大学物理课后习题答案(上下册全)武汉大学出版社 习题3详解.pdf

合集下载

《新编大学物理》(上、下全册)桑建平教材习题答案解析武汉大学出版社

《新编大学物理》(上、下全册)桑建平教材习题答案解析武汉大学出版社

第1章 质点运动学一、选择题 题1.1 : 答案:[B]提示:明确∆r 与r ∆的区别题1.2: 答案:[A]题1.3: 答案:[D]提示:A 与规定的正方向相反的加速运动, B 切向加速度, C 明确标、矢量的关系,加速度是d dtv题1.4: 答案:[C] 提示: 21r r r ∆=-,12,R R r j ri ==-,21v v v ∆=-,12,v v v i v j =-=-题1.5: 答案:[D]提示:t=0时,x=5; t=3时,x=2得位移为-3m ;仅从式x=t 2-4t+5=(t-2)2+1,抛物线的对称轴为2,质点有往返题1.6: 答案:[D]提示:a=2t=d dt v,2224t v tdt t ==-⎰,02tx x vdt -=⎰,即可得D 项题1.7:答案:[D]北v 风v 车1v 车2提示: 21=2v v 车车,理清=+v v v 绝相对牵的关系二、填空题 题1.8:答案: 匀速(直线),匀速率题1.9:答案:2915t t -,0.6 提示: 2915dxv t t dt==-,t=0.6时,v=0题1.10:答案:(1)21192y x =-(2)24t -i j 4-j(3)411+i j 26-i j 3S提示: (1) 联立22192x t y t=⎧⎨=-⎩,消去t 得:21192y x =-,dx dydt dt =+v i j (2) t=1s 时,24t =-v i j ,4d dt==-va j (3) t=2s 时,代入22(192)x y t t =+=+-r i j i j 中得411+i j t=1s 到t=2s ,同样代入()t =r r 可求得26r∆=-i j ,r 和v 垂直,即0∙=r v ,得t=3s题1.11: 答案:212/m s 提示:2(2)2412(/)dv d x a v x m s dt dt=====题1.12: 答案:1/m sπ提示: 200t dvv v dt t dt =+=⎰,11/t vm s ==,201332tv dt t R θπ===⎰,r π∆==题1.13:答案:2015()2t v t gt -+-i j 提示: 先对20(/2)v t g t =-r j 求导得,0()y v gt =-v j 与5=v i 合成得05()v gt =-+-v i j 合 201=5()2t v t gt -+-∴⎰r v i j t合0合dt=题1.14: 答案:8, 264t提示:8dQ v R Rt dt τ==,88a R τ==,2264n dQ a R t dt ⎛⎫== ⎪⎝⎭三、计算题 题1.15:解:(1)3t dv a t dt == 003v tdv tdt =∴⎰⎰ 232v t ∴= 又232ds v t dt == 20032stds t dt =∴⎰⎰ 312S t =∴ (2)又S R θ= 316S tRθ==∴(3)当a 与半径成45角时,n a a τ=2434n v a t R == 4334t t =∴t =∴题1.16:解:(1)dv a kv dt ==- 0v tdv kdt v =-∴⎰⎰, 0ln v kt v =-(*) 当012v v =时,1ln 2kt =-,ln 2t k=∴ (2)由(*)式:0ktv v e-=0kt dxv e dt -=∴,000xtkt dx v e dt -=⎰⎰ 0(1)kt v x e k-=-∴第2章 质点动力学一、选择题 题2.1: 答案:[C]提示:A .错误,如:圆周运动B .错误,m =p v ,力与速度方向不一定相同 D .后半句错误,如:匀速圆周运动题2.2: 答案:[B]提示:y 方向上做匀速运动:2y y S v t t == x 方向上做匀加速运动(初速度为0),Fa m=22tx v a d t t ==⎰,223tx x t S v dt ==⎰ 2223t t =+∴S i j题2.3: 答案:[B]提示:受力如图MgF杆'F 猫mg设猫给杆子的力为F ,由于相对于地面猫的高度不变'F mg = 'F F = 杆受力 1()F Mg F M m g =+=+ 1()F M m g a M M+==题2.4 :答案:[D] 提示:a a A22A BA B m g T m a T m a aa ⎧⎪-=⎪=⎨⎪⎪=⎩ 得45A a g = (2A B a a =,通过分析滑轮,由于A 向下走过S ,B 走过2S) 2A B a a =∴题2.5: 答案:[C]提示: 由题意,水平方向上动量守恒, 故 0(cos 60)()1010m mv m v =+ 共 0=22v v 共题2.6: 答案:[C] 提示:RθθRh-R由图可知cos h RRθ-=分析条件得,只有在h 高度时,向心力与重力分量相等所以有22cos ()mv mg v g h R Rθ=⇒=- 由机械能守恒得(以地面为零势能面)22001122mv mv mgh v =+⇒=题2.7: 答案:[B]提示: 运用动量守恒与能量转化题2.8: 答案:[D] 提示:v v y由机械能守恒得2012mgh mv v =⇒=0sin y v v θ=sin Gy Pmgv mg ==∴题2.9: 答案: [C]题2.10: 答案: [B]提示: 受力如图fT F由功能关系可知,设位移为x (以原长时为原点)2()xF mg Fx mgx kxdx x kμμ--=⇒=⎰弹性势能 2212()2p F mg E kx kμ-==二、填空题题2.11: 答案:2mb提示: '2v x bt == '2a v b == 2F m a m b==∴题2.12:答案:2kg 4m/s 2 提示:4N 8Nxy 0由题意,22/x a m s = 4x F N =8y F N = 2Fm k g a== 24/y y F a m s m==题2.13: 答案:75,1110提示: 由题意,32()105F a t m ==+ 27/5v adt m s ⇒==⎰ 当t=2时,1110a =题2.14: 答案:180kg提示:由动量守恒,=m S -S m 人人人船相对S ()=180kg m ⇒船题2.15: 答案:11544+i j 提示:各方向动量守恒题2.16:答案: ()mv +i j ,0,-mgR提示:由冲量定义得 ==()()mv mv mv --=+I P P i j i j 末初- 由动能定律得 0k k E W E ∆=⇒∆=,所以=0W 合 =W m g R -外题2.17: 答案:-12提示:3112w Fdx J -==⎰题2.18:答案: mgh ,212kx ,Mm G r - h=0,x=0,r =∞ 相对值题2.19: 答案: 02mgk ,2mg,题2.20: 答案: +=0A∑∑外力非保守力三、计算题 题2.21:解:(1)=m F xg L 重 ()mf L xg L μ=- (2)1()(1)ga F f x g m Lμμ=-=+-重(3)dv a v dx =,03(1)v LL g vdv x g dx Lμμ⎡⎤=+-⎢⎥⎣⎦⎰⎰,v =题2.22: 解:(1)以摆车为系统,水平方向不受力,动量守恒。

大学物理课后习题答案(上下册全)武汉大学出版社 习题3详解

大学物理课后习题答案(上下册全)武汉大学出版社 习题3详解

3-1 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 [ ] A.2ωmR J J + B. 02)(ωR m J J+ C.02ωmR JD. 0ω 答案:A3-2 如题3-2图所示,圆盘绕O 轴转动。

若同时射来两颗质量相同,速度大小相同,方向相反并在一直线上运动的子弹,子弹射入圆盘后均留在盘内,则子弹射入后圆盘的角速度ω将:[ ]A. 增大.B. 不变.C. 减小.D. 无法判断. 题3-2 图 答案: C3-3 芭蕾舞演员可绕过脚尖的铅直轴旋转,当她伸长两手时的转动惯量为J 0,角速度为ω0,当她突然收臂使转动惯量减小为J 0 / 2时,其角速度应为:[ ] A. 2ω0 . B. ω0 . C. 4ω0 . D. ω 0/2. 答案:A3-4 如题3-4图所示,一个小物体,位于光滑的水平桌面上,与一绳的一端相连结,绳的另一端穿过桌面中心的小孔O . 该物体原以角速度ω 在半径为R 的圆周上绕O 旋转,今将绳从小孔缓慢往下拉.则物体:[ ]A. 动量不变,动能改变; 题3-4图B. 角动量不变,动量不变;C. 角动量改变,动量改变;D. 角动量不变,动能、动量都改变。

答案:D3-5 在XOY 平面内的三个质点,质量分别为m 1 = 1kg, m 2 = 2kg,和 m 3 = 3kg,位置坐标(以米为单位)分别为m 1 (-3,-2)、m 2 (-2,1)和m 3 (1,2),则这三个质点构成的质点组对Z 轴的转动惯量J z = .答案: 38kg ·m 23-6 如题3-6图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O 转动,今有一子弹沿着与水平面成一角度的方向击中木球并嵌于其中,则在此击中过程中,木球、子弹、细棒系统对o 轴的 守恒。

