述规则一致跳下去,第n 次落点为n P (n 为正整数),则点2007P 与2010P 之间的距离为______.答案:3解析:根据规律:10826CP CP ==-=,12761AP AP ==-=,23615BP BP ==-=, 34853CP CP ==-=,45734AP AP ==-=⋯,由此可得0303633P P CP CP =-=-=,1441413PP AP AP =-=-=, 2552413P P AP AP =-=-=,…∴200720103P P =.故答案为3.2.如图所示,长为4cm ,宽为3cm 的长方形木板在桌面上做无滑动的翻滚(顺时针方向),木板上点A 位置变化为12A A A →→,由1A 翻滚到2A 时被桌面上一小木块挡住,此时长方形木板的边2A C 与桌面成30︒角,则点A 翻滚到2A 位置时所经过的路径总长度为__________cm .答案:7π2解析:由1A A →路径为90π55π1802⋅=,由12A A →路径为60π3π180⋅=,因此由12A A A →→总路径为7π2.故答案为:7π2.3.如图,正方形ABCD 边长为2cm ,动点P 从A 点出发,沿正方形的边按逆时针方向运动,当它的运动路程为2013cm 时,线段PA 的长为n 的形式,则n =_____cm ;当点P 第n 次(n 为正整数)到达点D 时,点P 的运动路程为____cm(用含n 的代数式表示).答案:5;8n-2,-2+8n 解析:先求出正方形的周长,∵边长为2cm . ∴周长为428cm cm ⨯=.再用2013除以8得到201382515÷=L .即此时点P 已经从A 点运动了5cm . 所以点P 的位置在CD 的中点,如图则根据勾股定理225PA AD DP =+=.当点P 第1次到达D 点时,P 的运动路程为8126⨯-=; 当点P 第2次到达D 点时,P 的运动路程为82214⨯-=; 当点P 第3次到达D 点时,P 的运动路程为83222⨯-=; 以此类推,当点P 第n 次到达D 点时,P 的运动路程为82n -.4.如图,菱形ABCD 中,2AB =,60C∠=︒,我们把菱形ABCD 的对称中心O 称作菱形的中心.菱形ABCD 在直线l 上向右作无滑动的 翻滚,每绕着一个顶点旋转60︒叫一次操作,则经过3n (n 为正整数) 次这样的操作菱形中心O 所经过的路径总长为( )解析:∵菱形ABCD 中,2AB =,60C ∠=︒,∴ABD △是等边三角形,1BO DO ==,223AO AB BO =-=,第一次旋转的弧长60π33π1803⨯==,∴第一、二次旋转的弧长和60π360π323π1801803⨯⨯=+=,第三次旋转的弧长为:60π11π1803⨯=,故经过3n (n 为正整数)次这样的操作菱形中心O所经过的路径总长为:231(π+π)33n ⨯231π3n +=. 故答案为:3π3,231π3n +.5.观察下列等式:123456733393273813243372932187======⋯=,,,,,, 解答下列问题:234201333333+++⋯+ 的末位数字是()解析:∵133= ,239= ,3327= ,4381= ,53243= ,63729= ,732187= …∴末尾数,每4个一循环, ∵201345031÷=⋯ , ∴234201333333+++⋯+的末位数字相当于:37913++++⋯+的末尾数为36.如图,动点P 从()03,出发,沿所示的方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P 第2013 次碰到矩形的边时,点P 的坐标为( )A .()14, B .()50,C .()64,D .()83,答案:D 解析:如下图,动点()03P,沿所示的方向运动,满足反弹时反射角等于入射角, 到①时,点()30P ,;到②时,点()74P , ;到③时, 点()83P,;到④时,点()50P , ;到⑤时,点()14P , ; 到⑥时,点()30P,,此时回到出发点,继续......., 出现每5 次一循环碰到矩形的边.因为201340253(201354023)=⨯+÷=…… . 所以点P 第2013 次碰到矩形的边时,点P 的坐标为()83,. 故选D .7.我们知道,一元二次方程21x=-没有实数根,即不存在一个实数的平方等于1- ,若我们规定一个新数“”,使其满足21i=- (即方程2-1x =有一个根为),并且进一步规定: 一切实数可以与新数进行四则运算,且原有的运算律和运算法则仍然成立,于是有2i i =,21i =-,321i i i i i =⋅=-⋅=- ,422()1i i == 那么, 23420122013i i i i i i ++++++……的值为( )A .0B .1C .1-D .i答案:D 解析:由于234110i ii i i i +++=--+=,而2013=4503+1⨯,23420122013=i i i i i i i ++++++…… .8.如图,在直角坐标系中,已知点(3,0)A - 、()04B,,对OAB △ 连续作旋转变换,依次得到1△ 、2△、3△、4△…,则2013△的直角顶点的坐标为(______,______).答案:8052;0解析:∵(3,0)A - 、()04B ,, ∴223+4=5AB =,由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:45312++= ,∵20133671÷=,∴2013△的直角顶点是第671个循环组的最后一个三角形的直角顶点, ∵671128052⨯= ,∴2013△的直角顶点的坐标为()80520,.9.根据如图中箭头的指向规律,从2013到2014再到2015 ,箭头的方向是以下图示中的( )选项:A .B .C .D .答案:D解析:由图可知,每4个数为一个循环组依次循环,201345031÷=⋯ ,∴2013是第504个循环组的第2个数,∴从2013到2014再到2015,箭头的方向是.故选D .10.有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90︒ 算一次,则滚动第2014 次后,骰子朝下一面的点数是______.答案:3解析:观察图象知道点数三和点数四相对,点数二和点数五相对且四次一循环, ∵201445032÷=⋯ ,∴滚动第2014次后与第二次相同, ∴朝下的点数为3 ,11.一列数123,,,n a a a a ⋯ ,其中11a =- ,2111a a =-,3211a a =-,…,111n n a a -=-,则1232004a a a a +++⋯+= ______. 答案: 1002 解析:11a =-,2111=12a a =-,32211a a =-=,43111a a ==--,…,由此可以看出三个数字一循环,20043668÷= , 则12320041668(12)10022a a a a +++⋯+=⨯-++= .12.如图,弹性小球从点()0,3P出发,沿所示方向运动,每当小球碰到矩形OABC 的边时反弹,反弹时反射角等于入射角,当小球第1 次碰到矩形的边时的点为1P ,第2次碰到矩形的边时的点为2P ,…,第n 次碰到矩形的边时的点为n P ,则点3P 的坐标是___,点2014P 的坐标是___.答案:8;3;5;0 解析:如图,经过6次反弹后动点回到出发点()0,3 ,当点P 第3次碰到矩形的边时,点P 的坐标为:()8,3 ;∵201463354÷=⋯ ,∴当点P 第2014次碰到矩形的边时为第336个循环组的第4次反弹, 点P 的坐标为()5,0 .13.在平面直角坐标系中,正方形ABCD 的顶点分别为(11)A ,、(11)B -,、(11)C --,、(11)D -,,y 轴上有一点P ()2,0,作点P 关于点A 的对称点1P ,作1P 关于点B 的对称点2P ,作点2P 关于点C 的对称点3P ,作3P 关于点D 的对称点4P ,作点4P 关于点A 的对称点5P ,作5P 关于点B 的对称点6P ⋅⋅⋅,按如此操作下去,则点2011P 的坐标为( ).A .(02),B .(20),C .(02)-, D .(20)-,答案:D解析:找出规律,1P 20(,)202P -(,),320P (-,),4P (02),,……,4(02)n P ,,41n P +20(,),42n P +02-(,),43n P +20(-,).而2011除以4余3,所以点2011P 的坐标与3P 坐标相同,为20(-,).14.观察图中正方形四个顶点所标的数字规律,可知数2011应标在() A 、第502个正方形的左下角B 、第502个正方形的右下角C 、第503个正方形的左上角D 、第503个正方形的右下角答案:C解析:观察发现:正方形的左下角是4的倍数,左上角是4的倍数余3,右下角是4的倍数余1,右上角是4的倍数余2.2011除以4等于余3,所以数2011应标在第503个正方形的左上角.15.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2011个格子中的数为()解析:首先由已知和表求出a 、C 、F ,再观察找出规律求出第2011个格子中的数. 已知其中任意三个相邻格子中所填整数之和都相等, 则,3a Fa F C +=+++,+1abc b c +=+-, 解得1a =-,3C=,按要求排列顺序为,3,1﹣,F ,3,1-,F ,…, 结合已知表得2F=,所以每个小格子中都填入一个整数后排列是:3,1-,2,3,1-,2,…, 其规律是每3个数一个循环.∵20113670÷=余1, ∴第2011个格子中的数为3.故选A .16.一个纸环链,纸环按红黄绿蓝紫的顺序重复排列,截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是()解析:从图中知,该纸链是5的倍数,中间截去的是剩下35n +,从选项中数减3为5的倍数者即为所求.因为20133-被5整除,故选D . 17.若123121111 , 1 , 1 , a a a m a a =-=-=-⋅⋅⋅,则2011a 的值为( ).(用含m 的代数式表示)解析:根据已知条件,找出题中的规律:2111111 1111111m m m a a m m m m--=-=-=-==----,32111 11111a m m a m=-=-=-+=-, 43111 1a a m=-=-.可见,123 , , , a a a ⋅⋅⋅分别以11m -,11m-,m 循环.而2011 除以3 余1 ,从而2011a 的值与1a 相同,为11m-.18.如下图,在平面直角坐标系中,对ABC △ 进行循环往复的轴对称或中心对称变换,若原来点A 坐标是()2n π,,则经过第2011 次变换后所得的A 点坐标是( ).解析:因为变换是循环往复的,补全一个循环;56y ABC ABC −−−−−→∆−−−−−→∆第次第次关于原点对称关于轴对称到第二象限 回到第一象限初始位置因此一个循环要经过6 次变换.而20116335÷= ……余1 ,从而ABC △ 经过第2011 次变换与经过第1 次变换得到的位置相同,即在第四象限.因为原来点A 坐标是(2π,n ),根据坐标关于x 轴对称时,横坐标不变纵坐标改变符号的特点,得到经过第2011次变换后所得的A 点坐标是(2π,n -).19.将1 、2、3、6按如下方式排列.若规定(m n ,)表示第m排从左向右第n 个数,则(54, )与(157, )表示的两数之积是( ).111122663263323第1排第2排第3排第4排第5排解析:54(,) 从右侧可见为2.下面求157(,) 是几:首先看157(,)是整个排列的第几个数,从排列方式看第1 排1 个数,第2 排2 个数,…… 第m 排m 个数,所以前14 排一共的数目是1214⋯⋯+++(114)(213)(78)⋯⋯=++++++715⨯=105= ,因此(157, )是第1057112+=个数.第二看第112 个数是哪个数,因为1 、2、3、6四个数循环,而1124÷ 商余0 ,所以(157,)为6.则(54, )与(157, )表示的两数之积是4(5,0)P .20.如图物体从点A 出发,按照A B →(第1步)y (第2步)a E →F G A B →→→→→L的顺序循环运动,则第2011 步到达 点处;答案:D解析:根据循环运动的规律,8步一个循环.而2011 除以8 余3 ,故第2011步到达点D 处.21.如图,将若干个正三角形、正方形和圆按一定规律从左向右排列,那么第2014个图形是______.答案:正方形.解析:由图形看出去掉开头的两个三角形,剩下的由三个正方形,一个三角形,两个圆6个图形为一组,不断循环出现,()2014263352-÷=⋯,所以第2014 个图形是与循环的第二个图形相同是正方形.22.将正方体骰子(相对面上的点数分别为1和6、2和5、3和 4)放置于水平桌面上,如图①.在图②中,将骰子向右翻滚90︒,然后在桌面上按逆时针方向旋转90︒,则完成一次变换.若骰子的初始位置为图①所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是()解析:不难看出经过一次变换后正面朝上的点数是5,经过第二次变换后正面朝上的6点数是,经过第三次变换后正面朝上的点数是3,又回到了起始位置,则三个变换一循环,10次变换即相当于第一次变换的结果故选B.23.如图,圆圈内分别标有0,1,3,…,11这12个数字,电子跳骚每跳一次,可以从一个圆圈跳到相邻的圆圈,现在,一只电子跳骚从标有数字“0”的圆圈开始,按逆时针方向跳了2010次后,落在一个圆圈中,该圆圈所标的数字是______.答案:6解析:根据题意可知是0,1,3121⨯-=,3,4,…,11即12个数是一个循环.因为2010除12余数为6.故该圆圈所标的数字是3224⨯-=.故答案为:6.24.如图,在平面直角坐标系中,以原点O 为圆心的同心圆半径由内向外依次为1,2,3,4,…,同心圆与直线y x =和y x =-分别交于1A ,2A ,3A ,4A ,…,则点31A 的坐标是( ).解析:本题考查了解直角三角形,一次函数等知识点的应用,解此题的关键是确定出31A 的位置.根据31473÷=⋯,得出31A 在直线y x =上,在第三象限,且在第8个圆上,求出318OA =,通过解直角三角形即可求出答案.25.如图,菱形ABCD 中,260AB C=∠=︒,,我们把菱形22AB AP BP PC=+⋅的对称中心称作菱形的中心.菱形ABCD 在直线l 上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过3n (n 为正整数)次这样的操作菱形中心O 所经过的路径总长为 ( )解析:从图中可以看出,第一次旋转是以点A 为圆心,那么菱形中心旋转的半径就是OA ,解直角三角形可求出OA 的长,圆心角是60度.第二次还是以点A 为圆心,那么菱形中心旋转的半径就是OA ,圆心角是60度.第三次就是以点B 为旋转中心,OB 为半径,旋转的圆心角为60度.旋转到此菱形就又回到了原图.故这样旋转18次,就是这样的6个弧长的总长,依此计算即可得,进而得出经过3n (n 为正整数)次这样的操作菱形中心O 所经过的路径总长.26.如图,ABC ∆中,2AB AC == ,若P 为BC 的中点,则2AP BP PC +⋅的值为______;若BC边上有100个不同的点1P ,2P ,…,100P ,记2i i i im AP BP PC =+⋅(1i =,2,…,100),则12m m ++…100m +的值为______.答案:4;400解析:当P 在BC 的中点时,可以得到直角三角形,利用勾股定理证明22AB AP BP PC =+⋅即可;第二个空可作AD BC ⊥于D .根据勾股定理,得22222()i i i AP AD DP AD BD BP =+=+-,从而求得22iM AD BD =+,即可求解.27.如图所示,圆圈内分别标有1,2,…,12,这12个数字,电子跳蚤每跳一步,可以从一个圆圈逆时针跳到相邻的圆圈,若电子跳蚤所在圆圈的数字为n ,则电子跳蚤连续跳(3-2n )步作为一次跳跃,例如:电子跳蚤从标有数字1的圆圈需跳3121⨯-=步到标有数字2的圆圈内,完成一次跳跃,第二次则要连续跳3224⨯-=步到达标有数字6的圆圈,…依此规律,若电子跳蚤从①开始,那么第3次能跳到的圆圈内所标的数字为______;第2012次电子跳蚤能跳到的圆圈内所标的数字为______.答案:10;6解析:第一次跳到数字2,第二次跳到数字6,第三次跳到数字10,第四次跳到数字2,…然后每三个一循环,用2012除以3,整除为10,余1为2,余2为6即可确定答案.28.在数学校本活动课上,张老师设计了一个游戏,让电动娃娃在边长为1的正方形的四个顶点上依次跳动.规定:从顶点A出发,每跳动一步的长均为1.第一次顺时针方向跳1步到达顶点D,第二次逆时针方向跳2步到达顶点B,第三次顺时针方向跳3步到达顶点C,第四次逆时针方向跳4步到达顶点C,… ,以此类推,跳动第10次到达的顶点是______,跳动第2012次到达的顶点是______.A B D C答案:B;C解析:先根据每跳一次所到达的顶点,找出其中的规律是每八次一个循环,再用10812÷=⋯,即可求出跳动第10次到达的顶点,用201282514÷=⋯,即可求出跳动第2012次到达的顶点.29.观察下列图形的排列规律(其中☆、□、●分别表示五角星、正方形、圆)●□☆●●□☆●□☆●●□☆●…若第一个图形是圆,则第2009个图形是______.答案:五角星解析:根据题意分析可得:圆、正方形、五角星前七个一组,依次循环;且2009除以7没有余数;故第2009个图形是五角星.30.如图,在平面直角坐标系中,一颗棋子从点P处开始跳动,第一次跳到点P关于x轴的对称点1P处,接着跳到点1P关于y轴的对称点2P处,第三次再跳到点2P关于原点的对称点处,…,如此循环下去.当跳动第2009次时,棋子落点处的坐标是(______,______).答案:3;-2解析:首先发现点P 的坐标是32-(,),第一次跳到点P 关于x 轴的对称点1P 处是32--(,),接着跳到点1P 关于y 轴的对称点2P 处是32-(,),第三次再跳到点2P 关于原点的对称点处是32-(,)…,发现3次一循环.又200936692÷=⋯,则落在了(32)-,处.31.如图平面内有公共端点的五条射线,,,,,OA OB OC OD OE 从射线OA 开始,在射线上写出数字1,2,3,4,5; 6,7,8,9,10;….按此规律,则“12”在射线______上;“2011”在射线______上.答案:OC ;OB解析:∵如图所示可知,每隔一个数正好是连续的有理数,∴11在BO 上,∴“12”在射线CO上;∵每5个数一轮,2011÷5=402余数为1,每5轮顶点正好循环一周,402÷5=80余数为2,∴“2011”与第3轮第一个数的位置相同,即与9的位置相同,∴“2011”在射线BO 上.32.在平面直角坐标系xOy 中,矩形OABC 如图放置,动点P 从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P 第2014次碰到矩形的边时,点P 的坐标为(______,______)答案:5;0解析:依题可知,1(3,0)P ,2(7,4)P ,3(8,3)P ,4(5,0)P ,5(1,4)P ,6(0,3)P, 7(3,0)P ,8(7,4)P ,L L,6个一循环,2014=33546L L ,故2014(5,0)P故答案为:(1,4),(5,0).33.如图,矩形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙由点(2,0)A 同时出发,沿矩形BCDE 的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2014次相遇地点的坐标是(_____,_____)答案:-1;1解析:依题可知,甲、乙两物体沿着矩形BCDE 在做环形运动,矩形BCDE 的周长为12,12=41+2秒,每过4秒相遇一次,故第一次在(1,1)-处相遇,第二次在(1,1)--处相遇,第三次在(2,0)处相遇,第四次又在(1,1)-处相遇,故3次一循环,2014=67113L L ,所以第2014次在(1,1)-处相遇. 故答案为:(1,1)-.34.如图,正方形ABCD 的边长为3,点E 、F 分别在边AB 、BC 上,1AE BF ==,小球P 从点E 出发沿直线向点F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当小球P 第一次碰到BC 边时,小球P 所经过的路程为__________;当小球P 第一次碰到AD 边时,小球P 所经过的路程为__________;当小球P 第n (n 为正整数)次碰到点F 时,小球P 所经过的路程为__________.解析:22125EF =+=;3555522EFFM +=+=;画图可知,6次一个循环,一个循环周期,P 所经过的路程为3552(5++)=6522, 当小球P 第n (n 为正整数)次碰到点F 时,小球P 所经过的路程为65(1)56555n n -+=-.故答案为:5,552,6555n -.35.如图,在平面直角坐标系xOy 中,点(10)A ,,(20)B ,, 正六边形ABCDEF 沿x 轴正方向无滑动滚动,当点D 第一次落 在x 轴上时,点D 的横坐标为:_____;在运动过程中,点A 的纵坐标的最大值是______;保持上述运动过程,经过(20143),的正六边形的顶点是_____.解析:因为2014=3356+4⨯, 所以经过(2014,3)的点必然会经过(4,3).图分别是第二次和第三次滚动后的图形, 可以看出经过(4,3)的点有B 、F 两个, 故经过(2014,3)为B 、F 两个点.故答案为:(4,0),2,B 或F .36.将正整数12345,⋅⋅⋅、、、、按以下方式排放:则根据排放规律,从2002到2004的箭头依次为( ) 解析:200250042,=⨯+Q1 2 3 yx O1234A BCDEF 1 2 3 yx O1234A B C D EF21 / 21∴数2002的位置与数2相同,数2003的位置与数3相同,数2004的位置与数4相同, ∴从2002到2004的箭头依次为,.→↓37.如图所示,两个全等菱形的边长为1厘米,一只蚂蚁由A 点开始按ABCDEFCGA 的顺序沿菱形的边循环运动,行走2010厘米后停下,则这只蚂蚁停在( )点.解析:解:∵两个全等菱形的边长为1厘米,∴蚂蚁由A 点开始按ABCDEFCGA 顺序走一圈所走的距离为818⨯=厘米, 201025128=Q L , ∴当蚂蚁走到第251圈后再走2厘米正好到达C 点。
中考数学规律探究题(1)含答案
![中考数学规律探究题(1)含答案](https://img.taocdn.com/s3/m/3f31108883d049649b66582b.png)
中考数学规律探究题(1)1、有一组数:1,2,5,10,17,26,……,请观察这组数的构成规律,用你发现的规律确定第8个数为 .2.一列数:0,1,2,3,6,7,14,15,30,____,_____,____这串数是由小明按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”,第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数应该是下面的( ) A .31,32,64; B .31,62,63; C .31,32,33; D .31,45,463.观察下面的一列数:12 ,-16 ,112 ,-120 ……请你找出其中排列的规律,并按此规律填空,第9个数是_______。
4.观察下列各式:13+12, 13+23=32, 13+23+33=62, 13+23+33+43=102 ……猜想:13+23+33+…+103= . 5.面一组按规律排列的数:1,2,4,8,16,……,第2012个数应是 6.观察一列有规律的数:4,8,16,32,…,它的第2007个数是( )A .2 2007B .2 2007-1C .2 2008D .220067.观察下面的单项式:a ,-2a 2,4a 3,-8a 4,…根据你发现的规律,第8个式子是 . 8.一个叫巴尔末的中学教师成功地从光谱数据95 ,1612 ,2521 ,3632 ,…中得到巴尔末公式,从而打开了光谱奥秘的大门,请你按照这种规律,写出第n (n ≥1)个数据是___________. 9.观察规律并填空:112 ,214 ,318 …,第5个数是 ,第n 个数是 .10.按一定规律排列的一列数依次为23,58,1015,1724,2635…,按此规律排列下去,这列数的第n 个数是(n 是正整数).11.那么,当输入数据是7时,输出的数据是12.观察下面一列分式:3579234,,,,x x x x y y y y--…(其中x ≠0),根据你发现的规律.试写出给定的那列分式中的第7个分式 .13.1766年德国人提丢斯发现,太阳系中的行星到太阳的距离遵循一定的规律,如下表所示:颗行星到太阳的距离是 天文单位.14.观察下列等式:第1行 341=-;第2行 594=-;第3行 7169=-; 第4行 92516=-…按照上述规律,第n 行的等式为 .15.观察下列等式:121=112,12321=1112,1234321=11112,…,那么,12345678987654321=。
中考数学题型归类与解析31---规律探究题(解析版)
![中考数学题型归类与解析31---规律探究题(解析版)](https://img.taocdn.com/s3/m/6cc2bba5ad02de80d5d84078.png)
中考数学题型归类与解析专题31 规律探究题一、单选题1.(2021·湖北鄂州市·中考真题)已知1a 为实数﹐规定运算:2111a a =-,3211a a =-,4311a a =-,5411a a =-,……,111n n a a -=-.按上述方法计算:当13a =时,2021a 的值等于( ) A .23-B .13C .12-D .23【答案】D【分析】当13a =时,计算出23421,,3,32a a a ==-=⋅⋅⋅⋅⋅⋅,会发现呈周期性出现,即可得到2021a 的值. 【解析】解:当13a =时,计算出23421,,3,32a a a ==-=⋅⋅⋅⋅⋅⋅, 会发现是以:213,,32-,循环出现的规律, 202136732=⨯+,2021223a a ∴==, 故选:D .【小结】本题考查了实数运算规律的问题,解题的关键是:通过条件,先计算出部分数的值,从中找到相应的规律,利用其规律来解答.2.(2021·湖北中考真题)将从1开始的连续奇数按如图所示的规律排列,例如,位于第4行第3列的数为27,则位于第32行第13列的数是( )A.2025B.2023C.2021D.2019【答案】B【分析】根据数字的变化关系发现规律第n行,第n列的数据为:2n(n-1)+1,即可得第32行,第32列的数据为:2×32×(32-1)+1=1985,再依次加2,到第32行,第13列的数据,即可.【解析】解:观察数字的变化,发现规律:第n行,第n列的数据为:2n(n-1)+1,∴第32行,第32列的数据为:2×32×(32-1)+1=1985,根据数据的排列规律,第偶数行从右往左的数据一次增加2,∴第32行,第13列的数据为:1985+2×(32-13)=2023,故选:B.【小结】本题考查了数字的变化类,解决本题的关键是观察数字的变化寻找探究规律,利用规律解决问题.3.(2021·山东济宁市·中考真题)按规律排列的一组数据:12,35,□,717,926,1137,…,其中□内应填的数是()A.23B.511C.59D.12【答案】D 【分析】分子为连续奇数,分母为序号的平方1+,根据规律即可得到答案.【解析】观察这排数据发现,分子为连续奇数,分母为序号的平方1+,∴第n 个数据为:2211n n -+当3n =时的分子为5,分母为23110+=∴这个数为51102=故选:D .【小结】本题考查了数字的探索规律,分子和分母分别寻找规律是解题关键.4.(2021·湖北中考真题)根据图中数字的规律,若第n 个图中的143q =,则p 的值为()A .100B .121C .144D .169【答案】B【分析】分别分析n 的规律、p 的规律、q 的规律,再找n 、p 、q 之间的联系即可.【解析】解:根据图中数据可知:1,2,3,4n =,……22221,2,3,4,p =……222221,31,41,51,q =----……则2p n =,2(1)1q n =+-, ∵第n 个图中的143q =,∴2(1)1=143q n =+-,解得:11n =或13n =-(不符合题意,舍去)∴2=121p n =,故选:B .【小结】本题主要考查数字之间规律问题,将题中数据分组讨论是解决本题的关键.5.(2021·山东临沂市·中考真题)实验证实,放射性物质在放出射线后,质量将减少,减少的速度开始较快,后来较慢,实际上,物质所剩的质量与时间成某种函数关系.下图为表示镭的放射规律的函数图象,据此可计算32mg 镭缩减为1mg 所用的时间大约是( )A .4860年B .6480年C .8100年D .9720年【答案】C【分析】根据物质所剩的质量与时间的规律,可得答案.【解析】解:由图可知:1620年时,镭质量缩减为原来的12, 再经过1620年,即当3240年时,镭质量缩减为原来的21142=, 再经过1620×2=3240年,即当4860年时,镭质量缩减为原来的31182=, ...,∴再经过1620×4=6480年,即当8100年时,镭质量缩减为原来的511232=, 此时132132⨯=mg , 故选C .【小结】本题考查了函数图象,规律型问题,利用函数图象的意义是解题关键.6.(2021·四川达州市·中考真题)在平面直角坐标系中,等边AOB ∆如图放置,点A 的坐标为()1,0,每一次将AOB ∆绕着点О逆时针方向旋转60︒,同时每边扩大为原来的2倍,第一次旋转后得到11A OB ∆,第二次旋转后得到22A OB ∆,…,依次类推,则点2021A 的坐标为( )A .()202020202,2-B .()202120212,2C .()202020202,2-D .()201120212,2-【答案】C由题意,点A 每6次绕原点循环一周,利用每边扩大为原来的2倍即可解决问题.【解析】解:由题意,点A 每6次绕原点循环一周,20216371......5÷=,2021A ∴点在第四象限,202120212OA =,202160xOA ∠=︒ ,∴点2020A 的横坐标为20212020122=2⨯,纵坐标为20212020=22, ()2020202020212,2A ∴,故选:C .【小结】本题考查坐标与图形变化-旋转,规律型问题,解题的关键是理解题意,学会探究规律的方法,属于中考常考题型.7.(2021·广西玉林市·中考真题)观察下列树枝分杈的规律图,若第n 个图树枝数用n Y 表示,则94Y Y -=( )A .4152⨯B .4312⨯C .4332⨯D .4632⨯【答案】B【分析】根据题目中的图形,可以写出前几幅图中树枝分杈的数量,从而可以发现树枝分杈的变化规律,进而得到规律21n n Y =-,代入规律求解即可.解:由图可得到:11223344211213217211521n n Y Y Y Y Y =-==-==-==-==-则:9921Y =-,∴944942121312Y Y -=--+=⨯, 故答案选:B .【小结】本题考查图形规律,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题8.(2021·贵州铜仁市·中考真题)观察下列各项:112,124,138,1416,…,则第n 项是______________. 【答案】12n n +【分析】 根据已知可得出规律:第一项:1111122=+,第二项:2112242=+,第三项:3113382=+…即可得出结果.【解析】解:根据题意可知:第一项:1111122=+, 第二项:2112242=+, 第三项:3113382=+, 第四项:41144162=+, …则第n 项是12n n +; 故答案为:12n n +. 【小结】此题属于数字类规律问题,根据已知各项的规律得出结论是解决此类题目的关键.9.(2021·陕西)幻方,最早源于我国,古人称之为纵横图.如图所示的幻方中,各行、各列及各条对角线上的三个数字之和均相等,则图中a 的值为______.【答案】-2【分析】先通过计算第一行数字之和得到各行、各列及各条对角线上的三个数字之和,再利用第二列三个数之和得到a 的值.【解析】解:由表第一行可知,各行、各列及各条对角线上的三个数字之和均为1616--+=-,∴626a -++=-,∴2a =-,故答案为:2-.【小结】本题考查了数字之间的关系,解决本题的关键是读懂题意,正确提取表中数据,找到它们之间的关系等,该题对学生的观察分析能力有一定的要求,同时也考查了学生对有理数的和差计算的基本功. 10.(2021·湖南怀化市·中考真题)观察等式:232222+=-,23422222++=-,2345222222+++=-,……,已知按一定规律排列的一组数:1002,1012,1022,……,1992,若1002=m ,用含m 的代数式表示这组数的和是___________.【答案】2m m -【分析】根据规律将1002,1012,1022,……,1992用含m 的代数式表示,再计算0199222+++的和,即可计算1001011011992222++++的和. 【解析】由题意规律可得:2399100222222++++=-. ∵1002=m∴23991000222222=2m m +++++==, ∵22991001012222222+++++=-,∴10123991002222222=++++++12=2m m m m =+=.102239910010122222222+=++++++224=2m m m m m =++=.1032399100101102222222222=++++++++3248=2m m m m m m =+++=. ……∴1999922m =.故10010110110199992222222m m m ++++=+++. 令012992222S ++++=①12310022222S ++++=② ②-①,得10021S -=∴10010110110199992222222m m m ++++=+++=()100221m m m -=- 故答案为:2m m -.【小结】本题考查规律问题,用含有字母的式子表示数、灵活计算数列的和是解题的关键.11.(2021·江苏扬州市·中考真题)将黑色圆点按如图所示的规律进行排列,图中黑色圆点的个数依次为:1,3,6,10,……,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为___________.【答案】1275【分析】首先得到前n 个图形中每个图形中的黑色圆点的个数,得到第n 个图形中的黑色圆点的个数为()12n n +,再判断其中能被3整除的数,得到每3个数中,都有2个能被3整除,再计算出第33个能被3整除的数所在组,为原数列中第50个数,代入计算即可.【解析】解:第①个图形中的黑色圆点的个数为:1,第②个图形中的黑色圆点的个数为:()1222+⨯=3,第③个图形中的黑色圆点的个数为:()1332+⨯=6,第④个图形中的黑色圆点的个数为:()1442+⨯=10,...第n 个图形中的黑色圆点的个数为()12n n +, 则这列数为1,3,6,10,15,21,28,36,45,55,66,78,91,..., 其中每3个数中,都有2个能被3整除, 33÷2=16...1, 16×3+2=50,则第33个被3整除的数为原数列中第50个数,即50512⨯=1275, 故答案为:1275. 【小结】此题考查了规律型:图形的变化类,关键是通过归纳与总结,得到其中的规律.12.(2021·甘肃武威市·中考真题)一组按规律排列的代数式:2335472,2,2,2a b a b a b a b +-+-,…,则第n 个式子是___________. 【答案】()12112n n n a b +-+-⋅【分析】根据已知的式子可以看出:每个式子的第一项中a 的次数是式子的序号;第二项中b 的次数是序号的2倍减1,而第二项的符号是第奇数项时是正号,第偶数项时是负号. 【解析】解:∵当n 为奇数时,()111n +-=;当n 为偶数时,()111n +-=-,∴第n 个式子是:()1211?2n n n a b +-+-.故答案为:()1211?2n n n a b +-+-【小结】本题考查了多项式的知识点,认真观察式子的规律是解题的关键.13.(2021·江西中考真题)下表在我国宋朝数学家杨辉1261年的著作《详解九章算法》中提到过,因而人们把这个表叫做杨辉三角,请你根据杨辉三角的规律补全下表第四行空缺的数字是______.【答案】3 【分析】通过观察每一个数字等于它上方相邻两数之和. 【解析】解:通过观察杨辉三角发现每一个数字等于它上方相邻两数之和的规律, 例如:第3行中的2,等于它上方两个相邻的数1,1相加, 即:211=+;第4行中的3,等于它上方两个相邻的数2,1相加, 即:321=+;⋅⋅⋅⋅⋅⋅由此规律:故空缺数等于它上方两个相邻的数1,2相加, 即空缺数为:3, 故答案是:3. 【小结】本题考查了杨辉三角数的规律,解题的关键是:通过观察找到数与数之间的关系,从来解决问题. 14.(2021·浙江嘉兴市·中考真题)观察下列等式:22110=-,22321=-,22532=-,…按此规律,则第n 个等式为21n -=__________________. 【答案】()221n n --. 【分析】第一个底数是从1开始连续的自然数的平方,减去从0开始连续的自然数的平方,与从1开始连续的奇数相同,由此规律得出答案即可. 【解析】解:∵22110=-,22321=-, 22532=-,…∴第n 个等式为:()22211n n n -=--故答案是:()221n n --. 【小结】本题考查了数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题的关键.15.(2021·黑龙江中考真题)如图,3条直线两两相交最多有3个交点,4条直线两两相交最多有6个交点,按照这样的规律,则20条直线两两相交最多有______个交点【答案】190【分析】根据题目中的交点个数,找出n条直线相交最多有的交点个数公式:1(1) 2n n-.【解析】解:2条直线相交有1个交点;3条直线相交最多有1123322+==⨯⨯个交点;4条直线相交最多有11236432++==⨯⨯个交点;5条直线相交最多有1123410542+++==⨯⨯个交点;⋯20条直线相交最多有120191902⨯⨯=.故答案为:190.【小结】本题考查的是多条直线相交的交点问题,解答此题的关键是找出规律,即n条直线相交最多有1(1)2n n-.16.(2021·四川中考真题)如图,用火柴棍拼成一个由三角形组成的图形,拼第一个图形共需要3根火柴棍,拼第二个图形共需要5根火柴棍;拼第三个图形共需要7根火柴棍;……照这样拼图,则第n个图形需要___________根火柴棍.【答案】2n+1【分析】分别得到第一个、第二个、第三个图形需要的火柴棍,找到规律,再总结即可.【解析】解:由图可知:拼成第一个图形共需要3根火柴棍,拼成第二个图形共需要3+2=5根火柴棍,拼成第三个图形共需要3+2×2=7根火柴棍,...