大学物理学(第三版)课后习题答案解析

大学物理学(第三版)课后习题答案解析

1-4 在离水面高h 米的岸上,有人用绳子拉船靠岸,船在离岸S 处,如题1-4图所示.当人以0v (m ·1-s )的速率收绳时,试求船运动的速度和加速度的大小.图1-4解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知 222s h l +=将上式对时间t 求导,得tss t l ld d 2d d 2= 题1-4图根据速度的定义,并注意到l ,s 是随t 减少的, ∴ tsv v t l v d d ,d d 0-==-=船绳 即 θcos d d d d 00v v s l t l s l t s v ==-=-=船 或 sv s h s lv v 02/1220)(+==船 将船v 再对t 求导,即得船的加速度1-6 已知一质点作直线运动,其加速度为 a =4+3t 2s m -⋅,开始运动时,x =5 mv=0,求该质点在t =10s 时的速度和位置. 解:∵ t tva 34d d +==分离变量,得 t t v d )34(d +=积分,得 12234c t t v ++= 由题知,0=t ,00=v ,∴01=c故 2234t t v += 又因为 2234d d t t t x v +==分离变量, t t t x d )234(d 2+= 积分得 232212c t t x ++= 由题知 0=t ,50=x ,∴52=c故 521232++=t t x 所以s 10=t 时m70551021102s m 190102310432101210=+⨯+⨯=⋅=⨯+⨯=-x v1-10 以初速度0v =201s m -⋅抛出一小球,抛出方向与水平面成幔 60°的夹角,求:(1)球轨道最高点的曲率半径1R ;(2)落地处的曲率半径2R .(提示:利用曲率半径与法向加速度之间的关系)解:设小球所作抛物线轨道如题1-10图所示.题1-10图 (1)在最高点,o 0160cos v v v x == 21s m 10-⋅==g a n又∵ 1211ρv a n =∴ m1010)60cos 20(22111=︒⨯==n a v ρ(2)在落地点,2002==v v 1s m -⋅,而 o60cos 2⨯=g a n∴ m 8060cos 10)20(22222=︒⨯==n a v ρ1-13 一船以速率1v =30km ·h -1沿直线向东行驶,另一小艇在其前方以速率2v =40km ·h -1沿直线向北行驶,问在船上看小艇的速度为何?在艇上看船的速度又为何?解:(1)大船看小艇,则有1221v v v-=,依题意作速度矢量图如题1-13图(a)题1-13图由图可知 1222121h km 50-⋅=+=v v v方向北偏西 ︒===87.3643arctan arctan21v v θ (2)小船看大船,则有2112v v v-=,依题意作出速度矢量图如题1-13图(b),同上法,得5012=v 1h km -⋅2-2 一个质量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度0v 运动,0v 的方向与斜面底边的水平线AB解: 物体置于斜面上受到重力mg ,斜面支持力N .建立坐标:取0v方向为X 轴,平行斜面与X 轴垂直方向为Y 轴.如图2-2.题2-2图X 方向: 0=x F t v x 0= ①Y 方向: y y ma mg F ==αsin ②0=t 时 0=y 0=y v2sin 21t g y α=由①、②式消去t ,得220sin 21x g v y ⋅=α 2-4 质点在流体中作直线运动,受与速度成正比的阻力kv (k 为常数)作用,t =0时质点的速度为0v ,证明(1) t 时刻的速度为v =t mk ev )(0-;(2) 由0到t 的时间内经过的距离为x =(k mv 0)[1-t m ke )(-];(3)停止运动前经过的距离为)(0kmv ;(4)证明当k m t =时速度减至0v 的e1,式中m 为质点的质量. 答: (1)∵ tvm kv a d d =-=分离变量,得mtk v v d d -=即 ⎰⎰-=vv t mt k v v00d d m kte v v -=ln ln 0∴ tm k ev v -=0(2) ⎰⎰---===tttm k m ke kmv t ev t v x 000)1(d d (3)质点停止运动时速度为零,即t →∞,故有 ⎰∞-=='00d kmv t ev x tm k(4)当t=km时,其速度为 ev e v ev v km m k 0100===-⋅- 即速度减至0v 的e1. 2-10 一颗子弹由枪口射出时速率为10s m -⋅v ,当子弹在枪筒内被加速时,它所受的合力为F =(bt a -)N(b a ,为常数),其中t 以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量. 解: (1)由题意,子弹到枪口时,有0)(=-=bt a F ,得ba t =(2)子弹所受的冲量⎰-=-=t bt at t bt a I 0221d )(将bat =代入,得 ba I 22=(3)由动量定理可求得子弹的质量202bv a v I m == 2-13 以铁锤将一铁钉击入木板,设木板对铁钉的阻力与铁钉进入木板内的深度成正比,在铁锤击第一次时,能将小钉击入木板内1 cm,问击第二次时能击入多深,假定铁锤两次打击解: 以木板上界面为坐标原点,向内为y 坐标正向,如题2-13图,则铁钉所受阻力为题2-13图ky f -=第一锤外力的功为1A⎰⎰⎰==-='=ssky ky y f y f A 112d d d ① 式中f '是铁锤作用于钉上的力,f 是木板作用于钉上的力,在0d →t 时,f 'f -=.设第二锤外力的功为2A ,则同理,有⎰-==21222221d y kky y ky A ② 由题意,有2)21(212kmv A A =∆== ③即222122k k ky =- 所以, 22=y于是钉子第二次能进入的深度为cm 414.01212=-=-=∆y y y2-15 一根劲度系数为1k 的轻弹簧A 的下端,挂一根劲度系数为2k 的轻弹簧B ,B 的下端 一重物C ,C 的质量为M ,如题2-15图.求这一系统静止时两弹簧的伸长量之比和弹性势解: 弹簧B A 、及重物C 受力如题2-15图所示平衡时,有题2-15图Mg F F B A ==又 11x k F A ∆=22x k F B ∆=所以静止时两弹簧伸长量之比为1221k k x x =∆∆ 弹性势能之比为12222211121212k kx k x k E E p p =∆∆= 2-17 由水平桌面、光滑铅直杆、不可伸长的轻绳、轻弹簧、理想滑轮以及质量为1m 和2m 的滑块组成如题2-17图所示装置,弹簧的劲度系数为k ,自然长度等于水平距离BC ,2m 与桌面间的摩擦系数为μ,最初1m 静止于A 点,AB =BC =h ,绳已拉直,现令滑块落下1m ,求它下落到B 处时的速率.解: 取B 点为重力势能零点,弹簧原长为弹性势能零点,则由功能原理,有])(21[)(21212212l k gh m v m m gh m ∆+-+=-μ 式中l ∆为弹簧在A 点时比原长的伸长量,则h BC AC l )12(-=-=∆联立上述两式,得()()212221122mm khgh m m v +-+-=μ题2-17图2-19 质量为M 的大木块具有半径为R 的四分之一弧形槽,如题2-19图所示.质量为m 的小立方体从曲面的顶端滑下,大木块放在光滑水平面上,二者都作无摩擦的运动,而且都从静止开始,求小木块脱离大木块时的速度.解: m 从M 上下滑的过程中,机械能守恒,以m ,M ,地球为系统,以最低点为重力势能零点,则有222121MV mv mgR +=又下滑过程,动量守恒,以m ,M 为系统则在m 脱离M 瞬间,水平方向有0=-MV mv联立,以上两式,得()M m MgR v +=2习题八8-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系?解: 如题8-1图示(1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷2220)33(π4130cos π412a q q a q '=︒εε解得 q q 33-=' (2)与三角形边长无关.题8-1图 题8-2图8-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ ,如题8-2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球解: 如题8-2图示⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得 θπεθtan 4sin 20mg l q = 8-3 根据点电荷场强公式204r q E πε=,当被考察的场点距源点电荷很近(r →0)时,则场强→∞,这是没有物理意义的,对此应如何理解?解: 020π4r r q Eε=仅对点电荷成立,当0→r 时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.8-4 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f =2024dq πε,又有人说,因为f =qE ,SqE 0ε=,所以f =Sq 02ε.试问这两种说法对吗?为什么? f 到底应等于多少?解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强Sq E 0ε=看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为Sq E 02ε=,另一板受它的作用力Sq S qq f 02022εε==,这是两板间相互作用的电场力.8-5 一电偶极子的电矩为l q p=,场点到偶极子中心O 点的距离为r ,矢量r与l 的夹角为θ,(见题8-5图),且l r >>.试证P点的场强E 在r 方向上的分量r E 和垂直于r 的分量θE 分别为r E =302cos r p πεθ, θE =304sin r p πεθ证: 如题8-5所示,将p 分解为与r平行的分量θsin p 和垂直于r 的分量θsin p .∵ l r >> ∴ 场点P 在r 方向场强分量30π2cos r p E r εθ=垂直于r 方向,即θ方向场强分量300π4sin r p E εθ=题8-5图 题8-6图8-6 长l =15.0cmAB 上均匀地分布着线密度λ=5.0x10-9C ·m-1的正电荷.试求:(1)在导线的延长线上与导线B 端相距1a =5.0cm 处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2d =5.0cm 处Q点的场强. 解: 如题8-6图所示(1)在带电直线上取线元x d ,其上电量q d 在P 点产生场强为20)(d π41d x a x E P -=λε222)(d π4d x a x E E l l P P -==⎰⎰-ελ]2121[π40l a l a +--=ελ)4(π220l a l-=ελ用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得21074.6⨯=P E 1C N -⋅方向水平向右(2)2220d d π41d +=x xE Qλε 方向如题8-6图所示由于对称性⎰=l QxE 0d ,即Q E只有y 分量,∵ 22222220dd d d π41d ++=x x x E Qyλε 22π4d d ελ⎰==l QyQy E E ⎰-+2223222)d (d l l x x2220d4π2+=l lελ以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Qy Q E E 1C N -⋅,方向沿y 轴正向8-7 一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强.解: 如8-7图在圆上取ϕRd dl =题8-7图ϕλλd d d R l q ==,它在O 点产生场强大小为 20π4d d R R E εϕλ=方向沿半径向外则 ϕϕελϕd sin π4sin d d 0RE E x==ϕϕελϕπd cos π4)cos(d d 0RE E y-=-= 积分RR E x 000π2d sin π4ελϕϕελπ==⎰ 0d cos π400=-=⎰ϕϕελπRE y ∴ RE E x0π2ελ==,方向沿x 轴正向. 8-8 均匀带电的细线弯成正方形,边长为l ,总电量为q .(1)求这正方形轴线上离中心为r 处的场强E ;(2)证明:在l r >>处,它相当于点电荷q 产生的场强E解: 如8-8图示,正方形一条边上电荷4q 在P 点产生物强PEd方向如图,大小为()4π4cos cos d 22021l r E P +-=εθθλ∵ 22cos 221l r l +=θ12cos cos θθ-=∴ 24π4d 22220l r l l r E P++=ελP Ed 在垂直于平面上的分量βcos d d P E E =⊥∴ 424π4d 2222220l r rl r l r lE+++=⊥ελ题8-8图由于对称性,P 点场强沿OP 方向,大小为2)4(π44d 422220l r l r lrE E P ++=⨯=⊥ελ∵ lq 4=λ∴ 2)4(π422220l r l r qrE P++=ε 方向沿8-9 (1)点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?*(3)如题8-9(3)图所示,在点电荷q 的电场中取半径为R 的圆平面.q 在该平面轴线上的A 点处,求:通过圆平面的电通量.(xR arctan =α)解: (1)由高斯定理0d εq S E s⎰=⋅立方体六个面,当q 在立方体中心时,每个面上电通量相等 ∴ 各面电通量06εq e=Φ.(2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则边长a 2的正方形上电通量06εqe=Φ对于边长a 的正方形,如果它不包含q 所在的顶点,则24εq e =Φ,如果它包含q 所在顶点则0=Φe.如题8-9(a)图所示.题8-9(3)图题8-9(a)图 题8-9(b)图 题8-9(c)图(3)∵通过半径为R 的圆平面的电通量等于通过半径为22x R +的球冠面的电通量,球冠面积*]1)[(π22222xR x x R S +-+=∴ )(π42200x R Sq +=Φε02εq =[221xR x +-]*关于球冠面积的计算:见题8-9(c)图ααα⎰⋅=0d sin π2r r Sααα⎰⋅=02d sin π2r)cos 1(π22α-=r8-10 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×510-C ·m -3求距球心5cm ,8cm ,12cm 各点的场强. 解: 高斯定理0d ε∑⎰=⋅qS E s,02π4ε∑=qr E当5=r cm 时,0=∑q ,0=E8=r cm 时,∑q 3π4p=3(r )3内r - ∴ ()2023π43π4rr r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外. 12=r cm时,3π4∑=ρq -3(外r )内3r ∴ ()420331010.4π43π4⨯≈-=r r r E ερ内外 1C N -⋅ 沿半径向外.8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E s取同轴圆柱形高斯面,侧面积rl S π2=则 rl E S E Sπ2d =⋅⎰对(1) 1R r < 0,0==∑E q (2) 21R r R << λl q =∑ ∴ rE 0π2ελ=沿径向向外(3) 2R r > 0=∑q ∴ 0=E题8-12图8-12 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ解: 如题8-12图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ,两面间, n E )(21210σσε-= 1σ面外, n E)(21210σσε+-= 2σ面外, n E)(21210σσε+= n:垂直于两平面由1σ面指为2σ面.8-13 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题8-13图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的. 解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题8-13图(a). (1) ρ+球在O 点产生电场010=E,ρ-球在O 点产生电场d π4π3430320OO r E ερ=∴ O 点电场'd 33030OO r E ερ= ;(2) ρ+在O '产生电场dπ4d 3430301E ερπ='ρ-球在O '产生电场002='E∴ O ' 点电场 003ερ='EOO题8-13图(a) 题8-13图(b)(3)设空腔任一点P 相对O '的位矢为r ',相对O 点位矢为r (如题8-13(b)图)则 03ερrE PO =,3ερr E O P '-=' ,∴ 0003'3)(3ερερερd OO r r E E E O P PO P=='-=+='∴腔内场强是均匀的.8-14 一电偶极子由q =1.0×10-6C成,两电荷距离d=0.2cm ,把这电偶极子放在1.0×105N ·C-1解: ∵ 电偶极子p在外场E 中受力矩E p M⨯=∴ qlE pE M ==max 代入数字4536max 100.2100.1102100.1---⨯=⨯⨯⨯⨯⨯=M m N ⋅8-15 两点电荷1q =1.5×10-8C ,2q =3.0×10-8C ,相距1r =42cm ,要把它们之间的距离变为2r =25cm ,需作多少功?解: ⎰⎰==⋅=22210212021π4π4d d r r r rq q r r q q r F A εε )11(21r r - 61055.6-⨯-=J外力需作的功 61055.6-⨯-=-='A A J题8-16图8-16 如题8-16图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C解: 如题8-16图示0π41ε=O U 0)(=-RqR q 0π41ε=O U )3(R qR q -Rq 0π6ε-= ∴ Rqq U U q A o C O 00π6)(ε=-= 8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点Ed 如图,由于对称性,O 点场强沿y 轴负方向题8-17图θεθλππcos π4d d 2220⎰⎰-==R R E E yR 0π4ελ=[)2sin(π-2sin π-] R0π2ελ-=(2) AB 电荷在O 点产生电势,以0=∞U⎰⎰===A B200012ln π4π4d π4d R R x x x x U ελελελ同理CD 产生 2ln π402ελ=U 半圆环产生 0034π4πελελ==R R U∴ 0032142ln π2ελελ+=++=U U U U O8-18 一电子绕一带均匀电荷的长直导线以2×104m ·s -1的匀速率作圆周运动.求带电直线上的线电荷密度.(电子质量0m =9.1×10-31kg ,电子电量e =1.60×10-19C)解: 设均匀带电直线电荷密度为λ,在电子轨道处场强rE 0π2ελ=电子受力大小 re eE F e0π2ελ== ∴ rv mr e 20π2=ελ得 1320105.12π2-⨯==emv ελ1m C -⋅ 8-19 空气可以承受的场强的最大值为E =30kV ·cm -1,超过这个数值时空气要发生火花放电.今有一高压平行板电容器,极板间距离为d =0.5cm ,求此电容器可承受的最高电解: 平行板电容器内部近似为均匀电场 ∴ 4105.1d ⨯==E U V8-20 根据场强E 与电势U 的关系U E -∇=,求下列电场的场强:(1)点电荷q 的电场;(2)总电量为q ,半径为R 的均匀带电圆环轴上一点;*(3)偶极子ql p =的l r >>处(见题8-20图)解: (1)点电荷 rqU 0π4ε=题 8-20 图∴ 0200π4r r q r r U E ε=∂∂-= 0r为r 方向单位矢量. (2)总电量q ,半径为R 的均匀带电圆环轴上一点电势220π4xR q U +=ε∴ ()i x R qxi x U E2/3220π4+=∂∂-=ε(3)偶极子l q p=在l r >>处的一点电势 200π4cos ])cos 21(1)cos 2(1[π4r ql llr qU εθθθε=+--=∴ 30π2cos r p r U E rεθ=∂∂-= 30π4sin 1r p U r E εθθθ=∂∂-=8-21 证明:对于两个无限大的平行平面带电导体板(题8-21图)来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等证: 如题8-21图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ题8-21图(1)则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时,有0)(d 32=∆+=⋅⎰S S E sσσ∴ +2σ03=σ 说明相向两面上电荷面密度大小相等、符号相反; (2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=---εσεσεσεσ 又∵ +2σ03=σ ∴ 1σ4σ=说明相背两面上电荷面密度总是大小相等,符号相同. 8-22 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0 mm .B ,C 都接地,如题8-22图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少?解: 如题8-22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题8-22图(1)∵ AB ACU U =,即 ∴ AB AB AC AC E E d d =∴2d d 21===ACABAB AC E E σσ 且 1σ+2σSq A =得 ,32Sq A =σ Sq A 321=σ而 7110232-⨯-=-=-=A Cq S q σCC10172-⨯-=-=S q B σ(2) 301103.2d d ⨯===AC ACAC A E U εσV 8-23 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q(1)外球壳上的电荷分(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球*(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势题8-23图⎰⎰∞∞==⋅=22020π4π4d d R R R qrr q r E U εε (2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:0π4π42020=-=R q R q U εε(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且0π4'π4'π4'202010=+-+-=R q q R q R q U A εεε 得 q R R q 21=' 外球壳上电势()22021202020π4π4'π4'π4'R qR R R q q R q R q U B εεεε-=+-+-=8-24 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量.解: 如题8-24图所示,设金属球感应电荷为q ',则球接地时电势0=O U8-24图由电势叠加原理有:=O U 03π4π4'00=+RqR q εε 得 -='q 3q8-25 有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0F .试求:(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力;(2)小球3依次交替接触小球1,2很多次后移去,小球1,2之解: 由题意知 2020π4r q F ε=(1)小球3接触小球1后,小球3和小球1均带电 2q q =',小球3再与小球2接触后,小球2与小球3均带电 q q 43=''∴ 此时小球1与小球2间相互作用力00220183π483π4"'2F rqr q q F =-=εε (2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为 32q .∴ 小球1、2间的作用力 00294π432322F r q q F ==ε *8-26 如题8-26图所示,一平行板电容器两极板面积都是S ,相距为d ,分别维持电势A U =U ,B U =0不变.现把一块带有电量q 的导体薄片平行地放在两极板正中间,片的面积也是S ,片的厚度略去不计.求导体薄片的电势.解: 依次设A ,C ,B 从上到下的6个表面的面电荷密度分别为1σ,2σ,3σ,4σ,5σ,6σ如图所示.由静电平衡条件,电荷守恒定律及维持U U AB =可得以下6个方程题8-26图⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧++++==+=+-==+=+===+6543215432065430021001σσσσσσσσσσεσσσσεσσd US q S qdU U C S S q B A解得 Sq 261==σσSq d U2032-=-=εσσ Sq dU2054+=-=εσσ所以CB 间电场 S qd U E 00422εεσ+==)2d(212d 02Sq U E U U CB C ε+=== 注意:因为C 片带电,所以2U U C≠,若C 片不带电,显然2U U C =8-27 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求: (1)电介质内、外的场强; (2)电介质层内、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅q S D Sd(1)介质内)(21R r R <<场强 303π4,π4r rQ E r r Q D r εε ==内;介质外)(2R r <场强 303π4,π4r rQ E r Qr D ε ==外(2)介质外)(2R r >电势 rQE U 0r π4r d ε=⋅=⎰∞外 介质内)(21R r R <<电势2020π4)11(π4R Q R r qr εεε+-=)11(π420R r Qr r -+=εεε (3)金属球的电势 r d r d 221⋅+⋅=⎰⎰∞R R RE E U 外内⎰⎰∞+=22220π44πdr R R Rr r Qdr r Q εεε)11(π4210R R Qr r-+=εεε 8-28 如题8-28图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题8-28图所示,充满电介质部分场强为2E,真空部分场强为1E,自由电荷面密度分别为2σ与1σ由∑⎰=⋅0d q S D得 11σ=D ,22σ=D 而 101E D ε=,202E D r εε=d21U E E ==∴r D D εσσ==1212 r d r d ⋅+⋅=⎰⎰∞∞rrE E U 外内题8-28图 题8-29图8-29 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求: (1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量; (2)电介质中的总电场能量; (3)圆柱形电容器的电容. 解: 取半径为r 的同轴圆柱面)(S则 rlD S DS π2d )(=⋅⎰当)(21R r R <<时,Q q =∑ ∴ rlQ D π2=(1)电场能量密度 22222π82l r Q D w εε== 薄壳中 rlrQ rl r l r Q w W εευπ4d d π2π8d d 22222===(2)电介质中总电场能量 ⎰⎰===211222ln π4π4d d R RV R R l Q rl r Q W W εε(3)电容:∵ CQ W 22=∴ )/ln(π22122R R lW Q C ε== *8-30 金属球壳A 和B 的中心相距为r ,A 和B 原来都不带电.现在A 的中心放一点电荷1q ,在B 的中心放一点电荷2q ,如题8-30图所示.试求:(1) 1q 对2q 作用的库仑力,2q 有无加速度;(2)去掉金属壳B ,求1q 作用在2q 上的库仑力,此时2q 有无加速度.解: (1)1q 作用在2q 的库仑力仍满足库仑定律,即2210π41r q q F ε=但2q 处于金属球壳中心,它受合力..为零,没有加速度. (2)去掉金属壳B ,1q 作用在2q 上的库仑力仍是2210π41r q q F ε=,但此时2q 受合力不为零,有加速度.题8-30图 题8-31图8-31 如题8-31图所示,1C =0.25μF ,2C =0.15μF ,3C =0.20μF .1C 上电压为50V .求:AB U .解: 电容1C 上电量111U C Q =电容2C 与3C 并联3223C C C += 其上电荷123Q Q =∴ 355025231123232⨯===C U C C Q U 86)35251(5021=+=+=U U U AB V 8-32 1C 和2C 两电容器分别标明“200 pF 、500 V”和“300 pF 、900 V”,把它们串联起来后等值电容是多少?如果两端加上1000 V?解: (1) 1C 与2C 串联后电容1203002003002002121=+⨯=+='C C C C C pF (2)串联后电压比231221==C C U U ,而100021=+U U∴ 6001=U V ,4002=U V即电容1C 电压超过耐压值会击穿,然后2C 也击穿. 8-33 将两个电容器1C 和2C 充电到相等的电压U 以后切断电源,再将每一电容器的正极板与另一电容器的负极板相联.试求:(1)每个电容器的最终电荷; (2)电场能量的损失.解: 如题8-33图所示,设联接后两电容器带电分别为1q ,2q题8-33图则⎪⎪⎩⎪⎪⎨⎧==-=-=+2122112121201021U U U C U C q q U C U C q q q q解得 (1) =1q UC C C C C q U C C C C C 21212221211)(,)(+-=+-(2)电场能量损失W W W -=∆0)22()2121(2221212221C q C q U C U C +-+= 221212U C C C C +=8-34 半径为1R =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =4.0cm 和3R =5.0cm ,当内球带电荷Q =3.0×10-8C(1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量; (3)此电容器的电容值.解: 如图,内球带电Q ,外球壳内表面带电Q -,外表面带电Q题8-34图(1)在1R r <和32R r R <<区域0=E在21R r R <<时 301π4r r Q E ε=3R r >时 302π4r r Q E ε=∴在21R r R <<区域⎰=21d π4)π4(21222001R R r r rQ W εε ⎰-==21)11(π8π8d 2102202R R R R Q r r Q εε 在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r rQ W εεε∴ 总能量 )111(π83210221R R R Q W W W +-=+=ε41082.1-⨯=J(2)导体壳接地时,只有21R r R <<时30π4r r Q E ε=,02=W∴ 4210211001.1)11(π8-⨯=-==R R Q W W ε J(3)电容器电容 )11/(π422102R R QW C -==ε 121049.4-⨯=F习题九9-1 在同一磁感应线上,各点B的数值是否都相等?为何不把作用于运动电荷的磁力方向定义为磁感应强度B的方向? 解: 在同一磁感应线上,各点B的数值一般不相等.因为磁场作用于运动电荷的磁力方向不仅与磁感应强度B的方向有关,而且与电荷速度方向有关,即磁力方向并不是唯一由磁场决定的,所以不把磁力方向定义为B的方向.9-2 (1)在没有电流的空间区域里,如果磁感应线是平行直线,磁感应强度B的大小在沿磁感应线和垂直它的方向上是否可能变化(即磁场是否一定是均匀的)?(2)若存在电流,上述结论是否还对?解: (1)不可能变化,即磁场一定是均匀的.如图作闭合回路abcd 可证明21B B=∑⎰==-=⋅0d 021I bc B da B l B abcdμ∴ 21B B=(2)若存在电流,上述结论不对.如无限大均匀带电平面两侧之磁力线是平行直线,但B方向相反,即21B B ≠.9-3 用安培环路定理能否求有限长一段载流直导线周围的磁场?答: 不能,因为有限长载流直导线周围磁场虽然有轴对称性,但不是稳恒电流,安培环路定理并不适用.9-4 在载流长螺线管的情况下,我们导出其内部nI B 0μ=,外面B =0,所以在载流螺线管外面环绕一周(见题9-4图)的环路积分⎰外B L·d l =0但从安培环路定理来看,环路L 中有电流I 穿过,环路积分应为⎰外B L·d l =I 0μ这是为什么?解: 我们导出nl B 0μ=内,0=外B 有一个假设的前提,即每匝电流均垂直于螺线管轴线.这时图中环路L 上就一定没有电流通过,即也是⎰∑==⋅LI l B 0d 0μ 外,与⎰⎰=⋅=⋅Ll l B 0d 0d外是不矛盾的.但这是导线横截面积为零,螺距为零的理想模型.实际上以上假设并不真实存在,所以使得穿过L 的电流为I ,因此实际螺线管若是无限长时,只是外B的轴向分量为零,而垂直于轴的圆周方向分量rI B πμ20=⊥,r 为管外一点到螺线管轴的距离.题 9 - 4 图9-5 如果一个电子在通过空间某一区域时不偏转,能否肯定这个区域中没有磁场?如果它发 生偏转能否肯定那个区域中存在着磁场?解:如果一个电子在通过空间某一区域时不偏转,不能肯定这个区域中没有磁场,也可能存在互相垂直的电场和磁场,电子受的电场力与磁场力抵消所致.如果它发生偏转也不能肯定那个区域存在着磁场,因为仅有电场也可以使电子偏转.9-6 已知磁感应强度0.2=B Wb ·m-2x轴正方向,如题9-6图所示.试求:(1)通过图中abcd 面的磁通量;(2)通过图中befc 面的磁通量;(3)通过图中aefd 面的磁通量.解: 如题9-6图所示题9-6图(1)通过abcd 面积1S 的磁通是24.04.03.00.211=⨯⨯=⋅=S BΦWb(2)通过befc 面积2S 的磁通量022=⋅=S BΦ(3)通过aefd 面积3S 的磁通量24.0545.03.02cos 5.03.0233=⨯⨯⨯=θ⨯⨯⨯=⋅=S B ΦWb(或曰24.0-Wb )题9-7图9-7 如题9-7图所示,AB 、CD 为长直导线,C B为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O 点的磁感应强度.解:如题9-7图所示,O 点磁场由AB 、C B、CD 三部分电流产生.其中AB产生 01=B CD产生RIB 1202μ=,方向垂直向里CD段产生 )231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,方向⊥向里 ∴)6231(203210ππμ+-=++=R I B B B B ,方向⊥向里. 9-8 在真空中,有两根互相平行的无限长直导线1L 和2L ,相距0.1m ,通有方向相反的电流,1I =20A,2I =10A ,如题9-8图所示.A ,B 两点与导线在同一平面内.这两点与导线2L 的距离均为5.0cm .试求A ,B 两点处的磁感应强度,以及磁感应题9-8图解:如题9-8图所示,A B方向垂直纸面向里42010102.105.02)05.01.0(2-⨯=⨯+-=πμπμI I B A T(2)设0=B在2L 外侧距离2L 为r 处 则02)1.0(220=-+rI r Iπμπμ 解得 1.0=r m题9-9图9-9 如题9-9图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连.已知圆环的粗细均匀,求环中心O 的磁感应强度.解: 如题9-9图所示,圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。