拼成第n个图形共需要3+2×(n-1)=2n+1根火柴棍,故答案为:2n+1.【小结】此题考查图形的变化规律,找出图形之间的联系,得出运算规律解决问题.17.(2021·四川中考真题)如图都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第___个图形共有210个小球.【答案】20【分析】根据已知图形得出第n 个图形中黑色三角形的个数为1+2+3++n =()12n n +,列一元二次方程求解可得. 【解析】解:∵第1个图形中黑色三角形的个数1, 第2个图形中黑色三角形的个数3=1+2, 第3个图形中黑色三角形的个数6=1+2+3, 第4个图形中黑色三角形的个数10=1+2+3+4, ……∴第n 个图形中黑色三角形的个数为1+2+3+4+5++n =()12n n +,当共有210个小球时,()12102n n +=,解得:20n =或21-(不合题意,舍去), ∴第20个图形共有210个小球. 故答案为:20. 【小结】本题考查了图形的变化规律,解一元二次方程,解题的关键是得出第n 个图形中黑色三角形的个数为1+2+3+……+n .18.(2021·湖南常德市·中考真题)如图中的三个图形都是边长为1的小正方形组成的网格,其中第一个图形有11⨯个正方形,所有线段的和为4,第二个图形有22⨯个小正方形,所有线段的和为12,第三个图形有33⨯个小正方形,所有线段的和为24,按此规律,则第n 个网格所有线段的和为____________.(用含n 的代数式表示)【答案】2n 2+2n 【分析】本题要通过第1、2、3和4个图案找出普遍规律,进而得出第n 个图案的规律为S n =4n +2n ×(n -1),得出结论即可. 【解析】解:观察图形可知:第1个图案由1个小正方形组成,共用的木条根数141221,S =⨯=⨯⨯ 第2个图案由4个小正方形组成,共用的木条根数262232,S =⨯=⨯⨯ 第3个图案由9个小正方形组成,共用的木条根数383243,S =⨯=⨯⨯ 第4个图案由16个小正方形组成,共用的木条根数4104254,S =⨯=⨯⨯ …由此发现规律是:第n 个图案由n 2个小正方形组成,共用的木条根数()22122,n S n n n n =+=+故答案为:2n 2+2n . 【小结】本题考查了规律型-图形的变化类,熟练找出前四个图形的规律是解题的关键.19.(2021·贵州毕节市·中考真题)如图,在平面直角坐标系中,点()11,1N 在直线:l y x =上,过点1N 作11N M l ⊥,交x 轴于点1M ;过点1M 作12M N x ⊥轴,交直线l 于点2N ;过点2N 作22N M l ⊥,交x 轴于点2M ;过点2M 作23M N x ⊥轴,交直线l 于点3N ;…;按此作法进行下去,则点2021M 的坐标为_____________.【答案】(20212,0). 【分析】根据题目所给的解析式,求出对应的1M 坐标,然后根据规律求出n M 的坐标,最后根据题目要求求出最后答案即可. 【解析】解:如图,过点N 作NM ⊥x 轴于M 将1x =代入直线解析式y x =中得1y = ∴1OM MN ==,MON ∠=45° ∵1ONM =∠90° ∴1ON NM = ∵1ON NM ⊥ ∴11OM MM == ∴1M 的坐标为(2,0)同理可以求出2M 的坐标为(4,0) 同理可以求出3M 的坐标为(8,0) 同理可以求出n M 的坐标为(2n ,0) ∴2021M 的坐标为(20212,0) 故答案为:(20212,0).【小结】本题主要考查了直线与坐标轴之间的关系,解题的关键在于能够发现规律. 20.(内蒙古呼伦贝尔2021年中考数学试卷)如图,点1B 在直线1:2l y x =上,点1B 的横坐标为2,过点1B 作11B A x ⊥轴,垂足为1A ,以11A B 为边向右作正方形1112A B C A ,延长21A C 交直线l 于点2B ;以22A B 为边向右作正方形2223A B C A ,延长32A C 交直线l 于点3B ;……;按照这个规律进行下去,点2021B 的坐标为___________.【答案】202020202019202033(,)22【分析】由题意分别求出A 1、A 2、A 3、A 4……A n 、B 1、B 2、B 3、B 4……B n 、的坐标,根据规律进而可求解. 【解析】解:∵点1B 在直线1:2l y x =上,点1B 的横坐标为2,过点1B 作11B A x ⊥轴,垂足为1A , ∴1(2,0)A ,1(2,1)B ,∴A 1B 1=1, 根据题意,OA 2=2+1=3, ∴2(3,0)A ,23(3,)2B , 同理,39(,0)2A ,399(,)24B ,427(,0)4A ,42727(,)48B……由此规律,可得:123(,0)2n n n A --,112133(,)22n n n n n B ----,∴20211202112021202122021133(,)22B ----即2020202020212019202033(,)22B ,故答案为:202020202019202033(,)22.【小结】本题考查一次函数的应用、正方形的性质、点的坐标规律,理解题意,结合图象和正方形的性质,探索点的坐标规律是解答的关键.21.(2021·湖北中考真题)如图,在平面直角坐标系中,动点P 从原点O 出发,水平向左平移1个单位长度,再竖直向下平移1个单位长度得到点()11,1P --;接着水平向右平移2个单位长度,再竖直向上平移2个单位长度得到点2P ;接着水平向左平移3个单位长度,再竖直向下平移3个单位长度得到点3P ;接着水平向右平移4个单位长度,再竖直向上平移4个单位长度得到点4P ,…,按此作法进行下去,则点2021P 的坐标为___________.【答案】(1011,1011)--【分析】先根据点坐标的平移变换规律求出点2345,,,P P P P 的坐标,再归纳类推出一般规律即可得.【解析】解:由题意得:2(12,12)P -+-+,即2(1,1)P ,3(13,13)P --,即3(2,2)P --,4(24,24)P -+-+,即4(2,2)P ,5(25,25)P --,即5(3,3)P --,观察可知,点1P 的坐标为(1,1)--,其中1211=⨯-, 点3P 的坐标为(2,2)--,其中3221=⨯-,点5P 的坐标为(3,3)--,其中5231=⨯-,归纳类推得:点21n P -的坐标为(,)n n --,其中n 为正整数,2021210111=⨯-,∴点2021P 的坐标为(1011,1011)--,故答案为:(1011,1011)--.【小结】本题考查了点坐标的平移变换规律、点坐标的规律探索,正确归纳类推出一般规律是解题关键. 22.(2021·内蒙古通辽市·中考真题)如图,11OA B ,122A A B ,233A A B △…,1n n n A A B -都是斜边在x 轴上的等腰直角三角形,点1A ,2A ,3A ,…,n A 都在x 轴上,点1B ,2B ,3B ,…,n B 都在反比例函数()10y x x=>的图象上,则点n B 的坐标为__________.(用含有正整数n 的式子表示)【答案】 【分析】根据等腰直角三角形的性质,得到1B 的横,纵坐标相等,在结合反比例函数解析式求得该点的坐标,再根据等腰三角形的性质和反比例函数的解析式首先求得各个点的坐标,发现其中的规律,从而得到答案.【解析】11OB A △为等腰三角形∴直线1OB 的解析式为y x = 由题意得:1y x y x =⎧⎪⎨=⎪⎩解得1x =()111B ∴,1OB ∴=112OA ∴==()12,0A ∴122A A B △为等腰三角形∴设直线12A B 的解析式为y x b =+02b ∴=+,解得2b =-∴直线12A B 的解析式为2y x =- ∴21y x y x =-⎧⎪⎨=⎪⎩解得1x =)21B ∴21222B A A y ∴==∴点2A ()233A A B △为等腰三角形∴设直线23A B 的解析式为1y x b =+∴10b =解得1b =-∴直线23A B的解析式为y x =-1y x y x ⎧=-⎪⎨=⎪⎩解得x =∴3B 综上可得:点()111B ,,点)21B,点3B总结规律可得n B 坐标为:故答案为:【小结】 本题综合考查了等腰直角三角形的性质以及结合反比例函数的解析式求得点的坐标,解答本题的关键是找出其中的规律求出坐标.23.(2021·山东菏泽市·中考真题)如图,一次函数y x =与反比例函数1y x=(0x >)的图象交于点A ,过点A 作AB OA ⊥,交x 轴于点B ;作1//BA OA ,交反比例函数图象于点1A ;过点1A 作111A B A B ⊥交x 轴于点B ;再作121//B A BA ,交反比例函数图象于点2A ,依次进行下去,……,则点2021A 的横坐标为_______.【分析】由点A 是直线y x =与双曲线1y x=的交点,即可求出点A 的坐标,且可知45AOB ∠=︒,又AB AO ⊥可知AOB ∆是等腰直角三角形,再结合1BA OA //可知11BA B ∆是等腰直角三角形,同理可知图中所有三角形都是等腰直角三角形,由求2021A 的坐标,即n A 的坐标(n =1,2,3……),故想到过点2021A 作20212021A C x ⊥轴,即过n A 作n n A C x ⊥轴.设1A 的纵坐标为()10m m >,则1A 的横坐标为2m +,再利用点1A 在双曲线上即可求解1A 坐标,同理可得2021A 的坐标.【解析】解:过n A 作n n A C x ⊥轴于点n C点A 是直线y x =与双曲线1y x=的交点 1y x y x =⎧⎪∴⎨=⎪⎩解得11x y =⎧⎨=⎩ ()1,1A ∴1,45OC AC AOC ∴==∠=︒AB AO ⊥∴AOB ∆是等腰直角三角形∴22OB AC ==1BA OA //∴11BA B ∆是等腰直角三角形∴111AC BC =设1A 的纵坐标为()10m m >,则1A 的横坐标为12m +点1A 在双曲线上∴()1121m m +=解得11m =设2A 的纵坐标为()20m m >,则2A的横坐标为12222m m m ++=∴()221m m =解得2m =同理可得3m =由以上规律知:n m =2021m ∴=2021A∴2021A =【小结】本题考察一次函数、反比例函数、交点坐标的求法、等腰直角三角形的性质、一元二次方程的应用和规律探究,属于综合几何题型,难度偏大.解题的关键是结合等腰直角三角形的性质做出辅助线,并在计算过程中找到规律.24.(2021·山东中考真题)如图,点1B 在直线1:2l y x =上,点1B 的横坐标为2,过点1B 作1B l ⊥,交x 轴于点1A ,以11A B 为边,向右作正方形1121A B B C ,延长21B C 交x 轴于点2A ;以22A B 为边,向右作正方形2232A B B C ,延长32B C 交x 轴于点3A ;以33A B 为边,向右作正方形3343A B B C ,延长的43B C 交x 轴于点4A ;…;按照这个规律进行下去,则第n 个正方形1n n n n A B B C +的边长为________(结果用含正整数n 的代数式表示).【答案】1322n -⎛⎫ ⎪⎝⎭【分析】 根据题中条件,证明所有的直角三角形都相似且确定相似比,再具体算出前几个正方形的边长,然后再找规律得出第n 个正方形的边长.【解析】 解:点1B 在直线1:2l y x =上,点1B 的横坐标为2, ∴点1B 纵坐标为1.1OB ∴==分别过1B ,14,,C C ⋅⋅⋅作x 轴的垂线,分别交于14,,,D D D ⋅⋅⋅,下图只显示一条;111111190,B DA C DB B OD A B D ∠=∠=︒∠=∠,∴111Rt B DO Rt A DB ∽类似证明可得,图上所有直角三角形都相似,有11111211112n n n nC A BD B A C A OD OB C A C A +====⋅⋅⋅=, 不妨设第1个至第n 个正方形的边长分别用:12,,,n l l l ⋅⋅⋅来表示,通过计算得:112OB l ==1211233222l l l C A =+==,22322333222l l l C A ⎛⎫=+== ⎪⎝⎭⋅⋅⋅ 111133222n n n n n n l l l C A ----⎛⎫=+== ⎪⎝⎭按照这个规律进行下去,则第n 个正方形1n n n n A B B C +的边长为1322n -⎛⎫ ⎪⎝⎭,132n -⎛⎫ ⎪⎝⎭.【小结】 本题考查了三角形相似,解题的关键是:利用条件及三角形相似,先研究好前面几个正方形的边长,再从中去找计算第n 个正方形边长的方法与技巧.25.(2021·湖北中考真题)如图,过反比例函数()0,0k y k x x=>>图象上的四点1P ,2P ,3P ,4P 分别作x 轴的垂线,垂足分别为1A ,2A ,3A ,4A ,再过1P ,2P ,3P ,4P 分别作y 轴,11P A ,22P A ,33P A 的垂线,构造了四个相邻的矩形.若这四个矩形的面积从左到右依次为1S ,2S ,3S ,4S ,1122334OA A A A A A A ===,则1S 与4S 的数量关系为_____________.【答案】414S S =.【分析】设1122334OA A A A A A A ====m ,则O 2A =2m ,O 3A =3m ,O 4A =4m ,由点1P ,2P ,3P ,4P 都在反比例函数()0,0k y k x x =>>图象上,可求得11k A P m =,222k A P m =,333k A P m =,444k A P m=,根据矩形的面积公式可得1111k OA A P k S m m =⋅=⋅=,1222222k k A A A P m m S =⋅=⋅=,2333333k k A A A P m m S =⋅=⋅=,3444444k k A A A P m m S =⋅=⋅=,由此即可得414S S =. 【解析】设1122334OA A A A A A A ====m ,则O 2A =2m ,O 3A =3m ,O 4A =4m ,∵点1P ,2P ,3P ,4P 都在反比例函数()0,0k y k x x=>>图象上, ∴11k A P m =,222k A P m =,333k A P m =,444k A P m=, ∴1111k OA A P k S m m =⋅=⋅=,1222222k k A A A P m m S =⋅=⋅=,2333333k k A A A P m m S =⋅=⋅=,3444444k k A A A P m m S =⋅=⋅=, ∴414S S =.故答案为:414S S =.【小结】本题考查了反比例函数图象上点的特征,根据反比例函数图象上点的特征求得11k A P m =、222k A P m =、333k A P m =、444k A P m=是解决问题的关键. 26.(2021·四川)如图,在平面直角坐标系中,AB y ⊥轴,垂足为B ,将ABO 绕点A 逆时针旋转到11AB O 的位置,使点B 的对应点1B 落在直线34y x =-上,再将11AB O 绕点1B 逆时针旋转到112A B O 的位置,使点1O 的对应点2O 也落在直线34y x =-上,以此进行下去……若点B 的坐标为()0,3,则点21B 的纵坐标...为______.【答案】3875【分析】计算出△AOB 的各边,根据旋转的性质,求出OB 1,B 1B 3,...,得出规律,求出OB 21,再根据一次函数图像上的点求出点B 21的纵坐标即可.【解析】解:∵AB ⊥y 轴,点B (0,3),∴OB =3,则点A 的纵坐标为3,代入34y x =-, 得:334x =-,得:x =-4,即A (-4,3),∴OB =3,AB =4,OA ,由旋转可知:OB =O 1B 1=O 2B 1=O 2B 2=…=3,OA =O 1A =O 2A 1=…=5,AB =AB 1=A 1B 1=A 2B 2=…=4, ∴OB 1=OA +AB 1=4+5=9,B 1B 3=3+4+5=12,∴OB 21=OB 1+B 1B 21=9+(21-1)÷2×12=129,设B 21(a ,34a -),则OB 21129=, 解得:5165a =-或5165(舍),则335163874455a ⎛⎫-=-⨯-= ⎪⎝⎭,即点B 21的纵坐标为3875, 故答案为:3875. 【小结】 本题考查了一次函数图象上点的坐标特征,旋转以及直角三角形的性质,求出△OAB 的各边,计算出OB 21的长度是解题的关键.27.(2021·山东东营市·中考真题)如图,正方形1ABCB 中,AB =AB 与直线l 所夹锐角为60︒,延长1CB 交直线l 于点1A ,作正方形1112A B C B ,延长12C B 交直线l 于点2A ,作正方形2223A B C B ,延长23C B 交直线l 于点3A ,作正方形3334A B C B ,…,依此规律,则线段20202021A A =________.【答案】20202(3【分析】利用tan30°计算出30°角所对直角边,乘以2得到斜边,计算3次,找出其中的规律即可.【解析】∵AB 与直线l 所夹锐角为60︒,正方形1ABCB 中,AB =∴∠11B AA =30°,∴11B A =1B A tan30°=,∴111AA -;∵11B A =1,∠122B A A =30°,∴22B A =11B A tan30°=133⨯=,∴2112=2A A -⨯;∴线段20202021A A =20211202022()33-⨯=,故答案为:2020. 【小结】本题考查了正方形的性质,特殊角三角函数值,含30°角的直角三角形的性质,规律思考,熟练进行计算,抓住指数的变化这个突破口求解是解题的关键.28.(2021·黑龙江中考真题)如图,菱形ABCD 中,120ABC ∠=︒,1AB =,延长CD 至1A ,使1DA CD =,以1A C 为一边,在BC 的延长线上作菱形111A CC D ,连接1AA ,得到1ADA ∆;再延长11C D 至2A ,使1211D A C D =,以21A C 为一边,在1CC 的延长线上作菱形2122A C C D ,连接12A A ,得到112A D A ∆……按此规律,得到202020202021A D A ∆,记1ADA ∆的面积为1S ,112A D A ∆的面积为2S ……202020202021A D A ∆的面积为2021S ,则2021S =_____.【答案】40382【分析】由题意易得60,1BCD AB AD CD ∠=︒===,则有1ADA ∆为等边三角形,同理可得112A D A ∆…….202020202021A D A ∆都为等边三角形,进而根据等边三角形的面积公式可得1S =,2S =……由此规律可得242n n S -,然后问题可求解.【解析】解:∵四边形ABCD 是菱形,∴1AB AD CD ===,//,//AD BC AB CD ,∵120ABC ∠=︒,∴60BCD ∠=︒,∴160ADA BCD ∠=∠=︒,∵1DA CD =,∴1DA AD =,∴1ADA ∆为等边三角形,同理可得112A D A ∆……. 202020202021A D A ∆都为等边三角形,过点B 作BE ⊥CD 于点E ,如图所示:∴sin 2BE BC BCD =⋅∠=,∴112112A D BE A S D =⋅==,同理可得:22221244S A D ==⨯=22332444S A D ===……;∴由此规律可得:242n n S -=,∴2202144038202122S ⨯-=;故答案为40382【小结】本题主要考查菱形的性质、等边三角形的性质与判定及三角函数,熟练掌握菱形的性质、等边三角形的性质与判定及三角函数是解题的关键.29.(2021·吉林长春市·中考真题)如图,在平面直角坐标系中,等腰直角三角形AOB 的斜边OA 在y 轴上,2OA =,点B 在第一象限.标记点B 的位置后,将AOB 沿x 轴正方向平移至111AO B 的位置,使11A O 经过点B ,再标记点1B 的位置,继续平移至222A O B △的位置,使22A O 经过点1B ,此时点2B 的坐标为__________.【答案】()3,1【分析】根据已知条件结合等腰直角三角形的性质先求出点B ()1,1,点1B ()2,1,即可得出点B 向右每次平移1个单位长度,而2B 为点B 向右平移2个单位后的点,根据点平移规律即可得到答案【解析】如图过点B 作BC OA ⊥,△AOB 为等腰直角三角形,斜边OA 在y 轴上,2OA =1BC ∴=,11CO BO ==()1,1B ∴ AOB 向右平移至111AO B ,点B 在11A O 上,同理可得点1B 的坐标为()2,1AOB ∴每次向右平移1个单位,即点B 向右每次平移1个单位,2B ∴为点B 向右平移2个单位后的点2B ∴点的坐标为()3,1故答案为:()3,1【小结】本题考查了等腰直角三角形的性质,以及坐标与图像变换—平移,在平面直角坐标系中,图形的平移与图像上某点的平移相同,平移中点的变化规律是:横坐标右移加,左移减,纵坐标上移加,下移减. 30.(2021·湖北荆门市·中考真题)如图,将正整数按此规律排列成数表,则2021是表中第____行第________列.【答案】64 5【分析】找到第n 行第n 列的数字,找到规律,代入2021即可求解【解析】通过观察发现:1=1 3=1+26=1+2+310=1+2+3+4……故第n 行第n 列数字为:1(1)2n n +, 则第n 行第1列数字为:1(1)(1)2n n n +--,即1(1)2n n -+1 设2021是第n 行第m 列的数字,则:1(1)2021()2m m n n n +=<- 即24421)0(n n m +=-,可以看作两个连续的整数的乘积,2263=396964=4096,,m n ,为正整数,64n ∴=当64n =时,=5m故答案为:64,5【小结】本题考查了规律探索,通过观察发现特殊位置的数字之间的关系,找到规律,通过计算确定行数,再根据方程求得列数,能正确发现规律是解题的关键.31.(2021·湖南湘西土家族苗族自治州·中考真题)古希腊数学家把1,3,6,10,15,21,…这样的数叫做三角形数,因为它的规律性可以用如图表示.根据图形,若把第一个图形表示的三角形数记为11a =,第二个图形表示的三角形数记为23a =,…,则第n 个图形表示的三角形数n a =___.(用含n 的式子表达)【答案】()12n n + 【分析】由题意易得11a =,2123a =+=,31236a =++=,4123410a =+++=;…..;然后由此规律可得第n 个图形表示的三角形数.【解析】解:由图及题意可得:11a =,2123a =+=,31236a =++=,4123410a =+++=;…..∴第n 个图形表示的三角形数()112342n a n n n +=++++⋅⋅⋅⋅+=; 故答案为()12n n +. 【小结】本题主要考查图形规律,解题的关键是根据给出的图形得到基本的规律,然后进行求解即可. 32.(2021·内蒙古鄂尔多斯市·中考真题)将一些相同的“〇”按如图所示的规律依次摆放,观察每个“龟图”的“〇”的个数,则第30个“龟图”中有___________个“〇”.【答案】875【分析】设第n 个“龟图”中有a n 个“〇”(n 为正整数),观察“龟图”,根据给定图形中“〇”个数的变化可找出变化规律“a n =n 2−n +5(n 为正整数)”,再代入n =30即可得出结论.【解析】解:设第n 个“龟图”中有a n 个“〇”(n 为正整数).观察图形,可知:a 1=1+2+2=5,a 2=1+3+12+2=7,a 3=1+4+22+2=11,a 4=1+5+32+2=17,…,∴a n =1+(n +1)+(n −1)2+2=n 2−n +5(n 为正整数),∴a 30=302−30+5=875.故答案是:875.【小结】本题考查了规律型:图形的变化类,根据各图形中“〇”个数的变化找出变化规律“a n =n 2−n +5(n 为正整数)”是解题的关键.33.(2021·黑龙江绥化市·中考真题)下面各图形是由大小相同的三角形摆放而成的,图①中有1个三角形,图②中有5个三角形,图③中有11个三角形,图④中有19个三角形…,依此规律,则第n 个图形中三角形个数是_______.【答案】21n n +-【分析】此题只需分成上下两部分即可找到其中规律,上方的规律为(n -1),下方规律为n 2,结合两部分即可得出答案.【解析】解:将题意中图形分为上下两部分,则上半部规律为:0、1、2、3、4……n -1,下半部规律为:12、22、32、42……n 2,∴上下两部分统一规律为:21n n +-.故答案为:21n n +-.【小结】本题主要考查的图形的变化规律,解题的关键是将图形分为上下两部分分别研究.。
常考的规律探究问题-2024年中考数学答题技巧与模板构建(含解析)
![常考的规律探究问题-2024年中考数学答题技巧与模板构建(含解析)](https://img.taocdn.com/s3/m/582a8b7c657d27284b73f242336c1eb91a3733a7.png)
常考的规律探究问题题型解读|模型构建|通关试练模型01数与式、图形的规律问题数式规律和图形规律探究问题的特点是:问题的结论不是直接给出,而是给出一组具有某种特定关系的数、式、图形,或是给出图形有关的操作变化过程,或某一具体的问题情境等,要求通过观察分析推理,探究其中蕴含的规律,进而归纳或猜想出一般性的结论.模型02平面直角坐标系中的规律问题(旋转、平移、翻滚、渐变等)平面直角坐标系中的规律探究问题由于问题背景的不同,这类题的解题策略是:由特例观察、分析、归纳一般规律,然后利用规律解决问题.具体思维过程是“特殊---一般----特殊”.这类问题体现了“特殊与一般”的数学思想方法,解答时往往体现“探索、归纳、猜想”等思维特点,对分析问题、解决问题的能力具有很高的要求.模型01数与式、图形的规律问题考|向|预|测数与式、图形的规律问题该题型主要以选择、填空形式出现,难度系数不大,需要学生学会分析各式或图形中的“变”与“不变”的规律--重点分析“怎样变”,应结合各式或图形的序号进行前后对比分析.主要考查学生阅读理解、观察图形的变化规律的能力,关键是通过归纳与总结,得到其中的规律,利用规律解决问题.答|题|技|巧第一步:读懂题意,标序号;第二步:根据已有规律模仿或归纳推导隐藏规律,析各式或图形中的“变”与“不变”的规律--重点分析“怎样变”;第三步:猜想规律与“序号”之间的对应关系,并用关于“序号”的式子表示出来;第四步:验证所归纳的结论,利用所学数学知识解答1(2023·湖南)观察下列按顺序排列的等式:a1=1-13,a2=12-14,a3=13-15,a4=14-16,⋯,试猜想第n个等式(n为正整数):a n=.2(2023·安徽)(规律探究)如下图,是由若干个边长为1的小正三角形组成的图形,第(2)个图比第(1)个图多一层,第(3)个图比第(2)个图多一层,依次类推.(1)第(9)个图中阴影三角形的个数为;非阴影三角形的个数为.(2)第n个图形中,阴影部分的面积与非阴影部分的面积比是441∶43,求n.(3)能否将某一个图形中的所有小三角形重新拼接成一个菱形,如果能,请指出是第几个图形,如果不能说明理由.模型02平面直角坐标系中的规律问题考|向|预|测平面直角坐标系中的规律问题(旋转、平移、翻滚、渐变等)该题型也主要以选择、填空的形式出现,一般较为靠后,有一定难度,该题型需要分析变化规律得到一般的规律(如点变的循环规律或点运动的循环规律,点的横、纵坐标的变化规律等).主要考查对点的坐标变化规律,一般我们需要结合所给图形,找到点或图形的变化规律或者周期性,最后利用正确运用数的运算.答|题|技|巧第一步:观察点或图形的变化规律,根据图形的变化规律求出已知关键点的坐标;第二步:分析变化规律得到一般的规律看是否具有周期性(如点变的循环规律或点运动的循环规律,点的横、纵坐标的变化规律等)第三步:周期性的求最小周期看余数,不是周期性的可以罗列求解几组以便发现规律,根据最后的变化次数或者运动时间登,确定要求的点与哪个点重合或在同一象限,或与哪个关键点的横纵坐标相等;第四步:利用有理数的运算解题旋转型1(2023·四川)如图所示,矩形ABOC的顶点O为坐标原点,BC=2,对角线OA在第二象限的角平分线上.若矩形从图示位置开始绕点O以每秒45°的速度顺时针旋转,则第2025秒时,点A的对应坐标为()A.2,0B.0,2C.2,2D.-2,-2平移型2(2023·杭州)如图,直角坐标平面xOy 内,动点P 按图中箭头所示方向依次运动,第1次从点(-1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,-2),⋯⋯,按这样的运动规律,动点P 第2018次运动到点A.(2018,0)B.(2017,0)C.(2018,1)D.(2017,-2)翻滚型3(2023·安徽)如图所示,在平面直角坐标系中,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7,⋯都是等边三角形,其边长依次为2,4,6,⋯其中点A 1的坐标为2,0 ,点A 2的坐标为1,-3 ,点A 3的坐标为0,0 ,点A 4的坐标为2,23 ,⋯,按此规律排下去,则点A 100的坐标为()A.1,503B.1,513C.2,503D.2,5131(2023·山东)我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,我们把第2行从左到右数第1个定为a 2,1 ,我们把第4行从左到右数第3个定为a 4,3 ,由图我们可以知道:a 2,1 =1,a 4,3 =3,按照图中数据规律,a 8,5 +a 9,6 的值为.2(2023·河南)如图,找出其变化的规律,则第1349个图形中黑色正方形的数量是.摆成,⋯⋯;按图中所示规律,第n个图需要棋子枚.五角星的个数为()A.n2+1B.n2-1C.2n-1D.2n+15(2023·广东)正六边形ABCDEF在数轴上的位置如图,点A、F对应的数分别为0和1,若正六边形ABCDEF绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点E所对应的数为2,则连续翻转2022次后,数轴上2022这个数所对应的点是()A.A点B.B点C.C点D.D点6(2023·辽宁)如图,在平面直角坐标系中,直线l:y=3x+3与两坐标轴交于A、B两点,以AB为边作等边△ABC,将等边△ABC沿射线AB方向作连续无滑动地翻滚.第一次翻滚:将等边三角形绕B点顺时针旋转120°,使点C落在直线l上,第二次翻滚:将等边三角形绕点C顺时针旋转120°,使点A落在直线l上⋯⋯当等边三角形翻滚2023次后点A的对应点坐标是()A.2023,20233D.2021,20243C.2021,20223B.2022,202437(2023·河南)如图,矩形ABCD的顶点A、B分别在x轴、y轴上,其坐标分别为-6,0,、0,-8AD=20,将矩形ABCD绕点O顺时针旋转,每次旋转90°,则第2022次旋转结束时,点D的坐标为()A.10,12D.12,-10C.-12,10B.-10,-128(2023·江西吉安·期末)规律探究题:如图是由一些火柴棒摆成的图案:按照这种方式摆下去,摆第2023个图案用几根火柴棒()A.8093B.8095C.8092D.80919(23-24·河南新乡·期末)汉字文化正在走进人们的日常消费生活.如图所示图形都是由同样大小的圆点和线段按照一定的规律排列组成的篆书简化“汉”字,其中,图①中共有12个圆点,图②中共有18个圆点,图③中共有25个圆点,图④中共有33个圆点⋯依此规律则图⑩中共有圆点的个数是()A.63B.75C.88D.10210(23-24·湖北武汉·期末)已知点A0-1,3,记A0关于直线m(直线m上各点的横坐标都为0)的对称点为A1,A1关于直线n(直线n上各点的纵坐标都为1)的对称点为A2,A2关于直线p(直线p上各点的横坐标都为-2)的对称点为A3,A3关于直线q(直线q上各点的纵坐标都为3)的对称点为A4,A4关于直线m的对称点为A5,A5关于直线n的对称点为A6,⋯⋯依此规律A2023的坐标是()A.2021,-2021D.-2025,2027C.-2021,-2017B.-2025,-202111(23·山东济宁·期末)如图,OP=1,过点P作PP1⊥OP且PP1=1,得OP1=2;再过点P,作P1P2⊥OP1,且P1P2=1,得OP2=3;又过点P2作P2P3⊥OP2且P2P3=1,得OP3=2⋯依此法继续作下去,得OP2021=()A.2023B.2022C.2021D.202012(23·广西贵港·期末)请看杨辉三角,并观察下列等式:(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4根据前面各式的规律,则(a+b)6=.13(23-24·辽宁沈阳·期中)汉字文化正在走进人们的日常消费生活.下列图形都是由同样大小的圆点和线段按照一定的规律排列组成的篆书简化“汉”字,其中,图①中共有12个圆点,图②中共有18个圆点,图③中共有25个圆点,图④中共有33个圆点⋯依此规律,则图⑧中共有圆点的个数是.14(2023·四川资阳·一模)如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为α,再沿直线前进5米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为.15(22-23·江苏)我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表(图①),即杨辉三角.现在将所有的奇数记“1”,所有的偶数记为“0”,则前4行如图②,前8行如图③,求前32行“1”的个数为.16(2023九年级上·全国·期末)在平面直角坐标系中,抛物线y=x2的图象如图所示.已知A点坐标为(1,1),过点A作AA1∥x轴交抛物线于点A1,过点A1作A1A2∥OA交抛物线于点A2,过点A2作A2A3∥x 轴交抛物线于点A3,过点A3作A3A4∥OA交抛物线于点A4⋯,依次进行下去,则点A2023的坐标为.17(22-23九年级上·全国·期末)(规律探究题)下表是按一定规律排列的一列方程,仔细观察,大胆猜想,科学推断,完成练习.序号方程方程的解1x2-2x-3=0x1=-1,x2=32x2-4x-12=0x1=-2,x2=63x2-6x-27=0x1=-3,x2=9⋯⋯⋯(1)这列方程中第10个方程的两个根分别是x1=,x2=.(2)这列方程中第n个方程为.18(22-23·福建莆田·期中)探究规律题按照规律填上所缺的单项式并回答问题:(1)a,-2a2,3a3,-4a4,,;(2)试写出第2017个和第2018个单项式;(3)试写出第n个单项式;(4)试计算:当a=-1时,a+(-2a2)+3a3+(-4a4)+⋯+99a99+(-100a100)的值.19(23-24·河南安阳)探究规律,完成相关题目.定义“*”运算:(+2)*(+4)=+(22+42);(-4)*(-7)=+(-4)2+(-7)2;(-2)*(+4)=-(-2)2+(+4)2;(+5)*(-7)=-(+5)2+(-7)2;0*(-5)=(-5)*0=(-5)2;(+3)*0=0*(+3)=(+3)2.0*0=02+02=0(1)归纳*运算的法则:两数进行*运算时,.(文字语言或符号语言均可)特别地,0和任何数进行*运算,或任何数和0进行*运算,(2)计算:+1*0*-2.(3)是否存在有理数m,n,使得m-1*n+2=0,若存在,求出m,n的值,若不存在,说明理由.20(23-24·浙江杭州·期中)探究规律,完成相关题目:小明说:“我定义了一种新的运算,叫※(加乘)运算.”然后他写出了一些按照※(加乘)运算的运算法则进行运算的算式:(+5)※(+2)=+7;(-3)※(-5)=+8;(-3)※(+4)=-7;(+5)※(-6)=-11;(0)※(+8)=8;(0)※(-8)=8;(-6)※(0)=6;(+6)※(0)=6.小亮看了这些算式后说:“我知道你定义的※(加乘)运算的运算法则了.”聪明的你也明白了吗?(1)观察以上式子,类比计算:①-1 2※-15=,-23※+1 =;(2)计算:(-2)※[0※(-1)];(括号的作用与它在有理数运算中的作用一致,写出必要的运算步骤)(3)若1-a※b-3=0.计算:1a×b +1a+2×b+2+1a+4×b+4+1a+6×b+6+1的值.a+8×b+8常考的规律探究问题题型解读|模型构建|通关试练模型01数与式、图形的规律问题数式规律和图形规律探究问题的特点是:问题的结论不是直接给出,而是给出一组具有某种特定关系的数、式、图形,或是给出图形有关的操作变化过程,或某一具体的问题情境等,要求通过观察分析推理,探究其中蕴含的规律,进而归纳或猜想出一般性的结论.模型02平面直角坐标系中的规律问题(旋转、平移、翻滚、渐变等)平面直角坐标系中的规律探究问题由于问题背景的不同,这类题的解题策略是:由特例观察、分析、归纳一般规律,然后利用规律解决问题.具体思维过程是“特殊---一般----特殊”.这类问题体现了“特殊与一般”的数学思想方法,解答时往往体现“探索、归纳、猜想”等思维特点,对分析问题、解决问题的能力具有很高的要求.模型01数与式、图形的规律问题考|向|预|测数与式、图形的规律问题该题型主要以选择、填空形式出现,难度系数不大,需要学生学会分析各式或图形中的“变”与“不变”的规律--重点分析“怎样变”,应结合各式或图形的序号进行前后对比分析.主要考查学生阅读理解、观察图形的变化规律的能力,关键是通过归纳与总结,得到其中的规律,利用规律解决问题.答|题|技|巧第一步:读懂题意,标序号;第二步:根据已有规律模仿或归纳推导隐藏规律,析各式或图形中的“变”与“不变”的规律--重点分析“怎样变”;第三步:猜想规律与“序号”之间的对应关系,并用关于“序号”的式子表示出来;第四步:验证所归纳的结论,利用所学数学知识解答1(2023·湖南)观察下列按顺序排列的等式:a 1=1-13,a 2=12-14,a 3=13-15,a 4=14-16,⋯,试猜想第n 个等式(n 为正整数):a n =.【答案】1n -1n +2.【详解】根据题意可知,a 1=1-11+2,a 2=12-12+2,a 3=13-13+2,a 4=14-14+2,⋯∴a n =1n -1n +2.2(2023·安徽)(规律探究)如下图,是由若干个边长为1的小正三角形组成的图形,第(2)个图比第(1)个图多一层,第(3)个图比第(2)个图多一层,依次类推.(1)第(9)个图中阴影三角形的个数为;非阴影三角形的个数为.(2)第n 个图形中,阴影部分的面积与非阴影部分的面积比是441∶43,求n .(3)能否将某一个图形中的所有小三角形重新拼接成一个菱形,如果能,请指出是第几个图形,如果不能说明理由.【详解】(1)第(1)(2)(3)个图中阴影部分小三角形的个数分别是:1+3=22,1+3+5=32,1+3+5+7=42,由此可推测第(9)个图中阴影部分小三角形的个数是(9+1)2=102=100(个),空白三角形的个数为2×(9+2-1=21);故答案为:100;21;(2)第n 个图形中阴影三角形与非阴影三角形的个数比是:n +1 22n +2 -1=44143,解得,n =20或n =-6443(舍去)经检验,n =20符合要求,所以,n =20;(3)设第(m )个图形可重新拼成一个菱形,第(m )个图形总的三角形个数为m +2 2=m 2+4m +4, 由于可以拼一个菱形,则是一含有60度角的菱形,即两个等边三角形构成的菱形,每个等边三角形中含小三角形数为x 2,则有:2x 2=m +2 2解得,m =±2x -2∴m 不是正整数,∴不可能拼成一个菱形.