大学物理学(第三版)课后习题参考答案

大学物理学(第三版)课后习题参考答案

习题11.1选择题(1) 一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为(A)dt dr (B)dt r d(C)dtr d ||(D) 22)()(dt dy dt dx +[答案:D](2) 一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2/2s m a -=,则一秒钟后质点的速度(A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。

[答案:D](3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为(A)t R t R ππ2,2 (B) tRπ2,0 (C) 0,0 (D) 0,2tRπ[答案:B]1.2填空题(1) 一质点,以1-⋅s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是 ;经过的路程是 。

[答案: 10m ; 5πm](2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m·s -1,则当t 为3s 时,质点的速度v= 。

[答案: 23m·s -1 ](3) 轮船在水上以相对于水的速度1V 航行,水流速度为2V ,一人相对于甲板以速度3V行走。

如人相对于岸静止,则1V 、2V 和3V的关系是 。

[答案: 0321=++V V V]1.3 一个物体能否被看作质点,你认为主要由以下三个因素中哪个因素决定:(1) 物体的大小和形状; (2) 物体的内部结构; (3) 所研究问题的性质。

解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研究问题的性质决定。

1.4 下面几个质点运动学方程,哪个是匀变速直线运动?(1)x=4t-3;(2)x=-4t 3+3t 2+6;(3)x=-2t 2+8t+4;(4)x=2/t 2-4/t 。

给出这个匀变速直线运动在t=3s 时的速度和加速度,并说明该时刻运动是加速的还是减速的。

最新大学物理课后习题答案3

最新大学物理课后习题答案3

3-1 分析与解 在质点组中内力总是成对出现的,它们是作用力与反作用力.由于一对内力的冲量恒为零,故内力不会改变质点组的总动量.但由于相互有作用力的两个质点的位移大小以及位移与力的夹角一般不同,故一对内力所作功之和不一定为零,应作具体分析,如一对弹性内力的功的代数和一般为零,一对摩擦内力的功代数和一般不为零,对于保守内力来说,所作功能使质点组动能与势能相互转换,因此保守内力即使有可能改变质点组的动能,但也不可能改变质点组的机械能.综上所述(1)(3)说法是正确的.故选(C).3-2 分析与解 对题述系统来说,由题意知并无外力和非保守内力作功,故系统机械能守恒.物体在下滑过程中,一方面通过重力作功将势能转化为动能,另一方面通过物体与斜面之间的弹性内力作功将一部分能量转化为斜面的动能,其大小取决其中一个内力所作功.由于斜面倾角不同,故物体沿不同倾角斜面滑至底端时动能大小不等.动量自然也就不等(动量方向也不同).故(A)(B)(C)三种说法均不正确.至于说法(D)正确,是因为该系统动量虽不守恒(下滑前系统动量为零,下滑后物体与斜面动量的矢量和不可能为零.由此可知,此时向上的地面支持力并不等于物体与斜面向下的重力),但在水平方向上并无外力,故系统在水平方向上分动量守恒.3-3 分析与解 保守力作正功时,系统内相应势能应该减少.由于保守力作功与路径无关,而只与始末位置有关,如质点环绕一周过程中,保守力在一段过程中作正功,在另一段过程中必然作负功,两者之和必为零.至于一对作用力与反作用力分别作用于两个质点所作功之和未必为零(详见习题3 -2 分析),由此可见只有说法(2)正确,故选(C).3-4 分析与解 由题意知,作用在题述系统上的合外力为零,故系统动量守恒,但机械能未必守恒,这取决于在A 、B 弹开过程中C 与A 或D 与B 之间有无相对滑动,如有则必然会因摩擦内力作功,而使一部分机械能转化为热能,故选(D)3-5 分析与解 子弹-木块系统在子弹射入过程中,作用于系统的合外力为零,故系统动量守恒,但机械能并不守恒.这是因为子弹与木块作用的一对内力所作功的代数和不为零(这是因为子弹对地位移大于木块对地位移所致),子弹动能的减少等于子弹克服阻力所作功,子弹减少的动能中,一部分通过其反作用力对木块作正功而转移为木块的动能,另一部分则转化为热能(大小就等于这一对内力所作功的代数和).综上所述,只有说法(C)的表述是完全正确的.3-6 分析 由于鸟与飞机之间的作用是一短暂时间内急剧变化的变力,直接应用牛顿定律解决受力问题是不可能的.如果考虑力的时间累积效果,运用动量定理来分析,就可避免作用过程中的细节情况.在求鸟对飞机的冲力(常指在短暂时间内的平均力)时,由于飞机的状态(指动量)变化不知道,使计算也难以进行;这时,可将问题转化为讨论鸟的状态变化来分析其受力情况,并根据鸟与飞机作用的相互性(作用与反作用),问题就很简单了.解 以飞鸟为研究对象,取飞机运动方向为x 轴正向.由动量定理得0Δ-='v m t F式中F ′为飞机对鸟的平均冲力,而身长为20cm 的飞鸟与飞机碰撞时间约为Δt =l /v ,以此代入上式可得N 1055.252⨯=='lm F v 鸟对飞机的平均冲力为 N 1055.25⨯-='-=F F 式中负号表示飞机受到的冲力与其飞行方向相反.从计算结果可知,2.25 ×105N 的冲力大致相当于一个22 t 的物体所受的重力,可见,此冲力是相当大的.若飞鸟与发动机叶片相碰,足以使发动机损坏,造成飞行事故.3-7 分析 重力是恒力,因此,求其在一段时间内的冲量时,只需求出时间间隔即可.由抛体运动规律可知,物体到达最高点的时间gαt sin Δ01v =,物体从出发到落回至同一水平面所需的时间是到达最高点时间的两倍.这样,按冲量的定义即可求得结果.另一种解的方法是根据过程的始、末动量,由动量定理求出.解1 物体从出发到达最高点所需的时间为g αt sin Δ01v = 则物体落回地面的时间为 gαt t sin Δ2Δ012v == 于是,在相应的过程中重力的冲量分别为j j F I αm t mg t t sin Δd 011Δ1v -=-==⎰ j j F I αm t mg t t sin 2Δd 022Δ2v -=-==⎰ 解2 根据动量定理,物体由发射点O 运动到点A 、B 的过程中,重力的冲量分别为j j j I αm y m mv Ay sin 001v v -=-= j j j I αm y m mv By sin 2002v v -=-=3-8 分析 本题可由冲量的定义式⎰=21d t t t F I ,求变力的冲量,继而根据动量定理求物体的速度v 2.解 (1) 由分析知()s N 68230d 43020220⋅=+=+=⎰t t t t I (2) 由I =300 =30t +2t 2 ,解此方程可得 t =6.86 s(另一解不合题意已舍去)(3) 由动量定理,有 I =m v 2- m v 1由(2)可知t =6.86 s 时I =300 N ·s ,将I 、m 及v 1代入可得 112s m 40-⋅=+=m m I v v 3-9 分析 从人受力的情况来看,可分两个阶段:在开始下落的过程中,只受重力作用,人体可看成是作自由落体运动;在安全带保护的缓冲过程中,则人体同时受重力和安全带冲力的作用,其合力是一变力,且作用时间很短.为求安全带的冲力,可以从缓冲时间内,人体运动状态(动量)的改变来分析,即运用动量定理来讨论.事实上,动量定理也可应用于整个过程.但是,这时必须分清重力和安全带冲力作用的时间是不同的;而在过程的初态和末态,人体的速度均为零.这样,运用动量定理仍可得到相同的结果.解1 以人为研究对象,按分析中的两个阶段进行讨论.在自由落体运动过程中,人跌落至2 m 处时的速度为gh 21=v (1)在缓冲过程中,人受重力和安全带冲力的作用,根据动量定理,有()12Δv v m m t -=+P F (2)由式(1)、(2)可得安全带对人的平均冲力大小为()N 1014.1Δ2ΔΔ3⨯=+=+=tgh mg t m Δmg F v解2 从整个过程来讨论.根据动量定理有N 1014.1/2Δ3⨯=+=mg g h t mg F 3-10 分析 由冲量定义求得力F 的冲量后,根据动量原理,即为动量增量,注意用式⎰21d t t t F 积分前,应先将式中x 用x =A cos ωt 代之,方能积分.解 力F 的冲量为ωkA t t ωkA t kx t F I ωt t t t -=-=-==⎰⎰⎰2/π02121d cos d d 即()ωkA m -=v Δ 3-11 分析 对于弯曲部分AB 段内的水而言,由于流速一定,在时间Δt 内,从其一端流入的水量等于从另一端流出的水量.因此,对这部分水来说,在时间Δt 内动量的增量也就是流入与流出水的动量的增量Δp =Δm (v B -v A );此动量的变化是管壁在Δt 时间内对其作用冲量I 的结果.依据动量定理可求得该段水受到管壁的冲力F ;由牛顿第三定律,自然就得到水流对管壁的作用力F ′=-F .解 在Δt 时间内,从管一端流入(或流出) 水的质量为Δm =ρυS Δt ,弯曲部分AB 的水的动量的增量则为 Δp =Δm (v B -v A ) =ρυS Δt (v B -v A )依据动量定理I =Δp ,得到管壁对这部分水的平均冲力()A B t S ρtv v v -==ΔΔI F 从而可得水流对管壁作用力的大小为 N 105.2232⨯-=-=-='v S ρF F作用力的方向则沿直角平分线指向弯管外侧.3-12 分析 根据抛体运动规律,物体在最高点处的位置坐标和速度是易求的.因此,若能求出第二块碎片抛出的速度,按抛体运动的规律就可求得落地的位置.为此,分析物体在最高点处爆炸的过程,由于爆炸力属内力,且远大于重力,因此,重力的冲量可忽略,物体爆炸过程中应满足动量守恒.由于炸裂后第一块碎片抛出的速度可由落体运动求出,由动量守恒定律可得炸裂后第二块碎片抛出的速度,进一步求出落地位置.解 取如图示坐标,根据抛体运动的规律,爆炸前,物体在最高点A 的速度的水平分量为 hg x t x x 21010==v (1) 物体爆炸后,第一块碎片竖直落下的运动方程为 21121gt t h y --=v 当该碎片落地时,有y 1 =0,t =t 1 ,则由上式得爆炸后第一块碎片抛出的速度12121t gt h -=v (2) 又根据动量守恒定律,在最高点处有x x m m 2021v v = (3) y m m 2121210v v +-= (4) 联立解式(1)、(2)、(3) 和(4),可得爆炸后第二块碎片抛出时的速度分量分别为1102s m 100222-⋅===h g x x x v v 112112s m 7.1421-⋅=-==t gt h y v v 爆炸后,第二块碎片作斜抛运动,其运动方程为2212t v x x x += (5)2222221gt t h y y -+=v (6) 落地时,y 2 =0,由式(5)、(6)可解得第二块碎片落地点的水平位置 x 2 =500 m3-13 分析 由于两船横向传递的速度可略去不计,则对搬出重物后的船A 与从船B 搬入的重物所组成的系统Ⅰ来讲,在水平方向上无外力作用,因此,它们相互作用的过程中应满足动量守恒;同样,对搬出重物后的船B 与从船A 搬入的重物所组成的系统Ⅱ亦是这样.由此,分别列出系统Ⅰ、Ⅱ的动量守恒方程即可解出结果.解 设A 、B 两船原有的速度分别以v A 、v B 表示,传递重物后船的速度分别以v A ′ 、v B ′ 表示,被搬运重物的质量以m 表示.分别对上述系统Ⅰ、Ⅱ应用动量守恒定律,则有()A A B A A m m m m v v v '=+- (1)()''=+-B B A B B m m m m v v v (2)由题意知v A ′ =0, v B ′ =3.4 m ·s -1代入数据后,可解得 ()()12s m 40.0-⋅-=---'-=mm m m m m m A B B B A v v ()()()12s m 6.3-⋅=---'-=m m m m m m m m B A B B A B v v也可以选择不同的系统,例如,把A 、B 两船(包括传递的物体在内)视为系统,同样能满足动量守恒,也可列出相对应的方程求解.3-14 分析 人跳跃距离的增加是由于他在最高点处向后抛出物体所致.在抛物的过程中,人与物之间相互作用力的冲量,使他们各自的动量发生了变化.如果把人与物视为一系统,因水平方向不受外力作用,故外力的冲量为零,系统在该方向上动量守恒.但在应用动量守恒定律时,必须注意系统是相对地面(惯性系)而言的,因此,在处理人与物的速度时,要根据相对运动的关系来确定.至于,人因跳跃而增加的距离,可根据人在水平方向速率的增量Δv 来计算.解 取如图所示坐标.把人与物视为一系统,当人跳跃到最高点处,在向左抛物的过程中,满足动量守恒,故有()()u m m αm m -+'='+v v v cos 0式中v 为人抛物后相对地面的水平速率, v -u 为抛出物对地面的水平速率.得u m m m α'++=cos 00v v 人的水平速率的增量为u m m m α'+=-=cos Δ0v v v 而人从最高点到地面的运动时间为 g αt sin 0v =所以,人跳跃后增加的距离()g m m αm t x '+==sin ΔΔ0v v 3-15 分析 由于桌面所受的压力难以直接求出,因此,可转化为求其反作用力,即桌面给绳的托力.但是,应注意此托力除了支持已落在桌面上的绳外,还有对d t 时间内下落绳的冲力,此力必须运用动量定理来求.解 取如图所示坐标,开始时绳的上端位于原点,Oy 轴的正向竖直向下.绳的总长为l ,以t 时刻,已落到桌面上长为y 、质量为m ′的绳为研究对象.这段绳受重力P 、桌面的托力F N 和下落绳子对它的冲力F (如图中所示)的作用.由力的平衡条件有0N =-+F F yg lm (1) 为求冲力F ,可取d t 时间内落至桌面的线元d y 为研究对象.线元的质量y lm m d d =,它受到重力d P 和冲力F 的反作用力F ′的作用,由于F ′>>d P ,故由动量定理得 y lm t F d 0d v -=' (2) 而 F F '-= (3) 由上述三式可得任意时刻桌面受到的压力大小为g m yg lm l m yg l m F F '==+=-='332N N v 3-16 分析 这是一个系统内质量转移的问题.为了讨论火箭的运动规律,仍需建立其在重力场中的动力学方程.为此,以t 时刻质量为m 的火箭为研究对象,它在t →t +Δt 的时间内,将分离成火箭主体(包括尚剩的燃料)和排出的燃料两部分.根据它们的总动量的增量Σd P i 和系统所受的外力———重力(阻力不计),由动量定理可得到-mg =u d m ′/d t +m d v /d t (推导从略,见教材),即火箭主体的动力学方程.由于在d t 时间内排出燃料的质量d m ′很小,式中m 也就可以视为此刻火箭主体的质量, 而燃料的排出率d m ′/d t 也就是火箭质量的变化率-d m /d t .这样,上述方程也可写成ma mg t m u=-d d .在特定加速度a 0 的条件下,根据初始时刻火箭的质量m 0 ,就可求出燃料的排出率d m /d t .在火箭的质量比( 即t 时刻火箭的质量m 与火箭的初始质量m 0之比) 已知的条件下,可算出火箭所经历的时间,则火箭运动的速率可通过对其动力学方程积分后解得.解 (1) 以火箭发射处为原点,竖直向上为正方向.