例3.(2023·江西)规律探究与猜想:①方程x 2-3x +2=0的解为x 1=1,x 2=2;②方程x 2-5x +6=0的解为x 1=2,x 2=3;③方程x 2-7x +12=0的解为x 1=3,x 2=4;④方程x 2-9x +20=0的解为x 1=4,x 2=5;⋯⋯(1)根据以上各方程及其解的特征,请解答下列问题:①方程x2-19x+90=0的解为______.②第个方程为______,其解为______.(2)请用公式法解方程x2-9x+20=0,验证猜想结论的正确性.【详解】(1)解:方程x2-3x+2=x2+(-1-2)x+(-1)×(-2)=(x-1)(x-2)=0,解为x1=1,x2=2;方程x2-5x+6=x2+(-2-3)+(-2)×(-3)=(x-2)(x-3)=0,解为x1=2,x2=3;方程x2-7x+12=x2+(-3-4)+(-3)×(-4)=(x-3)(x-4)=0,解为x1=3,x2=4;⋯①x2-19x+90=x2+(-9-10)+(-9)×(-10)=(x-9)(x-10)=0,解为x1=9,x2=10;②第个方程为x2+-n-(n+1)x+(-n)×-(n+1)=(x-n)x-(n+1)=0∴第个方程为x2-(2n+1)x+n2+n=0,解为x1=n,x2=n+1.(2)解:x2-9x+20=0Δ=(-9)2-4×1×20=1,∴x1=9-12=4,x2=9+12=5.故结论正确.模型02平面直角坐标系中的规律问题考|向|预|测平面直角坐标系中的规律问题(旋转、平移、翻滚、渐变等)该题型也主要以选择、填空的形式出现,一般较为靠后,有一定难度,该题型需要分析变化规律得到一般的规律(如点变的循环规律或点运动的循环规律,点的横、纵坐标的变化规律等).主要考查对点的坐标变化规律,一般我们需要结合所给图形,找到点或图形的变化规律或者周期性,最后利用正确运用数的运算.答|题|技|巧第一步:观察点或图形的变化规律,根据图形的变化规律求出已知关键点的坐标;第二步:分析变化规律得到一般的规律看是否具有周期性(如点变的循环规律或点运动的循环规律,点的横、纵坐标的变化规律等)第三步:周期性的求最小周期看余数,不是周期性的可以罗列求解几组以便发现规律,根据最后的变化次数或者运动时间登,确定要求的点与哪个点重合或在同一象限,或与哪个关键点的横纵坐标相等;第四步:利用有理数的运算解题旋转型1(2023·四川)如图所示,矩形ABOC的顶点O为坐标原点,BC=2,对角线OA在第二象限的角平分线上.若矩形从图示位置开始绕点O以每秒45°的速度顺时针旋转,则第2025秒时,点A的对应坐标为()A.2,0B.0,2C.2,2D.-2,-2【答案】B 【详解】解:∵四边形ABOC 是矩形,∴OA =BC =2,∵每秒旋转45°,8次一个循环,2025÷8=253⋅⋅⋅⋅⋅⋅1,∴第2025秒时,点A 的对应点A 2025落在y 轴正半轴上,∴点A 2025的坐标为0,2 .故选:B .平移型2(2023·杭州)如图,直角坐标平面xOy 内,动点P 按图中箭头所示方向依次运动,第1次从点(-1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,-2),⋯⋯,按这样的运动规律,动点P 第2018次运动到点A.(2018,0)B.(2017,0)C.(2018,1)D.(2017,-2)【答案】B 【详解】解:∵2018÷4=504余2,∴第2014次运动为第505循环组的第2次运动,横坐标为504×4+2-1=2017,纵坐标为0,∴点的坐标为(2017,0).故选B .翻滚型3(2023·安徽)如图所示,在平面直角坐标系中,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7,⋯都是等边三角形,其边长依次为2,4,6,⋯其中点A 1的坐标为2,0 ,点A 2的坐标为1,-3 ,点A 3的坐标为0,0 ,点A 4的坐标为2,23 ,⋯,按此规律排下去,则点A 100的坐标为()A.1,503D.2,513C.2,503B.1,513【答案】C【详解】解:观察所给图形,发现x轴上方的点是4的倍数,∵100÷4=25,∴点A100在x轴上方,∵A3A4=4,∴A54,0,∵A5A7=6,∴A7-2,0,∵A8A7=8,∴点A8的坐标为2,43,同理可知,点A4n的坐标为2,2n3,∴点A100的坐标为2,503. 故选:C.1(2023·山东)我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,我们把第2行从左到右数第1个定为a2,1,我们把第4行从左到右数第3个定为a4,3=,由图我们可以知道:a2,1 1,a4,3+a9,6的值为.=3,按照图中数据规律,a8,5【详解】解:如图所示,按照图中数据规律,a8,5=35,a9,6=56,∴a8,5+a9,6=35+56=91,故答案为:912(2023·河南)如图,找出其变化的规律,则第1349个图形中黑色正方形的数量是.【答案】2024个【详解】解:根据题意,可得当n为偶数时,第n个图形中黑色正方形的数量为n+n2个,当n为奇数时,第n个图形中黑色正方形的数量为n+n+12个,∴n=1349时,黑色正方形的个数为1349+1349+12=2024个.故答案为:2024个.3(2023·陕西)如图,第1个图用了6枚棋子摆成;第2个图用了9枚棋子摆成;第3个图用了12枚棋子摆成,⋯⋯;按图中所示规律,第n个图需要棋子枚.【答案】3(n+1)【详解】根据题意有,第1个图形棋子数为:3+3×1,第2个图形棋子数为:3+3×2,第3个图形棋子数为:3+3×3,⋯⋯,第n个图形棋子数为:3+3×n=3(n+1),∴第n个图需要棋子3(n+1)枚,故答案为:3(n+1).4(2023·云南)如图图形是同样大小的小五角星按一定规律组成的,按此规律排列,则第n个图形中小五角星的个数为()A.n2+1B.n2-1C.2n-1D.2n+1【答案】A【详解】解:则第1个图形中小五角星的个数为:12+1=2;则第4个图形中小五角星的个数为:1+22=5;则第3个图形中小五角星的个数为:1+32=10;则第4个图形中小五角星的个数为:1+42=17;⋯⋯;则第n个图形中小五角星的个数为:1+n2,故选:A.5(2023·广东)正六边形ABCDEF在数轴上的位置如图,点A、F对应的数分别为0和1,若正六边形ABCDEF绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点E所对应的数为2,则连续翻转2022次后,数轴上2022这个数所对应的点是()A.A点B.B点C.C点D.D点【答案】A【详解】解:当正六边形在转动第一周的过程中,F、E、D、C、B、A分别对应的点为1、2、3、4、5、6,∴翻转6次为一循环,∵2021÷6=337,∴数轴上2022这个数所对应的点是A点.故选:A.6(2023·辽宁)如图,在平面直角坐标系中,直线l:y=3x+3与两坐标轴交于A、B两点,以AB为边作等边△ABC,将等边△ABC沿射线AB方向作连续无滑动地翻滚.第一次翻滚:将等边三角形绕B点顺时针旋转120°,使点C落在直线l上,第二次翻滚:将等边三角形绕点C顺时针旋转120°,使点A落在直线l上⋯⋯当等边三角形翻滚2023次后点A的对应点坐标是()A.2023,20233D.2021,20243B.2022,20243C.2021,20223【答案】D【详解】解:∵直线l:y=3x+3与两坐标轴交于A、B两点,∴A-1,0,,B0,3∴AB=2,OA=1,OB=3,=3,OA∴∠BAO=60°,如图,等边△ABC经过第1次翻转后,A1-1,23,过点A2作A2M⊥x轴于点M,则AA2=3AB=6,∵∠A2AM=60°,=3,∴AM=AA2cos∠A2AM=6×12A2M=AA2sin∠A2AM=6×3=33,2等边△ABC经过第2次翻转后,A23,33,等边△ABC经过第3次翻转后,点A仍在点A2处,∴每经过3次翻转,点A向右平移3个单位,向上平移33个单位,∵2023÷3=674⋯⋯1,第2次与第3次翻转后点A处在同一个点,∴点A经过2023次翻转后,向右平移了3×674=2022个单位,向上平移了33×674+23=20243个单位,∴等边三角形翻滚2023次后点A的对应点坐标是2021,20243,故选:D.7(2023·河南)如图,矩形ABCD的顶点A、B分别在x轴、y轴上,其坐标分别为-6,0、0,-8,AD=20,将矩形ABCD绕点O顺时针旋转,每次旋转90°,则第2022次旋转结束时,点D的坐标为()A.10,12B.-10,-12C.-12,10D.12,-10【答案】B 【详解】解:如图,过点D 作DT ⊥x 轴于点T .矩形ABCD 的顶点A 、B 分别在x 轴、y 轴上,其坐标分别为-6,0 、0,-8 ,∴OA =6,OB =8,∴AB =OA 2+OB 2=10,∵∠ATD =∠AOB =∠BAD =90°,∴∠DAT +∠BAO =90°,∠BAO +∠ABO =90°,∴∠DAT =∠ABO ,∴△ATD ∽△BOA ,∴AD AB =AT OB =DT OA,即2010=AT 8=DT 6,∴AT =16,DT =12,∴OT =AT -OA =16-6=10,∴D 10,12 ,∵矩形ABCD 绕点O 顺时针旋转,每次旋转90°,则第1次旋转结束时,点D 的坐标为12,-10 ;则第2次旋转结束时,点D 的坐标为-10,-12 ;则第3次旋转结束时,点D 的坐标为-12,10 ;则第4次旋转结束时,点D 的坐标为10,12 ;⋯发现规律:旋转4次一个循环,∴2022÷4=505⋯2,则第2021次旋转结束时,点D 的坐标为-10,-12 .故选:B .8(2023·江西吉安·期末)规律探究题:如图是由一些火柴棒摆成的图案:按照这种方式摆下去,摆第2023个图案用几根火柴棒()A.8093B.8095C.8092D.8091【答案】A 【详解】观察图形的变化可知:摆第1个图案要用火柴棒的根数为:5;摆第2个图案要用火柴棒的根数为:9=5+4=5+4×1;摆第3个图案要用火柴棒的根数为:13=5+4+4=5+4×2;⋯则摆第n个图案要用火柴棒的根数为:5+4n-1=4n+1;故第2023个图案要用火柴棒的根数为:4×2023+1=8093故选:A9(23-24·河南新乡·期末)汉字文化正在走进人们的日常消费生活.如图所示图形都是由同样大小的圆点和线段按照一定的规律排列组成的篆书简化“汉”字,其中,图①中共有12个圆点,图②中共有18个圆点,图③中共有25个圆点,图④中共有33个圆点⋯依此规律则图⑩中共有圆点的个数是()A.63B.75C.88D.102【答案】D【详解】解:由题意知,图①中共有12个圆点,图②中共有12+6=18个圆点,图③中共有12+6+7=25个圆点,图④中共有12+6+7+8=33个圆点,⋯∴图⑩中共有圆点12+6+7+8+9+10+11+12+13+14=102,故选:D.10(23-24·湖北武汉·期末)已知点A0-1,3,记A0关于直线m(直线m上各点的横坐标都为0)的对称点为A1,A1关于直线n(直线n上各点的纵坐标都为1)的对称点为A2,A2关于直线p(直线p上各点的横坐标都为-2)的对称点为A3,A3关于直线q(直线q上各点的纵坐标都为3)的对称点为A4,A4关于直线m的对称点为A5,A5关于直线n的对称点为A6,⋯⋯依此规律A2023的坐标是()A.2021,-2021D.-2025,2027C.-2021,-2017B.-2025,-2021【答案】B【详解】解:∵直线m上各点的横坐标都为0,即直线m为y轴,∴A11,3,在第一象限,∵直线n上各点的纵坐标都为1,即直线n为直线y=1;∴A21,-1,在第四象限,∵直线p上各点的横坐标都为-2,即直线p为直线x=-2,∴A3-5,-1,在第三象限,∵直线q上各点的纵坐标都为3,即直线q为直线y=3,∴A4-5,7,在第二象限,∴A55,7在第三象限,,在第一象限,A65,-5,在第四象限,A7-9,-5∴每四个点坐标所在象限为一个循环,∵2023=4×505+3,∴A2023与A3在同一象限,∵A3-5,-1,A7-9,-5,∴可知,第三象限的点坐标的特征为A n -n +2 ,-n -2 ,∴A 2023-2025,-2021 ,故选:B .11(23·山东济宁·期末)如图,OP =1,过点P 作PP 1⊥OP 且PP 1=1,得OP 1=2;再过点P ,作P 1P 2⊥OP 1,且P 1P 2=1,得OP 2=3;又过点P 2作P 2P 3⊥OP 2且P 2P 3=1,得OP 3=2⋯依此法继续作下去,得OP 2021=()A.2023B.2022C.2021D.2020【答案】B【详解】解:由勾股定理得:OP 1=OP 2+OP 12=12+12=2,OP 2=OP 12+P 1P 22=(2)2+12=3,OP 3=OP 22+P 2P 32=(3)2+12=2,⋯,依此类推可得:OP n =(OP n -1)2+(P n -1P n )2=(n )2+12=n +1,∴OP 2021=2021+1=2022,故选:B .12(23·广西贵港·期末)请看杨辉三角,并观察下列等式:(a +b )1=a +b(a +b )2=a 2+2ab +b 2(a +b )3=a 3+3a 2b +3ab 2+b 3(a +b )4=a 4+4a 3b +6a 2b 2+4ab 3+b 4根据前面各式的规律,则(a +b )6=.【答案】a 6+6a 5b +15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 6【详解】解:(a +b )6=a 6+6a 5b +15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 6故本题答案为:a 6+6a 5b +15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 6.13(23-24·辽宁沈阳·期中)汉字文化正在走进人们的日常消费生活.下列图形都是由同样大小的圆点和线段按照一定的规律排列组成的篆书简化“汉”字,其中,图①中共有12个圆点,图②中共有18个圆点,图③中共有25个圆点,图④中共有33个圆点⋯依此规律,则图⑧中共有圆点的个数是.【答案】75【详解】解:在图①中,圆点个数为y1=12个.在图②中,圆点个数为y2=y1+2+4=18个.在图③中,圆点个数为y3=y2+2+5=25个.在图④中,圆点个数为y4=y3+2+6=33个....以次类推,在图⑧中,圆点个数为y8=y7+(2+10)=y6+(2+9)+12=y5+(2+8)+11+12=y4+(2+7)+10+11+12=33+9+10+11+12=75.故答案为:75.14(2023·四川资阳·一模)如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为α,再沿直线前进5米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为.【答案】40°.【详解】连续左转后形成的正多边形边数为:45÷5=9,则左转的角度是360°÷9=40°.故答案是:40°.15(22-23·江苏)我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表(图①),即杨辉三角.现在将所有的奇数记“1”,所有的偶数记为“0”,则前4行如图②,前8行如图③,求前32行“1”的个数为.【答案】243【详解】观察图②和图③可知,前8行中包含3个前4行的图形,中间三角形中的数字均为0,∴前8行中“1”的个数是前4行中“1”的个数的3倍,即前8行中“1”的个数为9×3=27(个),同理可知前16行中“1”的个数是前8行中“1”的个数的3倍,即前16行中“1”的个数为27×3=81(个),前32行中“1”的个数是前16行中“1”的个数的3倍,即前32行中“1”的个数为81×3=243(个),故答案为:243.16(2023九年级上·全国·期末)在平面直角坐标系中,抛物线y =x 2的图象如图所示.已知A 点坐标为(1,1),过点A 作AA 1∥x 轴交抛物线于点A 1,过点A 1作A 1A 2∥OA 交抛物线于点A 2,过点A 2作A 2A 3∥x 轴交抛物线于点A 3,过点A 3作A 3A 4∥OA 交抛物线于点A 4⋯,依次进行下去,则点A 2023的坐标为.【答案】-1012,10122【详解】解:∵A 点坐标为(1,1),∴直线OA 为y =x ,A 1(-1,1),∵A 1A 2∥OA ,∴直线A 1A 2为y =x +2,解y =x +2y =x 2得x =-1y =1 或x =2y =4 ,∴A 2(2,4),∴A 3(-2,4),∵A 3A 4∥OA ,∴直线A 3A 4为y =x +6,解y =x +6y =x2 得x =-2y =4 或x =3y =9 ,∴A 4(3,9),∴A 5(-3,9)⋯,∴A2023-1012,10122,故答案为:-1012,10122.17(22-23九年级上·全国·期末)(规律探究题)下表是按一定规律排列的一列方程,仔细观察,大胆猜想,科学推断,完成练习.序号方程方程的解1x2-2x-3=0x1=-1,x2=32x2-4x-12=0x1=-2,x2=63x2-6x-27=0x1=-3,x2=9⋯⋯⋯(1)这列方程中第10个方程的两个根分别是x1=,x2=.(2)这列方程中第n个方程为.【答案】(1)-10;30;(2)x2-2nx-3n2=0【详解】(1)由表格中的规律可知,第10个方程的解为x1=-10,x2=30;(2)根据表格中的规律可知,第n个方程的解是x1=-n,x2=3n,∴根据根与系数的关系可知:第n个方程就是x2-2nx-3n2=0.18(22-23·福建莆田·期中)探究规律题按照规律填上所缺的单项式并回答问题:(1)a,-2a2,3a3,-4a4,,;(2)试写出第2017个和第2018个单项式;(3)试写出第n个单项式;(4)试计算:当a=-1时,a+(-2a2)+3a3+(-4a4)+⋯+99a99+(-100a100)的值.【详解】解:(1)由前几项的规律可得:第五项、第六项依次为:5a5,-6a6;(2)第2007个单项式为:2017a2017,第2018个单项式为:-2018a2018;(3)第n个单项式的系数为:n×(-1)n+1,次数为n,故第n个单项式为:(-1)n+1nan.(4)原式=-1-2-3⋯-100=-5050.19(23-24·河南安阳)探究规律,完成相关题目.定义“*”运算:(+2)*(+4)=+(22+42);(-4)*(-7)=+(-4)2+(-7)2;(-2)*(+4)=-(-2)2+(+4)2;;(+5)*(-7)=-(+5)2+(-7)20*(-5)=(-5)*0=(-5)2;(+3)*0=0*(+3)=(+3)2.0*0=02+02=0(1)归纳*运算的法则:两数进行*运算时,.(文字语言或符号语言均可)特别地,0和任何数进行*运算,或任何数和0进行*运算,(2)计算:+1*0*-2.(3)是否存在有理数m,n,使得m-1=0,若存在,求出m,n的值,若不存在,说明理由.*n+2【详解】(1)解:归纳*运算的法则∶两数进行*运算时,同号得正,异号得负,并把两数的平方相加.特别地,0和任何数进行*运算,或任何数和0进行*运算,等于这个数的平方.(2)解:+1 *0*-2 ,=+1 *-2 2,=+1 *4,=+12+42 ,=1+16,=17;(3)解:m -1 *n +2 =0,=±m -1 2+n +2 2 =0,∴m -1=0,n +2=0,解得:m =1,n =-2,20(23-24·浙江杭州·期中)探究规律,完成相关题目:小明说:“我定义了一种新的运算,叫※(加乘)运算.”然后他写出了一些按照※(加乘)运算的运算法则进行运算的算式:(+5)※(+2)=+7;(-3)※(-5)=+8;(-3)※(+4)=-7;(+5)※(-6)=-11;(0)※(+8)=8;(0)※(-8)=8;(-6)※(0)=6;(+6)※(0)=6.小亮看了这些算式后说:“我知道你定义的※(加乘)运算的运算法则了.”聪明的你也明白了吗?(1)观察以上式子,类比计算:①-12 ※-15=,-23 ※+1 =;(2)计算:(-2)※[0※(-1)];(括号的作用与它在有理数运算中的作用一致,写出必要的运算步骤)(3)若1-a ※b -3 =0.计算:1a ×b +1a +2 ×b +2 +1a +4 ×b +4 +1a +6 ×b +6+1a +8 ×b +8的值.【详解】(1)解:①-12 ※-15 =-12 +-15 =12+15=710,故答案为:710.②-23 ※+1 =--23 +1 =-23+1 =-53,故答案为:-53.(2)解:(-2)※[0※(-1)]=-2 ※+1=-1+2=-3.(3)∵1-a ※b -3 =0,∴1-a +b -3 =0,。
中考数学真题《规律探究题》专项测试卷(附答案)
![中考数学真题《规律探究题》专项测试卷(附答案)](https://img.taocdn.com/s3/m/8c467adcd1d233d4b14e852458fb770bf68a3b76.png)
中考数学真题《规律探究题》专项测试卷(附答案)学校:___________班级:___________姓名:___________考号:___________(26题)一 、单选题1.(2023·重庆·统考中考真题)用长度相同的木棍按如图所示的规律拼图案 其中第①个图案用了9根木棍 第①个图案用了14根木棍 第①个图案用了19根木棍 第①个图案用了24根木棍 …… 按此规律排列下去,则第①个图案用的木棍根数是( )A .39B .44C .49D .542.(2023·重庆·统考中考真题)用圆圈按如图所示的规律拼图案 其中第①个图案中有2个圆圈 第①个图案中有5个圆圈 第①个图案中有8个圆圈 第①个图案中有11个圆圈 … 按此规律排列下去,则第①个图案中圆圈的个数为( )A .14B .20C .23D .263.(2023·云南·统考中考真题)按一定规律排列的单项式:23452345,a a a a a 第n 个单项式是( )A nB 11n n a --C n naD 1n na -4.(2023·山东烟台·统考中考真题)如图,在直角坐标系中 每个网格小正方形的边长均为1个单位长度 以点P 为位似中心作正方形123PA A A 正方形456,PA A A ⋯ 按此规律作下去 所作正方形的顶点均在格点上 其中正方形123PA A A 的顶点坐标分别为()()()123,0,2,1,1,0P A A --- ()32,1A --,则顶点100A 的坐标为( )A .()31.34B .()31,34-C .()32,35D .()32,05.(2023·山东·统考中考真题)已知一列均不为1的数123n a a a a ,,,,满足如下关系:1223121111a a a a a a ++==--, 34131111nn na a a a a a +++==--,, 若12a =,则2023a 的值是( ) A .12-B .13C .3-D .26.(2023·四川达州·统考中考真题)如图,四边形ABCD 是边长为12的正方形 曲线11112DA B C D A 是由多段90︒的圆心角的圆心为C 半径为1CB 11C D 的圆心为D 半径为11111111,DC DA A B B C C D 、、、的圆心依次为A B C D 、、、循环,则20232023A B 的长是( )A .40452πB .2023πC .20234πD .2022π7.(2023·湖南常德·统考中考真题)观察下边的数表(横排为行 竖排为列) 按数表中的规律 分数202023若排在第a 行b 列,则a b -的值为( ) 11122113 22 31 1423 32 41…… A .2003 B .2004C .2022D .20238.(2023·四川内江·统考中考真题)对于正数x 规定2()1x f x x =+ 例如:224(2)213f ⨯==+ 1212212312f ⨯⎛⎫== ⎪⎝⎭+ 233(3)312f ⨯==+ 1211313213f ⨯⎛⎫== ⎪⎝⎭+ 计算:11111(1)1011009932f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++++⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(2)(3)(99)(100)(101)f f f f f +++++=( )A .199B .200C .201D .2029.(2023·山东日照·统考中考真题)数学家高斯推动了数学科学的发展 被数学界誉为“数学王子” 据传 他在计算1234100+++++时 用到了一种方法 将首尾两个数相加 进而得到100(1100)12341002⨯++++++=.人们借助于这样的方法 得到(1)12342n n n ++++++=(n 是正整数).有下列问题 如图,在平面直角坐标系中的一系列格点(),i i i A x y 其中1,2,3,,,i n = 且,i i x y 是整数.记n n n a x y =+ 如1(0,0)A 即120,(1,0)a A = 即231,(1,1)a A =- 即30,a =以此类推.则下列结论正确的是( )A .202340a =B .202443a =C .2(21)26n a n -=-D .2(21)24n a n -=-二 填空题10.(2023·四川成都·统考中考真题)定义:如果一个正整数能表示为两个正整数m n 的平方差 且1m n ->,则称这个正整数为“智慧优数”.例如 221653=- 16就是一个智慧优数 可以利用22()()m n m n m n -=+-进行研究.若将智慧优数从小到大排列,则第3个智慧优数是 第23个智慧优数是 .11.(2023·四川遂宁·统考中考真题)烷烃是一类由碳 氢元素组成的有机化合物 在生产生活中可作为燃料 润滑剂等原料 也可用于动 植物的养护.通常用碳原子的个数命名为甲烷 乙烷 丙烷 …… 癸烷(当碳原子数目超过10个时即用汉文数字表示 如十一烷 十二烷……)等 甲烷的化学式为4CH 乙烷的化学式为26C H 丙烷的化学式为38C H …… 其分子结构模型如图所示 按照此规律 十二烷的化学式为 .12.(2023·湖南岳阳·统考中考真题)观察下列式子:21110-=⨯ 22221-=⨯ 23332-=⨯ 24443-=⨯ 25554-=⨯ …依此规律,则第n (n 为正整数)个等式是 .13.(2023·湖北随州·统考中考真题)某天老师给同学们出了一道趣味数学题:设有编号为1-100的100盏灯 分别对应着编号为1-100的100个开关 灯分为“亮”和“不亮”两种状态 每按一次开关改变一次相对应编号的灯的状态 所有灯的初始状态为“不亮”.现有100个人 第1个人把所有编号是1的整数倍的开关按一次 第2个人把所有编号是2的整数倍的开关按一次 第3个人把所有编号是3的整数倍的开关按一次 …… 第100个人把所有编号是100的整数倍的开关按一次.问最终状态为“亮”的灯共有多少盏?几位同学对该问题展开了讨论:甲:应分析每个开关被按的次数找出规律:乙:1号开关只被第1个人按了1次 2号开关被第1个人和第2个人共按了2次 3号开关被第1个人和第3个人共按了2次 ……丙:只有按了奇数次的开关所对应的灯最终是“亮”的状态.根据以上同学的思维过程 可以得出最终状态为“亮”的灯共有 盏.14.(2023·湖北十堰·统考中考真题)用火柴棍拼成如下图案 其中第①个图案由4个小等边三角形围成1个小菱形 第①个图案由6个小等边三角形围成2个小菱形 …… 若按此规律拼下去,则第n 个图案需要火柴棍的根数为 (用含n 的式子表示).15.(2023·山西·统考中考真题)如图是一组有规律的图案 它由若干个大小相同的圆片组成.第1个图案中有4个白色圆片 第2个图案中有6个白色圆片 第3个图案中有8个白色圆片 第4个图案中有10个白色圆片 …依此规律 第n 个图案中有 个白色圆片(用含n 的代数式表示)16.(2023·黑龙江绥化·统考中考真题)在求123100++++的值时 发现:1100101+= 299101+=从而得到123100++++=101505050⨯=.按此方法可解决下面问题.图(1)有1个三角形 记作11a =分别连接这个三角形三边中点得到图(2) 有5个三角形 记作25a = 再分别连接图(2)中间的小三角形三边中点得到图(3) 有9个三角形 记作39a = 按此方法继续下去,则123n a a a a ++++= .(结果用含n 的代数式表示)17.(2023·湖南怀化·统考中考真题)在平面直角坐标系中 AOB 为等边三角形 点A 的坐标为()1,0.把AOB 按如图所示的方式放置 并将AOB 进行变换:第一次变换将AOB 绕着原点O 顺时针旋转60︒ 同时边长扩大为AOB 边长的2倍 得到11A OB △ 第二次旋转将11A OB △绕着原点O 顺时针旋转60︒ 同时边长扩大为11A OB △ 边长的2倍 得到22A OB △ ….依次类推 得到20332033A OB ,则20232033A OB △的边长为点2023A 的坐标为 .18.(2023·山东临沂·统考中考真题)观察下列式子 21312⨯+=22413⨯+= 23514⨯+=……按照上述规律 2n =.19.(2023·山东枣庄·统考中考真题)如图,在反比例函数8(0)y x x=>的图象上有1232024,,,P P P P 等点 它们的横坐标依次为1 2 3 … 2024 分别过这些点作x 轴与y 轴的垂线 图中所构成的阴影部分的面积从左到右依次为1232023,,,,S S S S ,则1232023S S S S ++++= .20.(2023·山东聊城·统考中考真题)如图,图中数字是从1开始按箭头方向排列的有序数阵.从3开始 把位于同一列且在拐角处的两个数字提取出来组成有序数对:()3,5 ()7,10 ()13,17 ()21,26 ()31,37…如果单把每个数对中的第一个或第二个数字按顺序排列起来研究 就会发现其中的规律.请写出第n 个数对: .21.(2023·湖南张家界·统考中考真题)如图,在平面直角坐标系中 四边形ABOC 是正方形 点A 的坐标为(1,1) 1AA 是以点B 为圆心 BA 为半径的圆弧 12A A 是以点O 为圆心 1OA 为半径的圆弧 23A A 是以点C 为圆心 2CA 为半径的圆弧 34A A 是以点A 为圆心 3AA 为半径的圆弧 继续以点B O C A 为圆心按上述作法得到的曲线12345AA A A A A 称为正方形的“渐开线”,则点2023A 的坐标是 .22.(2023·山东东营·统考中考真题)如图,在平面直角坐标系中 直线l :33y x =x 轴交于点1A 以1OA 为边作正方形111A B C O 点1C 在y 轴上 延长11C B 交直线l 于点2A 以12C A 为边作正方形2221A B C C 点2C 在y 轴上 以同样的方式依次作正方形3332A B C C … 正方形2023202320232022A B C C ,则点2023B 的横坐标是 .23.(2023·湖北恩施·统考中考真题)观察下列两行数 探究第①行数与第①行数的关系:2- 4 8- 16 32- 64 ……①0 7 4- 21 26- 71 ……①根据你的发现 完成填空:第①行数的第10个数为 取每行数的第2023个数,则这两个数的和为 .24.(2023·山东泰安·统考中考真题)已知 12345678,,,OA A A A A A A A △△△都是边长为2的等边三角形 按下图所示摆放.点235,,,A A A 都在x 轴正半轴上 且2356891A A A A A A ====,则点2023A 的坐标是 .25.(2023·四川广安·统考中考真题)在平面直角坐标系中 点1234A A A A 、、、在x 轴的正半轴上 点123B B B 、、在直线()0y x =≥上 若点1A 的坐标为()2,0 且112223334A B A A B A A B A △、△、△均为等边三角形.则点2023B 的纵坐标为 .26.(2023·黑龙江·统考中考真题)如图,在平面直角坐标系中 ABC 的顶点A 在直线13:l y x =上 顶点B 在x 轴上 AB 垂直x 轴 且22OB = 顶点C 在直线2:3l y x 上 2BC l ⊥ 过点A 作直线2l 的垂线 垂足为1C 交x 轴于1B 过点1B 作11A B 垂直x 轴 交1l 于点1A 连接11A C 得到第一个111A B C △ 过点1A 作直线2l 的垂线 垂足为2C 交x 轴于2B 过点2B 作22A B 垂直x 轴 交1l 于点2A 连接22A C 得到第二个222A B C △ 如此下去 ……,则202320232023A B C 的面积是 .参考答案一 单选题1.(2023·重庆·统考中考真题)用长度相同的木棍按如图所示的规律拼图案 其中第①个图案用了9根木棍 第①个图案用了14根木棍 第①个图案用了19根木棍 第①个图案用了24根木棍 …… 按此规律排列下去,则第①个图案用的木棍根数是( )A .39B .44C .49D .54【答案】B【分析】根据各图形中木棍的根数发现计算的规律 由此即可得到答案. 【详解】解:第①个图案用了459+=根木棍 第①个图案用了45214+⨯=根木棍 第①个图案用了45319+⨯=根木棍 第①个图案用了45424+⨯=根木棍 ……第①个图案用的木棍根数是45844+⨯=根 故选:B .【点睛】此题考查了图形类规律的探究正确理解图形中木棍根数的变化规律由此得到计算的规律是解题的关键.2.(2023·重庆·统考中考真题)用圆圈按如图所示的规律拼图案其中第①个图案中有2个圆圈第①个图案中有5个圆圈第①个图案中有8个圆圈第①个图案中有11个圆圈… 按此规律排列下去,则第①个图案中圆圈的个数为()A.14B.20C.23D.26【答案】B【分析】根据前四个图案圆圈的个数找到规律即可求解.=⨯-【详解】解:因为第①个图案中有2个圆圈2311=⨯-第①个图案中有5个圆圈5321=⨯-第①个图案中有8个圆圈8331=⨯-第①个图案中有11个圆圈11341…⨯-=所以第①个图案中圆圈的个数为37120故选:B.n-是解题的【点睛】本题考查了图形类规律探究根据前四个图案圆圈的个数找到第n个图案的规律为31关键.3.(2023·云南·统考中考真题)按一定规律排列的单项式:2345,a第n个单项式是()B1n-C n D1n-A【答案】C字母为a指数为1开始的自然数据此即可求解.【分析】根据单项式的规律可得【详解】解:按一定规律排列的单项式:2345,a第n n故选:C.【点睛】本题考查了单项式规律题找到单项式的变化规律是解题的关键.4.(2023·山东烟台·统考中考真题)如图,在直角坐标系中每个网格小正方形的边长均为1个单位长度以点P 为位似中心作正方形123PA A A 正方形456,PA A A ⋯ 按此规律作下去 所作正方形的顶点均在格点上 其中正方形123PA A A 的顶点坐标分别为()()()123,0,2,1,1,0P A A --- ()32,1A --,则顶点100A 的坐标为( )A .()31.34B .()31,34-C .()32,35D .()32,0【答案】A【分析】根据图象可得移动3次完成一个循环 从而可得出点坐标的规律()323n A n n --,.【详解】解:①()121A -, ()412A -, ()703A , ()1014A ,①()323n A n n --,①1003342=⨯-,则34n =①()1003134A , 故选:A .【点睛】本题考查了点的规律变化 解答本题的关键是仔细观察图象 得到点的变化规律. 5.(2023·山东·统考中考真题)已知一列均不为1的数123n a a a a ,,,,满足如下关系:1223121111a a a a a a ++==--, 34131111nn na a a a a a +++==--,, 若12a =,则2023a 的值是( ) A .12-B .13C .3-D .2【答案】A【分析】根据题意可把12a =代入求解23a =-,则可得312a =- 413a = 52a =…… 由此可得规律求解.【详解】解:①12a =①212312a +==-- 3131132a -==-+ 411121312a -==+51132113a +==- ……. 由此可得规律为按2 3- 12- 13四个数字一循环①20234505.....3÷= ①2023312a a ==- 故选A .【点睛】本题主要考查数字规律 解题的关键是得到数字的一般规律.6.(2023·四川达州·统考中考真题)如图,四边形ABCD 是边长为12的正方形 曲线11112DA B C D A 是由多段90︒的圆心角的圆心为C 半径为1CB 11C D 的圆心为D 半径为11111111,DC DA A B B C C D 、、、的圆心依次为A B C D 、、、循环,则20232023A B 的长是( )A .40452πB .2023πC .20234πD .2022π【答案】A【分析】曲线11112DA B C D A …是由一段段90度的弧组成的 半径每次比前一段弧半径12+ 得到1114(1)22n n AD AA n -==⨯-+ 14(1)12n n BA BB n ==⨯-+ 得出半径 再计算弧长即可.【详解】解:由图可知 曲线11112DA B C D A …是由一段段90度的弧组成的 半径每次比前一段弧半径12+∴112AD AA ==111BA BB == 1132CB CC == 112DC DD ==12122AD AA ==+2221BA BB ==+ 22322CB CC ==+ 2222DC DD ==+ ⋯⋯1114(1)22n n AD AA n -==⨯-+ 14(1)12n n BA BB n ==⨯-+故20232023A B 的半径为()202320231420231140452BA BB ==⨯⨯-+=∴20232023A B 的弧长90404540451802ππ=⨯=. 故选A【点睛】此题主要考查了弧长的计算 弧长的计算公式:180n rl π= 找到每段弧的半径变化规律是解题关键. 7.(2023·湖南常德·统考中考真题)观察下边的数表(横排为行 竖排为列) 按数表中的规律 分数202023若排在第a 行b 列,则a b -的值为( ) 11122113 22 31 1423 32 41…… A .2003 B .2004 C .2022 D .2023【答案】C【分析】观察表中的规律发现 分数的分子是几,则必在第几列 只有第一列的分数 分母与其所在行数一致.【详解】观察表中的规律发现 分数的分子是几,则必在第几列 只有第一列的分数 分母与其所在行数一致 故202023在第20列 即20b = 向前递推到第1列时 分数为201912023192042-=+ 故分数202023与分数12042在同一行.即在第2042行,则2042a =. ①2042202022.a b -=-= 故选:C .【点睛】本题考查了数字类规律探索的知识点 解题的关键善于发现数字递变的周期性和趋向性.8.(2023·四川内江·统考中考真题)对于正数x 规定2()1x f x x =+ 例如:224(2)213f ⨯==+ 1212212312f ⨯⎛⎫== ⎪⎝⎭+ 233(3)312f ⨯==+ 1211313213f ⨯⎛⎫== ⎪⎝⎭+ 计算:11111(1)1011009932f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++++⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(2)(3)(99)(100)(101)f f f f f +++++=( )A .199B .200C .201D .202【答案】C【分析】通过计算11(1)1,(2)2,(3)223f f f f f ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭⋯可以推出11111(1)(2)(3)(99)(100)(101)1011009932f f f f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭结果. 【详解】解:2(1)1,11f ==+ 12441212(2),,(2)2,112323212f f f f ⨯⎛⎫⎛⎫====+= ⎪ ⎪+⎝⎭⎝⎭+ 122331113(3),,(3)2,113232313f f f f ⨯⨯⎛⎫⎛⎫====+= ⎪ ⎪+⎝⎭⎝⎭+ …2100200(100)1100101f ⨯==+ 1212100()11001011100f ⨯==+1(100)()2100f f += 11111(1)(2)(3)(99)(100)(101)1011009932f f f f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭21001=⨯+ 201=故选:C .【点睛】此题考查了有理数的混合运算 熟练掌握运算法则 找到数字变化规律是解本题的关键. 9.(2023·山东日照·统考中考真题)数学家高斯推动了数学科学的发展 被数学界誉为“数学王子” 据传 他在计算1234100+++++时 用到了一种方法 将首尾两个数相加 进而得到100(1100)12341002⨯++++++=.人们借助于这样的方法 得到(1)12342n n n ++++++=(n 是正整数).有下列问题 如图,在平面直角坐标系中的一系列格点(),i i i A x y 其中1,2,3,,,i n = 且,i i x y 是整数.记n n n a x y =+ 如1(0,0)A 即120,(1,0)a A = 即231,(1,1)a A =- 即30,a = 以此类推.则下列结论正确的是( )A .202340a =B .202443a =C .2(21)26n a n -=-D .2(21)24n a n -=-【答案】B【分析】利用图形寻找规律()211,1n A n n --- 再利用规律解题即可. 【详解】解:第1圈有1个点 即1(0,0)A 这时10a = 第2圈有8个点 即2A 到()91,1A 第3圈有16个点 即10A 到()252,2A 依次类推 第n 圈 ()211,1n A n n ---由规律可知:2023A 是在第23圈上 且()202522,22A ,则()202320,22A 即2023202242a =+= 故A 选项不正确 2024A 是在第23圈上 且()202421,22A 即2024212243a =+= 故B 选项正确第n 圈 ()211,1n A n n --- 所以2122n a n -=- 故C D 选项不正确 故选B .【点睛】本题考查图形与规律 利用所给的图形找到规律是解题的关键.二 填空题10.(2023·四川成都·统考中考真题)定义:如果一个正整数能表示为两个正整数m n 的平方差 且1m n ->,则称这个正整数为“智慧优数”.例如 221653=- 16就是一个智慧优数 可以利用22()()m n m n m n -=+-进行研究.若将智慧优数从小到大排列,则第3个智慧优数是 第23个智慧优数是 . 【答案】 15 45【分析】根据新定义 列举出前几个智慧优数 找到规律 进而即可求解.【详解】解:依题意 当3m = 1n =,则第1个一个智慧优数为22318-= 当4m = 2n =,则第2个智慧优数为224214-= 当4m = 1n =,则第3个智慧优数为224115-= 当5m = 3n =,则第5个智慧优数为225316-= 当5m = 2n =,则第6个智慧优数为225221-= 当5m = 1n =,则第7个智慧优数为225324-= ……6m =时有4个智慧优数 同理7m =时有5个 8m =时有6个12345621+++++=第22个智慧优数 当9m =时 7n = 第22个智慧优数为2297814932-=-= 第23个智慧优数为9,6m n ==时 2296813645-=-= 故答案为:15 45.【点睛】本题考查了新定义 平方差公式的应用 找到规律是解题的关键.11.(2023·四川遂宁·统考中考真题)烷烃是一类由碳 氢元素组成的有机化合物 在生产生活中可作为燃料 润滑剂等原料 也可用于动 植物的养护.通常用碳原子的个数命名为甲烷 乙烷 丙烷 …… 癸烷(当碳原子数目超过10个时即用汉文数字表示 如十一烷 十二烷……)等 甲烷的化学式为4CH 乙烷的化学式为26C H 丙烷的化学式为38C H …… 其分子结构模型如图所示 按照此规律 十二烷的化学式为 .【答案】1226C H【分析】根据碳原子的个数 氢原子的个数 找到规律 即可求解. 【详解】解:甲烷的化学式为4CH 乙烷的化学式为26C H 丙烷的化学式为38C H ……碳原子的个数为序数 氢原子的个数为碳原子个数的2倍多2个十二烷的化学式为1226C H 故答案为:1226C H .【点睛】本题考查了规律题 找到规律是解题的关键. 12.(2023·湖南岳阳·统考中考真题)观察下列式子:21110-=⨯ 22221-=⨯ 23332-=⨯ 24443-=⨯ 25554-=⨯ …依此规律,则第n (n 为正整数)个等式是 .【答案】()21n n n n -=-【分析】根据等式的左边为正整数的平方减去这个数 等式的右边为这个数乘以这个数减1 即可求解. 【详解】解:①21110-=⨯ 22221-=⨯ 23332-=⨯ 24443-=⨯ 25554-=⨯ …①第n (n 为正整数)个等式是()21n n n n -=-故答案为:()21n n n n -=-.【点睛】本题考查了数字类规律 找到规律是解题的关键.13.(2023·湖北随州·统考中考真题)某天老师给同学们出了一道趣味数学题:设有编号为1-100的100盏灯 分别对应着编号为1-100的100个开关 灯分为“亮”和“不亮”两种状态 每按一次开关改变一次相对应编号的灯的状态 所有灯的初始状态为“不亮”.现有100个人 第1个人把所有编号是1的整数倍的开关按一次 第2个人把所有编号是2的整数倍的开关按一次 第3个人把所有编号是3的整数倍的开关按一次 …… 第100个人把所有编号是100的整数倍的开关按一次.问最终状态为“亮”的灯共有多少盏?几位同学对该问题展开了讨论:甲:应分析每个开关被按的次数找出规律:乙:1号开关只被第1个人按了1次 2号开关被第1个人和第2个人共按了2次 3号开关被第1个人和第3个人共按了2次 ……丙:只有按了奇数次的开关所对应的灯最终是“亮”的状态.根据以上同学的思维过程 可以得出最终状态为“亮”的灯共有 盏. 【答案】10【分析】灯的初始状态为“不亮” 按奇数次,则状态为“亮” 按偶数次,则状态为“不亮” 确定1-100中 各个数因数的个数 完全平方数的因数为奇数个 从而求解.【详解】所有灯的初始状态为“不亮” 按奇数次,则状态为“亮” 按偶数次,则状态为“不亮”因数的个数为奇数的自然数只有完全平方数 1-100中 完全平方数为1 4 9 16 25 36 49 64 81 100 有10个数 故有10盏灯被按奇数次 为“亮”的状态 故答案为:10.【点睛】本题考查因数分解 完全平方数 理解因数的意义 完全平方数的概念是解题的关键. 14.(2023·湖北十堰·统考中考真题)用火柴棍拼成如下图案 其中第①个图案由4个小等边三角形围成1个小菱形 第①个图案由6个小等边三角形围成2个小菱形 …… 若按此规律拼下去,则第n 个图案需要火柴棍的根数为 (用含n 的式子表示).【答案】66n +/66n +【分析】当1n =时 有()2114+=个三角形 当2n =时 有()2216+=个三角形 当3n =时 有()2318+=个三角形 第n 个图案有()2122n n +=+个三角形 每个三角形用三根计算即可.【详解】解:当1n =时 有()2114+=个三角形 当2n =时 有()2216+=个三角形 当3n =时 有()2318+=个三角形 第n 个图案有()2122n n +=+个三角形 每个三角形用三根故第n 个图案需要火柴棍的根数为66n +. 故答案为:66n +.【点睛】本题考查了整式的加减的数字规律问题 熟练掌握规律的探索方法是解题的关键.15.(2023·山西·统考中考真题)如图是一组有规律的图案 它由若干个大小相同的圆片组成.第1个图案中有4个白色圆片 第2个图案中有6个白色圆片 第3个图案中有8个白色圆片 第4个图案中有10个白色圆片 …依此规律 第n 个图案中有 个白色圆片(用含n 的代数式表示)【答案】()22n +【分析】由于第1个图案中有4个白色圆片4221=+⨯ 第2个图案中有6个白色圆片6222=+⨯ 第3个图案中有8个白色圆片8223=+⨯ 第4个图案中有10个白色圆片10224=+⨯ ⋯ 可得第(1)n n >个图案中有白色圆片的总数为22n +.【详解】解:第1个图案中有4个白色圆片4221=+⨯ 第2个图案中有6个白色圆片6222=+⨯ 第3个图案中有8个白色圆片8223=+⨯ 第4个图案中有10个白色圆片10224=+⨯⋯①第(1)n n >个图案中有()22n +个白色圆片. 故答案为:()22n +.【点睛】此题考查图形的变化规律 通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素 然后推广到一般情况.解题关键是总结归纳出图形的变化规律. 16.(2023·黑龙江绥化·统考中考真题)在求123100++++的值时 发现:1100101+= 299101+=从而得到123100++++=101505050⨯=.按此方法可解决下面问题.图(1)有1个三角形 记作11a =分别连接这个三角形三边中点得到图(2) 有5个三角形 记作25a = 再分别连接图(2)中间的小三角形三边中点得到图(3) 有9个三角形 记作39a = 按此方法继续下去,则123n a a a a ++++= .(结果用含n 的代数式表示)【答案】22n n -/22n n -+【分析】根据题意得出()14143n a n n =+-=- 进而即可求解. 【详解】解:依题意 ()1231,5,9,14143n a a a a n n ===⋅⋅⋅=+-=-, ①123n a a a a ++++=()21432122n n n n n n +-==-=- 故答案为:22n n -.【点睛】本题考查了图形类规律 找到规律是解题的关键.17.(2023·湖南怀化·统考中考真题)在平面直角坐标系中 AOB 为等边三角形 点A 的坐标为()1,0.把AOB 按如图所示的方式放置 并将AOB 进行变换:第一次变换将AOB 绕着原点O 顺时针旋转60︒ 同时边长扩大为AOB 边长的2倍 得到11A OB △ 第二次旋转将11A OB △绕着原点O 顺时针旋转60︒ 同时边长扩大为11A OB △ 边长的2倍 得到22A OB △ ….依次类推 得到20332033A OB ,则20232033A OB △的边长为 点2023A 的坐标为 .【答案】 20232 ()202220222,2【分析】根据旋转角度为60︒ 可知每旋转6次后点A 又回到x 轴的正半轴上 故点2023A 在第四象限 且202320232OA = 即可求解.【详解】解:①AOB 为等边三角形 点A 的坐标为()1,0 ①1OA =①每次旋转角度为60︒ ①6次旋转360︒第一次旋转后 1A 在第四象限 12OA =第二次旋转后 2A 在第三象限 222OA =第三次旋转后 3A 在x 轴负半轴 332OA =第四次旋转后 4A 在第二象限 442OA =第五次旋转后 5A 在第一象限 552OA =第六次旋转后 6A 在x 轴正半轴 662OA =……如此循环 每旋转6次 点A 的对应点又回到x 轴正半轴①202363371÷=点2023A 在第四象限 且202320232OA =如图,过点2023A 作2023A H x ⊥轴于H在2023Rt OHA 中 202360HOA ∠=︒①202320232022202320231cos 2cos60222OH OA HOA =⋅∠=⨯︒=⨯=202320222023202320233sin 232A H OA HOA =⋅∠= ①点2023A 的坐标为()202220222,32.故答案为:20232 ()202220222,32.【点睛】本题考查图形的旋转 解直角三角形的应用.熟练掌握图形旋转的性质 根据旋转角度找到点的坐标规律是解题的关键.18.(2023·山东临沂·统考中考真题)观察下列式子 21312⨯+=22413⨯+= 23514⨯+=……按照上述规律 2n =. 【答案】()()111n n -++【分析】根据已有的式子 抽象出相应的数字规律 进行作答即可. 【详解】解:①21312⨯+= 22413⨯+=23514⨯+=……①()()2211n n n ++=+①()()2111n n n -++=.故答案为:()()111n n -++【点睛】本题考查数字类规律探究.解题的关键是从已有的式子中抽象出相应的数字规律. 19.(2023·山东枣庄·统考中考真题)如图,在反比例函数8(0)y x x=>的图象上有1232024,,,P P P P 等点 它们的横坐标依次为1 2 3 … 2024 分别过这些点作x 轴与y 轴的垂线 图中所构成的阴影部分的面积从左到右依次为1232023,,,,S S S S ,则1232023S S S S ++++= .【答案】2023253【分析】求出1234,,,P P P P …的纵坐标 从而可计算出1234,,,S S S S …的高 进而求出1234,,,S S S S … 从而得出123n S S S S +++⋯+的值.【详解】当1x =时 1P 的纵坐标为8 当2x =时 2P 的纵坐标为4 当3x =时 3P 的纵坐标为83当4x =时 4P 的纵坐标为2当5x =时 5P 的纵坐标为85…则11(84)84S =⨯-=- 2881(4)433S =⨯-=-3881(2)233S =⨯-=-481(2)2558S =⨯-=- (881)n S n n =-+ 1238888888844228335111n n S S S S n n n n +++⋯+=-+-+-+-++-=-=+++ ①12320238202320242532023S S S S ⨯+++⋯+==. 故答案为:2023253. 【点睛】本题考查了反比例函数与几何的综合应用 解题的关键是求出881n S n n =-+. 20.(2023·山东聊城·统考中考真题)如图,图中数字是从1开始按箭头方向排列的有序数阵.从3开始 把位于同一列且在拐角处的两个数字提取出来组成有序数对:()3,5 ()7,10 ()13,17 ()21,26 ()31,37…如果单把每个数对中的第一个或第二个数字按顺序排列起来研究 就会发现其中的规律.请写出第n 个数对: .【答案】()221,22n n n n ++++【分析】根据题意单另把每个数对中的第一个或第二个数字按顺序排列起来研究 可发现第n 个数对的第一个数为:()11n n ++ 第n 个数对的第二个位:()211n ++ 即可求解.【详解】解:每个数对的第一个数分别为3 7 13 21 31 … 即:121⨯+ 231⨯+ 341⨯+ 451⨯+ 561⨯+ … 则第n 个数对的第一个数为:()2111n n n n ++=++ 每个数对的第二个数分别为5 10 17 26 37 … 即:221+ 231+ 241+ 251+ 261+… 则第n 个数对的第二个位:()221122n n n ++=++①第n 个数对为:()221,22n n n n ++++ 故答案为:()221,22n n n n ++++.【点睛】此题考查数字的变化规律 找出数字之间的排列规律 利用拐弯出数字的差的规律解决问题. 21.(2023·湖南张家界·统考中考真题)如图,在平面直角坐标系中 四边形ABOC 是正方形 点A 的坐标为(1,1) 1AA 是以点B 为圆心 BA 为半径的圆弧 12A A 是以点O 为圆心 1OA 为半径的圆弧 23A A 是以点C 为圆心 2CA 为半径的圆弧 34A A 是以点A 为圆心 3AA 为半径的圆弧 继续以点B O C A 为圆心按上述作法得到的曲线12345AA A A A A 称为正方形的“渐开线”,则点2023A 的坐标是 .【答案】()2023,1-【分析】将四分之一圆弧对应的A 点坐标看作顺时针旋转90︒ 再根据A 1A 2A 3A 4A 的坐标找到规律即可.【详解】①A 点坐标为()1,1 且1A 为A 点绕B 点顺时针旋转90︒所得 ①1A 点坐标为()2,0又①2A 为1A 点绕O 点顺时针旋转90︒所得 ①2A 点坐标为()0.2-又①3A 为2A 点绕C 点顺时针旋转90︒所得 ①3A 点坐标为()3,1-又①4A 为3A 点绕A 点顺时针旋转90︒所得 ①4A 点坐标为()1,5由此可得出规律:n A 为绕B O C A 四点作为圆心依次循环顺时针旋转90︒ 且半径为1 2 3 n每次增加1. ①202355053÷=故2023A 为以点C 为圆心 半径为2022的2022A 顺时针旋转90︒所得 故2023A 点坐标为()2023,1-. 故答案为:()2023,1-.【点睛】本题考查了点坐标规律探索 通过点的变化探索出坐标变化的规律是解题的关键.22.(2023·山东东营·统考中考真题)如图,在平面直角坐标系中 直线l :33y x =x 轴交于点1A 以1OA 为边作正方形111A B C O 点1C 在y 轴上 延长11C B 交直线l 于点2A 以12C A 为边作正方形2221A B C C 点2C 在y 轴上 以同样的方式依次作正方形3332A B C C … 正方形2023202320232022A B C C ,则点2023B 的横坐标是 .【答案】20221⎛ ⎝⎭【分析】分别求出点点1B 的横坐标是1 点2B 的横坐标是1 点3B 2413⎛+= ⎝⎭找到规律 得到答案见即可.【详解】解:当0y = 0= 解得1x = ①点()11,0A ,①111A B C O 是正方形 ①11111OA A B OC === ①点()11,1B ①点1B 的横坐标是1当1y =时 1 解得1x =+①点21A ⎛⎫⎪ ⎪⎝⎭①2221A B C C 是正方形①2212211A B C C A C ===①点212B ⎛ ⎝⎭即点2B 的横坐标是1当2y =时 2= 解得)223x =①点34,23A ⎝⎭①3332A B C C 是正方形①33233243A B C C A C ===①点3B 2413⎛= ⎝⎭……以此类推,则点2023B 的横坐标是202231⎛ ⎝⎭故答案为:202231⎛ ⎝⎭【点睛】此题是点的坐标规律题 考查了二次函数的图象和性质 正方形的性质等知识 数形结合是是解题的关键.23.(2023·湖北恩施·统考中考真题)观察下列两行数 探究第①行数与第①行数的关系:2- 4 8- 16 32- 64 ……①0 7 4- 21 26- 71 ……①根据你的发现 完成填空:第①行数的第10个数为 取每行数的第2023个数,则这两个数的和为 .【答案】 1024 202422024-+【分析】通过观察第一行数的规律为(2)n - 第二行数的规律为(2)1n n -++ 代入数据即可. 【详解】第一行数的规律为(2)n - ①第①行数的第10个数为10(2)1024-= 第二行数的规律为(2)1n n -++①第①行数的第2023个数为2023(2)- 第①行数的第2023个数为2023(2)2024-+ ①202422024-+故答案为:1024 202422024-+.【点睛】本题主要考查数字的变化 找其中的规律 是今年考试中常见的题型. 24.(2023·山东泰安·统考中考真题)已知 12345678,,,OA A A A A A A A △△△都是边长为2的等边三角形 按下图所示摆放.点235,,,A A A 都在x 轴正半轴上 且2356891A A A A A A ====,则点2023A 的坐标是 .。
中考数学复习考点题型专题讲解24 新定义与数字类规律探究问题
![中考数学复习考点题型专题讲解24 新定义与数字类规律探究问题](https://img.taocdn.com/s3/m/2c6894a918e8b8f67c1cfad6195f312b3069eb61.png)
中考数学复习考点题型专题讲解中考数学复习考点题型专题讲解)专题24 新定义与数字类规律探究问题(重难点培优重难点培优)小题))解答题((共24小题一.解答题1.(2023秋•北京期中)对于有理数a,b,n,d,若|a﹣n|+|b﹣n|=d,则称a和b关于n的“相对关系值”为d,例如,|2﹣1|+|3﹣1|=3,则2和3关于1的“相对关系值”为3.(1)﹣3和5关于1的“相对关系值”为8;(2)若a和2关于1的“相对关系值”为4,求a的值.【分析】(1)根据“相对关系值”的定义直接列式计算即可;(2)根据“相对关系值”的定义列出关于a的方程,解方程即可.【解析】(1)由题意得,|﹣3﹣1|+|5﹣1|=8.故答案为8;(2)由题意得,|a﹣1|+|2﹣1|=4,解得,a=4或﹣2.2.(2023春•梁溪区校级期中)规定两数a,b之间的一种运算,记作(a,b);如果a c=b,那么(a,b)=c.例如因为23=8,所以(2,8)=3.(1)根据上述规定,填空①(3,81)=4,(﹣2,﹣32)=5;②若(x,ଵ଼)=﹣3,则x=2.(2)若(4,5)=a,(4,6)=b,(4,30)=c,探究a,b,c之间的数量关系并说明理由.【分析】(1)①根据有理数的乘方及新定义计算;②根据新定义和负整数指数幂计算;(2)根据题意得4a=5,4b=6,4c=30,根据5×6=30列出等式即可得出答案.【解析】(1)①∵34=81,∴(3,81)=4,∵(﹣2)5=﹣32,∴(﹣2,﹣32)=5,故答案为4,5;(2)根据题意得x﹣3=18,∴ଵ௫య=ଵ଼,∴x=2,故答案为2;(3)a+b=c,理由如下根据题意得4a=5,4b=6,4c=30,∵5×6=30,∴4a•4b=4c,∴4a+b=4c,∴a+b=c.3.(2023春•洪泽区期中)规定两数a,b之间的一种运算,记作(a,b)如果a c=b,那么(a,b)=c.例如因为23=8,所以(2,8)=3.(1)根据上述规定,填空(3,9)=2,(4,1)=0,(2,ଵ଼)= ﹣3.(2)小明在研究这种运算时发现一个现象(3n,4n)=(3,4),小明给出了如下的证明设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n,所以3x=4,即(3,4)=x,所以(3n,4n)=(3,4).请你用这种方法证明下面这个等式(3,4)+(3,5)=(3,20).【分析】(1)根据定义直接可得(3,9)=2,(4,1)=0,(2,ଵ଼)=﹣3;(2)设(3,4)=x,(3,5)=y,则3x=4,3y=5,所以3x+y=3x•3y,=20,从而求解.【解答】(1)解因为32=9,所以(3,9)=2;因为40=1,所以(4,1)=0;因为2﹣3=18,所以(2,ଵ଼)=﹣3.故答案为2,0,﹣3;(2)证明设(3,4)=x,(3,5)=y,则3x=4,3y=5,所以3x+y=3x•3y=4×5=20,所以(3,20)=x+y,所以(3,4)+(3,5)=(3,20).4.(2023春•东台市期中)对于任意有理数a、b、c、d,我们规定符号(a,b)⊗(c,d)=ad﹣bc+2,例如(1,3)⊗(2,4)=1×4﹣2×3+2=0.(1)求(﹣2,1)⊗(3,5)的值;(2)求(2a+1,a﹣2)⊗(3a+2,a﹣3)的值,其中a2+a+5=0.【分析】(1)根据(a,b)⊗(c,d)=ad﹣bc+2,可以求得所求式子的值;(2)根据(a,b)⊗(c,d)=ad﹣bc+2,先将所求式子化简,然后再根据a2+a+5=0,可以得到a2+a=﹣5,再代入化简后的式子计算即可.【解析】(1)∵(a,b)⊗(c,d)=ad﹣bc+2,∴(﹣2,1)⊗(3,5)=(﹣2)×5﹣1×3+2=(﹣10)﹣3+2=﹣11;(2)∵(a,b)⊗(c,d)=ad﹣bc+2,∴(2a+1,a﹣2)⊗(3a+2,a﹣3)=(2a+1)(a﹣3)﹣(a﹣2)(3a+2)+2=2a2﹣5a﹣3﹣3a2+4a+4+2=﹣a2﹣a+3,∵a2+a+5=0,∴a2+a=﹣5,∴原式=﹣(a2+a)+3=﹣(﹣5)+3=5+3=8.5.(2023春•罗山县期中)观察下列两个等式2−13=2×13+1,5−23=5×23+1,给出定义如下我们称使等式a﹣b=ab+1成立的一对有理数a,b为“共生有理数对”,记为(a,b).如数对(2,13),(5,23)都是“共生有理数对”.(1)判断数对(﹣2,1),(3,12)中,(3,12)是“共生有理数对”;(2)若(a,3)是“共生有理数对”,求a的值;(3)若(m,n)是“共生有理数对”,则(﹣n,﹣m) 是 (填写“是”或“不是”)“共生有理数对”,说明你的理由.【分析】(1)先判断,然后根据题目中的新定义,可以判断(﹣2,1),(3,12)是否为“共生有理数对“;(2)根据新定义可得关于a的一元一次方程,再解方程即可;(3)根据共生有理数对的定义对(﹣n,﹣m)变形即可判断.【解析】(1)(﹣2,1)不是“共生有理数对“,(3,ଵଶ)是“共生有理数对“,理由∵﹣2﹣1=﹣3,﹣2×1+1=﹣2+1=﹣1,∴(﹣2,1)不是“共生有理数对“,∵3−12=52,3×12+1=52,∴(3,ଵଶ)是“共生有理数对”;故答案为(3,12);(2)由题意,得a﹣3=3a+1,解得a=﹣2;(3)是,理由∵m﹣n=mn+1,∴﹣n﹣(﹣m)=﹣n+m=mn+1=(﹣n)(﹣m)+1,∴(﹣n,﹣m)是共生有理数对.故答案为是.6.(2023秋•成武县期中)【概念学习】现规定求若干个相同的有理数(均不等于0)的商的运算叫做除方,比如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等,类比有理数的乘方,我们把2÷2÷2写作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)写作(﹣3)④,读作“(﹣3)的圈4次方”,一般地,把ܽ÷ܽ÷ܽ⋯÷ܽ个(a≠0)写作aⓝ,读作“a的圈n次方”.︸【初步探究】(1)直接写出计算结果2③=ଵଶ,(−12)④=4;(2)下列关于除方说法中,错误的是C.A任何非零数的圈2次方都等于1B对于任何正整数n,1ⓝ=1C 3④=4③D负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(3)试一试 仿照上面的算3,(ଵହ)⑥=54.(4)想一想 请把有理数﹣2. .(5)算一算 12ଶൊሺെ13ሻ【分析】(1)根据规定运算(2)根据圈n 次方的意义(3)根据题例的规定,直接(4)根据圈n 次方的规定和(5)先把圈n 次方转化成幂【解析】(1)2③=2÷2(−12)④=(െ12)÷(故答案为 ଵଶ,4;(2)∵3④=3÷3÷3÷3∴3④≠4③. 故选 C .(3)(﹣3)⑤=(﹣3)÷×(−13)=(െ13)3,(ଵହ)⑥=(ଵହ)÷(ଵହ)÷面的算式,把下列除方运算直接写成幂的形式 (﹣理数a (a ≠0)的圈n (n ≥3)次方写成幂的形式为)④×(−2ሻ⑥െሺെ13ሻ⑥ൊ3ଷൌ ﹣2.定运算,直接计算即可;意义,计算判断得结论; 直接写成幂的形式即可;规定和(3)的结果,综合可得结论;化成幂的形式,利用有理数的混合运算,计算求值即÷2=1÷2ൌ12,െ12)÷(െ12)÷(െ12)=1×2×2=4; ൌ19,4③=4÷4÷4ൌ14, ÷(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)=1×(÷(ଵହ)÷(ଵହ)÷(ଵହ)÷(ଵହ)=1×5×5×53)⑤= (െ13)式为a ⓝ= (ଵ)n求值即可. (−13)×(െ13)×5=54;故答案为 (െ13)3,54;(4)(4)a ÷a ÷a ÷…÷a =a ×1ܽ×1ܽ×⋯×1ܽ=(ଵ)n ﹣2.故答案为 (ଵ)n ﹣2.(5)原式==122÷32×(ଵଶ)4﹣34÷33=24×32÷32×(ଵଶ)4﹣3 =1﹣3 =﹣2. 故答案为 ﹣2.7.(2018秋•长葛市期中)材料一般地,n 个相同的因数a 相乘 ܽ⋅ܽ⋯ܽ︸个记为ܽ.如23=8,此时,3叫做以2为底8的对数,记为log 28(即log 28=3).一般地,若a n=b (a >0且a ≠1,b >0),则n 叫做以a 为底b 的对数,记为log a b (即log a b =n ).如34=81,则4叫做以3为底81的对数,记为log 381(即log 381=4).问题(1)计算以下各对数的值 log 24=2,log 216=4,log 264=6.(2)观察(1)中三数4、16、64之间满足怎样的关系式为4×16=64log 24、log 216、log 264之间又满足怎样的关系式 log 24+log 216=log 264(3)由(2)的结果,你能归纳出一个一般性的结论吗?log a M +log a N =MN (a >o 且a ≠1,M >0,N >0).【分析】(1)根据对数的定义求解;(2)认真观察,不难找到规律 4×16=64,log 24+log 216=log 264; (3)由特殊到一般,得出结论 log a M +log a N =log a MN . 【解析】(1)log 24=2,log 216=4,log 264=6,故答案为2、4、6;(2)4×16=64,log24+log216=log264,故答案为4×16=64,log24+log216=log264;(3)log a M+log a N=log a MN,故答案为MN.8.(2023春•邗江区校级月考)概念学习规定求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把a÷a÷a……÷a(n个a,a≠0)记作aⓝ,读作“a的圈n次方”.(1)直接写出计算结果2③=ଵଶ,(−12)⑤=﹣8;(2)将下列运算结果直接写成幂的形式5⑥=ଵହర;(−12)⑩=28;(3)想一想将一个非零有理数a的圈n(n≥3)次方写成幂的形式为ଵషమ;(4)算一算42×(−13)④.【分析】根据新定义内容列出算式,然后将除法转化为乘法,再根据乘法和乘方的运算法则进行化简计算.【解析】(1)2③=2÷2÷2=12;(−12)③=(−12)÷(−12)÷(−12)÷(−12)÷(−12)=﹣8;(2)5⑥=5÷5÷5÷5÷5÷5=154;(−12)⑩=28;(3)aⓝ=a÷a÷a……÷a=1ܽ݊−2;(4)原式=16×9=144.9.(2023秋•滕州市期末)如果x n=y,那么我们记为(x,y)=n.例如32=9,则(3,9)=2.(1)根据上述规定,填空(2,8)=3,(2,ଵସ)= ﹣2;(2)若(4,a)=2,(b,8)=3,求(b,a)的值.【分析】(1)这个定义括号内第一个数为底数,第二个数为幂,结果为指数,根据有理数的乘方及负整数指数幂的计算即可;(2)根据定义先求出a,b的值,再求(b,a)的值.【解析】(1)因为23=8,所以(2,8)=3;因为2﹣2=14,所以(2,ଵସ)=﹣2.故答案为3,﹣2;(2)根据题意得a=42=16,b3=8,所以b=2,所以(b,a)=(2,16),因为24=16,所以(2,16)=4.答(b,a)的值为4.10.(2023秋•六合区期中)类比有理数的乘方,我们把求若干个相同的有理数(均不等0)的除法运算叫做除方,记作aⓝ,读作“a的圈n次方”.如2÷2÷2,记作2③,读作“2的圈3次方;(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”.(1)直接写出计算结果2③=ଵଶ,(−12)④=4;(2)除方也可以转化为幂的形式,如2④=2÷2÷2÷2=2×12×12×12=(ଵଶ)2.试将下列运算结果直接写成幂的形式(﹣3)④= (ଵଷ)2;(ଵଶ)⑩=28;a ⓝ= (ଵ)n ﹣2;(3)计算 22×(−13)④÷(﹣2)③﹣(﹣3)②.【分析】(1)根据除方的定义计算即可; (2)把除法转化为乘法即可得出答案; (3)根据除方的定义计算即可. 【解析】(1)2÷2÷2=12,(−12)÷(−12)÷(−12)÷(−12)=1×(﹣2)×(﹣2)=4, 故答案为 ଵଶ,4;(2)(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)=1×(−13)×(−13)=(ଵଷ)2,ଵଶ÷ଵଶ÷ଵଶ÷ଵଶ÷ଵଶ÷ଵଶ÷ଵଶ÷ଵଶ÷ଵଶ÷ଵଶ=1×2×2×2×2×2×2×2×2=28,ܽ÷ܽ÷ܽ÷⋯÷ܽ︸个=1×1ܽ⋅1ܽ⋅⋯⋅1ܽ︸(ିଶ)个1ܽ=(ଵ)n ﹣2,故答案为 (13)ଶ,28,(1ܽ)ିଶ;(3)原式=2ଶ×(−3)ଶ÷(−12)−[(−3)÷(−3)] =4×9×(﹣2)﹣1 =﹣72﹣1 =﹣73.11.(2023秋•海安市月考)已知M (1)=﹣2,M (2)=(﹣2)×(﹣2),M (3)=(﹣2)×(﹣2)×(﹣2),…,ܯ()=(−2)×(−2)×⋯×(−2)︸个(ିଶ)相乘(n 为正整数).(1)求2M (2018)+M (2019)的值.(2)猜想2M (n )与M (n +1)的关系并说明理由. 【分析】(1)根据已知算式即可进行计算;(2)结合(1)将算式变形即可说明2M (n )与M (n +1)互为相反数. 【解析】(1)2M (2018)+M (2019) =2×(﹣2)2018+(﹣2)2019=2×22018+(﹣2)2019=22019+(﹣2)2019=0;(2)2M (n )与M (n +1)互为相反数,理由如下因为2M (n )=2×(﹣2)n=﹣(﹣2)×(﹣2)n=﹣(﹣2)n +1,M (n +1)=(﹣2)n +1,所以2M (n )=﹣M (n +1),所以2M (n )与M (n +1)互为相反数.12.(2019秋•崇川区校级期中)如果2b=n ,那么称b 为n 的布谷数,记为b =g (n ),如g(8)=g (23)=3.(1)根据布谷数的定义填空 g (2)=1,g (32)=5. (2)布谷数有如下运算性质若m ,n 为正数,则g (mn )=g (m )+g (n ),g ()=g (m )﹣g (n ).根据运算性质填空(ర)()=4,(a 为正数).若g (7)=2.807,则g (14)=3.807,g (ସ)=0.807.(3)下表中与数x 对应的布谷数g (x )有且仅有两个是错误的,请指出错误的布谷数,要求说明你这样找的理由,并求出正确的答案(用含a ,b 的代数式表示)x316 233 6 9 27g (x ) 1﹣4a +2b 1﹣2a +b2a ﹣b 3a ﹣2b4a ﹣2b 6a ﹣3b【分析】(1)g (32)=g (25)=5;g (32)=g (25)=5; (2)(ర)()=(⋅⋅⋅)()=ସ()()=4,g (14)=g (2×7)=g (2)+g (7),g (ସ)=g (7)﹣g (4); (3)g (ଷଵ)=g (3)﹣4,g (ଶଷ)=1﹣g (3),g (6)=g (2)+g (3)=1+g (3),g(9)=2g (3),g (27)=3g (3),当g (3)正确时,有且仅有两个是错误; 【解析】(1)g (2)=g (21)=1, g (32)=g (25)=5;故答案为1,5; (2)(ర)()=(⋅⋅⋅)()=ସ()()=4,g (14)=g (2×7)=g (2)+g (7),∵g (7)=2.807,g (2)=1, ∴g (14)=3.807; g (ସ)=g (7)﹣g (4), g (4)=g (22)=2,∴g (ସ)=g (7)﹣g (4)=2.807﹣2=0.807; 故答案为4,3.807,0.807; (3)g (ଷଵ)=g (3)﹣4,g (ଶଷ)=1﹣g (3),g (6)=g (2)+g (3)=1+g (3), g (9)=2g (3), g (27)=3g (3),从表中可以得到g(3)=2a﹣b,∴g(ଷଵ)和g(6)错误,∴g(ଷଵ)=2a﹣b﹣4,g(6)=1+2a﹣b;13.(2023秋•凌河区校级期中)阅读计算阅读下列各式(ab)2=a2b2,(ab)3=a3b3,(ab)4=a4b4…回答下列三个问题(1)验证(4×0.25)100=1;4100×0.25100=1.(2)通过上述验证,归纳得出(ab)n=a n b n;(abc)n=a n b n c n.(3)请应用上述性质计算(﹣0.125)2015×22014×42014.【分析】①先算括号内的,再算乘方;先乘方,再算乘法.②根据有理数乘方的定义求出即可;③根据同底数幂的乘法计算,再根据积的乘方计算,即可得出答案.【解析】①(4×0.25)100=1100=1;4100×0.25100=1,故答案为1,1.②(a•b)n=a n b n,(abc)n=a n b n c n,故答案为a n b n,(abc)n=a n b n c n.③原式=(﹣0.125)2014×22014×42014×(﹣0.125)=(﹣0.125×2×4)2014×(﹣0.125)=(﹣1)2014×(﹣0.125)=1×(﹣0.125)=﹣0.125.14.(2017秋•高邮市校级月考)回答下列问题(1)填空①(2×3)2=36;22×32=36②(−12×8)2=16;(−12)2×82=16③(−12×2)3= ﹣1;(−12)3×23= ﹣1(2)想一想(1)中每组中的两个算式的结果是否相等? 是 (填“是”或“不是”).(3)猜一猜当n为正整数时,(ab)n=a n b n.(4)试一试(1ଵଶ)2017×(−23)2017= ﹣1.【分析】根据已知条件进行计算,然后归纳结论即可.【解析】(1)①(2×3)2=62=36;22×32=4×9=36.故答案为36,36;②(−12×8)2=(﹣4)2=16,(−12)2×82=14×64=16.故答案为16,16;③(−12×2)3=(﹣1)3=﹣1,(−12)3×23=−18×8=﹣1.故答案为﹣1,﹣1;(2)答案为是.(3)答案为a n b n;(4)(1ଵଶ)2017×(−23)2017=[ଷଶ×(−23)]2017=(﹣1)2017=﹣1.故答案为﹣1.15.(2017秋•兴化市月考)定义 如果10b=n ,那么称b 为n 的劳格数,记为b =d (n ). (1)根据劳格数的定义,可知 d (10)=1,d (102)=2 那么 d (103)=3.(2)劳格数有如下运算性质若m ,n 为正数,则d (mn )=d (m )+d (n ); d ()=d (m )﹣d (n ).根据运算性质,填空ௗ(ଶఱ)ௗ(ଶ)=5,若d (3)=0.48,则d (9)=0.96,d (0.3)= ﹣0.52. 