该火箭在重力场中的动力学方程为 ma mg tm u =-d d (1) 因火箭的初始质量为m 0 =5.00 ×105 kg, 要使火箭获得最初的加速度a 0 =4.90 m ·s -2,则燃气的排出率为()1300s kg 1068.3d d -⋅⨯=+=ua g m t m (2) 为求火箭的最后速率,可将式(1)改写成tm mg t m u d d d d v =- 分离变量后积分,有 ⎰⎰⎰-=t m m t g m m u 0d d d 00v v v 火箭速率随时间的变化规律为 gt m m u --=00ln v v (2) 因火箭的质量比为6.00,故经历时间t 后,其质量为m t t m m m 61d d 0=-= 得 t m m t d /d 650=(3)将式(3)代入式(2),依据初始条件,可得火箭的最后速率13000s m 1047.2d /d 65ln ln -⋅⨯=-=-='tm m m m u gt m m u v 3-17 分析 由题意知质点是在变力作用下运动,因此要先找到力F 与位置x 的关系,由题给条件知x LF F F 00-=.则该力作的功可用式⎰L x F 0d 计算,然后由动能定理求质点速率.解 由分析知x L F F F 00-=, 则在x =0 到x =L 过程中作功, 2d 0000L F x x L F F W L =⎪⎭⎫ ⎝⎛-=⎰ 由动能定理有0212-=v m W 得x =L 处的质点速率为mL F 0=v 此处也可用牛顿定律求质点速率,即xm t m x L F F d d d d 00v v v ==- 分离变量后,两边积分也可得同样结果.3-18 分析 该题中虽施以“恒力”,但是,作用在物体上的力的方向在不断变化.需按功的矢量定义式⎰⋅=s F d W 来求解.解 取图示坐标,绳索拉力对物体所作的功为 J 69.1d d cos d 2122=+-==⋅=⎰⎰⎰x x d Fx x θF W x x x F3-19 分析 本题是一维变力作功问题,仍需按功的定义式⎰⋅=x F d W 来求解.关键在于寻找力函数F =F (x ).根据运动学关系,可将已知力与速度的函数关系F (v ) =kv 2 变换到F (t ),进一步按x =ct 3 的关系把F (t )转换为F (x ),这样,就可按功的定义式求解.解 由运动学方程x =ct 3 ,可得物体的速度 23d d ct tx ==v 按题意及上述关系,物体所受阻力的大小为3/43/242299x kct kc k F ===v 则阻力的功为⎰⋅=x F W d 3/73/23/403/20727d 9d 180cos d l kc x x kc x W l o l -=-==⋅=⎰⎰⎰x F3-20 分析 由于水桶在匀速上提过程中,拉力必须始终与水桶重力相平衡.水桶重力因漏水而随提升高度而变,因此,拉力作功实为变力作功.由于拉力作功也就是克服重力的功,因此,只要能写出重力随高度变化的关系,拉力作功即可题3 -20 图求出.解 水桶在匀速上提过程中,a =0,拉力与水桶重力平衡,有F +P =0在图示所取坐标下,水桶重力随位置的变化关系为P =mg -αgy其中α=0.2 kg/m,人对水桶的拉力的功为()J 882d d 1000=-=⋅=⎰⎰y agy mg W l y F 3-21 分析 (1) 在计算功时,首先应明确是什么力作功.小球摆动过程中同时受到重力和张力作用.重力是保守力,根据小球下落的距离,它的功很易求得;至于张力虽是一变力,但是,它的方向始终与小球运动方向垂直,根据功的矢量式⎰⋅=s d F W ,即能得出结果来.(2) 在计算功的基础上,由动能定理直接能求出动能和速率.(3) 在求最低点的张力时,可根据小球作圆周运动时的向心加速度由重力和张力提供来确定.解 (1) 如图所示,重力对小球所作的功只与始末位置有关,即 ()J 53.0cos 1Δ=-==θmgl h P W P在小球摆动过程中,张力F T 的方向总是与运动方向垂直,所以,张力的功s F d T T ⋅=⎰W(2) 根据动能定理,小球摆动过程中,其动能的增量是由于重力对它作功的结果.初始时动能为零,因而,在最低位置时的动能为J 53.0k k ==E E 小球在最低位置的速率为 1P K s m 30.222-⋅===mW m E v(3) 当小球在最低位置时,由牛顿定律可得l m P F 2T v =- N 49.22T =+=lm mg F v 3-22 分析 质点在运动过程中速度的减缓,意味着其动能减少;而减少的这部分动能则消耗在运动中克服摩擦力作功上.由此,可依据动能定理列式解之.解 (1) 摩擦力作功为20202k 0k 832121v v v m m m E E W -=-=-= (1) (2) 由于摩擦力是一恒力,且F f =μmg ,故有mg μr πs F W 2180cos o f -== (2)由式(1)、(2)可得动摩擦因数为rgπμ16320v = (3) 由于一周中损失的动能为2083v m ,则在静止前可运行的圈数为 34k0==W E n 圈 3-23 分析 运用守恒定律求解是解决力学问题最简捷的途径之一.因为它与过程的细节无关,也常常与特定力的细节无关.“守恒”则意味着在条件满足的前提下,过程中任何时刻守恒量不变.在具体应用时,必须恰当地选取研究对象(系统),注意守恒定律成立的条件.该题可用机械能守恒定律来解决.选取两块板、弹簧和地球为系统,该系统在外界所施压力撤除后(取作状态1),直到B 板刚被提起(取作状态2),在这一过程中,系统不受外力作用,而内力中又只有保守力(重力和弹力)作功,支持力不作功,因此,满足机械能守恒的条件.只需取状态1 和状态2,运用机械能守恒定律列出方程,并结合这两状态下受力的平衡,便可将所需压力求出.解 选取如图(b)所示坐标,取原点O 处为重力势能和弹性势能零点.作各状态下物体的受力图.对A 板而言,当施以外力F 时,根据受力平衡有F 1 =P 1 +F (1)当外力撤除后,按分析中所选的系统,由机械能守恒定律可得2221212121mgy ky mgy ky +=-式中y 1 、y 2 为M 、N 两点对原点O 的位移.因为F 1 =ky 1 ,F 2 =ky 2 及P 1 =m 1g ,上式可写为F 1 -F 2 =2P 1 (2)由式(1)、(2)可得F =P 1 +F 2 (3)当A 板跳到N 点时,B 板刚被提起,此时弹性力F ′2 =P 2 ,且F 2 =F ′2 .由式(3)可得 F =P 1 +P 2 =(m 1 +m 2 )g应注意,势能的零点位置是可以任意选取的.为计算方便起见,通常取弹簧原长时的弹性势能为零点,也同时为重力势能的零点.3-24 分析 矿车在下滑和返回的全过程中受到重力、弹力、阻力和支持力作用.若取矿车、地球和弹簧为系统,支持力不作功,重力、弹力为保守力,而阻力为非保守力.矿车在下滑和上行两过程中,存在非保守力作功,系统不满足机械能守恒的条件,因此,可应用功能原理去求解.在确定重力势能、弹性势能时,应注意势能零点的选取,常常选取弹簧原长时的位置为重力势能、弹性势能共同的零点,这样做对解题比较方便.解 取沿斜面向上为x 轴正方向.弹簧被压缩到最大形变时弹簧上端为坐标原点O .矿车在下滑和上行的全过程中,按题意,摩擦力所作的功为W f =(0.25mg +0.25m ′g )(l +x ) (1)式中m ′和m 分别为矿车满载和空载时的质量,x 为弹簧最大被压缩量.根据功能原理,在矿车运动的全过程中,摩擦力所作的功应等于系统机械能增量的负值,故有W f =-ΔE =-(ΔE P +ΔE k )由于矿车返回原位时速度为零,故ΔE k=0;而ΔE P =(m -m ′) g (l +x ) sin α,故有W f =-(m -m ′) g (l +x ) sin α (2)由式(1)、(2)可解得31='m m 3-25 分析 由于两次锤击的条件相同,锤击后钉子获得的速度也相同,所具有的初动能也相同.钉子钉入木板是将钉子的动能用于克服阻力作功,由功能原理可知钉子两次所作的功相等.由于阻力与进入木板的深度成正比,按变力的功的定义得两次功的表达式,并由功相等的关系即可求解.解 因阻力与深度成正比,则有F =kx (k 为阻力系数).现令x 0=1.00 ×10 -2 m,第二次钉入的深度为Δx ,由于钉子两次所作功相等,可得⎰⎰+=x x x x x kx x kx Δ0000d d Δx =0.41 ×10 -2 m3-26 分析 根据势能和动能的定义,只需知道卫星的所在位置和绕地球运动的速率,其势能和动能即可算出.由于卫星在地球引力作用下作圆周运动,由此可算得卫星绕地球运动的速率和动能.由于卫星的引力势能是属于系统(卫星和地球)的,要确定特定位置的势能时,必须规定势能的零点,通常取卫星与地球相距无限远时的势能为零.这样,卫星在特定位置的势能也就能确定了.至于卫星的机械能则是动能和势能的总和.解 (1) 卫星与地球之间的万有引力提供卫星作圆周运动的向心力,由牛顿定律可得()E 22E E 33R m R m m G v = 则 EE 2K 621R m m G m E ==v (2) 取卫星与地球相距无限远(r →∞)时的势能为零,则处在轨道上的卫星所具有的势能为EE P 3R m m G E -= (3) 卫星的机械能为EE E E E E P K 636R m m G R m m G R m m G E E E -=-=+= 3-27 分析 取冰块、屋面和地球为系统,由于屋面对冰块的支持力FN 始终与冰块运动的方向垂直,故支持力不作功;而重力P 又是保守内力,所以,系统的机械能守恒.但是,仅有一个机械能守恒方程不能解出速度和位置两个物理量;因此,还需设法根据冰块在脱离屋面时支持力为零这一条件,由牛顿定律列出冰块沿径向的动力学方程.求解上述两方程即可得出结果.解 由系统的机械能守恒,有θmgR m mgR cos 212+=v (1) 根据牛顿定律,冰块沿径向的动力学方程为Rm F θmgR 2N cos v =- (2) 冰块脱离球面时,支持力F N =0,由式(1)、(2)可得冰块的角位置o θ2.4832arccos == 冰块此时的速率为32cos Rg θgR ==vv 的方向与重力P 方向的夹角为 α=90°-θ =41.8°3-28 分析 若取小球、弹簧和地球为系统,小球在被释放后的运动过程中,只有重力和弹力这两个保守内力作功,轨道对球的支持力不作功,因此,在运动的过程中,系统的机械能守恒.运用守恒定律解题时,关键在于选好系统的初态和终态.为获取本题所求的结果,初态选在压缩弹簧刚被释放时刻,这样,可使弹簧的劲度系数与初态相联系;而终态则取在小球刚好能通过半圆弧时的最高点C 处,因为这时小球的速率正处于一种临界状态,若大于、等于此速率时,小球定能沿轨道继续向前运动;小于此速率时,小球将脱离轨道抛出.该速率则可根据重力提供圆弧运动中所需的向心力,由牛顿定律求出.这样,再由系统的机械能守恒定律即可解出该弹簧劲度系数的最小值.解 小球要刚好通过最高点C 时,轨道对小球支持力F N =0,因此,有rm mg c 2v = (1) 取小球开始时所在位置A 为重力势能的零点,由系统的机械能守恒定律,有()()22213Δ21c m r mg l k v += (2) 由式(1)、(2) 可得 ()12m N 366Δ7-⋅==l mgr k 3-29 分析 这也是一种碰撞问题.碰撞的全过程是指小球刚与弹簧接触直至弹簧被压缩到最大,小球与靶刚好到达共同速度为止,在这过程中,小球和靶组成的系统在水平方向不受外力作用,外力的冲量为零,因此,在此方向动量守恒.但是,仅靠动量守恒定律还不能求出结果来.又考虑到无外力对系统作功,系统无非保守内力作功,故系统的机械能也守恒.应用上述两个守恒定律,并考虑到球与靶具有相同速度时,弹簧被压缩量最大这一条件,即可求解.应用守恒定律求解,可免除碰撞中的许多细节问题.解 设弹簧的最大压缩量为x 0 .小球与靶共同运动的速度为v 1 .由动量守恒定律,有 ()1v v m m m '+= (1)又由机械能守恒定律,有()20212212121kx m m m +'+=v v (2) 由式(1)、(2)可得 ()v m m k m m x '+'=0 3-30 分析 该题可分两个过程分析.首先是弹丸穿越摆锤的过程.就弹丸与摆锤所组成的系统而言,由于穿越过程的时间很短,重力和的张力在水平方向的冲量远小于冲击力的冲量,因此,可认为系统在水平方向不受外力的冲量作用,系统在该方向上满足动量守恒.摆锤在碰撞中获得了一定的速度,因而具有一定的动能,为使摆锤能在垂直平面内作圆周运动,必须使摆锤在最高点处有确定的速率,该速率可由其本身的重力提供圆周运动所需的向心力来确定;与此同时,摆锤在作圆周运动过程中,摆锤与地球组成的系统满足机械能守恒定律,根据两守恒定律即可解出结果.解 由水平方向的动量守恒定律,有v v v ''+=m m m 2(1) 为使摆锤恰好能在垂直平面内作圆周运动,在最高点时,摆线中的张力F T=0,则lm g m h 2v ''=' (2) 式中v ′h 为摆锤在圆周最高点的运动速率.又摆锤在垂直平面内作圆周运动的过程中,满足机械能守恒定律,故有221221h m gl m m v v ''+'='' (3) 解上述三个方程,可得弹丸所需速率的最小值为glm m 52'=v 3-31 分析 对于粒子的对心弹性碰撞问题,同样可利用系统(电子和氢原子)在碰撞过程中所遵循的动量守恒和机械能守恒来解决.本题所求电子传递给氢原子的能量的百分数,即氢原子动能与电子动能之比e H /E E .根据动能的定义,有2e 2H e H //v v m m E E '=,而氢原子与电子的质量比m ′/m 是已知的,它们的速率比可应用上述两守恒定律求得, e H /E E 即可求出.解 以E H 表示氢原子被碰撞后的动能, E e 表示电子的初动能,则2e H 2e 2H e H 2121⎪⎪⎭⎫ ⎝⎛'=''=v v v v m m m m E E (1) 由于粒子作对心弹性碰撞,在碰撞过程中系统同时满足动量守恒和机械能守恒定律,故有e H e m m m v v v '+'= (2)2e 2H 2e 212121v v v '+'=m m m (3) 由题意知m ′/m =1 840,解上述三式可得322e H e H 102.221840-⨯≈⎪⎭⎫ ⎝⎛+'=⎪⎪⎭⎫ ⎝⎛'=m m m m m E E v v 3-32 分析 这是粒子系统的二维弹性碰撞问题.这类问题通常采用守恒定律来解决.因为粒子系统在碰撞的平面内不受外力作用,同时,碰撞又是完全弹性的,故系统同时满足动量守恒和机械能守恒.由两守恒定律方程即可解得结果.。