【分析】(1)根据劳格数的定义,可知d (10b)=b ,即可得解;(2)根据劳格数的运算性质,d (mn )=d (m )+d (n ),计算d (25)=d (2)+d (2)+d (2)+d (2)+d (2),再求约分即可;根据劳格数的运算性质,d (9)=d (3×3)=d (3)+d (3),再将d (3)的值代入即可;根据劳格数的运算性质,d (0.3)=d (ଷଵ)=d (3)﹣d (10),再代入d (3)和d (10)的值即可. 【解析】(1)根据劳格数的定义,可知d (103)=3, 故答案为 3;(2)根据题意,得 d (25)=d (2)+d (2)+d (2)+d (2)+d (2), ∴ௗ(ଶఱ)ௗ(ଶ)=ହ×ௗ(ଶ)ௗ(ଶ)=5,d (9)=d (3×3)=d (3)+d (3)=0.48+0.48=0.96; d (0.3)=d (ଷଵ)=d (3)﹣d (10)=0.48﹣1=﹣0.52.故答案为 5;0.96;﹣0.52.16.(2023春•阜宁县校级月考)规定 M (1)=﹣2,M (2)=(﹣2)×(﹣2),M (3)=(﹣2)×(﹣2)×(﹣2),…M (n )=(−2)×(−2)×(−2)×⋯(−2)︸(ିଶ).(1)计算M(5)+M(6);(2)求2×M(2023)+M(2023)的值;(3)试说明2×M(n)与M(n+1)互为相反数.【分析】(1)根据新定义的法则及有理数乘法的法则进行计算即可;(2)根据新定义的法则进行计算,即可得出结果;(3)根据新定义的法则分别计算2×M(n)与M(n+1),即可得出结果.【解析】(1)M(5)+M(6)=(﹣2)5+(﹣2)6=﹣32+64=32;(2)2M(2023)+M(2023)=2×(﹣2)202l+(﹣2)2023=2×(﹣22023)+22023=﹣22023+22023=0;(3)2M(n)=2×(﹣2)n=﹣(﹣2)×(﹣2)n=﹣(﹣2)n+1,M(n+1)=(﹣2)n+1,∵﹣(﹣2)n+1与(﹣2)n+1互为相反数,∴2M(n)与M(n+1)互为相反数.17.(2023秋•高邮市期中)小聪是一个聪明而又富有想象力的孩子.学习了“有理数的乘方”后,他就琢磨着使用“乘方”这一数学知识,脑洞大开地定义出“有理数的除方”概念.于是规定若干个相同有理数(均不能为0)的除法运算叫做除方,如5÷5÷5,(﹣2)÷(﹣2)÷(﹣2)÷(﹣2)等,类比有理数的乘方.小聪把5÷5÷5记作f(3,5),(﹣2)÷(﹣2)÷(﹣2)÷(﹣2)记作f(4,﹣2).(1)直接写出计算结果,f (4,ଵଶ)=4,f (5,3)=ଵଶ;(2)关于“有理数的除方”下列说法正确的是②.(填序号) ①f (6,3)=f (3,6); ②f (2,a )=1(a ≠0);③对于任何正整数n ,都有f (n ,﹣1)=1; ④对于任何正整数n ,都有f (2n ,a )<0(a <0).(3)小明深入思考后发现 “除方”运算能够转化成乘方运算,且结果可以写成幂的形式,请推导出“除方”的运算公式f (n ,a )(n 为正整数,a ≠0,n ≥2),要求写出推导过程将结果写成幂的形式;(结果用含a ,n 的式子表示)(4)请利用(3)问的推导公式计算 f (5,3)×f (4,ଵଷ)×f (5,﹣2)×f (6,ଵଶ). 【分析】(1)根据题意计算即可;(2)①分别计算f (6,3)和f (3,6)的结果进行比较即可; ②根据题意计算即可判断;③分为n 为偶数和奇数两种情况分别计算即可判断; ④2n 为偶数,偶数个a 相除,结果应为正;(3)推导f (n ,a )(n 为正整数,a ≠0,n ≥2),按照题目中的做法推到即可; (4)按照上题的推导式可以将算式中的每一部分表示出来再计算. 【解析】(1)f (4,ଵଶ)=12÷12÷12÷12=4, f (5,3)=3÷3÷3÷3÷3=127;故答案为 4;ଵଶ.(2)①f (6,3)=3÷3÷3÷3÷3÷3=181,f (3,6)=6÷6÷6=16, ∴f (6,3)≠f (3,6),故错误; ②f (2,a )=a ÷a =1(a ≠0),故正确;③对于任何正整数n ,当n 为奇数时,f (n ,﹣1)=﹣1;当n 为偶数时,f (n ,﹣1)=1.故错误;④对于任何正整数n ,2n 为偶数,所以都有f (2n ,a )>0,而不是f (2n ,a )<0(a <0),故错误; 故答案为 ②.(3)公式f (n ,a )=a ÷a ÷a ÷a ÷…÷a ÷a =1÷(a n ﹣2)=(ଵ)n ﹣2(n 为正整数,a≠0,n ≥2).(4)f (5,3)×f (4,ଵଷ)×f (5,﹣2)×f (6,ଵଶ) =127×9×(−18)×16=−23.18.(2023秋•诸暨市期中)阅读下列材料 |x |=൞ݔ,ݔ>00,ݔ=0−ݔ,ݔ<0,即当x <0时,௫|௫|=௫ି௫=−1.用这个结论可以解决下面问题(1)已知a ,b 是有理数,当ab ≠0时,求||+||的值;(2)已知a ,b ,c 是有理数,当abc ≠0时,求||+||+||的值;(3)已知a ,b ,c 是有理数,a +b +c =0,abc <0,求ା||+ା||+ା||的值.【分析】(1)对a 、b 进行讨论,即a 、b 同正,a 、b 同负,a 、b 异号,根据绝对值的意义计算||+||得到结果;(2)对a 、b 、c 进行讨论,即a 、b 、c 同正、同负、两正一负、两负一正,然后计算||+||+||得结果;(3)根据a ,b ,c 是有理数,a +b +c =0,把求ା||+ା||+ା||转化为求ି||+ି||+ି||的值,根据abc<0得结果.【解析】(1)已知a,b是有理数,当ab≠0时,①a<0,b<0,||+||=−1﹣1=﹣2;②a>0,b>0,||+||=1+1=2;③a,b异号,||+||=0.故||+||的值为±2或0.(2)已知a,b,c是有理数,当abc≠0时,①a<0,b<0,c<0,||+||+||=−1﹣1﹣1=﹣3;②a>0,b>0,c>0,||+||+||=1+1+1=3;③a,b,c两负一正,||+||+||=−1﹣1+1=﹣1;④a,b,c两正一负,||+||+||=−1+1+1=1.故||+||+||的值为±1,或±3.(3)已知a,b,c是有理数,a+b+c=0,abc<0.所以b+c=﹣a,a+c=﹣b,a+b=﹣c,a,b,c两正一负,所以ା||+ା||+ା||=−ܽ|ܽ|+−ܾ|ܾ|+−ܿ|ܿ|=﹣[||+||+||]=﹣1.19.(2023秋•泗洪县校级月考)用符号M表示一种运算,它对整数和分数的运算结果分别如下M (1)=﹣2,M (2)=﹣1,M (3)=0,M (4)=1… M (ଵଶ)=−14,M (ଵଷ)=−19,M (ଵସ)=−116,… 利用以上规律计算(1)M (28)×M (ଵହ);(2)﹣1÷M (39)÷[﹣M (ଵ)].【分析】(1)根据M (1)=﹣2,M (2)=﹣1,M (3)=0,M (4)=1…,可得M (n )=n ﹣3,根据M (ଵଶ)=−14,M (ଵଷ)=−19,M (ଵସ)=−116,…,可得M (ଵ)=﹣(ଵ)2,再根据有理数的乘法,可得答案;(2)根据M (1)=﹣2,M (2)=﹣1,M (3)=0,M (4)=1…,可得M (n )=n ﹣3,根据M (ଵଶ)=−14,M (ଵଷ)=−19,M (ଵସ)=−116,…,可得M (ଵ)=﹣(ଵ)2,再根据有理数的除法,可得答案.【解析】(1)原式=(28﹣3)×[﹣(ଵହ)2]=25×(−125)=﹣1;(2)原式=﹣1÷(39﹣3)÷{﹣[﹣(ଵ)2]} =﹣1×136×36 =﹣1.20.(2019秋•曲靖期末)阅读理解 李华是一个勤奋好学的学生,他常常通过书籍、网络等渠道主动学习各种知识.下面是他从网络搜到的两位数乘11的速算法,其口诀是 “头尾一拉,中间相加,满十进一”例如 ①24×11=264.计算过程 24两数拉开,中间相加,即2+4=6,最后结果264;②68×11=748.计算过程 68两数分开,中间相加,即6+8=14,满十进一,最后结果748.(1)计算 ①32×11=352,②78×11=858;(2)若某个两位数十位数字是a,个位数字是b(a+b<10),将这个两位数乘11,得到一个三位数,则根据上述的方法可得,该三位数百位数字是a,十位数字是a+b,个位数字是b;(用含a、b的代数式表示)(3)请你结合(2)利用所学的知识解释其中原理.【分析】(1)根据口诀“头尾一拉,中间相加,满十进一”即可求解;(2)由(1)两位数十位数字是a,个位数字是b,将这个两位数乘11,得到一个三位数即可得结果;(3)结合(2)可得11(10a+b)=10(10a+b)+(10a+b)=100a+10b+10a+b=100a+10(a+b)+b.【解析】(1)①∵3+2=5∴32×11=352②∵7+8=15∴78×11=858故答案为352,858.(2)两位数十位数字是a,个位数字是b,这个两位数乘11,∴三位数百位数字是a,十位数字是a+b,个位数字是b.故答案为a,a+b,b.(3)两位数乘以11可以看成这个两位数乘以10再加上这个两位数,若两位数十位数为a,个位数为b,则11(10a+b)=10(10a+b)+(10a+b)=100a+10b+10a+b=100a+10(a+b)+b根据上述代数式,可以总结出规律口诀为“头尾一拉,中间相加,满十进一”.21.(2023秋•魏都区校级期中)数轴是一个非常重要的数学工具,它使数和数轴上的点建立起一一对应的关系,揭示知道|2|=|2﹣0|,它在数轴上|5﹣2|可理解为5与2两数在表示5与﹣2两数在数轴上(1)数轴上表示3和﹣(2)探索①若|x ﹣4|=3,则x =1②若使x 所表示的点到表示2、1、0、﹣1.(3)进一步探究 |x +1|+|(4)能力提升 当|x +1+|【分析】(1)根据材料可得(2)①根据材料判断式子的②根据距离可直接得到(3)通过材料及前两问的解(4)通过材料及前几问的解式子有最小值时,x =4【解析】(1)根据材料可得|;故答案为 |3﹣(﹣1)|(2)①根据材料可知|x ∴x =1或7; 故答案为 1或7;②由题意可知x所表示的整揭示了数与点之间的内在联系,它是“数形结合数轴上的意义是表示数2的点与原点(即表示0的点两数在数轴上所对应的两点之间的距离 |5+2|可以看作数轴上所对应的两点之间的距离.1的两点之间的距离的式子是|3﹣(﹣1)|. 或7.到表示4和﹣1的点的距离之和为5.所有符合条件的1|+|x ﹣6|的最小值为7.x ﹣4+|x ﹣9|的值最小时,x 的值为4.料可得结果;式子的意义,然后得出x 的值; x 的取值;问的解答可知|x +1|+|x ﹣6|的最小值就是|﹣1﹣6|;问的解答可知|x +1+|x ﹣4+|x ﹣9|中x 表示到﹣1、4.料可得 数轴上表示3和﹣1的两点之间的距离的式子;﹣4|=3中x 表示到﹣4的距离等于3的点对应的数示的整数为4、3、2、1、0、﹣1;结合”的基础,我们的点)之间的距离,以看作|5﹣(﹣2)|,条件的整数为4、3、、9的距离之和,的式子是|3﹣(﹣1)应的数,故答案为4、3、2、1、0、﹣1;(3)根据材料可知|x+1|+|x﹣6|中x表示到﹣1和6的距离之和,∴|x+1|+|x﹣6|的最小值为7;故答案为7;(4)根据材料可知|x+1+|x﹣4+|x﹣9|中x表示到﹣1、4、9的距离之和,∴当x=4时,式子有最小值;故答案为4.22.(2018秋•雄县期中)已知点A,B在数轴上分别表示有理数a,b.(1)对照数轴填写下表a 4 ﹣6 ﹣6 ﹣10 ﹣1.5b 6 0 ﹣4 2 ﹣1.5A、B两点的距离 2 6 2 12 0(2)若A,B两点间的距离记为d,试问d和a,b(a≤b)有何数量关系;(3)写出数轴上到﹣1和1的距离之和为2的所有整数;(4)若x表示一个有理数,求|x﹣1|+|x+3|的最小值.【分析】(1)由AB=|a﹣b|即可求解;(2)由d=|a﹣b|,又知b>a,化简可得d=b﹣a;(3)设数轴上一点为x,由﹣1与1的距离为2,可确定﹣1≤x≤1,求出符合条件的整数x即可;(4)由1与﹣3的距离为4,即可求|x﹣1|+|x+3|的最小值为4.【解析】(1)a=﹣6,b=0,则AB=|﹣6﹣0|=6,a=﹣6,b=﹣4,则AB=|﹣6﹣(﹣4)|=2,a=﹣10,b=2,则AB=|﹣10﹣2|=12,故答案为6,2,12;(2)∵a≤b,∴d=|a﹣b|=b﹣a;(3)设数轴上一点为x,∵数轴上点x到﹣1和1的距离之和为2,∴|x+1|+|x﹣1|=2,∵﹣1与1的距离为2,∴﹣1≤x≤1,∵x是整数,∴x=﹣1,0,1,∴数轴上到﹣1和1的距离之和为2的整数有﹣1,0,1;(4)|x﹣1|+|x+3|表示数轴上点x到1和﹣3的距离和最小,∵1与﹣3的距离为4,∴|x﹣1|+|x+3|的最小值为4.23.(2023秋•攀枝花期中)我们知道|4﹣(﹣1)|表示4与﹣1的差的绝对值,实际上也可以理解为4与﹣1两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可以理解为x与3两数在数轴上所对应的两点之间的距离.类似地,|5+3|=|5﹣(﹣3)|表示5、﹣3之间的距离.一般地,A,B两点在数轴上表示有理数a、b,那么A、B之间的距离可以表示为|a﹣b|.试探索.(1)若|x﹣3|=7,则x= ﹣4或10;(2)若A,B分别为数轴上的两点,A点对应的数为﹣2,B点对应的数为4.折叠数轴,使得A点与B点重合,则表示﹣4的点与表示6的点重合;(3)计算|x﹣4|+|x+1|=7.【分析】(1)根据题意给出的定义即可求出答案.(2)设表示﹣4的点与表示x的点重合,根据题意列出方程,求出方程的解即可得到所求;(3)分类讨论x的范围,利用绝对值的代数意义化简,计算即可求出x的值.【解析】(1)∵|x﹣3|=7,∴x﹣3=7或x﹣3=﹣7,解得x=10或x=﹣4;故答案为﹣4或10;(2)设表示﹣4的点与表示x的点重合,根据题意得ିଶାସଶ=1,∴ିସା௫ଶ=1,解得x=6;故答案为6;(3)①当x<﹣1时;(﹣x+4)+(﹣x﹣1)=7,则x=﹣2;②当﹣1≤x≤4时;(x﹣4)+(﹣x﹣1)=7,则﹣5=7,无解;③当x≥4时;(x﹣4)+(x+1)=7,则x=5,综上,x=﹣2或5.24.(2023秋•玄武区校级月考)已知数轴上A、B两点表示的数分别为a、b,请回答问题(1)①若a=3,b=2,则A、B两点之间的距离是1;②若a=﹣3,b=﹣2,则A、B两点之间的距离是1;③若a=﹣3,b=2,则A、B两点之间的距离是5;(2)若数轴上A、B两点之间的距离为d,则d与a、b满足的关系式是d=|a﹣b|;(3)若|3﹣2|的几何意义是数轴上表示数3的点与表示数2的点之间的距离,则|2+5|的几何意义数轴上表示数2的点与表示数﹣5的点之间的距离;(4)若|a|<b,化简|a﹣b|+|a+b|=2b.【分析】(1)计算出两数差的绝对值即可;(2)两点间的距离等于两数差的绝对值;(3)根据|2+5|=|2﹣(﹣5)|,即可判断;(4)先化简每一个绝对值,然后再进行计算.【解析】(1)①|3﹣2|=1,②|﹣3﹣(﹣2)|=1,③|﹣3﹣2|=5;(2)d=|a﹣b|;(3)∵|2+5|=|2﹣(﹣5)|,∴|2+5|的几何意义数轴上表示数2的点与表示数﹣5的点之间的距离;(4)∵|a|<b,∴a﹣b<0,a+b>0,∴|a﹣b|+|a+b|=b﹣a+a+b=2b;故答案为(1)①1,②1,③5;(2)d=|a﹣b|;(3)数轴上表示数2的点与表示数﹣5的点之间的距离;(4)2b.。
中考必做!(人教版)中考数学经典专题专练:探究规律--裂项型
![中考必做!(人教版)中考数学经典专题专练:探究规律--裂项型](https://img.taocdn.com/s3/m/d33c44455fbfc77da369b150.png)
裂项型1.先观察下列等式,然后用你发现的规律解答下列问题:111122=-⨯1112323=-⨯1113434=-⨯……则计算(1)计算111111223344556++++=⨯⨯⨯⨯⨯.(2)探究1111122334(1)n n ++++=⨯⨯⨯⨯+ ;(用含有n 的式子表示)(3)若1111......133557(21)(21)n n ++++⨯⨯⨯-+的值为1735,求n 的值.解析:(1)原式1111111111223344556=-+-+-+-+-116=-56=;(2)原式111111111122334451n n =-+-+-+-++-+ 1111n n n -=++;(3)1111......133557(21)(21)n n ++++⨯⨯⨯-+11111111111=(1()()()2323525722121n n -+-+-++--+ 11=(1)221n -+=21n n +由17=2135n n +,解得17n =,经检验17n =是方程的根,∴17n =2.观察下面的变形规律:111122=-⨯;1112323=-⨯;1113434=-⨯……解答下面的问题:(1)若n 为正整数,请你猜想1(1)n n =+;(2)证明你猜想的结论是否正确;(3)求和:111112233420092010++++=⨯⨯⨯⨯ .解析:(1)111(1)1n n n n =-++;(2)证明:右边=11111===1(1)(1)(1)(1)n n n n n n n n n n n n n n ++---+++++=左边,所以猜想成立.(3)原式111111112233420092010=-+-+-++- 112010=-20092010=.3.观察下面的变形规律:111122=-⨯1112323=-⨯1113434=-⨯……解答下面的问题:求和:111112233420112012++++=⨯⨯⨯⨯ ()解析:原式111111112233420112012=-+-+-++- 112012=-20112012=.4.先观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯……则计算111111223344556++++=⨯⨯⨯⨯⨯.解析:111122=-⨯,1112323=-⨯,1113434=-⨯……原式1111111111223344556=-+-+-+-+-116=-56=;5.观察下面的变形规律:112⨯=112-;123⨯=12-13;134⨯=13-14;……则1111 (12233420132014)++++⨯⨯⨯⨯的值是().解析:∵112⨯=1-12;123⨯=12-13;134⨯=13-14;……∴1111......12233420132014++++⨯⨯⨯⨯111111112233420132014=-+-+-++- 112014=-20132014=.6.观察下列各式:111(1)1323=-⨯,1111(35235=-⨯,1111()57257=-⨯,…,根据观察计算:1111133557(21)(21)n n ++++=⨯⨯⨯-+ ()(n 为正整数)解析:∵111(1)1323=-⨯,1111(35235=-⨯,1111()57257=-⨯,…,∴1111 (133557)(21)(21)n n ++++⨯⨯⨯-+11111111111=(1()()()2323525722121n n -+-+-++--+ 11=(1)221n -+=21n n +7.观察下列各式:134⨯=13-14;1114545=-⨯;……计算:1111 (3445569798)+++=⨯⨯⨯⨯()解析:原式11111111 ()()()......() 3445569798 =-+-+-++-11398 =-95294 =8.观察下列各式:1111()24224=-⨯,1111()46246=-⨯…计算:11111...... 2446682004200620062008 ++++=⨯⨯⨯⨯⨯()解析:∵1111()24224=-⨯,1111()46246=-⨯∴11111...... 2446682004200620062008 ++++⨯⨯⨯⨯⨯111111111111=(+()+()+......+() 224246268220062008⨯-⨯-⨯--11111111111 (.....) 22446682004200620062008 =⨯-+-+-++-+-111()222008=⨯-1100322008=⨯1003 4016 =9.观察下列各式:1111997199819971998=-⨯,1111998199919981999=-⨯.计算:1111 1997199819981999199920002000+++=⨯⨯⨯()解析:原式1111111 1997199819981999199920002000 =-+-+-+11997 =10.观察下列各式:1111()27527=⨯-⨯,1111()7125712=⨯-⨯….计算:111111 2771212171722929797102 ++++++=⨯⨯⨯⨯⨯⨯()解析:∵1111()27527=⨯-⨯,1111()7125712=⨯-⨯….∴111111 2771212171722929797102 ++++++⨯⨯⨯⨯⨯⨯=1111111111111 () 52771212171722929797102⨯-+-+-+-++-+-=111( 52102⨯-=5111.观察下列各式:1111()24224=-⨯,1111()46246=-⨯…计算:111124466898100++++=⨯⨯⨯⨯ ()解析:原式111111111()224466898100=-+-+-++- 111()22100=-49200=12.观察下列各式:111(1)1434=⨯-⨯,1111()47347=⨯-⨯…计算:111111447710101397100+++++=⨯⨯⨯⨯⨯ ()解析:∵111(1)1434=⨯-⨯,1111()47347=⨯-⨯…∴111111447710101397100+++++⨯⨯⨯⨯⨯ 133333()31447710101397100=+++++⨯⨯⨯⨯⨯ 1111111111(1)3447710101397100=⨯-+-+-+-++- 1993100=⨯100=13.已知111(1)1323=⨯-⨯,1111()35235=⨯-⨯,1111()57257=⨯-⨯,…,依据上述规律,计算11111335571113++++⨯⨯⨯⨯ 的结果为()解析:∵111(1)1323=⨯-⨯,1111()35235=⨯-⨯,1111()57257=⨯-⨯,…,∴11111335571113++++⨯⨯⨯⨯ 11111111[(1)()()()]2335571113=-+-+-++- 11(1)213=⨯-613=14.观察下列计算:111122=-⨯,1112323=-⨯,1113434=-⨯,1114545=-⨯……从计算结果中找规律,利用规律性计算111112233420092010++++=⨯⨯⨯⨯ ()解析:∵111122=-⨯,1112323=-⨯,1113434=-⨯,1114545=-⨯……∴1111 12233420092010 ++++⨯⨯⨯⨯1111111 12233420092010=-+-+-++-112010=-20092010=.15.111(11323=-⨯,1111(24224=-⨯,1111()35235=-⨯,…,猜想并写出:1(2)n n=+()解析:∵111(1)1323=-⨯,1111()24224=-⨯,1111()35235=-⨯,…,∴1111((2)22 n n n n=-++16.观察1111()35235=-⨯,11111(57257⨯=-,11111()79279⨯=-.计算:11111111 2446681820⨯+⨯+⨯++⨯=()解析:∵1111()35235=-⨯,11111(57257⨯=-,11111()79279⨯=-∴11111111 2446681820⨯+⨯+⨯++⨯111111111()22446681820=-+-+-++- 111()2220=-940=17.1111112(1()1122322333+=-+-=-=⨯⨯;1111111113(1)()()11223342233444++=-+-+-=-=⨯⨯⨯;计算:1111122334(1)n n ++++=⨯⨯⨯+ ()解析:1111122334(1)n n ++++⨯⨯⨯+ 1111111(1()()223341n n =-+-+-++-+ 111n =-+1n n =+18.111122=-⨯,1112323=-⨯,1113434=-⨯,……用自然数n 将上面式子的一般规律表示为1(1)n n =+()解析:∵111122=-⨯,1112323=-⨯,1113434=-⨯,……∴111(1)1n n n n =-++19.观察下列等式:第1个等式:1111(11323a ==⨯-⨯;第2个等式:21111(35235a ==⨯-⨯;第3个等式:31111(57257a ==⨯-⨯;第4个等式:41111()79279a ==⨯-⨯;…请解答下列问题:(1)按以上规律列出第5个等式:5a =_________;(2)用含有n 的代数式表示第n 个等式na =_________;(3)求1234100a a a a a ++++⋯+的值.解析:(1)51111(9112911a ==⨯-⨯(2)1111()(21)(21)22121na n n n n ==⨯--+-+(3)1234100a a a a a ++++⋯+11111111111111(1()()()()232352572792199201=⨯-+⨯-+⨯-+⨯-++⨯-1111111111(1)23355779199201=⨯-+-+-+-++- 11(1)2201=⨯-12002201=⨯100201=20.观察下面的变形规律:111122=-⨯1112323=-⨯1113434=-⨯……解答下面的问题:求和:111112233420132014++++=⨯⨯⨯⨯ ()解析:原式111111112233420132014=-+-+-++- 112014=-20132014=.21.观察1111(35235=-⨯,11111(57257⨯=-,11111(79279⨯=-.计算:1111111124466820002002⨯+⨯+⨯++⨯= ()解析:∵1111(35235=-⨯,11111(57257⨯=-,11111()79279⨯=-∴1111111124466820002002⨯+⨯+⨯++⨯ 111111111()224466820002002=-+-+-++- 111()222002=-2501001=22.先观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯……则计算11111122334451920+++++=⨯⨯⨯⨯⨯ .解析:111122=-⨯,1112323=-⨯,1113434=-⨯……原式11111111111223344551920=-+-+-+-+++- 1120=-1920=;23.观察下列各式:1111(24224=-⨯,1111(46246=-⨯…计算:11112446684850++++=⨯⨯⨯⨯ ()解析:原式111111111() 22446684850 =-+-+-++-111() 2250 =-625=24.观察下列各式:1111()25325=⨯-⨯,1111(58358=⨯-⨯….计算:111111 2558811111414171720 +++++=⨯⨯⨯⨯⨯⨯()解析:∵1111()25325=⨯-⨯,1111(58358=⨯-⨯….∴111111 2558811111414171720 +++++⨯⨯⨯⨯⨯⨯=1111111111111 () 32558811111414171720⨯-+-+-+-+-+-=111() 3220⨯-=3 2025.观察下列各式:1111(26426=⨯-⨯,1111(6104610=⨯-⨯….计算:1111111 2661010141418182222262630 ++++++=⨯⨯⨯⨯⨯⨯⨯()解析:∵1111(26426=⨯-⨯,1111(6104610=⨯-⨯….∴1111111 2661010141418182222262630 ++++++⨯⨯⨯⨯⨯⨯⨯=11111111111 () 426610101414182630⨯-+-+-+-++-=111( 4230⨯-=7 60。
中考数学复习练习 专题一 规律探究
![中考数学复习练习 专题一 规律探究](https://img.taocdn.com/s3/m/8968b4ef250c844769eae009581b6bd97f19bc1b.png)
专题一 规律探究【中考过关】1.已知n 为正整数,若a 6+a 6+…+a 6,\s\do4(27个a6)=3a 2×3a 2×…×3a 2,\s\do4(n 个3a2),则n 的值是( C )A .1B .2C .3D .42.如图是用黑色棋子摆成的美丽图案,按照这样的规律摆下去,第10个这样的图案需要黑色棋子的个数为( C )A .148B .152C .174D .2023.一列数a 1,a 2,a 3,…,a n ,其中a 1=-1,a 2=11-a 1,a 3=11-a 2,…,a n =11-a n -1,则a 1+a 2+a 3+…+a 2 023的值为( A )A .1 010B .32 C .2 0202D .1 0094.将从1开始的连续奇数按如图所示的规律排列,例如,位于第4行第3列的数为27,则位于第32行第13列的数是( B )第4题A.2 025 B.2 023C.2 021 D.2 0195.实验证实,放射性物质在放出射线后,质量将减少,减少的速度开始较快,后来较慢,实际上,物质所剩的质量与时间成某种函数关系.如图为表示镭的放射规律的函数图象,据此可计算32 mg镭缩减为1 mg所用的时间大约是( C )第5题A.4 860年B.6 480年C.8 100年D.9 720年6.如图所示的运算程序中,若开始输入的x值为50,我们发现第1次输出的结果为25,第2次输出的结果为32,…,则第2 022次输出的结果是( B )A.1 B.2C.4 D.87.(十堰)如图,某链条每节长为2.8 cm,每两节链条相连接部分重叠的圆的直径为1 cm,按这种连接方式,50节链条总长度为__91__cm.8.(蜀山区模拟)观察以下等式:第1个等式:4×1+0=22;第2个等式:4×8+22=62;第3个等式:4×27+62=122;第4个等式:4×64+122=202;……按照以上规律,解决下列问题:(1)写出第5个等式:__4×125+202=302__;(2)写出你猜想的第n个等式,并证明.第n个等式为:4n3+[(n-1)n]2=[n(n+1)]2证明如下:∵左式=4n3+[(n-1)n]2=4n3+n4-2n3+n2=n4+2n3+n2,右式=[n(n+1)]2=n4+2n3+n2,∴右式=左式,∴4n3+[(n-1)n]2=[n(n +1)]2.【中考突破】9.设a 1,a 2,…,a n 都是正整数,其中a 1表示第一个数,a 2表示第二个数,依此类推,a n 表示第n 个数(n 为正整数),已知a 1=1,4a n =(a n+1-1)2-(a n -1)2,则a 2=__3__,a 2 021= __4_041__.10.如图,用若干个点摆成一组等边三角形点列,其中第n(n≥2)个三角形的每一边上都有n 个点,该图形中点的总数记为S n ,我们把S 称为“三角形数”,并规定当n =1时,“三角形数”S 1=1.(1)“三角形数”S 5=__15__,S n =__n(n +1)2__;(2)①某数学兴趣小组发现相邻两个“三角形数”的和有一定的规律:如S 1+S 2=4,S 2+S 3=9,S 3+S 4=16.请猜想:S n +S n +1=__(n +1)2__;②请用所学的知识说明①中猜想的正确性. 解:①∵S 1+S 2=4=22,S 2+S 3=9=32, S 3+S 4=16=42,∴S n +S n +1=(n +1)2.②S n +S n +1=n(n +1)2+(n +1)(n +2)2=n +12×(n+n +2)=(n +1)(n+1)=(n +1)2.【核心素养】11.化简:31×2×22+42×3×23+53×4×24+…+ 2 0232 021×2 022×22 022.为了能找到复杂计算问题的结果,我们往往会通过将该问题分解,试图找寻算式中每个式子是否存在某种共同规律,然后借助这个规律将问题转化为可以解决的简单问题.下面我们尝试着用这个思路来解决上面的问题.请你按照这个思路继续进行下去,并把相应横线上的空格补充完整.【分析问题】第1个加数:31×2×22=11×2-12×22;第2个加数:42×3×23=12×22-13×23;第3个加数:53×4×24=13×23-14×24;第4个加数:64×5×25=14×24-15×25;【总结规律】第n 个加数:__n +2n(n +1)×2n+1=1n×2n -1(n +1)×2n+1__;【解决问题】请你利用上面找到的规律,继续化简下面的问题.(结果只需化简,无需求出最后得数)31×2×22+42×3×23+53×4×24+…+2 0232 021×2 022×22 022.解:原式=11×2-12×22+12×22-13×23+13×23-14×24+…+12 021×22 021-12 022×22 022=12-12 022×22 022=1 011×22 022-12 022×22 022.。
九年级数学中考规律探究题(附答案)
![九年级数学中考规律探究题(附答案)](https://img.taocdn.com/s3/m/fce3a9984693daef5ef73db1.png)
专题6 数学规律探究问题根据一列数或一组图形的特例进行归纳,猜想,找出一般规律,进而列出通用的代数式,称之为规律探究。
解决此类问题的关键是:“细心观察,大胆猜想,精心验证”。
一、数式规律探究通常给定一些数字、代数式、等式或不等式,然后猜想其中蕴含的规律,反映了由特殊到一般的数学方法。
一般解法是先写出数式的基本结构,然后通过横比(比较同一等式中不同位置的数量关系)或纵比(比较不同等式间相同位置的数量关系)找出各部分的特征,改写成要求的格式。
数式规律探究是规律探究问题中的主要部分,解决此类问题注意以下三点:1.一般地,常用字母n表示正整数,从1开始。
2.在数据中,分清奇偶,记住常用表达式。
正整数…n-1,n,n+1…奇数…2n-3,2n-1,2n+1,2n+3…偶数…2n-2,2n,2n+2…3.熟记常见的规律① 1、4、9、16......n2② 1、3、6、10……(1)2n n+数列的变化规律③ 1、3、7、15……2n -1④ 1+2+3+4+…n=(1)2n n+⑤ 1+3+5+…+(2n-1)= n2 数列的和⑥ 2+4+6+…+2n=n(n+1)数式规律探究反映了由特殊到一般的数学方法,解决此类问题常用的方法有以下两种:1.观察法例1.观察下列等式:①1×12=1-12②2×23=2-23③3×34=3-34④4×45=4-45……猜想第n个等式为(用含n的式子表示)分析:将等式竖排:1×12=1-12n=12×23=2-23n=23×34=3-34n=34×45=4-45n=4观察相应位置上变化的数字与序列号的对应关系(注意分清正整数的奇偶)易观察出结果为:n ×1n n +=n-1n n +例2.探索规律:31=3,32=9,33=27,34=81,35=243,36=729……,那么 32009的个位数字是 。
中考数学规律探究试题(2)含答案
![中考数学规律探究试题(2)含答案](https://img.taocdn.com/s3/m/f3f45043852458fb770b562b.png)
中考数学规律探究试题(2)1.小明玩一种挪动珠子的游戏,每次挪动珠子的颗数与对应所得的分数如下表:当每次挪动珠子的颗数为15颗时,对应所得分数为分,当对应所得分数为132分时,则挪动的珠子数颗。
2.观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2012个球止,共有实心球个。
”3.已知a≠0,s1=2a,s2=2s1,s3=2s2,…,s2010=2s2009,则S2012= (用含a的代数式表示).4.观察下列正三角形的三个顶点所标的数字规律,那么2012这个数在第_____个三角形的______顶点处(第二空填:上、左下、右下).5.如图,圆圈内分别标有0,1,2,3,4,…,11这12个数字。
电子跳蚤每跳一次,可以从一个圆圈跳到相邻的圆圈,现在,一只电子跳蚤从标有数字“0”的圆圈开始,按逆时针方向跳了2010次后,落在一个圆圈中,该圆圈所标的数字是。
6.如图所示,两个全等菱形的边长为1厘米,一只蚂蚁由A点开始按ABCDEFCGA的顺序沿菱形的边循环运动,行走2010厘米后停下,则这只蚂蚁停在点.7.如图所示的运算程序中,若开始输入的x值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,……第2009次输出的结果为___________.8.一个纸环链,纸环按红黄绿蓝紫的顺序重复排列,截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是()(A)2010 (B)2011 (C)2012 (D)20139.根据下列图形的排列规律: …,则第2008个图形是(填序号即可).(① ;② ;③ ;④ .)10.有一列数a1,a2,a3,……a n,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a1=2,,则a2007为()A.2007 B.2 C.12D.-119题11.让我们轻松一下,做一个数字游戏:第一步:取一个自然数n1=5 ,计算n12+1得a1;第二步:算出a1的各位数字之和得n2,计算n22+1得a2;第三步:算出a2的各位数字之和得n3,再计算n23+1得a3;…………依此类推,则a2008=_______________.12.若a1=1-1m,a2=1-1a1,a3=1-1a2,… ;则a2012的值为.(用含m的代数式表示)13.将正整数按如图所示的规律排列下去。
专题30规律探究问题-备战2023年中考数学必刷真题考点分类专练(全国通用)02【解析版】
![专题30规律探究问题-备战2023年中考数学必刷真题考点分类专练(全国通用)02【解析版】](https://img.taocdn.com/s3/m/9860f6d1fbb069dc5022aaea998fcc22bcd14368.png)
备战2023年中考数学必刷真题考点分类专练(全国通用)专题30规律探究问题一.选择题(共10小题)1.(2022•西藏)按一定规律排列的一组数据:,﹣,,﹣,,﹣,….则按此规律排列的第10个数是()A.﹣B.C.﹣D.【分析】把第3个数转化为:,不难看出分子是从1开始的奇数,分母是n2+1,且奇数项是正,偶数项是负,据此即可求解.【解析】原数据可转化为:,﹣,,﹣,,﹣,…,∴=(﹣1)1+1,﹣=(﹣1)2+1,=(﹣1)3+1,...∴第n个数为:(﹣1)n+1,∴第10个数为:(﹣1)10+1=﹣.故选:A.2.(2022•牡丹江)观察下列数据:,﹣,,﹣,,…,则第12个数是()A.B.﹣C.D.﹣【分析】根据给出的数据可以推算出第n个数是×(﹣1)n+1所以第12个数字把n=12代入求值即可.【解析】根据给出的数据特点可知第n个数是×(﹣1)n+1,∴第12个数就是×(﹣1)12+1=﹣.故选:D.3.(2022•云南)按一定规律排列的单项式:x,3x2,5x3,7x4,9x5,……,第n个单项式是()A.(2n﹣1)x n B.(2n+1)x n C.(n﹣1)x n D.(n+1)x n【分析】根据题目中的单项式,可以发现系数是一些连续的奇数,x的指数是一些连续的整数,从而可以写出第n个单项式.【解析】∵单项式:x,3x2,5x3,7x4,9x5,…,∴第n个单项式为(2n﹣1)x n,故选:A.4.(2022•新疆)将全体正偶数排成一个三角形数阵:按照以上排列的规律,第10行第5个数是()A.98B.100C.102D.104【分析】由三角形的数阵知,第n行有n个偶数,则得出前9行有45个偶数,且第45个偶数为90,得出第10行第5个数即可.【解析】由三角形的数阵知,第n行有n个偶数,则得出前9行有1+2+3+4+5+6+7+8+9=45个偶数,∴第9行最后一个数为90,∴第10行第5个数是90+2×5=100,故选:B.5.(2022•广州)如图,用若干根相同的小木棒拼成图形,拼第1个图形需要6根小木棒,拼第2个图形需要14根小木棒,拼第3个图形需要22根小木棒……若按照这样的方法拼成的第n个图形需要2022根小木棒,则n的值为()A.252B.253C.336D.337【分析】根据图形特征,第1个图形需要6根小木棒,第2个图形需要6×2+2=14根小木棒,第3个图形需要6×3+2×2=22根小木棒,按此规律,得出第n个图形需要的小木棒根数即可.【解析】由题意知,第1个图形需要6根小木棒,第2个图形需要6×2+2=14根小木棒,第3个图形需要6×3+2×2=22根小木棒,按此规律,第n个图形需要6n+2(n﹣1)=(8n﹣2)个小木棒,当8n﹣2=2022时,解得n=253,故选:B.6.(2022•玉林)如图的电子装置中,红黑两枚跳棋开始放置在边长为2的正六边形ABCDEF的顶点A处.两枚跳棋跳动规则是:红跳棋按顺时针方向1秒钟跳1个顶点,黑跳棋按逆时针方向3秒钟跳1个顶点,两枚跳棋同时跳动,经过2022秒钟后,两枚跳棋之间的距离是()A.4B.2C.2D.0【分析】分别计算红跳棋和黑跳棋过2022秒钟后的位置,红跳棋跳回到A点,黑跳棋跳到F点,可得结论.【解析】∵红跳棋从A点按顺时针方向1秒钟跳1个顶点,∴红跳棋每过6秒返回到A点,2022÷6=337,∴经过2022秒钟后,红跳棋跳回到A点,∵黑跳棋从A点按逆时针方向3秒钟跳1个顶点,∴黑跳棋每过18秒返回到A点,2022÷18=112•••6,∴经过2022秒钟后,黑跳棋跳到E点,连接AE,过点F作FM⊥AE,由题意可得:AF=AE=2,∠AFE=120°,∴∠FAE=30°,在Rt△AFM中,AM=AF=,∴AE=2AM=2,∴经过2022秒钟后,两枚跳棋之间的距离是2.故选:B.7.(2022•江西)将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是()A.9B.10C.11D.12【分析】列举每个图形中H的个数,找到规律即可得出答案.【解析】第1个图中H的个数为4,第2个图中H的个数为4+2,第3个图中H的个数为4+2×2,第4个图中H的个数为4+2×3=10,故选:B.8.(2022•重庆)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.41【分析】根据图形的变化规律得出第n个图形中有4n+1个正方形即可.【解析】由题知,第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,…,第n个图案中有4n+1个正方形,∴第⑨个图案中正方形的个数为4×9+1=37,故选:C.9.(2022•重庆)把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为()A.15B.13C.11D.9【分析】根据前面三个图案中菱形的个数,得出规律,第n个图案中菱形有(2n﹣1)个,从而得出答案.【解析】由图形知,第①个图案中有1个菱形,第②个图案中有3个菱形,即1+2=3,第③个图案中有5个菱形即1+2+2=5,……则第n个图案中菱形有1+2(n﹣1)=(2n﹣1)个,∴第⑥个图案中有2×6﹣1=11个菱形,故选:C.10.(2022•荆州)如图,已知矩形ABCD的边长分别为a,b,进行如下操作:第一次,顺次连接矩形ABCD 各边的中点,得到四边形A1B1C1D1;第二次,顺次连接四边形A1B1C1D1各边的中点,得到四边形A2B2C2D2;…如此反复操作下去,则第n次操作后,得到四边形A n B n∁n D n的面积是()A.B.C.D.【分析】连接A1C1,D1B1,可知四边形A1B1C1D1的面积为矩形ABCD面积的一半,则S1=ab,再根据三角形中位线定理可得C2D2=C1,A2D2=B1D1,则S2=C1×B1D1=ab,依此可得规律.【解析】如图,连接A1C1,D1B1,∵顺次连接矩形ABCD各边的中点,得到四边形A1B1C1D1,∴四边形A1BCC1是矩形,∴A1C1=BC,A1C1∥BC,同理,B1D1=AB,B1D1∥AB,∴A1C1⊥B1D1,∴S1=ab,∵顺次连接四边形A1B1C1D1各边的中点,得到四边形A2B2C2D2,∴C2D2=C1,A2D2=B1D1,∴S2=C1×B1D1=ab,……依此可得S n=,故选:A.二.填空题(共14小题)11.(2022•恩施州)观察下列一组数:2,,,…,它们按一定规律排列,第n个数记为a n,且满足+=.则a4=,a2022=.【分析】由题意可得a n=,即可求解.【解析】由题意可得:a1=2=,a2==,a3=,∵+=,∴2+=7,∴a4==,∵=,∴a5=,同理可求a6==,•••∴a n=,∴a2022=,故答案为:,.12.(2022•宿迁)按规律排列的单项式:x,﹣x3,x5,﹣x7,x9,…,则第20个单项式是﹣x39.【分析】观察指数规律与符号规律,进行解答便可.【解析】根据前几项可以得出规律,奇数项为正,偶数项为负,第n项的数为(﹣1)n+1×x2n﹣1,则第20个单项式是(﹣1)21×x39=﹣x39,故答案为:﹣x39.13.(2022•怀化)正偶数2,4,6,8,10,…,按如下规律排列,则第27行的第21个数是744.【分析】由图可以看出,每行数字的个数与行数是一致的,即第一行有1个数,第二行有2个数,第三行有3个数••••••••第n行有n个数,则前n行共有个数,再根据偶数的特征确定第几行第几个数是几.【解析】由图可知,第一行有1个数,第二行有2个数,第三行有3个数,•••••••第n行有n个数.∴前n行共有个数.∴前27行共有378个数,∴第27行第21个数是一共378个数中的第372个数.∵这些数都是正偶数,∴第372个数为372×2=744.故答案为:744.14.(2022•泰安)将从1开始的连续自然数按以下规律排列:若有序数对(n,m)表示第n行,从左到右第m个数,如(3,2)表示6,则表示99的有序数对是(10,18).【分析】根据第n行的最后一个数是n2,第n行有(2n﹣1)个数即可得出答案.【解析】∵第n行的最后一个数是n2,第n行有(2n﹣1)个数,∴99=102﹣1在第10行倒数第二个,第10行有:2×10﹣1=19个数,∴99的有序数对是(10,18).故答案为:(10,18).15.(2022•青海)木材加工厂将一批木料按如图所示的规律依次摆放,则第n个图中共有木料根.【分析】观察图形可得:第n个图形最底层有n根木料,据此可得答案.【解析】由图可知:第一个图形有木料1根,第二个图形有木料1+2=3(根),第三个图形有木料1+2+3=6(根),第四个图形有木料1+2+3+4=10(根),......第n个图有木料1+2+3+4+......+n=(根),故答案为:.16.(2022•大庆)观察下列“蜂窝图”,按照这样的规律,则第16个图案中的“”的个数是49.【分析】从数字找规律,进行计算即可解答.【解析】由题意得:第一个图案中的“”的个数是:4=4+3×0,第二个图案中的“”的个数是:7=4+3×1,第三个图案中的“”的个数是:10=4+3×2,...∴第16个图案中的“”的个数是:4+3×15=49,故答案为:49.17.(2022•绥化)如图,∠AOB=60°,点P1在射线OA上,且OP1=1,过点P1作P1K1⊥OA交射线OB 于K1,在射线OA上截取P1P2,使P1P2=P1K1;过点P2作P2K2⊥OA交射线OB于K2,在射线OA上截取P2P3,使P2P3=P2K2…按照此规律,线段P2023K2023的长为(1+)2022.【分析】根据题意和题目中的数据,可以写出前几项,然后即可得到P n K n的式子,从而可以写出线段P2023K2023的长.【解析】由题意可得,P1K1=OP1•tan60°=1×=,P2K2=OP2•tan60°=(1+)×=(1+),P3K3=OP3•tan60°=(1+++3)×=(1+)2,P4K4=OP4•tan60°=[(1+++3)+(1+)2]×=(1+)3,…,P n K n=(1+)n﹣1,∴当n =2023时,P 2023K 2023=(1+)2022,故答案为:(1+)2022.18.(2022•聊城)如图,线段AB =2,以AB 为直径画半圆,圆心为A 1,以AA 1为直径画半圆①;取A 1B 的中点A 2,以A 1A 2为直径画半圆②;取A 2B 的中点A 3,以A 2A 3为直径画半圆③…按照这样的规律画下去,大半圆内部依次画出的8个小半圆的弧长之和为π.【分析】由AB =2,可得半圆①弧长为π,半圆②弧长为()2π,半圆③弧长为()3π,......半圆⑧弧长为()8π,即可得8个小半圆的弧长之和为π+()2π+()3π+...+()8π=π.【解析】∵AB =2,∴AA 1=1,半圆①弧长为=π,同理A 1A 2=,半圆②弧长为=()2π,A 2A 3=,半圆③弧长为=()3π,......半圆⑧弧长为=()8π,∴8个小半圆的弧长之和为π+()2π+()3π+...+()8π=π.故答案为:π.19.(2022•十堰)如图,某链条每节长为2.8cm ,每两节链条相连接部分重叠的圆的直径为1cm ,按这种连接方式,50节链条总长度为91cm .【分析】先求出1节链条的长度,2节链条的总长度,3节链条的总长度,然后从数字找规律,进行计算即可解答.【解析】由题意得:1节链条的长度=2.8cm,2节链条的总长度=[2.8+(2.8﹣1)]cm,3节链条的总长度=[2.8+(2.8﹣1)×2]cm,...∴50节链条总长度=[2.8+(2.8﹣1)×49]=91(cm),故答案为:91.20.(2022•常德)剪纸片:有一张长方形的纸片,用剪刀沿一条不过任何顶点的直线将其剪成了2张纸片;从这2张中任选一张,再用剪刀沿一条不过任何顶点的直线将其剪成了2张纸片,这样共有3张纸片;从这3张中任选一张,再用剪刀沿一条不过任何顶点的直线将其剪成了2张纸片,这样共有4张纸片;…;如此下去,若最后得到10张纸片,其中有1张五边形纸片,3张三角形纸片,5张四边形纸片,则还有一张多边形纸片的边数为6.【分析】根据题意,用剪刀沿不过顶点的直线剪成两部分时,每剪开一次,多边形的边数增加4,如第一次,将其中两个边分成四条边,且剪刀所在那条直线增加两条边,即为2+2×2+1×2=8=4+4×1(边),分成两个图形;第二次,边数为:8﹣2+2×2+2×1=12=4+4×2,分成三个图形;……;当剪第n刀时,边数为4+4n,分成(n+1)个图形;令n=9即可得出结论.【解析】根据题意,用剪刀沿不过顶点的直线剪成两部分时,每剪开一次,多边形的边数增加4,第一次,将其中两个边分成四条边,且剪刀所在那条直线增加两条边,即为2+2×2+1×2=8=4+4×1(边),分成两个图形;第二次,边数为:8﹣2+2×2+2×1=12=4+4×2,分成三个图形;……;当剪第n刀时,边数为4+4n,分成(n+1)个图形;∵最后得到10张纸片,设还有一张多边形纸片的边数为m,∴令n=9,有4+4×9=5+3×3+5×4+m,解得m=6.故答案为:6.21.(2022•德阳)古希腊的毕达哥拉斯学派对整数进行了深入的研究,尤其注意形与数的关系,“多边形数”也称为“形数”,就是形与数的结合物.用点排成的图形如下:其中:图①的点数叫做三角形数,从上至下第一个三角形数是1,第二个三角形数是1+2=3,第三个三角形数是1+2+3=6,……图②的点数叫做正方形数,从上至下第一个正方形数是1,第二个正方形数是1+3=4,第三个正方形数是1+3+5=9,…………由此类推,图④中第五个正六边形数是45.【分析】根据前三个图形的变化寻找规律,即可解决问题.【解析】图①的点数叫做三角形数,从上至下第一个三角形数是1,第二个三角形数是1+2=3,第三个三角形数是1+2+3=6,……图②的点数叫做正方形数,从上至下第一个正方形数是1,第二个正方形数是1+3=4,第三个正方形数是1+3+5=9,……图③的点数叫做五边形数,从上至下第一个五边形数是1,第二个五边形数是1+4=5,第三个五边形数是1+4+7=12,……由此类推,图④中第五个正六边形数是1+5+9+13+17=45.故答案为:45.22.(2022•遂宁)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为127.【分析】由已知图形观察规律,即可得到第六代勾股树中正方形的个数.【解析】∵第一代勾股树中正方形有1+2=3(个),第二代勾股树中正方形有1+2+22=7(个),第三代勾股树中正方形有1+2+22+23=15(个),......∴第六代勾股树中正方形有1+2+22+23+24+25+26=127(个),故答案为:127.23.(2022•黑龙江)如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有485.【分析】由图可以看出:第一个图形中5个正三角形,第二个图形中5×3+2=17个正三角形,第三个图形中17×3+2=53个正三角形,由此得出第四个图形中53×3+2=161个正三角形,第五个图形中161×3+2=485个正三角形.【解析】第一个图形正三角形的个数为5,第二个图形正三角形的个数为5×3+2=2×32﹣1=17,第三个图形正三角形的个数为17×3+2=2×33﹣1=53,第四个图形正三角形的个数为53×3+2=2×34﹣1=161,第五个图形正三角形的个数为161×3+2=2×35﹣1=485.如果是第n个图,则有2×3n﹣1个故答案为:485.24.(2022•黑龙江)如图所示,以O为端点画六条射线OA,OB,OC,OD,OE,OF,再从射线OA上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,7,8…后,那么所描的第2013个点在射线OC上.【分析】根据规律得出每6个数为一周期.用2013除以6,根据余数来决定数2013在哪条射线上.【解析】∵1在射线OA上,2在射线OB上,3在射线OC上,4在射线OD上,5在射线OE上,6在射线OF上,7在射线OA上,…每六个一循环,2013÷6=335…3,∴所描的第2013个点在射线和3所在射线一样,∴所描的第2013个点在射线OC上.故答案为:OC.三.解答题(共2小题)25.(2022•嘉兴)设是一个两位数,其中a是十位上的数字(1≤a≤9).例如,当a=4时,表示的两位数是45.(1)尝试:①当a=1时,152=225=1×2×100+25;②当a=2时,252=625=2×3×100+25;③当a=3时,352=1225=3×4×100+25;……(2)归纳:与100a(a+1)+25有怎样的大小关系?试说明理由.(3)运用:若与100a的差为2525,求a的值.【分析】(1)根据规律直接得出结论即可;(2)根据=(10a+5)(10a+5)=100a2+100a+25=100a(a+1)+25即可得出结论;(3)根据题意列出方程求解即可.【解析】(1)∵①当a=1时,152=225=1×2×100+25;②当a=2时,252=625=2×3×100+25;∴③当a=3时,352=1225=3×4×100+25,故答案为:3×4×100+25;(2)=100a(a+1)+25,理由如下:=(10a+5)(10a+5)=100a2+100a+25=100a(a+1)+25;(3)由题知,﹣100a=2525,即100a2+100a+25﹣100a=2525,解得a=5或﹣5(舍去),∴a的值为5.26.(2022•安徽)观察以下等式:第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,……按照以上规律,解决下列问题:(1)写出第5个等式:(2×5+1)2=(6×10+1)2﹣(6×10)2;(2)写出你猜想的第n个等式(用含n的式子表示),并证明.【分析】(1)根据题目中等式的特点,可以写出第5个等式;(2)根据题目中等式的特点,可以写出猜想,然后将等式左边和右边展开,看是否相等,即可证明猜想.【解析】(1)因为第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,第5个等式:(2×5+1)2=(6×10+1)2﹣(6×10)2,故答案为:(2×5+1)2=(6×10+1)2﹣(6×10)2;(2)第n个等式:(2n+1)2=[(n+1)×2n+1]2﹣[(n+1)×2n]2,证明:左边=4n2+4n+1,右边=[(n+1)×2n]2+2×(n+1)×2n+12﹣[(n+1)×2n]2=4n2+4n+1,∴左边=右边.∴等式成立.。
专题29 规律探究题(共26题)(解析版)-2023年中考数学真题分项汇编(全国通用)
![专题29 规律探究题(共26题)(解析版)-2023年中考数学真题分项汇编(全国通用)](https://img.taocdn.com/s3/m/e5ff1862814d2b160b4e767f5acfa1c7ab008244.png)
专题29规律探究题(26题)一、单选题1.(2023·重庆·统考中考真题)用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,……,按此规律排列下去,则第⑧个图案用的木棍根数是()A.39B.44C.49D.54【答案】B【分析】根据各图形中木棍的根数发现计算的规律,由此即可得到答案.+=根木棍,【详解】解:第①个图案用了459+⨯=根木棍,第②个图案用了45214+⨯=根木棍,第③个图案用了45319+⨯=根木棍,第④个图案用了45424……,+⨯=根,第⑧个图案用的木棍根数是45844故选:B.【点睛】此题考查了图形类规律的探究,正确理解图形中木棍根数的变化规律由此得到计算的规律是解题的关键.2.(2023·重庆·统考中考真题)用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为()A.14B.20C.23D.26【答案】B【分析】根据前四个图案圆圈的个数找到规律,即可求解.=⨯-;【详解】解:因为第①个图案中有2个圆圈,2311A .()31.34B .()31,34-【答案】A【分析】根据图象可得移动3次完成一个循环,从而可得出点坐标的规律()323n A n n --,.【详解】解:∵()121A -,,()412A -,,()703A ,,()1014A ,,L ,∴()323n A n n --,,∵1003342=⨯-,则34n =,∴()1003134A ,,故选:A .【点睛】本题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律.5.(2023·山东·统考中考真题)已知一列均不为1的数123n a a a a ,,,,满足如下关系:1223121111a a a a a a ++==--,,34131111nn na a a a a a +++==-- ,,,若12a =,则2023a 的值是()A .12-B .13C .3-D .2【答案】A【分析】根据题意可把12a =代入求解23a =-,则可得312a =-,413a =,52a =……;由此可得规律求解.【详解】解:∵12a =,∴212312a +==--,3131132a -==-+,411121312a -==+,51132113a +==-,…….;由此可得规律为按2、3-、12-、13四个数字一循环,∵20234505.....3÷=,∴2023312a a ==-;故选A .【点睛】本题主要考查数字规律,解题的关键是得到数字的一般规律.6.(2023·四川达州·统考中考真题)如图,四边形ABCD 是边长为12的正方形,曲线11112DA B C D A 是由多段90︒的圆心角的圆心为C ,半径为1CB ; 11C D 的圆心为D ,半径为 11111111,DC DA A B B C C D 、、、的圆心依次为A B C D 、、、循环,则20232023A B的长是()A .40452πB .2023【答案】A【分析】曲线11112DA B C D A …是由一段段1114(1)22n n AD AA n -==⨯-+,n BAA .2003B .2004C .2022D .2023【答案】C【分析】观察表中的规律发现,分数的分子是几,则必在第几列;只有第一列的分数,分母与其所在行数一致.【详解】观察表中的规律发现,分数的分子是几,则必在第几列;只有第一列的分数,分母与其所在行数一致,故202023在第20列,即20b =;向前递推到第1列时,分数为201912023192042-=+,故分数202023与分数12042在同一行.即在第2042行,则2042a =.∴2042202022.a b -=-=故选:C .【点睛】本题考查了数字类规律探索的知识点,解题的关键善于发现数字递变的周期性和趋向性.8.(2023·四川内江·统考中考真题)对于正数x ,规定2()1x f x x =+,例如:224(2)213f ⨯==+,1212212312f ⨯⎛⎫== ⎪⎝⎭+,233(3)312f ⨯==+,1211313213f ⨯⎛⎫== ⎪⎝⎭+,计算:11111(1)1011009932f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(2)(3)(99)(100)(101)f f f f f +++++= ()A .199B .200C .201D .202【答案】C【分析】通过计算11(1)1,(2)2,(3)223f f f f f ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭,⋯可以推出11111(1)(2)(3)(99)(100)(101)1011009932f f f f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭结果.【详解】解:2(1)1,11f ==+ 12441212(2),,(2)2,112323212f f f f ⨯⎛⎫⎛⎫====+= ⎪ ⎪+⎝⎭⎝⎭+122331113(3),,(3)2,113232313f f f f ⨯⨯⎛⎫⎛⎫====+= ⎪ ⎪+⎝⎭⎝⎭+A .202340a =B .2024a 【答案】B【分析】利用图形寻找规律2n A 【详解】解:第1圈有1个点,即第2圈有8个点,即2A 到(91,1A第3圈有16个点,即10A 到()252,2A ,;依次类推,第n 圈,()211,1n A n n ---;由规律可知:2023A 是在第23圈上,且()202522,22A ,则()202320,22A 即2023202242a =+=,故A 选项不正确;2024A 是在第23圈上,且()202421,22A ,即2024212243a =+=,故B 选项正确;第n 圈,()211,1n A n n ---,所以2122n a n -=-,故C 、D 选项不正确;故选B .【点睛】本题考查图形与规律,利用所给的图形找到规律是解题的关键.二、填空题10.(2023·四川成都·统考中考真题)定义:如果一个正整数能表示为两个正整数m ,n 的平方差,且1m n ->,则称这个正整数为“智慧优数”.例如,221653=-,16就是一个智慧优数,可以利用22()()m n m n m n -=+-进行研究.若将智慧优数从小到大排列,则第3个智慧优数是;第23个智慧优数是.【答案】1545【分析】根据新定义,列举出前几个智慧优数,找到规律,进而即可求解.【详解】解:依题意,当3m =,1n =,则第1个一个智慧优数为22318-=当4m =,2n =,则第2个智慧优数为224214-=当4m =,1n =,则第3个智慧优数为224115-=,当5m =,3n =,则第5个智慧优数为225316-=当5m =,2n =,则第6个智慧优数为225221-=当5m =,1n =,则第7个智慧优数为225324-=……6m =时有4个智慧优数,同理7m =时有5个,8m =时有6个,12345621+++++=第22个智慧优数,当9m =时,7n =,第22个智慧优数为2297814932-=-=,第23个智慧优数为9,6m n ==时,2296813645-=-=,故答案为:15,45.【点睛】本题考查了新定义,平方差公式的应用,找到规律是解题的关键.11.(2023·四川遂宁·统考中考真题)烷烃是一类由碳、氢元素组成的有机化合物,在生产生活中可作为燃C H【答案】1226【分析】根据碳原子的个数,氢原子的个数,找到规律,即可求解.CH,【详解】解:甲烷的化学式为4设有编号为1-100的100盏灯,分别对应着编号为1-100的100个开关,灯分为“亮”和“不亮”两种状态,每按一次开关改变一次相对应编号的灯的状态,所有灯的初始状态为“不亮”.现有100个人,第1个人把所有编号是1的整数倍的开关按一次,第2个人把所有编号是2的整数倍的开关按一次,第3个人把所有编号是3的整数倍的开关按一次,……,第100个人把所有编号是100的整数倍的开关按一次.问最终状态为“亮”的灯共有多少盏?几位同学对该问题展开了讨论:甲:应分析每个开关被按的次数找出规律:乙:1号开关只被第1个人按了1次,2号开关被第1个人和第2个人共按了2次,3号开关被第1个人和第3个人共按了2次,……丙:只有按了奇数次的开关所对应的灯最终是“亮”的状态.根据以上同学的思维过程,可以得出最终状态为“亮”的灯共有盏.【答案】10【分析】灯的初始状态为“不亮”,按奇数次,则状态为“亮”,按偶数次,则状态为“不亮”,确定1-100中,各个数因数的个数,完全平方数的因数为奇数个,从而求解.【详解】所有灯的初始状态为“不亮”,按奇数次,则状态为“亮”,按偶数次,则状态为“不亮”;因数的个数为奇数的自然数只有完全平方数,1-100中,完全平方数为1,4,9,16,25,36,49,64,81,100;有10个数,故有10盏灯被按奇数次,为“亮”的状态;故答案为:10.【点睛】本题考查因数分解,完全平方数,理解因数的意义,完全平方数的概念是解题的关键.14.(2023·湖北十堰·统考中考真题)用火柴棍拼成如下图案,其中第①个图案由4个小等边三角形围成1个小菱形,第②个图案由6个小等边三角形围成2个小菱形,……,若按此规律拼下去,则第n 个图案需要火柴棍的根数为(用含n 的式子表示).【答案】66n +/66n+【分析】当1n =时,有()2114+=个三角形;当2n =时,有()2216+=个三角形;当3n =时,有()2318+=个三角形;第n 个图案有()2122n n +=+个三角形,每个三角形用三根计算即可.【详解】解:当1n =时,有()2114+=个三角形;【答案】()22n +【分析】由于第1个图案中有4个白色圆片4221=+⨯,第2个图案中有6个白色圆片62=分别连接这个三角形三边中点得到图(2),有5个三角形,记作25a =;再分别连接图(2)中间的小三角形三边中点得到图(3),有9个三角形,记作39a =;按此方法继续下去,则123n a a a a ++++=.(结果用含n 的代数式表示)【答案】22n n -/22n n -+【分析】根据题意得出()14143n a n n =+-=-,进而即可求解.【详解】解:依题意,()1231,5,9,14143n a a a a n n ===⋅⋅⋅=+-=-,,∴123n a a a a ++++= ()21432122n n n n n n +-==-=-,故答案为:22n n -.【点睛】本题考查了图形类规律,找到规律是解题的关键.17.(2023·湖南怀化·统考中考真题)在平面直角坐标系中,AOB 为等边三角形,点A 的坐标为()1,0.把AOB 按如图所示的方式放置,并将AOB 进行变换:第一次变换将AOB 绕着原点O 顺时针旋转60︒,同时边长扩大为AOB 边长的2倍,得到11A OB △;第二次旋转将11A OB △绕着原点O 顺时针旋转60︒,同时边长扩大为11A OB △,边长的2倍,得到22A OB △,….依次类推,得到20332033A OB ,则20232033A OB △的边长为,点2023A 的坐标为.【答案】20232()202220222,32-⨯【分析】根据旋转角度为60︒,可知每旋转6次后点A 又回到x 轴的正半轴上,故点2023A 在第四象限,且202320232OA =,即可求解.在2023Rt OHA 中,2023HOA ∠∴202320232023cos 2OH OA HOA =⋅∠=2023202320232023sin 2A H OA HOA =⋅∠=∴点2023A 的坐标为()202220222,32-⨯.故答案为:20232,()202220222,32-⨯.【点睛】本题考查图形的旋转,解直角三角形的应用.熟练掌握图形旋转的性质,根据旋转角度找到点的坐标规律是解题的关键.18.(2023·山东临沂·统考中考真题)观察下列式子21312⨯+=;22413⨯+=;23514⨯+=;……按照上述规律,2n =.【答案】()()111n n -++【分析】根据已有的式子,抽象出相应的数字规律,进行作答即可.【详解】解:∵21312⨯+=;22413⨯+=;23514⨯+=;……∴()()2211n n n ++=+,∴()()2111n n n -++=.故答案为:()()111n n -++【点睛】本题考查数字类规律探究.解题的关键是从已有的式子中抽象出相应的数字规律.19.(2023·山东枣庄·统考中考真题)如图,在反比例函数8(0)y x x=>的图象上有1232024,,,P P P P 等点,它们的横坐标依次为1,2,3,…,2024,分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为1232023,,,,S S S S ,则1232023S S S S ++++= .【答案】2023253【分析】求出1234,,,P P P P …的纵坐标,从而可计算出123n S S S S +++⋯+的值.【详解】当1x =时,1P 的纵坐标为8当2x =时,2P 的纵坐标为4,当3x =时,3P 的纵坐标为83,∴12320238202320242532023S S S S ⨯+++⋯+==.故答案为:2023253.【点睛】本题考查了反比例函数与几何的综合应用,解题的关键是求出881n S n n =-+.20.(2023·山东聊城·统考中考真题)如图,图中数字是从1开始按箭头方向排列的有序数阵.从3开始,把位于同一列且在拐角处的两个数字提取出来组成有序数对:()3,5;()7,10;()13,17;()21,26;()31,37…如果单把每个数对中的第一个或第二个数字按顺序排列起来研究,就会发现其中的规律.请写出第n 个数对:.【答案】()221,22n n n n ++++【分析】根据题意单另把每个数对中的第一个或第二个数字按顺序排列起来研究,可发现第n 个数对的第一个数为:()11n n ++,第n 个数对的第二个位:()211n ++,即可求解.【详解】解:每个数对的第一个数分别为3,7,13,21,31,…即:121⨯+,231⨯+,341⨯+,451⨯+,561⨯+,…则第n 个数对的第一个数为:()2111n n n n ++=++,每个数对的第二个数分别为5,10,17,26,37,…即:221+;231+;241+;251+;261+…,则第n 个数对的第二个位:()221122n n n ++=++,∴第n 个数对为:()221,22n n n n ++++,故答案为:()221,22n n n n ++++.【点睛】此题考查数字的变化规律,找出数字之间的排列规律,利用拐弯出数字的差的规律解决问题.【答案】()2023,1-【分析】将四分之一圆弧对应的A 律即可.【详解】∵A 点坐标为()1,1,且A ∴1A 点坐标为()2,0,又∵2A 为1A 点绕O 点顺时针旋转故2023A 为以点C 为圆心,半径为2022的2022A 顺时针旋转90︒所得故2023A 点坐标为()2023,1-.故答案为:()2023,1-.【点睛】本题考查了点坐标规律探索,通过点的变化探索出坐标变化的规律是解题的关键.22.(2023·山东东营·统考中考真题)如图,在平面直角坐标系中,直线l :33y x =-与x 轴交于点1A ,以1OA 为边作正方形111A B C O 点1C 在y 轴上,延长11C B 交直线l 于点2A ,以12C A 为边作正方形2221A B C C ,点2C 在y 轴上,以同样的方式依次作正方形3332A B C C ,…,正方形2023202320232022A B C C ,则点2023B 的横坐标是.【答案】2022313⎛⎫+ ⎪ ⎪⎝⎭【分析】分别求出点点1B 的横坐标是1,点2B 的横坐标是313+,点3B 的横坐标是223431333⎛⎫+=+ ⎪ ⎪⎝⎭,找到规律,得到答案见即可.【详解】解:当0y =,033x =-,解得1x =,∴点()11,0A ,∵111A B C O 是正方形,∴11111OA A B OC ===,∴点()11,1B ,和为.【答案】1024202422024-+【分析】通过观察第一行数的规律为(2)n -,第二行数的规律为(2)1n n -++,代入数据即可.【详解】第一行数的规律为(2)n -,∴第①行数的第10个数为10(2)1024-=;第二行数的规律为(2)1n n -++,∴第①行数的第2023个数为2023(2)-,第②行数的第2023个数为2023(2)2024-+,∴202422024-+,故答案为:1024;202422024-+.【点睛】本题主要考查数字的变化,找其中的规律,是今年考试中常见的题型.24.(2023·山东泰安·统考中考真题)已知,12345678,,,OA A A A A A A A △△△都是边长为2的等边三角形,按下图所示摆放.点235,,,A A A 都在x 轴正半轴上,且2356891A A A A A A ==== ,则点2023A 的坐标是.【答案】()2023,3-【分析】先确定前几个点的坐标,然后归纳规律,按规律解答即可.【详解】解:由图形可得:()()()()()()2356892,0,3,0,5,0,6,0,8,0,9,0,A A A A A A 如图:过1A 作1A B x ⊥轴,【答案】202223【分析】过点1A作1A M x⊥轴,交直线130AOM∠=︒,再根据等边三角形的性质、()12,0A ,12OA ∴=,当2x =时,233y =,即123232,,33M A M ⎛⎫= ⎪ ⎪⎝⎭,1113tan 3A M A OM A O ∴∠==,130A OM ∴∠=︒,112A B A 是等边三角形,211121160,A A B A A A B ∠=︒=∴,11130O O A M B A ∴∠=︒∠=,1112A B OA ==∴,1113sin 6022A B B C ∴=⋅︒=⨯,即点1B 的纵坐标为322⨯,同理可得:点2B 的纵坐标为2322⨯,点3B 的纵坐标为3322⨯,点4B 的纵坐标为4322⨯,归纳类推得:点n B 的纵坐标为132232n n -⨯=(n 为正整数),则点2023B 的纵坐标为2023120222323-=,故答案为:202223.【点睛】本题考查了点坐标的规律探索、等边三角形的性质、正比例函数的应用、解直角三角形等知识点,正确归纳类推出一般规律是解题关键.【答案】404623【分析】解直角三角形得出AOB ∠222ABC A B C ∽,得出111A B C S = ()2222n n n n n A B C ABC ABC S S S == ,从而得出【详解】解:∵22OB =,∴设(),C C C x y ,则3C C y x =,∴tan 3C Cy BOC x ∠==,∴60BOC ∠=︒,∴1cos602222OC OB =⨯︒=⨯=,3sin 602262BC OB =⨯︒=⨯=,∵130AOC BOC AOB ∠=∠-∠=︒,∴1AOB AOC ∠=∠,∴OA 平分BOC ∠,∵12AC l ⊥,AB OB ⊥,∴1263AC AB ==,∵1AB AC =,OA OA =,∴1Rt Rt OAB OAC ≌,∴122OC OB ==,∴112222CC OC OC =-=-=,∴12ABC OAB ACC BOCS S S S =-- 126126122222623232=⨯⨯⨯-⨯⨯-⨯⨯3=,∵2BC l ⊥,∴90BCO ∠=︒,∴906030CBO ∠=︒-︒=︒,∵112B C l ⊥,2BC l ⊥,222B C l ⊥,∴2112B B C C B C ∥∥,∴112230C B O C B O CBO ∠=∠=∠=︒,。
中考数学专题复习规律探究题练习(四)
![中考数学专题复习规律探究题练习(四)](https://img.taocdn.com/s3/m/95ede9c85122aaea998fcc22bcd126fff7055d20.png)