(完整版)大学物理课后习题答案详解

(完整版)大学物理课后习题答案详解

第一章质点运动学1、(习题1.1):一质点在xOy 平面内运动,运动函数为2x =2t,y =4t 8-。

(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。

解:(1)由x=2t 得,y=4t 2-8 可得: y=x 2-8 即轨道曲线 (2)质点的位置 : 22(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j =则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8ri j v i j a j =+=+=2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速度为0v ,求运动方程)(t x x =.解:kv dt dv-= ⎰⎰-=t vv kdt dv v 001 tk e v v -=0t k e v dtdx-=0 dt ev dx tk tx-⎰⎰=000)1(0t k e kv x --=3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ⎰⎰=vv 0d 4d tt t v 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020⎰⎰= x 2= t 3 /3+10 (SI)4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的d d r t ,d d v t ,tv d d . 解:(1) t v x 0= 式(1)2gt 21h y -= 式(2) 201()(h -)2r t v t i gt j =+(2)联立式(1)、式(2)得 22v 2gx h y -=(3)0d -gt d rv i j t = 而落地所用时间 gh2t = 所以 0d -2gh d r v i j t =d d v g j t=- 2202y 2x )gt (v v v v -+=+= 2120212202)2(2])([gh v gh g gt v t g dt dv +=+=5、 已知质点位矢随时间变化的函数形式为22r t i tj =+,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。

大学物理学(第三版)上课后习题答案

大学物理学(第三版)上课后习题答案

第一章运动的描述1-1 ||与有无不同?和有无不同? 和有无不同?其不同在哪里?试举例说明.解:(1)是位移的模,是位矢的模的增量,即,;(2)是速度的模,即.只是速度在径向上的分量.∵有(式中叫做单位矢),则式中就是速度径向上的分量,∴不同如题1-1图所示.题1-1图(3)表示加速度的模,即,是加速度在切向上的分量.∵有表轨道节线方向单位矢),所以式中就是加速度的切向分量.(的运算较复杂,超出教材规定,故不予讨论)1-2 设质点的运动方程为=(),=(),在计算质点的速度和加速度时,有人先求出r=,然后根据 =,及=而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即=及=你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有,故它们的模即为而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作其二,可能是将误作速度与加速度的模。

在1-1题中已说明不是速度的模,而只是速度在径向上的分量,同样,也不是加速度的模,它只是加速度在径向分量中的一部分。

或者概括性地说,前一种方法只考虑了位矢在径向(即量值)方面随时间的变化率,而没有考虑位矢及速度的方向随间的变化率对速度、加速度的贡献。

1-3 一质点在平面上运动,运动方程为=3+5, =2+3-4.式中以 s计,,以m计.(1)以时间为变量,写出质点位置矢量的表示式;(2)求出=1 s 时刻和=2s 时刻的位置矢量,计算这1秒内质点的位移;(3)计算=0 s时刻到=4s时刻内的平均速度;(4)求出质点速度矢量表示式,计算=4 s 时质点的速度;(5)计算=0s 到=4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算=4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式).解:(1)(2)将,代入上式即有(3)∵∴(4)则(5)∵(6)这说明该点只有方向的加速度,且为恒量。

大学物理课后习题答案上册和下册

大学物理课后习题答案上册和下册

大学物理习题及解答习题一1-1 |r ∆|与r ∆有无不同?t d d r 和t d d r 有无不同? t d d v 和t d d v有无不同?其不同在哪里?试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r -=∆; (2)t d d r 是速度的模,即t d d r ==v tsd d . t rd d 只是速度在径向上的分量.∵有r r ˆr =(式中r ˆ叫做单位矢),则t ˆr ˆt r t d d d d d d r rr += 式中t rd d 就是速度径向上的分量,∴t r t d d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即t v a d d =,t v d d 是加速度a 在切向上的分量. ∵有ττ (v =v 表轨道节线方向单位矢),所以t v t v t v d d d d d d ττ +=式中dt dv就是加速度的切向分量.(t tr d ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t rd d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=,jt y i t x t r a jt y i t x t r v222222d d d d d d d d d d d d +==+==∴故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x y x而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d t r a trv ==其二,可能是将22d d d d t r tr 与误作速度与加速度的模。