中考数学专题复习规律探究题练习(四)学校:___________姓名:___________班级:___________考生__________ 评卷人 得分一、解答题1.图1是由若干个小圆圈堆成的一个形如等边三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n 层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为(1)1232n n n ++++⋯+=. 如果图3、图4中的圆圈均有13层.(1)我们自上往下,在每个圆圈中都图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是________;(2)我们自上往下,在每个圆圈中按图4的方式填上一串连续的整数-23,-22,-21,-20,…,求最底层最右边圆圈内的数是________;(3)求图4中所有圆圈中各数值的绝对值之和.(写出计算过程)2.已知点P (0x ,0y )和直线y=kx+b ,则点P 到直线y=kx+b 的距离证明可用公式d=002||1kx y b k -++ 计算.例如:求点P (﹣1,2)到直线y=3x+7的距离. 解:因为直线y=3x+7,其中k=3,b=7. 所以点P (﹣1,2)到直线y=3x+7的距离为:d=002||1kx y b k -++=2|3(1)27|1k ⨯--++ =210=105. 根据以上材料,解答下列问题:(1)求点P (1,﹣1)到直线y=x ﹣1的距离;(2)已知⊙Q 的圆心Q 坐标为(0,5),半径r 为2,判断⊙Q 与直线y=3x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x ﹣6平行,求这两条直线之间的距离.3.观察以下等式:第1个等式:2222233+=⨯;第2个等式:2333388+=⨯;第3个等式:244441515+=⨯;第4个等式:255552424+=⨯;……按照以上规律,解决下列问题:(1)写出第5个等式:____________________________________________________________;(2)写出你猜想的第n 个等式:____________________;(用含n 的等式表示),并证明.4.观察下列各式规律:⊙ 52-22=3×7;⊙72-42=3×11;⊙ 92-62=3×11;…;根据上面等式的规律:(1)写出第6个和第n 个等式; (2)证明你写的第n 个等式的正确性.5.观察下列等式: 2111123⎛⎫÷⨯+= ⎪⎝⎭ 21111324⎛⎫÷⨯+= ⎪⎝⎭21111435⎛⎫÷⨯+= ⎪⎝⎭ 21111546⎛⎫÷⨯+= ⎪⎝⎭()1写出第⑥个等式: ;()2写出你猜想的第n 个等式: (用含n 的等式表示),并证明.6.化简:2334122232+⨯⨯⨯⨯+45342⨯⨯+…+20203201920202⨯⨯.为了能找到复杂计算问题的结果,我们往往会通过将该问题分解,试图找寻算式中每个式子是否存在某种共同规律,然后借助这个规律将问题转化为可以解决的简单问题.下面我们尝试着用这个思路来解决上面的问题.请你按照这个思路继续进行下去,并把相应横线上的空格补充完整. 【分析问题】第1个加数:23122⨯⨯=112⨯﹣2122⨯;第2个加数:34232⨯⨯=2122⨯﹣3132⨯;第3个加数:45342⨯⨯=3132⨯﹣4142⨯;第4个加数: =2142⨯﹣5152⨯; 【总结规律】第n 个加数: = ﹣ .【解决问题】请你利用上面找到的规律,继续化简下面的问题.(结果只需化简,无需求出最后得数)2334122232+⨯⨯⨯⨯+45342⨯⨯+…+20203201920202⨯⨯.7.(1)观察下列图形与等式的关系,并填空: 第一个图形:;第二个图形:;第一个等式:9+4=13;第二个等式:13+8=21;第三个图形:;……;第三个等式: + = ;……;(2)根据以上图形与等式的关系,请你猜出第n 个等式(用含有n 的代数式表示),并证明.8.观察以下等式:第1个等式:23-22=13+2×1+1; 第2个等式:33-32=23+3×2+22; 第3个等式:43-42=33+4×3+32; ……按照以上规律,解决下列问题:(1)写出第4个等式:__________________;(2)写出你猜想的第n 个等式(用含n 的等式表示),并证明.参考答案:1.(1)79;(2)6;(3)2554. 【解析】 【详解】【分析】(1)13层时最底层最左边这个圆圈中的数是前12层圆圈的个数和再加1; (2)首先计算圆圈的个数,从而分析出23个负数后,又有多少个正数即可得; (3)将图⊙中的所有数字加起来利用所给的公式进行计算即可得.【详解】(1)当有13层时,前12层共有:1+2+3+…+12=78个圆圈,78+1=79, 故答案为79;(2)图⊙中所有圆圈中共有1+2+3+…+13=()131312⨯+=91个数,其中23个负数,1个0,67个正数, 故答案为67;(3)图⊙中共有91个数,分别为-23,-22,-21,...,66,67, 图⊙中所有圆圈中各数的和为: -23+(-22)+...+(-1)+0+1+2+ (67)()9123672⨯-+=2002.【点睛】本题是一道找规律的题目,通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.注意连续整数相加的时候的这种简便计算方法:1+2+3+…+n=()12n n +.2.(1)22;(2)见解析;(3)25. 【解析】 【分析】(1)根据点P 到直线y=kx+b 的距离公式直接计算即可;(2)先利用点到直线的距离公式计算出圆心Q 到直线y=3x+9,然后根据切线的判定方法可判断⊙Q 与直线y=3x+9相切;(3)利用两平行线间的距离定义,在直线y=-2x+4上任意取一点,然后计算这个点到直线y=-2x-6的距离即可. 【详解】(1)因为直线y=x-1,其中k=1,b=-1, 所以点P (1,-1)到直线y=x-1的距离为:d=002211(1)(1)1222111kx y b k -+⨯--+-===++; (2)⊙Q 与直线y=3x+9的位置关系为相切.理由如下:圆心Q (0,5)到直线y=3x+9的距离为:d=230594221(3)⨯-+==+, 而⊙O 的半径r 为2,即d=r , 所以⊙Q 与直线y=3x+9相切;(3)当x=0时,y=-2x+4=4,即点(0,4)在直线y=-2x+4, 因为点(0,4)到直线y=-2x-6的距离为:d=20-2-46102551(2)⨯-==+-(), 因为直线y=-2x+4与y=-2x-6平行, 所以这两条直线之间的距离为25. 【点睛】本题考查了一次函数的综合题:熟练掌握一次函数图象上点的坐标特征、切线的判定方法和两平行线间的距离的定义. 3.(1)266663535+=⨯;(2)211(1)(1)(2)(2)n n n n n n n n ++++=+⋅++,证明见解析.【解析】 【分析】(1)根据提供的算式写出第5个算式即可; (2)根据规律写出通项公式然后证明即可. 【详解】解:(1)根据已知规律,第5个等式为266663535+=⨯, 故应填:266663535+=⨯; (2)根据题意,第n 个等式为211(1)(1)(2)(2)n n n n n n n n ++++=+⋅++证明:左边[](1)(2)1(1)(2)1(1)(2)(1)(2)(2)(2)(2)n n n n n n n n n n n n n n n n n n n ++++++++++=+==++++()222(1)21(1)(1)1(1)(2)(2)(2)n n n n n n n n n n n n n ++++++===+⋅=+++右边,⊙等式成立. 【点睛】本题考查规律探索问题,从特殊的、简单的问题推理到普通的、复杂的问题,从中归纳问题的规律,体现了逻辑推理与数学运算的核心素养.4.(1)第6个:221512327-=⨯,第n 个:()()()22232343n n n +-=+;(2)证明见解析 【解析】 【分析】(1仿照⊙⊙⊙写出第6和第n 个等式即可;(2)结合(1)发现的规律,并运用整式的四则混合运算证明即可. 【详解】解:(1)⊙ 52-22=3×7;⊙72-42=3×11;⊙ 92-62=3×11;…; 所以第6个等式为:152-122=3×27:所以第n 个等式为:(2n+3)2-(2n )2=3(4n+3) (2)证明:左边=(2n+3+2n )(2n+3-2n ) =3(4n+3) =右边所以第n 个等式正确. 【点睛】本题考查了规律型中的数字的变化类,观察数字的变化、寻找规律是解答本题的关键. 5.(1)21161187⎛⎫⨯ ⎪+⎭=⎝÷;(2)()2121111n n n ⎛⎫⨯ ⎪+⎭=⎝++÷,证明见解析【解析】 【分析】(1)根据所给等式的特点,写出第⊙个等式即可;(2)由所给等式可知:等号左边的被除数是1,括号内的两个分数的分子都是1,第一个分数的分母和序数相同,第二个分数的分母比序数大2,然后再加1,而等号右边是比序数大1的数的平方,据此可写出第n 个等式,然后根据分式的混合运算法则进行证明. 【详解】解:(1)2111123⎛⎫÷⨯+= ⎪⎝⎭21111324⎛⎫÷⨯+= ⎪⎝⎭21111435⎛⎫÷⨯+= ⎪⎝⎭21111546⎛⎫÷⨯+= ⎪⎝⎭∴第⊙个等式为:()2211681161=7⎛⎫⨯ ⎪⎝⎭÷+=+;(2)由分析可猜想第n 个等式为:()2121111n n n ⎛⎫⨯ ⎪+⎭=⎝++÷, 证明:左边()()221112112n n n n n =÷+=++=+=+右边, 故等式成立. 【点睛】本题考查了数字类规律探索、分式的混合运算,根据所给式子,分析变化的部分与不变的部分,正确得出规律是解题的关键.6.56452⨯⨯;12(1)2n n n n ++⨯+⨯,12n n ⨯,11(1)2n n ++⨯;2020202010102120202⨯-⨯ 【解析】 【分析】(1)观察前3个加数即可写出第4个加数;通过前4个加数即可发现规律写出第n 个加数;(2)根据(1)中的规律进行化简即可计算.【详解】解:(1)因为第1个加数:223111221222=-⨯⨯⨯⨯;第2个加数:3234112322232=-⨯⨯⨯⨯;第3个加数:4345113423242=-⨯⨯⨯⨯;所以第4个加数:5456114524252=-⨯⨯⨯⨯总结规律:所以第n 个加数:()()1121112212n nn n n n n n +++=-⨯+⨯⨯+⨯.解决问题: 原式=223342019202011111111...1222223232422019220202-+-+-++-⨯⨯⨯⨯⨯⨯⨯⨯ =202011220202-⨯ =2020202010102120202⨯-⨯故答案为:56452⨯⨯;12(1)2n n n n ++⨯+⨯,12n n ⨯,11(1)2n n ++⨯;2020202010102120202⨯-⨯ 【点睛】本题考查数的规律,根据已知条件找出数字规律是解题关键. 7.(1)17,12,29;(2)(4n+5)+4n =8n+5,证明见解析 【解析】 【分析】(1)观察图形的变化写出前两个个图形与等式的关系,进而可得第三个等式; (2)结合(1)总结规律即可得第n 个等式. 【详解】解:(1)观察图形的变化可知:第一个图形:9+4=13,即4×1+5+4=13=8×1+5, 第二个图形:13+8=21,即4×2+5+4×2=21=8×2+5, 第三个图形:17+12=29,即4×3+5+4×3=29=8×3+5, … 发现规律:第n 个等式为:(4n+5)+4n =8n+5; 故答案为:17,12,29; (2)由(1)发现的规律:所以第n 个等式为:(4n+5)+4n =8n+5; 证明:左边=4n+5+4n =8n+5=右边. 所以等式成立. 【点睛】本题考查了规律型:图形的变化类,解决本题的关键是观察图形的变化寻找规律,总结规律.8.(1)3232554544-=+⨯+;(2)猜想出第n 个等式为3232(1)(1)(1)n n n n n n +-+=+++,证明见解析.【解析】 【分析】(1)根据前三个等式归纳总结出规律即可得;(2)先归纳总结出一般规律,得出第n 个等式,再利用因式分解的方法分别计算等式的两边即可得证. 【详解】(1)由前三个等式可得:第4个等式为3232554544-=+⨯+ 故答案为:3232554544-=+⨯+;(2)猜想出第n 个等式为3232(1)(1)(1)n n n n n n +-+=+++,证明如下:等式的左边[]3222(1)(1)(1)(1)1(1)n n n n n n =+-+=++-=+等式的右边()32222(1)(1)21(1)n n n n n n n n n n n n n ⎡⎤=+++=+++=++=+⎣⎦则等式的左边=等式的右边 所以等式成立. 【点睛】本题考查了因式分解的实际应用,理解题意,正确归纳类推出一般规律是解题关键.。
专题02 规律探究(中考数学特色专题训练卷)(原卷版)
![专题02 规律探究(中考数学特色专题训练卷)(原卷版)](https://img.taocdn.com/s3/m/cf01ecbb541810a6f524ccbff121dd36a32dc430.png)
专题02 规律探究(中考数学特色专题训练卷)1.(2021•济宁)按规律排列的一组数据:12,35,□,717,926,1137,…,其中□内应填的数是( )A .23B .511C .59D .122.(2021•攀枝花)观察依次排列的一串单项式x ,﹣2x 2,4x 3,﹣8x 4,16x 5,…,按你发现的规律继续写下去,第8个单项式是( ) A .﹣128x 7B .﹣128x 8C .﹣256x 7D .﹣256x 83.(2021•十堰)将从1开始的连续奇数按如图所示的规律排列,例如,位于第4行第3列的数为27,则位于第32行第13列的数是( )A .2025B .2023C .2021D .20194.(2021•镇江)如图,小明在3×3的方格纸上写了九个式子(其中的n 是正整数),每行的三个式子的和自上而下分别记为A 1,A 2,A 3,每列的三个式子的和自左至右分别记为B 1,B 2,B 3,其中,值可以等于789的是( )A .A 1B .B 1C .A 2D .B 35.(2020•西藏)观察下列两行数: 1,3,5,7,9,11,13,15,17,… 1,4,7,10,13,16,19,22,25,…探究发现:第1个相同的数是1,第2个相同的数是7,…,若第n 个相同的数是103,则n 等于( )A.18B.19C.20D.216.(2021•玉林)观察下列树枝分叉的规律图,若第n个图树枝数用Y n表示,则Y9﹣Y4=()A.15×24B.31×24C.33×24D.63×247.(2021•随州)根据图中数字的规律,若第n个图中的q=143,则p的值为()A.100B.121C.144D.1698.(2021•阜新)如图,弧长为半圆的弓形在坐标系中,圆心在(0,2).将弓形沿x轴正方向无滑动滚动,当圆心经过的路径长为2021π时,圆心的横坐标是()A.2020πB.1010π+2020C.2021πD.1011π+20209.(2020•常德)如图,将一枚跳棋放在七边形ABCDEFG的顶点A处,按顺时针方向移动这枚跳棋2020次.移动规则是:第k次移动k个顶点(如第一次移动1个顶点,跳棋停留在B处,第二次移动2个顶点,跳棋停留在D处),按这样的规则,在这2020次移动中,跳棋不可能停留的顶点是()A.C、E B.E、F C.G、C、E D.E、C、F10.(2021•铜仁市)观察下列各项:112,214,318,4116,…,则第n 项是 .11.(2021•江西)如图在我国宋朝数学家杨辉1261年的著作《详解九章算法》中提到过,因而人们把这个表叫做杨辉三角,请你根据杨辉三角的规律补全表第四行空缺的数字是 .12.(2021•荆门)如图,将正整数按此规律排列成数表,则2021是表中第 行第 列.13.(2021•怀化)观察等式:2+22=23﹣2,2+22+23=24﹣2,2+22+23+24=25﹣2,…,已知按一定规律排列的一组数:2100,2101,2102,…,2199,若2100=m ,用含m 的代数式表示这组数的和是 .14.(2021•呼和浩特)若把第n 个位置上的数记为x n ,则称x 1,x 2,x 3,…,x n 有限个有序放置的数为一个数列A .定义数列A 的“伴生数列”B 是:y 1,y 2,y 3,…,y n ,其中y n 是这个数列中第n 个位置上的数,n =1,2,…,k 且y n ={0,x n−1=x n+11,x n−1≠x n+1并规定x 0=x n ,x n +1=x 1.如果数列A 只有四个数,且x 1,x 2,x 3,x 4依次为3,1,2,1,则其“伴生数列”B 是 .15.(2021•眉山)观察下列等式:x 1=√1+112+122=32=1+11×2; x 2=√1+122+132=76=1+12×3; x 3=√1+132+142=1312=1+13×4; …根据以上规律,计算x 1+x 2+x 3+…+x 2020﹣2021= .16.(2021•凉山州)如图,用火柴棍拼成一个由三角形组成的图形,拼第一个图形共需要3根火柴棍;拼第二个图形共需要5根火柴棍;拼第三个图形共需要7根火柴棍;…照这样拼图,则第n个图形需要根火柴棍.17.(2021•鄂尔多斯)将一些相同的“〇”按如图所示的规律依次摆放,观察每个“龟图”的“〇”的个数,则第30个“龟图”中有个“〇”.18.(2021•绥化)下面各图形是由大小相同的三角形摆放而成的,图①中有1个三角形,图①中有5个三角形,图①中有11个三角形,图①中有19个三角形…依此规律,则第n个图形中三角形个数是.19.(2021•常德)如图中的三个图形都是边长为1的小正方形组成的网格,其中第一个图形有1×1个小正方形,所有线段的和为4,第二个图形有2×2个小正方形,所有线段的和为12,第三个图形有3×3个小正方形,所有线段的和为24,按此规律,则第n个网格中所有线段的和为.(用含n的代数式表示)20.(2021•恩施州)古希腊数学家定义了五边形数,如下表所示,将点按照表中方式排列成五边形点阵,图形中的点的个数即五边形数;图形…五边形数 1 5 12 22 35 51 …将五边形数1,5,12,22,35,51,…,排成如下数表;观察这个数表,则这个数表中的第八行从左至右第2个数为 .21.(2020•遂宁)如图所示,将形状大小完全相同的“①”按照一定规律摆成下列图形,第1幅图中“①”的个数为a 1,第2幅图中“①”的个数为a 2,第3幅图中“①”的个数为a 3,…,以此类推,若2a 1+2a 2+2a 3+⋯+2a n=n 2020.(n 为正整数),则n 的值为 .22.(2021•宁夏)如图,在平面直角坐标系中,等腰直角三角形OAB ,①A =90°,点O 为坐标原点,点B 在x 轴上,点A 的坐标是(1,1).若将①OAB 绕点O 顺时针方向依次旋转45°后得到①OA 1B 1,①OA 2B 2,①OA 3B 3,…,可得A 1(√2,0),A 2(1,﹣1),A 3(0,−√2),…则A 2021的坐标是 .23.(2021•兴安盟)如图,点B 1在直线l :y =12x 上,点B 1的横坐标为1,过点B 1作B 1A 1①x 轴,垂足为A 1,以A 1B 1为边向右作正方形A 1B 1C 1A 2,延长A 2C 1交直线l 于点B 2;以A 2B 2为边向右作正方形A 2B 2C 2A 3,延长A3C2交直线l于点B3;…;按照这个规律进行下去,点B2021的坐标为.24.(2021•黑龙江)如图,正方形A0B0C0A1的边长为1,正方形A1B1C1A2的边长为2,正方形A2B2C2A3的边长为4,正方形A3B3C3A4的边长为8…依次规律继续作正方形A n B n①n A n+1,且点A0,A1,A2,A3,…,A n+1在同一条直线上,连接A0C1交,A1B1于点D1,连接A1C2,交A2B2于点D2,连接A2C3,交A3B3于点D3,…记四边形A0B0C0D1的面积为S1,四边形A1B1C1D2的面积为S2,四边形A2B2C2D3的面积为S3,…,四边形A n﹣1B n﹣1C n﹣1D n的面积为S n,则S2021=.25.(2021•泰安)如图,点B1在直线l:y=12x上,点B1的横坐标为2,过点B1作B1A1①l,交x轴于点A1,以A1B1为边,向右作正方形A1B1B2C1,延长B2C1交x轴于点A2;以A2B2为边,向右作正方形A2B2B3C2,延长B3C2交x轴于点A3;以A3B3为边,向右作正方形A3B3B4C3,延长B4C3交x轴于点A4;…;照这个规律进行下去,则第n个正方形A n B n B n+1①n的边长为(结果用含正整数n的代数式表示).26.(2021•锦州)如图,①MON=30°,点A1在射线OM上,过点A1作A1B1①OM交射线ON于点B1,将①A1OB1沿A1B1折叠得到①A1A2B1,点A2落在射线OM上;过点A2作A2B2①OM交射线ON于点B2,将①A2OB2沿A2B2折叠得到①A2A3B2,点A2落在射线OM上;…按此作法进行下去,在①MON内部作射线OH,分别与A1B1,A2B2,A3B3,…,A n B n交于点P1,P2,P3,…P n,又分别与A2B1,A3B2,A4B3,…,A n+1B n,交于点Q1,Q2,Q3,…,Q n.若点P1为线段A1B1的中点,OA1=√3,则四边形A n P n Q n A n+1的面积为(用含有n的式子表示).27.(2021•砀山县一模)如图,下列各正方形中的四个数之间具有相同的规律.根据此规律,回答下列问题:(1)第5个图中4个数的和为 . (2)a = ;c = .(3)根据此规律,第n 个正方形中,d =2564,则n 的值为 .28.(2021•黄山区二模)观察所示图形的面积:图1的面积可表示为13=12;图2的面积可表示为13+23=32;图3的面积可表示为13+23+33=62.(1)猜想:13+23+33+…+n 3= = (用含有n 的代数式表示); (2)计算:23+43+63+⋯+20032022.29.(2021•安徽)某矩形人行道由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成,图1表示此人行道的地砖排列方式,其中正方形地砖为连续排列. [观察思考]当正方形地砖只有1块时,等腰直角三角形地砖有6块(如图2);当正方形地砖有2块时,等腰直角三角形地砖有8块(如图3);以此类推.[规律总结](1)若人行道上每增加1块正方形地砖,则等腰直角三角形地砖增加块;(2)若一条这样的人行道一共有n(n为正整数)块正方形地砖,则等腰直角三角形地砖的块数为(用含n的代数式表示).[问题解决](3)现有2021块等腰直角三角形地砖,若按此规律再建一条人行道,要求等腰直角三角形地砖剩余最少,则需要正方形地砖多少块?30.(2021•青岛一模)[问题提出]:将一个边长为n(n≥2)的菱形的四条边n等分,连接各边对应的等分点,则该菱形被剖分的网格中的平行四边形的个数和菱形个数分别是多少?[问题探究]:要研究上面的问题,我们不妨先从特例入手,进而找到一般规律.探究一:将一个边长为2的菱形的四条边分别2等分,连接各边对应的等分点,则该菱形被剖分的网格中的平行四边形的个数和菱形个数分别是多少?如图1,从上往下,共有2行,我们先研究平行四边形的个数:(1)第一行有斜边长为1,底长为1~2的平行四边形,共有2+1=3个;(2)第二行有斜边长为1,底长为1~2的平行四边形,共有2+1=3个;为了便于归纳分析,我们把平行四边形下面的底在第二行的所有平行四边形均算作第二行的平行四边形,以下各行类同第二行.因此底第二行还包括斜边长为2,底长为1~2的平行四边形,共有2+1=3个.即:第二行平行四边形共有2×3个.所以如图1,平行四边形共有2×3+3﹣9﹣(2+1)2.我们再研究菱形的个数:分析:边长为1的菱形共有22个,边长为2的菱形共有12个,所以:如图1,菱形共有22+12=5=16×2×3×5个探究二:将一个边长为3的菱形的四条边分别3等分,连接各边对应的等分点,则该菱形被剖分的网格中的平行四边形的个数和菱形个数分别是多少?如图2,从上往下,共有3行,我们先研究平行四边形的个数:(1)第一行有斜边长为1,底长为1~3的平行四边形,共有3+2+1=6个;(2)第二行有斜边长为1,底长为1~2的平行四边形,共有3+2+1=6个;底在第二行还包括斜边长为2,底长为1~3的平行四边形,共有3+2+1=6个,即:第二行平行四边形共有2×6个.(3)第三行有斜边长为1,底长为1~3的平行四边形,共有3+2+1=6个;底在第三行还包括斜边长为2,底长为1~3的平行四边形,共有3+2+1=6个.底在第三行还包括斜边长为3,底长为1~3的平行四边形,共有3+2+1=6个.即:第三行平行四边形共有3×6个.所以:如图2,平行四边形共有3×6+2×6+6=(3+2+1)×6=(3+2+1)2.我们再研究菱形的个数:分析:边长为1的菱形共有32个,边长为2的菱形共有22个,边长为3的菱形共有12个.所以:如图2,菱形共有32+22+12=14=16×3×4×7个.探究三:将一个边长为4的菱形的四条边4等分,连接对边对应的等分点,则该菱形被剖分的网格中的平行四边形的个数和菱形的个数分别是多少呢?如图3,从上往下,共有4行,我们先研究平行四边形的个数:(1)第一行有斜边长为1,底长为1~4的平行四边形,共有4+3+2+1=10个.(2)第二行有斜边长为1,底长为1~4的平行四边形,共有4+3+2+1=10个.底在第二行还包括斜边长为2,底长为1~4的平行四边形,共有4+3+2+1=10个.即:第二行平行四边形总共有2×10个.(3)模仿上面的探究,第三行平行四边形总共有 个;(4)按照以上规律,第四行平行四边形总共有 个.所以:如图3,平行四边形总共有 个.我们再研究菱形的个数:分析:边长为1的菱形共有42个,边长为2的菱形共有32个,边长为3的菱形共有22个,边长为4的菱形共有12个.所以:如图3,菱形共有42+32+22+12=30=16× 个.(仿照前面的探究,写成三个整数相乘的形式)【问题解决】将一个边长为n (n ≥2)的菱形的四条边n 等分,连接对边对应的等分点,根据上边的规律,得出该菱形被剖分的网格中的平行四边形的个数是 和菱形的个数分别是16× .(用含n 的代数式表示). 【问题应用】将一个边长为n (n ≥2)的菱形的四条边n 等分,连接各边对应的等分点,若得出该菱形被剖分的网格中的平行四边形的个数是441个,则n = .【拓展延伸】将一个边长为n (n ≥2)的菱形的四条边n 等分,连接各边对应的等分点,当该菱形被剖分的网格中的平行四边形的个数与菱形的个数之比是135:19时,则n = .。
中考数学历年各地市真题 规律探究题
![中考数学历年各地市真题 规律探究题](https://img.taocdn.com/s3/m/eabf01689b6648d7c1c7467e.png)
第17题ABCA 1A 2A 3B 1 B 2 B 3 中考数学历年各地市真题规律探究(常德市)如图3,一个数表有7行7列,设ij a 表示第i 行第j 列上的数(其中i=1,2,3,...,j=1,2,3,...,).例如:第5行第3列上的数537a =. 则(1)()()23225253______.a a a a -+-= (2)此数表中的四个数,,,,np nk mp mk a a a a 满足()()______.npnk mk mp aa a a -+-=17.(泰州市)观察等式:①4219⨯=-,②64125⨯=-,③86149⨯=-…按照这种规律写出第n 个等式: . 8.(盐城市)填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m 的值是A .38B .52C .66D .74 17.(连云港市)如图,△ABC 的面积为1,分别取AC 、BC 两边的中点A 1、B 1,则四边形A 1ABB 1的面积为34,再分别取A 1C 、B 1C 的中点A 2、B 2,A 2C 、B 2C 的中点A 3、B 3,依次取下去….利用这一图形,能直观地计算出3 4+3 42+3 43+…+34n =________.8.(淮安市)观察下列各式:()1121230123⨯=⨯⨯-⨯⨯ ()1232341233⨯=⨯⨯-⨯⨯()1343452343⨯=⨯⨯-⨯⨯……计算:3×(1×2+2×3+3×4+…+99×100)= A .97×98×99 B .98×99×100 C .99×100×101 D .100×101×102 16.(衡阳市)下图是一组有规律的图案,第1个 图案由4个基础图形组成,第2个图案由7个基础图形组成,第3个图案由10个基础图形组成……,第5个图案中由个基础图形组成.图30 2 8 4 2 4 6 22 4 6 844-.9. (安徽省) 下面两个多位数1248624……、6248624……,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位。
中考数学题型训练---规律探究
![中考数学题型训练---规律探究](https://img.taocdn.com/s3/m/395250174afe04a1b171de1f.png)
规律探索题常用技巧:1、观察法,对于比较明显的变化,可直接加以解决,比如呈现周期性变化的题2、一次函数法,通过一组数据,对于n的变化,考察数据是在坐标轴上成直线的变化,可以设此变化规律为y=kx+b,记得解出后要检验。
3、二次函数法,对于n的变化,考察数据在坐标上呈现弧形,可联想到二次函数,设此规律为y=ax2+bx+c,找出三组数据,然后解出来。
记得检验3、(公式法)等差数列:1+2+3+…+n=1+3+5+7+…++15=3+6+9+12+15+18+…+3n=等比数列:2+4+8+…+2n= 3+32+33+…+3n=1、数据规律类1、(2012滨州)求1+2+22+23+...+22012的值,可令S=1+2+22+23+...+22012,则2S=2+22+23+24+ (22013)因此2S﹣S=22013﹣1.仿照以上推理,计算出1+5+52+53+…+52012的值为()A.52012﹣1B.52013﹣1C.D.2、(2012珠海,20,9分)观察下列等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,……以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据上述各式反映的规律填空,使式子称为“数字对称等式”:①52×=×25;②×396=693×.a ≤9,写出表示“数字对称等(2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤b式”一般规律的式子(含a、b),并证明.3、(2012山东省荷泽市)一个自然数的立方,可以分裂成若干个连续奇数的和,例如:23,33,和43分别可以按如图所示的方式“分裂”成2个、3个和4个连续奇数的和,即23=3+5;33=7+9+11;43=13+15+17+19;……;若63也按照此规律来进行“分裂”,则63“分裂”出的奇数中,最大的那个奇数是_____.4、(2012·湖北省恩施市,题号16 分值4)观察下表:根据表中数的排列规律,B+D=_________.2、几何变化类 1、(2012贵州省毕节市)在下图中,每个图案均由边长为1的小正方形按一定的规律堆叠而成,照此规律,第10个图案中共有个小正方形。
规律变化探究性问题-2023年中考数学压轴题专项训练(解析版)
![规律变化探究性问题-2023年中考数学压轴题专项训练(解析版)](https://img.taocdn.com/s3/m/e5f7382958eef8c75fbfc77da26925c52cc59198.png)
规律变化探究性问题1.压轴题速练一、单选题1(2023春·重庆丰都·九年级校考阶段练习)下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有3颗棋子,第②个图形一共有9颗棋子,第③个图形一共有18颗棋子,⋯,则第⑦个图形中棋子的颗数为()A.84B.108C.135D.152【答案】A【分析】根据第①个图形的棋子数是3=3×1,第②个图形的棋子数是9=3×1+2,第③个图形的棋子数是18=3×1+2+3,据此求出第⑦个图形 ,⋯,可得第n个图形的棋子数是3×1+2+⋯+n中棋子的颗数为多少即可.【详解】∵第①个图形的棋子数是3=3×1,第②个图形的棋子数是9=3×1+2,第③个图形的棋子数是18=3×1+2+3,⋯,∴第n个图形的棋子数是3×1+2+⋯+n,∴第⑦个图形中棋子的颗数为:3×1+2+⋯+7=3×24=84.故选:A.【点睛】此题主要考查了图形的变化类问题,要熟练掌握,解答此类问题的关键是首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.2(2022秋·山东菏泽·九年级校考阶段练习)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,按如图所示的方式放置,点A1,A2,A3,⋯和点C1,C2,C3,⋯分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2 (3,2),则B2021的坐标是()A.(22021,22022)B.(22021,22020)C.(22021-1,22020)D.(22021+1,22020)【答案】C【分析】根据B1(1,1),B2(3,2),B3(7,4),⋯⋯,B n的横坐标为2n-1,B n的纵坐标为2n-1,再求解即可.【详解】解:∵B11,1,即B121-1,21-1∴A10,1,∴b=1,∵B23,2,即B222-1,22-1∴C1A2=2,∴A2B1=1,∴A1B1=A2B1,∴∠A2A1B1=45°,∴y=x+1,∵C2B2=A2B2=A3B2,∴A3C2=4,∴B37,4,即B323-1,23-1⋯⋯,∴B n的横坐标为2n-1,B n的纵坐标为2n-1,∴B2021的坐标是22021-1,22020,故选:C.【点睛】本题考查图形的变化规律,通过观察所给的图形,探索出正方形边长与点坐标的关系是解题的关键.3(2023春·重庆渝北·九年级校联考阶段练习)观察下列“蜂窝图”,按照这样的规律,则第2023个图案中的“”的个数是()A.6074B.6072C.6070D.6068【答案】C【分析】根据题意可得出第n个图案中的“”的个数为3n+1个,即可求解.【详解】解:∵第1个图案中的“”的个数=1×3+1=4(个),第2个图案中的“”的个数=2×3+1=7(个),第3个图案中的“”的个数=3×3+1=10(个),•••第2023个图案中的“”的个数=3×2023+1=6070(个),故选:C.【点睛】本题主要考查图形的变化规律,解题的关键是根据已知图形得出规律.4(2022秋·四川资阳·九年级统考期末)如图,直线l的解析式为y=33x,点M10,1,M1N1⊥y轴交直线l于点N1;点M2为y轴上位于M1上方的一点,且M1M2=M1N1,M2N2⊥y轴交直线l于点N2;点M3为y轴上位于M2上方的一点,且M2M3=M2N2,M3N3⊥y轴交直线l于点N3⋯,按此规律,线段N2022N2023的长为()A.31+32021 B.31+32022 C.231+32021 D.231+32022【答案】C【分析】根据解析式得出:N13,1,N233+1,3+1,N333+12,3+12,从而得出规律,再计算N2022N2023的长度即可.【详解】解:∵M10,1,∴将y=1代入y=33x得:x=3,∴N13,1,∴M20,3+1∴将y=3+1代入y=33x得:x=33+1,∴N233+1,3+1,∴M30,3+12,∴将y=3+12代入y=33x得:x=33+12,N333+12,3+12,∴N n33+1n-1,3+1n-1∴N202233+12021,3+12021N202333+12022,3+12022∴N2022N2023=323+14044+3+14044-323+14042+3+14042 =33+14044+3+14044-33+14042+3+14042=23+12022-23+12021=231+3 2021故选:C .【点睛】本题考查一次函数的性质,点的坐标的规律,正确得出规律是解题的关键.5(2023·山东德州·模拟预测)我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算法》一书中,用如图的三角形解释二项式a +b 2的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算a +b 10的展开式中第三项的系数为()A.36B.45C.55D.66【答案】B【分析】根据“杨辉三角”确定出所求展开式第三项的系数即可.【详解】找规律发现a +b 3的第三项系数为3=1+2;a +b 4的第三项系数为6=1+2+3;a +b5的第三项系数为10=1+2+3+4;不难发现a +b n 的第三项系数为1+2+3+⋯+n -2 +n -1 ,∴a +b 10第三项系数为1+2+3+⋯+9=45,故选:B .【点睛】此题考查了探索数字规律以及数学常识,弄清“杨辉三角”中的系数规律是解本题的关键.6(2023·湖南益阳·校考模拟预测)如图,矩形ABCD 的面积为5,它的两条对角线交于点O 1,以AB 、AO 1为两邻边作平行四边形ABC 1O 1,平行四边形ABC 1O 1的对角线交于点O 2,同样以AB 、AO 2为两邻边作平行四边形ABC 2O 2,⋯,依此类推,则平行四边形ABC n O n 的面积为()A.52n -1B.52nC.52n +1D.52n +2【答案】B【分析】先根据矩形的性质可得△ABO 1的面积为54,再根据平行四边形的性质可得平行四边形ABC 1O1的面积为52,同样的方法可得平行四边形ABC2O2和平行四边形ABC3O3的面积,然后归纳类推出一般规律即可得.【详解】解:∵矩形ABCD的面积为5,∴△ABO1的面积为54,∵四边形ABC1O1是平行四边形,∴平行四边形ABC1O1的面积为2×54=52,同理可得:平行四边形ABC2O2的面积为2×14×52=54=522,平行四边形ABC3O3的面积为2×14×522=523,归纳类推得:平行四边形ABC n O n的面积为52n,其中n为正整数,故选:B.【点睛】本题考查了矩形的性质、平行四边形的性质,正确归纳类推出一般规律是解题关键.7(2022春·四川内江·九年级专题练习)如图,在平面直角坐标系中,等腰直角△OAB位置如图,∠OBA=90°,点B的坐标为(1,0),每一次将△OAB绕点O逆时针旋转90°,同时每边扩大为原来的2倍,第一次旋转得到△OA1B1,第二次旋转得到△OA2B2,⋯,以此类推,则点A2022的坐标是()A.(22022,22022)B.(-22021,22021)C.(22021,-22021)D.(-22022,-22022)【答案】D【分析】△AOB是等腰直角三角形,OA=1,根据等腰直角三角形的性质,可得点A(1,1)逆时针旋转90°后可得A1(-2,2),同理A2(-4,-4),依次类推可求得,A3(8,-8),A4(16,16),这些点所位于的象限为每4次一循环,根据规律即可求出A2022的坐标.【详解】∵△OAB是等腰直角三角形,点B的坐标为(1,0),∴AB=OB=1,∴A点坐标为(1,1).将△OAB绕原点O逆时针旋转90°得到等腰直角三角形OA1B1,且A1B1=2AB,再将△OA1B1绕原点O顺时针旋转90°得到等腰直角三角形OA2B2,且A2B2=2A1B1,依此规律,∴点A旋转后的点所位于的象限为每4次一循环,即A1(-2,2),A2(-4,-4),A3(8,-8),A4(16,16).∵2022=505×4+2,∴点A2022与A2同在一个象限内.∵-4=-22,8=23,16=24,∴点A2022(-22022,-22022).故选:D.【点睛】本题考查了等腰直角三角形在平面直角坐标系中旋转的规律问题,熟练掌握等腰直角三角形的性质并能够在坐标系中找到点的坐标的变化规律是解题的关键.8(2022秋·全国·九年级专题练习)如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(-1,1),B (0,-2),C(1,-0),点P(0,2)绕点A旋转180°得到点P1,点P1绕点B旋转180°得到点P2,点P2绕点C旋转180°得到点P3,点P3绕点A旋转180°得到点P4⋯⋯按此作法进行下去,则点P2022的坐标为()A.(0,2)B.(-2,0)C.(2,-4)D.(-2,-2)【答案】A【分析】先画出点P1,P2,P3,P4,P5,P6的坐标,再归纳类推出一般规律,由此即可得.【详解】解:如图,P1-2,0,P22,-4,P30,4,P4-2,-2,P52,-2,P60,2,是以6次为一个循环,∵2022=6×337,∴点P2022的坐标与点P6的坐标相同,即为0,2,故选:A.【点睛】本题考查规律型:坐标与图形变化-旋转,解题关键在于归纳类推出一般规律.9(2022秋·八年级单元测试)如图所示,直线y=33x+33与y轴相交于点D,点A1在直线y=3 3x+33上,点B1在x轴,且∆OA1B1是等边三角形,记作第一个等边三角形;然后过B1作B1A2∥OA1与直线y=33x+33相交于点A2,点B2在x轴上,再以B1A2为边作等边三角形A2B2B1,记作第二个等边三角形;同样过B2作B2A3∥OA1与直线y=33x+33相交于点A3,点B3在x轴上,再以B2A3为边作等边三角形A3B3B2,记作第三个等边三角形;⋯依此类推,则第n个等边三角形的顶点A纵坐标为()A.2n-1B.2n-2C.2n-1×3D.2n-2×3【答案】D【分析】可设直线与x轴相交于C点.通过求交点C、D的坐标可求∠DCO=30°.根据题意得△COA1、△CB1A2、△CB2A3⋯都是等腰三角形,且腰长变化有规律.在正三角形中求高即可得解.【详解】解:设直线与x轴相交于C点.令x=0,则y=33;令y=0,则x=-1.∴OC=1,OD=33.∵tan∠DCO=ODOC =33,∴∠DCO=30°.∵△OA1B1是正三角形,∴∠A1OB1=60°.∴∠CA1O=∠A1CO=30°,∴OA1=OC=1.∴第一个正三角形的高=1×sin60°=32;同理可得:第二个正三角形的边长=1+1=2,高=2×sin60°=3;第三个正三角形的边长=1+1+2=4,高=4×sin60°=23;第四个正三角形的边长=1+1+2+4=8,高=8×sin60°=43;⋯第n个正三角形的边长=2n-1,高=2n-2×3.∴第n个正三角形顶点A的纵坐标是2n-2×3.故选:D.【点睛】本题是一次函数综合题型,主要考查了等腰三角形的性质,一次函数图象上点的坐标特征.10(2023秋·山东济宁·九年级统考期末)如图,直线y=x+1与x轴、y轴分别相交于点A、B,过点B 作BC⊥AB,使BC=2BA.将ΔABC绕点O顺时针旋转,每次旋转90°.则第2022次旋转结束时,点C的对应点C'落在反比例函数y=kx的图象上,则k的值为()A.-4B.4C.-6D.6【答案】C【分析】过点C作CD⊥y轴,垂足为D,则△BCD是等腰直角三角形,根据BC=22,确定点C的坐标,第一次旋转的坐标,根据第二次旋转坐标与点C关于原点对称,第三次旋转坐标与第一次坐标关于原点对称,确定循环节为4,计算2022÷4的余数,确定最后的坐标,利用k=横坐标×纵坐标计算即可.【详解】如图,过点C作CD⊥y轴,垂足为D,∵直线y=x+1与x轴、y轴分别相交于点A、B,过点B作BC⊥AB,使BC=2BA,∴A(-1,0),B(0,1),AB=2,BC=22,∴OA=OB,∠ABO=∠BAO=∠CBD=∠DCB=45°,∴DC=BD=2,∴DC=BD=2,OD=OB+BD=3,∴点C(-2,3),第一次旋转的坐标为(3,2),第二次旋转坐标与点C关于原点对称为(2,-3),第三次旋转坐标与第一次坐标关于原点对称为(-3,-2),第四次回到起点,∴循环节为4,∴2022÷4=505⋯2,∴第2022次变化后点的坐标为(2,-3),∴k=-3×2=-6,故选C.【点睛】本题考查了一次函数与坐标轴的交点,勾股定理,等腰直角三角形的判定和性质,旋转的性质,反比例函数的解析式的确定,点的坐标的对称性,利用旋转性质,确定点的对称性及其坐标是解题的关键.二、填空题11(2022秋·山东泰安·八年级校考期末)如图,已知△ABC的周长是1,连接△ABC三边的中点构成第二个三角形,再连接第二个三角形三边的中点构成第三个三角形⋯依此类推,则第2019个三角形的长.【答案】122018【分析】根据“三角形的中位线平行于第三边并且等于第三边的一半”可知第2个三角形的周长为12,第三个三角形的周长为12×12=122,⋯以此类推,找到规律,即可求出第2019个三角形的周长.【详解】根据“三角形的中位线平行于第三边并且等于第三边的一半”可知第2个三角形的周长为12,第3个三角形的周长为12×12=12 2,第4个三角形的周长为12 2×12=123,⋯第n 个三角形的周长为12n -1,∴第2019个三角形的周长为122018.故答案为:12 2018.【点睛】本题主要考查了三角形中位线定理,找出规律是解题的关键.12(2023·湖北恩施·统考一模)一个质点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点运动到0,1 ,然后接着按图中箭头所示方向运动[即0,0 →0,1 →1,1 →1,0 →⋅⋅⋅],且每秒移动一个单位,那么第2023秒时质点所在位置的坐标是.【答案】1,44【分析】应先判断出走到坐标轴上的点所用的时间以及相对应的坐标,可发现走完一个正方形所用的时间分别为3,5,7,9⋯,此时点在坐标轴上,进而得到规律.【详解】解:由题意可知,这点移动的速度是1个单位长度/每秒,设这点为x ,y ,到达1,0时用了3秒,到达2,0时用了4秒,从2,0到0,2有4个单位长度,则到达0,2时用了4+4=8秒,到0,3时用了9秒;从0,3到3,0有6个单位长度,则到达3,0时用9+6=15秒,到4,0时用16秒;从4,0到0,4有8个单位长度,则到达0,4时用16+8=24秒,到0,5时用了25秒;从0,5到5,0有10个单位长度,则到达5,0时用25+10=35秒,到6,0时用了36秒;⋯,可得在x轴上,横坐标为偶数时,所用时间为x2秒,在y轴上时,纵坐标为奇数时,所用时间为y2秒,∵45×45=2025,2025→0,45,2026→1,45,2024→0,44,2023→1,44,∴第2023秒时这个点所在位置的坐标为1,44,故答案为:1,44.【点睛】本题主要考查了点的坐标的变化规律,得出运动变化的规律是解决问题的关键.13(2023·广东深圳·深圳市南山外国语学校校考一模)化学中直链烷烃的名称用“碳原子数+烷”来表示.当碳原子数为1~10时,依次用天干--甲、乙、丙、丁、戊、己、庚、辛、千、癸--表示,其中甲烷、乙烷、丙烷的分子结构式如图所示,则第7个庚烷分子结构式中“H”的个数是.【答案】16【分析】观察题干中分子结构式发现规律,第n个分子结构式中“H”的个数是2n+2,据此即可得到答案.【详解】解:观察分子结构式可知,第1个甲烷分子结构式中“H”的个数是4;第2个乙烷分子结构式中“H”的个数是6;第3个丙烷分子结构式中“H”的个数是8;⋯⋯∴第n个分子结构式中“H”的个数是2n+2,∴第7个庚烷分子结构式中“H”的个数是2×7+2=16,故答案为:16.【点睛】本题考查了图形类规律探索,通过观察归纳出规律是解题关键.14(2023·甘肃陇南·校考一模)按一定规律排列的式子:-3ba,8ba3,-15ba5,24ba7,⋯⋯第n个式子是.【答案】(-1)n⋅n(n+2)b a2n-1【分析】根据所给式子找出各部分的规律解答即可.【详解】解:3b,8b,15b,24b,⋯,分子可表示为:n(n+2)b.a,a3,a5,a7,⋯,分母可表示为:a2n-1,则第n 个式子为:(-1)n ⋅n (n +2)ba2n -1.故答案是:(-1)n ⋅n (n +2)ba 2n -1.【点睛】本题考查了规律型:数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.此题注意分别观察各部分的符号规律.15(2023·海南省直辖县级单位·统考一模)用火柴棒按上图的方式摆出一系列图案,按这种方式摆下去,第n 个图案所用的火柴棒的根数为.【答案】3n 2+3n 2【分析】先根据图案排列规律求出第n 个图案的三角形的个数,再根据没有个三角形有三根火柴棒计算即可得解.【详解】解:第1个图案有1个三角形,第2个图案有1+2个三角形,第3个图案有1+2+3个三角形,⋯,依此类推,第n 个图案有:1+2+3+⋯+n 个三角形,∵1+2+3+⋯+n =n n +12,∴第n 个图案所用的火柴棒的根数为3×n n +1 2=3n 2+3n2.故答案为:3n 2+3n2.【点睛】本题是对图形变化规律的考查,先求出第n 个图案的三角形的个数是解题的关键.16(2023·山东枣庄·校考模拟预测)观察图中每一个大三角形中白色三角形的排列规律,则第n 个大三角形中白色三角形有(用含n 代数式表示)个.【答案】30+31+32+33+⋯⋯3n -1【分析】分别数出第1个图形、第2个图形、第3个图形、第4个图形中白色三角形的个数,总结出白色三角形的增长规律,即可推出第n 个大三角形中白色的三角形的个数.【详解】解:第1个图形的白色三角形个数为1,第2个图形的白色三角形个数为1+3=30+31,第3个图形的白色三角形个数为1+3+9=30+31+32,第4图形的白色三角形个数为1+3+9+27=30+31+32+33,⋯,以此类推,第n个图形的白色三角形个数为30+31+32+33+⋯⋯3n-1,故答案为:30+31+32+33+⋯⋯3n-1.【点睛】本题考查规律型中的图形变化问题,解答此题要有以下步骤:①先数出白色三角形的个数;②探索出白色三角形的增长规律;③根据规律解题.本题运算量比较大,要仔细计算.17(2023秋·重庆永川·七年级统考期末)如图是一个电子青蛙游戏盘,已知AB=7,BC=6,AC=5,BP0=3.电子青蛙在AB边上的P0处,第一步跳到P1处,使BP1=BP0,第二步跳到P2处,使CP2=CP1,第三步跳到P3处,使AP3=AP2,⋯⋯,按上述的规则跳下去,第2023步落点为P2023,则P1与P2023之间的距离为.【答案】0【分析】根据上述规则,显然6次完成一个循环.因为2023÷6=372⋯1,则P2023与P1重合,于是得到结论.【详解】解:第一步跳到P1处,使BP1=BP0=3,第二步跳到P2处,使CP2=CP1=3,第三步跳到P3处,使AP3=AP2=2,第四步跳到P4处,BP3=BP4=5,第五步跳到P5处,CP4=CP5=1,第六步跳到p6处,AP5=AP6=4,与P0重合,∴6次一循环,则2023÷6=372⋯1,则P2023与P1重合.∴P1与P2023之间的距离为0,故答案为:0.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中各点的变化规律,利用数形结合的思想解答.18(2023秋·河南许昌·九年级校考期末)平面直角坐标系中,若干个半径为1,圆心角为60°的扇形组成的图形如图所示,点P从原点O出发,向右沿箭头所指方向做上下起伏运动,点P在直线上运动的速度为每秒1个单位长度,在弧线上运动的速度为每秒π3个单位长度,则2021秒时,点P的坐标是.【答案】20212,32【分析】根据勾股定理和弧长公式求出的P 1坐标,设第n 秒运动到P n (n 为自然数)点,根据点P 的运动规律找出部分P n 点的坐标,根据坐标的变化找出变化规律“P 4n +14n +12,32,P 4n +2(n +1,0),P 4n +34n +32,-32 ,P 4n +4(2n +2,0)”,依此规律即可得出结论.【详解】解:如图,过点A 作AB ⊥x 轴,垂足为B ,由题意可得:OA =1,∠AOB =60°,∴OB =12,AB =32,一段弧线长为60×12π180=π3,∴P 112,32,设第n 秒运动到P n (n 为自然数)点,观察,发现规律:P 112,32 ,P 2(1,0),P 332,-32,P 4(2,0),P 552,32 ,⋯,∴P 4n +14n +12,32 ,P 4n +2(n +1,0),P 4n +34n +32,-32 ,P 4n +4(2n +2,0).∵2021=4×505+1,∴P 2021为20212,32 ,故答案为:20212,32 .【点睛】本题考查了规律型中的点的坐标,解题的关键是找出变化规律,本题属于中档题,难度不大,解决该题型题目时,根据运动的规律找出点的坐标,根据坐标的变化找出坐标变化的规律是关键.19(2022秋·山东临沂·九年级统考期中)若关于x 的一元二次方程x 2-3x +m 2+m =0m >0 ,当m =1,2,3,⋯,2022时,相应的一元二次方程的两根分别记为α1,β1;α2,β2;⋯;α2022,β2022,则1α1+1β1+1α2+1β2+⋯1α2022+1β2022的值为.【答案】60662023【分析】利用根与系数的关系得到α1+β1=3,α1β1=1×2;α2+β2=3,α2β2=2×3;⋯α2022+β2022=3,α2022β2022=2022×2023;把原式变形,再代入,即可求出答案.【详解】解:∵x 2-3x +m 2+m =0,m =1,2,3,⋯,2022,∴由根与系数的关系得:α1+β1=3,α1β1=1×2;α2+β2=3,α2β2=2×3;⋯α2022+β2022=3,α2022β2022=2022×2023;∴原式=α1+β1α1β1+α2+β2α2β2+....α2022+β2022α2022β2022=31×2+32×3+....32022×2023=3×1-12+12-13+....12022-12023=3×1-12023 =3×20222023=60662023故答案为:60662023【点睛】本题考查了一元二次方程根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0a ≠0的两根时,x 1+x 2=-b a ,x 1x 2=ca.20(2023·江苏扬州·九年级专题练习)如图,在正方形ABCD 中,顶点A -5,0 ,C 5,10 ,点F 是BC 的中点,CD 与y 轴交于点E ,AF 与BE 交于点G ,将正方形ABCD 绕点O 顺时针旋转,每次旋转90°,则第2023次旋转结束时,点G 的坐标为.【答案】-4,3【分析】根据正方形的性质得到AB =BC =CD =10,∠C =∠ABF =90°,根据全等三角形的性质得到∠BAF =∠CBE ,根据余角的性质得到∠BGF =90°,过G 作GH ⊥AB 于H ,根据相似三角形的性质得到BH =2,根据勾股定理得到HG =4,求得G 3,4 ,找出规律即可得到结论.【详解】解:∵四边形ABCD 是正方形,∴AB =BC =CD =10,∠C =∠ABF =90°,∵点F 是BC 的中点,CD 与y 轴交于点E ,∴CE =BF =5,∴△ABF ≌△BCE (SAS ),∴∠BAF =∠CBE ,∵∠BAF +∠BFA =90°,∴∠FBG +∠BFG =90°,∴∠BGF =90°,∴BE ⊥AF ,∵AF =AB 2+BF 2=102+52=55,∴BG =AB ⋅BFAF=25,过G 作GH ⊥AB 于H ,∴∠BHG =∠AGB =90°,∵∠HBG =∠ABG ,∴△ABG ∽△GBH ,∴BG AB=BH BG ,∴BG 2=BH ⋅AB ,∴BH =25210=2,∴HG =BG 2-BH 2=4,∴G 3,4 ,∵将正方形ABCD 绕点O 顺时针旋转,每次旋转90°,∴第一次旋转90°后对应的G 点的坐标为4,-3 ,第二次旋转90°后对应的G 点的坐标为-3,-4 ,第三次旋转90°后对应的G 点的坐标为-4,3 ,第四次旋转90°后对应的G 点的坐标为3,4 ,⋯,∵2023=4×505+3,∴每4次一个循环,第2023次旋转结束时,相当于正方形ABCD 绕点O 顺时针旋转3次,∴第2023次旋转结束时,点G 的坐标为-4,3 ,故答案为:-4,3 .【点睛】本题考查了正方形的性质,坐标与图形变换-旋转,相似三角形的判定和性质,勾股定理,正确的理解题意是解题的关键.三、解答题21(2023·安徽六安·统考二模)观察以下等式:第1个等式:23=12+16;第2个等式:25=13+115;第3个等式:27=14+128;第4个等式:29=15+145;⋯⋯按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n 个等式,并证明你的结论.【答案】(1)213=17+191(2)22n +1=1n +1+1n +1 2n +1【分析】(1)由题干给出的4个等式,抓住不变的量,寻找变化的量前后之间的联系,即可得出第6个等式;(2)用n 表示(1)中找到的规律,利用分式的混合运算法则证明即可.【详解】(1)解:∵第1个等式:23=12+16;第2个等式:25=13+115;第3个等式:27=14+128;第4个等式:29=15+145;⋯⋯∴第6个等式为:213=17+191,故答案为:213=17+191;(2)解:第n 个等式为:22n +1=1n +1+1n +1 2n +1,证明:1n +1+1n +1 2n +1 =2n +1n +1 2n +1 +1n +1 2n +1=2n +1n +1 2n +1 =22n +1.故答案为:22n +1=1n +1+1n +1 2n +1.【点睛】本题考查了运算规律的探究,分式的加减运算,掌握规律的探究方法与分式的加减运算是解题的关键.22(2022秋·江苏徐州·七年级校考阶段练习)先观察,再解题:因为1-12=11×2,12-13=12×3,13-14=13×4,⋯所以(1)15×6=.(2)请接着完成下面的计算:11×2+12×3+13×4+⋯+149×50=1-12 +12-13 +13-14 +⋯+149-150(3)参照上述解法计算11×3+13×5+15×7+⋯+149×51.【答案】(1)15-16;(2)4950;(3)2551【分析】(1)根据所给的等式的形式进行求解即可;(2)利用所给的等式的形式进行求解即可;(3)仿照(2)的解答方式进行求解即可.【详解】(1)解:由题意得:15×6=15-16,故答案为:15-16;(2)解:11×2+12×3+13×4+⋯+149×50=1-12 +12-13 +13-14 +⋯+149-150=1-12+12-13+13-14+⋯+149-150=1-150=4950;(3)解:11×3+13×5+15×7+⋯+149×51=12×1-13 +12×13-15 +12×15-17 +⋯+12×149-151 =12×1-13+13-15+15-17⋯+149-151 =12×1-151 =12×5051=2551.【点睛】本题主要考查数字的变化规律,解答的关键是由所给的等式总结出存在的规律.23(2022秋·安徽宣城·七年级统考期末)如图,每个小正方形的面积均为1.将左图中黑色的小正方形移动,得到右边拼成的长方形,根据两种图形方法计算小正方形的个数;如图得出以下等式:(1)请写出第3个等式:;(2)猜想第n个等式为:(用含n的等式表示);(3)当n为多少时,左图中的最底端有2024个小正方形?此时左图中共有多少个小正方形?【答案】(1)2+4+6+8=4×5(2)2+4+6+⋯+2(n+1)=(n+1)(n+2)(3)n=1011,共有1025156个小正方形【分析】(1)根据给出的等式写出答案即可;(2)根据这3个等式写出答案即可;(3)因为最底端有2024个小正方形,所以2(n+1)=2024,得出n的值,再计算有多少个小正方形即可.【详解】(1)解:2+4+6+8=4×5;(2)解:2+4+6+⋯+2(n+1)=(n+1)(n+2);(3)解:因为最底端有2024个小正方形,所以2(n+1)=2024,解得:n=1011所以2+4+6+⋯+2024=1012×1013=1025156(个)答:n=1011,共有1025156个小正方形.【点睛】本题考查图形的规律,根据给出的式子找到规律是解题的关键.24(2023·安徽·模拟预测)以下是一幅幅平面镶嵌图案,它们由相同的灰色正方形和白色等边三角形排列而成,观察图案,如图1,当正方形只有1个时,等边三角形有4个;如图2,当正方形有2个时,等边三角形有7个;以此类推⋯⋯(1)第5个图案中正方形有个,等边三角形有个.(2)第n个图案中正方形有个,等边三角形有个.(3)若此类图案中有2023个等边三角形,该图案中正方形有多少个?【答案】(1)5,16;(2)n,3n+1;(3)该图案中正方形有674个【分析】(1)观察第1个图案可知:中间的一个正方形对应4个等边三角形,第2个图案可知增加一个正方形,变成了7个等边三角形,增加了3个等边三角形,•••,依次计算可解答;(2)观察第1个图案,有1个等边三角形;第2个图案,有3+4个等边三角形;•••,依次计算可解答;(3)根据等边三角形的个数求出图形的个数,即可确定正方形的个数.【详解】(1)解:观察第1和2个图案可知:图案中每增加1个正方形,则等边三角形增加3个,∴第5个图案中正方形有5个,等边三角形有4+3+3+3+3=16(个).故答案为:5,16;(2)解:第1个图案:正方形有1个,等边三角形有:4(个),第2个图案:正方形有2个,等边三角形有:4+3=7(个),第3个图案:正方形有3个,等边三角形有:4+2×3=10(个),第4个图案:正方形有4个,等边三角形有:4+3×3=13(个),⋅⋅⋅⋅⋅⋅第n个图案:正方形有n个,等边三角形有:4+3(n-1)=(3n+1)个,故答案为:n,3n+1;(3)解:∵3n+1=2023,解得:n=674,∴按此规律镶嵌图案,该图案中正方形有674个.【点睛】本题考查了平面镶嵌,以等边三角形和正方形的拼图为背景,关键是考查规律性问题的解决方法,探究规律要认真观察、仔细思考,善用联想来解决这类问题.25(2023·安徽·模拟预测)十一期间,泉城广场的一个公共区域用盆栽进行了美化,盆栽按如图的方式摆放,图中的盆栽被折线隔开分成若干层,第一层有1个盆栽,第二层有3个盆栽,第三层有5个盆栽,第四层有7个盆栽,⋯⋯,以此类推.请观察图形规律,解答下列问题:(1)第10层有个盆栽,第a层有个盆栽,前n层共有个盆栽;(2)计算:1+3+5+⋯⋯+25=;(3)拓展应用:求27+29+⋯⋯+1921的值.【答案】(1)19,2n-1,n2(2)169(3)923352【分析】(1)根据已知数据即可得出每一小层盆栽个数是连续的奇数,进而得出答案;(2)利用已知数据得出答案即可;(3)利用已知数据得出答案即可.【详解】(1)解:第10层有19个盆栽,第n 层有2n -1 个盆栽;前n 层共有1+3+5+⋯⋯+2n -1 =n 2,故答案为:19,2n -1 ,n 2;(2)解:1+3+5+⋯+25=132=169,故答案为:169;(3)解:27+29+31⋯⋯+1921=1+3+5+⋯+1921 -(1+3+5+⋯+25)=9612-132=923521-169=923352【点睛】此题主要考查了图形的变化类,根据已知得出数字的变化规律是解题关键.26(2022秋·山东济南·七年级统考期中)利用图形来表示数量或数量关系,也可以利用数量或数量关系来描述图形特征或图形之间的关系,这种思想方法称为数形结合.请你尝试利用数形结合的思想方法解决下列问题(1)如图①,一个边长为1的正方形,依次取正方形面积的12,14,18⋯12n ,根据图示我们可以知道:12+14+18+116+⋯+12n =.(用含有n 的式子表示)(2)如图②,一个边长为1的正方形,第一次取正方形面积的23,然后依次取剩余部分的23,根据图示:计算:23+29+227+⋯+23n =.(用含有n 的式子表示)(3)如图③是一个边长为1的正方形,根据图示:计算:13+29+427+881+⋯+2n -13n =.(用含有n 的式子表示)【答案】(1)1-12n(2)1-13n(3)1-2n3n【分析】(1)根据题意找出规律进行计算即可;(2)根据题干给出图形,依次取正方形面积的23,29,227,⋯,找出规律即可;(3)根据题干给出图形,依次取正方形面积的13,29,427,⋯,找出规律即可.【详解】(1)解:∵第1次截取后剩余12,第2次截取后剩余12×12=122,第3次截取后剩余12×12×12=123,⋯,第n 次截取后剩余12×12×...×12 n 个=12n ,∴12+14+18+116+12n =1-12n .故答案为:1-12n .(2)解:∵第1次截取后剩余13,第2次截取后剩余13×13=132,第3次截取后剩余13×13×13=133,⋯,第n 次截取后剩余13×13×...×13 n 个=13n ,∴23+29+227+23n =1-13n .故答案为:1-13n .(3)解:∵第1次截取后剩余23,第2次截取后剩余23×23=2232,第3次截取后剩余23×23×23=2333,⋯,第n 次截取后剩余23×23×...×23 n 个=2n 3n ,∴13+29+427+881+2n -13n =1-2n 3n .故答案为:1-2n 3n .【点睛】本题考查的图形的变化类,根据题干给出的图形,利用数形结合求解是解答此题的关键.27(2022秋·浙江杭州·七年级校考期中)完成下列填空:(1)已知a 1=11×2×3+12=23,a 2=12×3×4+13=38,a 3=13×4×5+14=415,⋯⋯,依据上述规律,则a 99==.(2)有若干张边长都是2的四边形纸片和三角形纸片,从中取一些纸片按如图所示的顺序拼接起来(排在第一位的是四边形),可以组成一个大的平行四边形或一个大的梯形.如果所取的四边形与三角形纸片数的和是5时,那么组成的大平行四边形或梯形的周长是;如果所取的四边形与三角形纸片数的和是n ,那么组成的大平行四边形或梯形的周长是.(3)下面是按一定规律排列的一列数:第1个数:a 1=12-1+-12;第2个数:a 2=13-1+-12 1+(-1)23 1+(-1)34;第3个数:a 3=14-1+-12 1+(-1)23 1+(-1)34 1+(-1)45 1+(-1)56 ;⋯⋯则第n 个数为:.【答案】(1)199×100×101+1100,1009999(2)20,3n +5或3n +4(3)a n =1n +1-1+-12 1+(-1)23 1+(-1)34 ⋯1+(-1)2n -12n【分析】(1)找到规律,根据规律填空即可;(2)第1张纸片的周长为8,由2张纸片所组成的图形的周长比第1张纸片的周长增加了2.由3张纸片所组成的图形的周长比前2张纸片所组成的图形的周长增加了4,按此规律可求解;(3)找到规律,根据规律填空即可.【详解】(1)解:∵a 1=11×2×3+12=23,a 2=12×3×4+13=38,a 3=13×4×5+14=415,⋯⋯,∴a n =1n (n +1)(n +2)+1n +1=n +1n (n +2),∴a 99=199×100×101+1100=1009999,故答案为:199×100×101+1100,1009999;(2)解:解:从图形可推断:纸张张数为5,图片周长为8+2+4+2+4=3×5+5=20;当n 为奇数时,组成的大平行四边形或梯形的周长为:8+2+4+⋯+2+4=3n +5;当n 为偶数时,组成的大平行四边形或梯形的周长为:8+2+⋯+4+2=3n +4.综上,组成的大平行四边形或梯形的周长为3n +5或3n +4.故答案为:20,3n +5或3n +4.(3)解:∵第1个数:a1=12-1+-12;第2个数:a2=13-1+-121+(-1)231+(-1)34;第3个数:a3=14-1+-121+(-1)231+(-1)341+(-1)451+(-1)56;⋯⋯∴第n个数为a n=1n+1-1+-121+(-1)231+(-1)34⋯1+(-1)2n-12n.故答案为:a n=1n+1-1+-121+(-1)231+(-1)34⋯1+(-1)2n-12n.【点睛】本题考查了规律型:图形的变化以及数字的变化,解第(2)题的关键是将纸片的张数分奇偶两种情况进行讨论,得出组成的大平行四边形或梯形的周长.28(2022秋·山西吕梁·七年级统考期中)如图,每张小纸带的长为40cm,用胶水把它们粘贴成一张长纸带,接头粘贴重叠部分的长为3cm.(1)用2张这样的小纸带粘贴成的纸带的长度为77cm,则用3张这样的小纸带粘贴成的纸带的长度为cm.(2)①用n张这样的小纸带粘贴成的纸带的长度是cm;②计算用20张这样的小纸带粘贴成的纸带的长度.【答案】(1)114(2)①(37n+3);②743cm【分析】(1)理解接头是每相邻两张有一个接头,则三张有两个接头,从而求出每张纸带的长度,即可求解;(2)①结合(1)推而广之,n张有(n-1)个接头,n张这样的小纸带粘贴成的纸带的长度是40n-3×(n-1)=(37n+3)cm;②直接把n=30代入①即可求解.【详解】(1)解:每张纸带的长度为:77+3÷2=40(cm);∴3张这样的小纸带粘贴成的纸带的长度为:40×3-2×3=114(cm).(2)解:①n张纸带的长度为:40n-3×(n-1)=(37n+3)cm.②当n=20时,37n+3=743(cm).∴20张这样的小纸带粘贴成的纸带的长度为743cm.【点睛】本题考查图形规律,代数式求值,解决问题的关键是读懂题意,找出图形规律是解题的关键.29(2023春·七年级课时练习)观察下列各式(x-1) (x+1)=x2-1(x-1)x2+x+1=x3-1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学规律探究题 1.(2009年重庆)观察下列图形,则第n 个图形中三角形的个数是( )A .22n +B .44n +C .44n - D .4n2.(2009重庆綦江)观察下列等式: 221.4135-=⨯;222.5237-=⨯;223.6339-=⨯224.74311-=⨯;…………则第n (n 是正整数)个等式为________.3.(2009年益阳市)图6是一组有规律的图案,第1个 图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n (n 是正整数)个图案中由 个基础图形组成.-4.(2009年济宁市)观察图中每一个大三角形中白色三角形的排列规律,则第5个大三角形中白色三角形有 个 .5.(2009年广西梧州)图(3)是用火柴棍摆成的边长分别是1,2,3 根火柴棍时的正方形.当边长为n 根火柴棍时,设摆出的正方形所用的火柴棍的根数为s ,则s = . (用n 的代数式表示s )6.(2009年广东省)用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地板,则第(3)个图形中有黑色瓷砖 __________块,第n 个图形中需要黑色瓷砖__________块(用含n 的代数式表示).……n =1 n =2 n =3……第1个 第2个 第3个图6 (1) (2) (3) ……第1个第2个第3个7.(2009年铁岭市)如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是.8.(2009年梅州市)如图5,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第4幅图中有个,第n幅图中共有个.9.古希腊著名的毕达哥拉斯学派把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正方形数”.从图7中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是(A.13 = 3+10 B.25 = 9+16C.36 = 15+21 D.49 = 18+3110.为庆祝“五·一”国际劳动节,市政府决定在人民广场上增设一排灯花,其设计由以下图案逐步演变而成,其中圆圈代表灯花中的灯泡,n代表第n次演变过程,s代表第n次演变后的灯泡的个数.仔细观察下列演变过程,当n=6时,s=___94______.(1)(2)(3)4=1+3 9=3+6 16=6+10图7………第1幅第2幅第3幅第n幅图511. 如图7-①,图7-②,图7-③,图7-④,,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是________,第n 个“广”字中的棋子个数是________( 15 )50.12.如图,由等圆组成的一组图中,第1个图由1个圆组成,第2个图由7个圆组成,第3个图由19个圆组成,,按照这样的规律排列下去,则第9个图形由_______个圆组成.13.(2008重庆,修改)如图①是一块瓷砖的图案,用这种瓷砖来铺设地面,如果铺成一个2×2的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个3×3的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个4×4的正方形图案(如图④),其中完整的圆共有25个.按照这个规律,若这样铺成一个n×n 的正方形图案,则其中完整的圆共有 个.(n 2+(n -1)2或2n 2-2n +1)14.(2009年贵州黔东南州)某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验;第1组取3粒,第2组取5粒,第3组取7粒……即每组所取种子数目比该组前一组增加2粒,按此规律,那么请你推测第n 组应该有种子数( )粒。
A 、12+nB 、12-nC 、n 2D 、2+n计算题专项训练1.6的倒数是( )A .6-B .16 C .9 D .9- 2.|-2|的相反数是( )A .-2B .2C .21D .-21 3.3-的绝对值是( )A .3-B .3C .13-D .134.在下列运算中,计算正确的是 ( ). A.326a a a ⋅= B.824a a a ÷= C.236()a a = D. 224+a a a =A .3412a a a ⋅=B .1025a a a ÷=C .43a a a -=D .235a a a += 6.下列运算正确的是( )A. 235a b ab +=B.()()22a b b a b a ---=-C. 623a a a ÷=D. ()2242a b a b =7.下列各式计算正确的是( )A .65632x x x =⋅B .53232a a a =+C .2(3)3xy xy xy ÷=D .5326)2(b b =8.函数y =x 的取值范围是( ).A.2x >B.x ≥2C.x ≤2-D.2x >-9.函数31+=x y 的自变量取值范围是( )A .3->xB .3-<xC .3-≠x D.3-≥x 10.在函数25-=x y 中,自变量x 的取值范围是( )A. 2≥xB. 2≠xC. 2>xD.2->x 11.分式方程212111xx x -=--的解为 .12.分式方程33122x x x -+=--的解为 。
13.分式方程32211xx x +=-+的解为 .14.求0012(sin 30)-+的值。
15.计算:-(-4)1-+0-2cos30°16.计算:205220104101--+-⎪⎭⎫ ⎝⎛-.17.计算:4sin 302cos 453tan 60︒-︒+︒。
18.解不等式组3181(5)32x x -->⎧⎪⎨+⎪⎩≤并把解集在数轴上表示出来.19.解不等式组:⎩⎨⎧-≤->+12)1(303x x x 并把解集在数轴上表示出来.19.解不等式组并写出该不等式组的最大整数解.20.解方程组:22220,210.x xy x y y ⎧-=⎪⎨-+-=⎪⎩21.解方程组:23010x y x y --=⎧⎨++=⎩,.22.先化简,再求值:xx x x x x x 1)121(22÷+---+,其中12+=x23.先化简,再求值:(212x x --2144x x -+)÷222x x-,其中x =1.24.解方程:2230x x --=25.解方程:0)3(2)3(2=-+-x x x26.解方程:0342=+-x x相似专项训练1.(2009年重庆)已知ABC △与DEF △相似且面积比为4∶25,则ABC △与DEF △的相似比为 .2.(2009重庆綦江)若△ABC ∽△DEF, △ABC 与△DEF 的相似比为1∶2,则△ABC 与△DEF 的周长比为( )A .1∶4B .1∶2C .2∶1D .1∶23.(2009成都)已知△ABC∽△DEF,且AB :DE=1:2,则△ABC 的面积与△DEF 的面积之比为A. 1:2 B .1:4 C .2:1 D .4:14. (2009年安顺)如图,已知等边三角形ABC 的边长为2,DE 是它的中位线,则下面四个结论:(1)DE=1,(2)△CDE ∽△CAB ,(3)△CDE 的面积与△CAB 的面积之比为1:4.其中正确的有:A .0个B .1个C .2个D .3个积是12,那么DEF △的周长、面积依次为( ) A .8,3 B .8,6 C .4,3 D .4,66. (09湖南怀化)如图1,D 、E 分别是AB 、AC 的中点,则:ADE ABC S S =△△( ) A . 1∶2 B .1∶3 C .1∶4 D . 2∶37.(2009年凉山州)已知ABC A B C '''△∽△且1:2ABC A B C S S '''=△△:,则:AB A B ''= .8.(2009年义乌)如图,在矩形ABCD 中,AB=3,AD=1,点P 在线段AB 上运动,设AP=x ,现将纸片折叠,使点D 与点P 重合,得折痕EF (点E 、F 为折痕与矩形边的交点),再将纸片还原。
(1)当x=0时,折痕EF 的长为;当点E 与点A 重合时,折痕EF 的长为;(2)请写出使四边形EPFD 为菱形的x 的取值范围,并求出当x=2时菱形的边长;(3)令2y EF =,当点E 在AD 、点F 在BC 上时,写出y 与x 的函数关系式。
当y 取最大值时,判断EAP 与PBF 是否相似?若相似,求出x 的值;若不相似,请说明理由。
9.(2009恩施市)如图,在ABC △中,9010A BC ABC ∠==°,,△的面积为25,点D 为AB 边上的任意一点(D 不与A 、B 重合),过点D 作DE BC ∥,交AC 于点E .设DE x =,以DE 为折线将ADE △翻折(使ADE △落在四边形DBCE 所在的平面内),所得的A DE '△与梯形DBCE 重叠部分的面积记为y .(1)用x 表示ADE △的面积;(2)求出05x <≤时y 与x 的函数关系式;(3)求出510x <<时y 与x 的函数关系式;(4)当x 取何值时,y 的值最大?最大值是多少?E A ' DBC ABC A10.(2009年清远)如图,已知一个三角形纸片ABC ,BC 边的长为8,BC 边上的高为6,B ∠和C ∠都为锐角,M 为AB 一动点(点M 与点A B 、不重合),过点M 作MN BC ∥,交AC 于点N ,在AMN △中,设MN 的长为x ,MN 上的高为h .(1)请你用含x 的代数式表示h .(2)将AMN △沿MN 折叠,使AMN △落在四边形BCNM 所在平面,设点A 落在平面的点为1A ,1A MN △与四边形BCNM 重叠部分的面积为y ,当x 为何值时,y 最大,最大值为多少?11.(2009年广西钦州)如图,已知抛物线y=34x2+bx+c与坐标轴交于A、B、C三点, A点的坐标为(-1,0),过点C的直线y=34tx-3与x轴交于点Q,点P是线段BC上的一个动点,过P作PH⊥OB于点H.若PB=5t,且0<t<1.(1)填空:点C的坐标是_▲_,b=_▲_,c=_▲_;t的式子表示);t的值,使以P、H、Q为顶点的三角形与△COQ相似?若存在,求出所有t的值;若不存在,说明理由.12.(2009年莆田)已知,如图1,过点()01E -,作平行于x 轴的直线l ,抛物线214y x =上的两点A B 、的横坐标分别为-1和4,直线AB 交y 轴于点F ,过点A B 、分别作直线l 的垂线,垂足分别为点C 、D ,连接CF DF 、.(1)求点A B F 、、的坐标;(2)求证:CF DF ⊥;(3)点P 是抛物线214y x =对称轴右侧图象上的一动点,过点P 作PQ PO ⊥交x 轴于点Q ,是否存在点P 使得OPQ △与CDF △相似?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.13.(2009临沂)如图,抛物线经过(40)(10)(02)A B C -,,,,,三点.(1)求出抛物线的解析式;(2)P 是抛物线上一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与OAC △相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由;(3)在直线AC 上方的抛物线上有一点D ,使得DCA △的面积最大,求出点D 的坐标.。