大学物理(武汉大学出版社)课堂练习答案

大学物理(武汉大学出版社)课堂练习答案

课堂练习答案February16,2014第一章质点力学1.1找出下列表达式中的错误,写出正确表达:(1)r=x+y解答:r=x i+y j(2)v=v x i+v y j解答:v=v x i+v y j(3)v=v x i+v y j解答:v=v x i+v y j(4)v=v x i+v y j解答:v=v x i+v y j(5)v=(v2x+v2y+v2z)1/2解答:v=(v2x+v2y+v2z)1/21.2已知r=2t i−4t2j,第1秒内的位移Δr=2i−4j,任意时刻的速度v(t)=2i−8t j,加速度a(t)=−8j,轨迹方程为y=−x21.3平抛物体的运动学方程x=5t,y=5t2,则任意时刻的位矢r=5t i+5t2j,速度v(t)=5i+10t j,加速度a(t)=10j,轨道方程为x2=5y1.4直线运动的点,其速度v(t)=e−t,初始位置为x0=2,则x(t)=3−e−t解答:x(t)=x0+ˆt0e−t d t=2+(−e−t)t=2+(−e−t+1)1.5从地面上抛一个物体,其高度h=10t−5t2,任意时刻的速度v(t)=10−10t,到达最高点的时刻是t=1解答:从物理⾓度来看,在最⾼点处,物体的速度为零v=d h/d t=10−10t=0,得t=1.从数学⾓度理解,h(t)是时间的函数,该函数取得极値的条件是d h/d t=0.1.6判定正误:(1)直线运动的物体达到最小速度时,加速度一定为零;·································[✓](2)直线运动的物体达到最大位置时,速度一定为零;···································[✓] 1.7选择:若质点的位矢为r,速度为v,速率为v,路程为s,则必有【B】A.|Δr|=Δs=ΔrB.|Δr|=Δs=Δr,当Δt→0时,有|d r|=d s=d rC.|Δr|=Δs=Δr,当Δt→0时,有|d r|=d r=d sD.|Δr|=Δs=Δr,当Δt→0时,有|d r|=d r=d s1.8选择:根据上题的符号,则必有【C】A.|v|=v,|v|=v B.|v|=v,|v|=vC.|v|=v,|v|=v D.|v|=v,|v|=v1.9选择:质点在某瞬时位于位矢r=(x,y)处,其速度大小v的计算错误的为【A】A.d rd tB.d rd tC.d sd tD.√(d xd t)2+(d yd t)21.10直径为40cm的定滑轮上缠绕着一条细钢丝绳,绳的另一端吊着一个重物,若某时刻重物下落的加速度为1m/s2,速度为0.3m/s,则此刻滑轮的角加速度为5rad/s2,角速度为1.5rad /s解答:物体下落的距离等于滑轮边缘转动的距离,物体下落的速度就是滑轮边缘的线速度,物体下落的加速度等于滑轮边缘的切线加速度.1.11半径为0.1m 的轨道上有一个质点,它的角位置θ=π+t 2,则任意时刻的切线加速度a t =0.2,法线加速度a n =0.4t 2解答:ω=d θd t =2t ,β=d ωd t =2,a t =R β,a n =R ω21.12半径为1m 的轨道上有一个质点,它的路程s =2t −0.5t 2,则任意时刻的切线加速度a t =−1,法线加速度a n =(2−t )2解答:v =d s d t =2−t ,a t =d v d t =−1,a n =v 2R 1.13判定正误:(1)以圆心为坐标原点的圆周运动满足d r/d t =0且d r /d t =0;··························[✓](2)匀速率圆周运动满足d v/d t =0且d v /d t =0;...........................................[×](3)匀速率曲线运动满足d v/d t =0且d v /d t =0;·····································[✓](4)法线加速度的效果是改变速度的方向;·············································[✓](5)切线加速度的效果是改变速度的大小;·············································[✓](6)圆周运动中,若a n 是常量,则a t 为零;············································[✓](7)圆周运动中,若a t 是常量,则a n 也是常量;...............................................[×]1.14物体下落,受到重力mg 以及空气阻力f =kv ,则终极速度v T =mg/k ,若阻力f =kv 2,则终极速度v T =√mg/k1.15判定正误:(1)物体质量越大,惯性越大;·······················································[✓](2)物体的速度越大,惯性越大;.............................................................[×]1.16选择:用水平力F N 把一个物体压着靠在粗糙的竖直墙面上保持静止,当F N 逐渐增大时,物体所受的静摩擦力F f 的大小【A 】A .不为零,但保持不变;B .随F N 成正比地增大;C .达到某一最大值后,就保持不变;1.17选择:一段路面水平的公路,转弯处轨道半径为R ,汽车轮胎与路面间的摩擦因数为μ,要使汽车不至于发生侧向打滑,汽车在该处的行驶速率【C 】A .不得小于√μgR ;B .必须等于√μgR ;C .不得大于√μgR ;D .还需汽车的质量m 决定;1.18选择:小物体沿固定的圆弧形光滑轨道由静止下滑,在下滑过程中【B 】A .它的加速度方向永远指向圆心,速率不变;B .轨道的支撑力的大小不断增加;C .它受到的合外力大小变化,方向永远指向圆心;D .它受到的合外力大小不变,速率不断增加;1.19在东北天坐标系中,A 车向东运动v A =2i m /s ,B 车向北运动,v B =3j m /s ;则B 相对于A 的速度v BA =(3j −2i )m /s1.20稳定的南风风速v 1=2m /s ,某人向西快跑,速率v 2=4m /s .此人感受到的风速大小为√22+42=√20m /s解答:南风是由南向北吹的,⼈是由东向⻄跑,⼆者的速度是相互垂直的.⼈感受的风速是风相对于⼈的速度,即v风⼈=v风−v⼈,v风⼈=√v2风+v2⼈1.21火车沿着直线铁路以30m/s的速率匀速行驶,车厢内的一名乘务员从车头走向车尾,速率为1m/s,乘务员相对于地面的速度大小为29m/s1.22飞船点火起飞时,航天员会感受到大于其体重数倍的重力,这个现象称为超重;在环绕地球的太空舱内,宇航员可以自由漂移,这个现象叫做失重1.23质量为2kg的质点沿直线运动,速度由1m/s增加至3m/s,则外力的冲量大小为4N·s1.24细绳将一个质量为m的小球悬挂在天花板下,球在水平面内匀速圆周运动,周期为T,在小球运行一周的过程中,重力的冲量为|I|=mgT,动量的增量为|Δp|=01.25质量为m的物体以初速度v0,仰角30◦斜上抛,到达最高点.在此过程中,动量的增量为|Δp|=mv0sin30◦,重力的冲量为|I|=mv0/21.26光滑的冰面上由两个物体A,B,m A=3g,v A=(i+2j)m/s,m B=5g,v B=(9i+2j)m/s,两物体碰撞后粘为一体,其共同速度v=(6i+2j)m/s1.27直接用手按钉子,很难将其钉入木头内;若首先用5N的力挥动锤子2s,则锤子获得的动量大小为10N·s;若该运动的锤子敲击钉子,与钉子之间的相互作用持续2ms,则锤子与钉子之间的作用力大小为5kN.1.28升降梯将重100N的物体从地面送达高为10m的楼顶,花费了3s的时间.在此过程中,重力的冲量|I|=300N·s,重力做功W=−1000J,此物体的重力势能增加量ΔE p=1000J1.29水平路面上两个点A、B的距离为2m,某物体重500N,与地面的摩擦系数为0.2,物体由A运动至B.若物体沿着直线以3m/s的速度运动,摩擦力做功W f=−200J;若物体沿着直线以5m/s的速度运动,摩擦力做功W f=−200J;若物体沿着长度为4m的曲线运动,摩擦力做功W f=−400J1.30海水中两个点A、B的距离为2m,鱼受到正比于速度的阻力f=0.1v,由A运动至B.若鱼沿着直线以3m/s的速度运动,流体阻力做功W f=−0.6J;若鱼沿着直线以5m/s的速度运动,流体阻力做功W f=−1.0J;若鱼沿着长度为4m的曲线以5m/s的速度运动,摩擦力做功W f=−2.0J1.31判定正误:(1)沿着闭合路径,保守力做功等于零;···············································[✓](2)保守力做功与运动路径无关;·····················································[✓](3)保守力做正功,系统的势能减小;·················································[✓](4)沿着保守力方向移动物体,物体的势能减小;·······································[✓](5)非保守力的功一定为负值;...............................................................[×] 1.32质量为2kg的质点,速率由1m/s增加至2m/s,则外力做功的大小为3J1.33外力的冲量等于质点系统动量的增量.所有作用力的功,等于系统动能的增量.保守力做的功,等于系统势能的减少量.非保守力做的功,等于系统机械能的增量.1.34判定正误:(1)保守力做负功,则系统的机械能一定减小;................................................[×](2)非保守力做负功,系统的势能一定增大;..................................................[×](3)非保守力做负功,系统的机械能一定减小;·········································[✓](4)一对相互作用内力能够改变系统的总动量;...............................................[×](5)一对相互作用内力能够增加系统的总动能;·········································[✓](6)作用力和反作用力大小相等方向相反,两者所作功的代数和必为零;.......................[×]课堂练习答案February 16,2014第二章连续介质力学2.1刚体的基本运动形式有平动和转动两种基本类型.2.2质量为m 的质点沿着半径为r 的圆周以角速度ω转动,其转动惯量J =mr 2.2.3质量为m ,半径为r 的均匀圆盘绕垂直于盘面的中心轴转动,转动惯量为12mr 2;质量为m ,长度为l 的细棒,对于过端点且垂直于棒的轴的转动惯量为13ml 2;质量为m ,长度为l 的细棒,对于过中点且垂直于棒的轴的转动惯量为112ml 2.2.4转动惯量为25kg ·m 2、半径为0.5m 的定滑轮绕中心轴转动,其边缘受到10N 的切向摩擦阻力,阻力矩的大小为5N ·m,其角加速度的大小为0.2s −2.2.5判定正误:(1)刚体受到的合外力不为零,则合外力矩一定不为零;..........................[×](2)若外力穿过转轴,则它产生的力矩为零;································[✓](3)若外力平行于转轴,则它对转轴的力矩为零;····························[✓]2.6判定正误:有两个力作用在一个有固定转轴的刚体上,则(1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;·················[✓](2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;·················[✓](3)当这两个力的合力为零时,它们对轴的合力矩也一定是零;....................[×](4)当这两个力对轴的合力矩为零时,它们的合力也一定是零;....................[×]2.7质量m 速率v 的质点做半径为r 的匀速率圆周运动,其角动量大小为mvr.2.8质量m 速率v 的质点沿着x 轴做匀速率直线运动,它相对于坐标点(x,y )的角动量大小为mvy .2.9某恒星诞生之初的转动惯量为J ,角速度为ω.当燃料耗尽之后坍塌为白矮星,转动惯量为J/4,此时其转动角速度为4ω.2.10已知地球在近日点时距离太阳r 1,速率v 1,在远日点时距离太阳r 2,则速率v 2=v 1r 1/r 2.2.11判定正误:(1)刚体内部的相互作用力不能改变刚体的角动量;··························[✓](2)若刚体的角动量守恒,则刚体所受合外力为零;...............................[×](3)若外力平行于转轴,则刚体的角动量守恒;······························[✓](4)若外力的延长线穿过转轴,则刚体角动量守恒;··························[✓]2.12判定正误:(1)对某个定轴转动刚体而言,内力矩不会改变刚体的角加速度;···············[✓](2)一对作用力和反作用力对同一轴的力矩之和必为零;······················[✓](3)质量相等而形状不同的两个刚体,受相同力矩,角加速度一定相同;...........[×]课堂练习答案第2章连续介质力学2.13选择:均匀细棒OA 可绕O 端自由转动,使棒从水平位置由静止开始自由下摆,在下摆过程中,则必有【D 】A .角速度从小到大,角加速度不变B .角速度从小到大,角加速度从小到大C .角速度不变,角加速度为零D .角速度从小到大,角加速度从大到小2.14转动惯量为J ,角速度为ω的定轴转动的刚体,其角动量为J ω,转动能量为12J ω2.2.15转动惯量为9.0kg ·m 2的定滑轮受到18N ·m 的力矩作用而转过了3.1rad ,则滑轮的角加速度为2.0rad /s 2,力矩做功56J .2.16某发动机铭牌上标注转速为4000rpm 时,输出扭矩为60.5N ·m ,则此刻发动机的功率为25.3kW (rpm 的意思是revolutions per minute ).2.17选择:假设卫星环绕地球中心作椭圆运动,则在运动过程中【B 】A .角动量守恒,动能守恒B .角动量守恒,机械能守恒C .角动量不守恒,机械能守恒D .角动量守恒,动量也守恒E .角动量不守恒,动量也不守恒2.18杆件的变形种类可以分为伸缩、剪切、弯曲、扭转四种.2.19用10N 的拉力拽一条横截面为2mm 2的铁丝,则铁丝内部横截面上的正应力大小为5MPa .2.20长度为2m 、横截面积为2mm 2的细钢丝,受到300N 的拉力后,长度增加了1.5mm .则钢丝的正应变为7.5×10−4,正应力等于1.5×108Pa ,杨氏模量为2×1011Pa .2.21上海环球金融中心大楼主体部分高度约400m ,其顶部在大风中摇摆的幅度约1m ,若将此视为剪切形变,则剪切应变为2.5×10−3.2.22一段自来水管,前半截直径为4cm ,流速为2m /s ;后半截直径为2cm ,则流速为8m /s .课堂练习答案February 16,2014第三章静电场3.1近距作用观点认为,电荷之间的相互作用力是通过电场来传递的.3.2真空中的直角坐标系上有三点A (x 1,0)、B (0,y 2)及C (0,0),在A 点放置点电荷q 1,B 点放置点电荷q 2,问C 点处的场强大小为14πε0√q 21/x 41+q 22/y 42.3.3在坐标(x,0)处有一点电荷q 1,在(0,y )处有另一点电荷q 2,则q 1与q 2之间的电场力大小为14πε0q 1q 2x 2+y 2.3.4一根很细的均匀带电量为Q (Q >0)的塑料棒弯成半径为R 的圆环,接口处留有宽为Δl 的空隙(Δl ≪R ),求环心处电场强度的大小和方向.解答:Q Δl 8π2ε0R 33.5在均匀电场E 中放入一个面积为A 的平板.若电场与平板垂直,则穿过平板的电通量大小为EA ;若电场与平板平行,则电通量大小为0.3.6某带电直线长度为2h ,电荷线密度为+λ,以直线的一个端点为中心,h 为半径作一个球面,则通过该球面的总电通量为d λ/ε0.3.7电量为q 的点电荷位于一立方体的中心,立方体边长为a ,则通过立方体一个面的电通量是q/(6ε0);如果把这个点电荷放到一个半球面的球心处,则通过半球面的电通量是q/(2ε0).3.8均匀带电球面内部的场强大小为0;电荷面密度为σ的无限大均匀带电平面周围的场强大小为σ/(2ε0);电荷线密度为λ的无限长带电直线周围,与直线距离为r 的位置的场强大小为λ/(2πε0r ).3.9下列说法是否正确?为什么?(1)闭合曲面上各点场强为零时,该曲面的电通量必为零;·······························[✓](2)闭合曲面的总电通量为零,该曲面上各点的场强必为零;..................................[×](3)闭合曲面的总电通量为零,该曲面内必没有带电物体;.....................................[×](4)闭合曲面内没有带电物体,曲面的总电通量必为零;·································[✓](5)闭合曲面内净电量为零,曲面的电通量必为零;·····································[✓](6)闭合曲面的电通量为零,曲面内净电量必为零;·····································[✓](7)闭合曲面上各点的场强仅由曲面内的电荷产生;...........................................[×](8)高斯定理的适用条件是电场必须具有对称性;.............................................[×](9)若电场线从某处进入闭合曲面,则该处的电通量为正值...................................[×]3.10两块相互平行的金属板之间存在着均匀电场E ,距离为l ,则两金属板之间的电势差为El.3.11与孤立点电荷q 距离为r 的点,其电势为q/4πε0r;孤立的均匀带电球面半径为R ,电量为q ,其内部空间的电势为q/4πε0R .3.12在边长为a 的正方体中心处放置一点电荷Q ,设无穷远处为电势零点,则在正方体顶角处的电势为Q 2√3πε0a.3.13一对等量异号点电荷的电量分别为±q ,两者之间的距离为2l ,则它们连线中点的场强为q/2πε0l 2,电势为0.3.14沿着电场线的正方向,电势减小,正电荷的电势能减小,负电荷的电势能增加(填写“增加”或“减小”).3.15在电压为U 的两点之间移动电量为Q 的电荷,电场力做功|W |=QU .课堂练习答案第3章静电场3.16在夏季雷雨中,通常一次闪电过程中两点间的平均电势差约为100MV,通过的电量约为30C.一次闪电消耗的能量是3×109J.3.17真空中两个电量分别为q1,q2的点电荷,距离为l,它们之间的相互作用电势能为q1q24πε0l.3.18一个残缺的塑料圆环,携带净电量q,半径为r,环心处的电势为q/4πε0r.3.19判定正误:(1)电场强度相等的位置电势相等;..........................................................[×](2)同一个等势面上的电场强度大小相等;....................................................[×](3)某区域内电势为常量,则该区域内电场强度为零;···································[✓](4)电势梯度大的位置电场强度大;···················································[✓](5)电场线与等势面必然正交.······················································[✓] 3.20设真空电场中的电势分布用U表示,将一个电量为q的点电荷放入电场中,电势能用E p表示,判定下列说法的正误:(1)将电荷q从A点移动至无穷远,电场力做功等于qU A;·······························[✓](2)将电荷q从无穷远处移动至A点,电场力做功等于E p A;..................................[×](3)将电荷q从A点移动至B点,电场力做功等于qU AB;································[✓](4)将电荷q从A点移动至B点,电场力做功等于E p B−E p A;................................[×](5)缓慢移动电荷q,外力做的功等于电势能的减小量;.......................................[×] 3.21静电平衡时,导体内部任意一点的总电场强度大小为零,整个导体中任意位置的电势都相等,导体上的电荷只能分布在表面上.3.22地球可以看作是一个良好的导体,现在已知地球表面附近的电场强度近似为100V/m,方向指向地球中心,则地球表面的电荷密度为−100ε0.3.23判断正误:(1)实心导体内部空间是等电势体,但是表面不一定是等势面;................................[×](2)空腔导体的内表面(空腔表面)上不会有净电荷;...........................................[×](3)若导体空腔内无电荷,则空腔与导体是等电势的;···································[✓](4)导体空腔表面的感应电荷量一定与空腔内部的总电荷量等值异号;·····················[✓](5)导体表面附近的电场线一定与表面正交.··········································[✓] 3.24简答:静电屏蔽的含义是什么?有哪些类型的应用?3.25空气中面积为A,极板距离为d的平行板电容器,其电容为ε0A/d.3.26真空中的电容器的电压为U,电容为C,则其存储的电场能为W e=CU2/2.3.27真空静电场的能量密度表达式为w e=ε0E2/2.3.28有一平行板电容器,保持板上电荷量不变(充电后切断电源),现在使两极板间的距离d增大,则极板间的电场强度不变,电压增大,电容减小.(填写“增大”、“减小”或“不变”)3.29无极分子的电极化方式为位移极化,有极分子的电极化方式主要为转向极化.3.30电介质的极化现象与导体的静电感应现象有什么相似之处?3.31面积为S,极板距离为d的平行板电容器填充了相对介电常数为εr的均匀电介质后,平行板电容器的电容表达式为ε0εr S/d.4.1电量为q 的粒子以角速度ω做圆周运动,它形成的等效电流强度I =ωq/(2π).4.2无限长的直导线载有电流I ,距离导线x 处的磁感应强度大小为μ0I 2πx;沿着直线运动的电荷,其运动的正前方的磁感应强度大小为0.4.3相互平行的直导线之间距离为d ;电流大小都是I ,方向相反;则两导线中点位置的磁场B =2μ0I πd .4.4半径为R 的单匝环形导线载有电流I ,环心处的磁感应强度大小为μ0I 2R;该电流的磁矩大小为πR 2I .4.5半径为R 的两个单匝圆形线圈正交放置,其圆心重合.若两个线圈中的电流大小都是I ,则圆心处的磁场B =√2μ0I 2R,两个电流环的总磁矩大小为√2πR 2I .4.6边长为0.1m ,匝数为1000的正方形线圈,通电0.5A ,其磁矩大小为5A ·m 2.4.7下图中两导线中的电流绝对值分别为I 1,I 2,写出下列环路积分的值˛L 1B ·d l =μ0I 1˛L 2B ·d l =−μ0I 2˛L 3B ·d l =μ0(I 2−I 1)4.8如下图所示,直线电流I 从立方体的两个相对表面的中心穿过,则下列积分分别等于˛abcda B ·d l =0¨abcd B ·d S =0˛bcgfb B ·d l =μ0I ¨bcgf B ·d S =04.9无限长的空心直螺线管,线圈数密度为n ,横截面积为S ,载流I ,则其管内的磁场B =μ0nI ,横截面上的磁通量为μ0nIS .4.10一个电子以速度v =(5×104j )m /s 射入均匀磁场B =(0.4i +0.5j )T 中,受到的洛仑兹力F =3.2×10−15k N4.11判断正误:(1)均匀磁场不会改变带电粒子的速率;···············································[✓](2)非均匀磁场的洛仑兹力能够对运动电荷做正功;...........................................[×](3)受到洛仑兹力后,带电粒子的动能和动量都不变..........................................[×]4.12判断正误:(1)闭合载流线圈在均匀磁场中受到的总磁场力为零;···································[✓](2)闭合载流线圈在均匀磁场中受到的磁力矩为零;...........................................[×](3)电流方向相同的平行直导线相互吸引;·············································[✓](4)载流长直螺线管中的多匝线圈之间相互排斥..............................................[×]4.13磁介质按照磁化率可以分为顺磁质、抗磁质、铁磁质三类.4.14铁磁材料按照磁滞回线的形状可以分为硬磁材料、软磁材料两类.5.1如下图所示,导线回路L的形状不变,而其位置正在发生移动.根据楞次定律判定各回路中是否有感应电流;若有,请用箭头标记其环绕方向.5.2如下图所示,导线回路L的形状与位置皆不变.图(a)、图(b)中电流I正在增大;图(c)、图(d)中的磁棒正在运动.根据楞次定律判定各回路中是否有感应电流;若有,请用箭头标记其环绕方向.5.3边长D=0.1m的单匝正方形导线框绕其对角线以3000rev/min的角速度转动,均匀磁场B=1mT 与其转轴垂直.则导线框中的最大磁通量为10−5Wb,最大电动势为3.14mV.5.4判定正误:(1)电动势可以由保守力来担当;.............................................................[×](2)静电力不可能担当电动势的角色;·················································[✓](3)在一个孤立的电池内部,电动势与静电力的方向相反;·······························[✓] 5.5感应电动势分为两类:导体在磁场中运动产生的电动势叫做动生电动势,磁场分布随时间变化引起的电动势称为感生电动势.5.6动生电动势的实质是运动电荷受洛仑兹力的结果;感生电动势则来源于感生电场,而感生电场是由变化的磁场所激发的.5.7在均匀的磁场B中,一条长度为l的铁棒以速率v运动,铁棒两端能够产生的最大电压值为Blv伏,最小电压值为0伏.5.8判定正误:(1)感生电场是由电荷产生的;...............................................................[×](2)感生电场是保守场;.....................................................................[×](3)空间中没有磁场的位置一定没有感生电场................................................[×] 5.9条形磁铁平行于大块的金属平板移动,其N极朝向金属平板,定性的画出磁铁N极附近的涡流与磁铁运动方向之间的关系.5.10某电路的电流变化引发周围另外一个电路中产生电流,此现象叫做互感.5.11自感系数为L的线圈,通过电流I,则其储存的磁能是LI2/2.5.12有两个半径相接近的圆线圈,问如何放置方可使其互感最小?如何放置可使其互感最大?解答:共⾯同⼼放置互感⼤;相互垂直放置互感为零.5.13用康铜丝绕成的标准电阻要求没有自感,问怎样绕制方能使其自感为零?试说明其理由.5.14位移电流的实质是什么?位移电流与传导电流有什么不同?解答:变化的电场;第六章振动和波动6.1已知某质点在x 轴上运动,用国际单位制表示为x =2cos (100πt +1.5),它的振幅为2,角频率为100π,频率为50,初相位是1.5,最大速率等于200π,最大加速度是20000π2解答:将已知等式与振动的⼀般形式对⽐:x =A cos (ωt +φ0)=A cos (2πft +φ0)v =d x d t ,v m =ωA ;a =d v d t ,a m =ω2A 6.2时间t =1时,x =2cos (5t +1)与y =3cos (7t +2)的相位差等于3解答:(7t +2)−(5t +1)=(2t +1) t =1=36.3质量为10.0g 的钢球悬挂在劲度系数为100N /m 的弹簧下振动,周期为π/50s解答:T =2πω=2π√m k6.4半个周期为1s 的摆称作秒摆,地球上秒摆的摆长大约为1m 解答:T =2s ,g ≃π2,T =2π√l/g ,l =T 2g/(4π2)=16.5谐振子的位移为振幅的一半时,其动能与总能量的比值为3:4解答:x =A/2,总能量E =12kA 2,势能E p =12kx 2=18kA 2,动能E k =E −E p =38kA 26.6判定正误:(1)简谐振动的初相位角在第一象限,则初速度为负;···································[✓](2)简谐振动的初相位角在第三象限,则初速度为正;···································[✓](3)简谐振动的初位移为正,则初相位角在二、三象限;.......................................[×](4)简谐振动的初位移为负,则初相位角在三、四象限;.......................................[×](5)单摆简谐振动的角频率就是摆线绕悬挂点的角速度;......................................[×]6.7产生速度共振的条件是什么?解答:驱动⼒的频率等于系统固有频率6.8两个同方向的振动分别为y 1=3cos (50t +φ10)、y 2=4cos (50t +φ20),若φ10−φ20=2π,则合振动的振幅A =7;若φ10−φ20=3π,则A =1;若φ10−φ20=−90◦,则A =5解答:A =√A 21+A 22+2A 1A 2cos Δφ6.9两个同方向的振动分别为x 1=3cos (2π500t +1.1)、x 2=3cos (2π498t +1.6);则拍频f beat =2Hz 6.10频率相同的两个相互垂直的振动,相位差是90◦,则合振动的轨迹一般是椭圆6.11振动方向与传播方向相同的波称为纵波;振动方向与传播方向垂直的波称为横波6.12一列横波的波函数为y =0.05cos (10πt −4πx )SI ,则频率f =5Hz ,波长λ=0.5m ,波速c =2.5m /s ,座标x =2m 的质点在t =1s 的相位等于2πrad6.13空气中的声速约u =330m /s ,声音频率f =1000Hz ,则波长λ=0.33m;若水中的声波波长λ=1.5m ,周期T =1ms ,则水声波速c =1500m /s课堂练习答案第6章振动和波动6.14真空中的电磁波波速c=3.0×108m/s,可见光的波长按照“红橙黄绿青蓝紫”的顺序依次递减,范围是760~400nm,计算可见光的频率范围.解答:(4.0~7.5)×1014Hz6.15波场中的介质都在参与简谐振动.若锁定某个质元观察,时间每增加一个周期T,该质元的相位增加2π;若锁定某个时刻观察,沿着波传播的方向,距离每增大一个波长λ,相应质元振动的相位减小2π6.16波动由a点传播到b点的时间是Δt,若a点的振动规律是f(t),那么b点的振动规律是f(t−Δt) 6.17波动由a点传播到b点的距离是l,波长为λ.若a点的振动规律是A sin(ωt),那么b点的振动规律是A sin(ωt−2πl/λ)6.18判定正误:(1)流体中不可以传播横波;························································[✓](2)固体中不可以传播纵波;.................................................................[×](3)空气中的声波是纵波;··························································[✓](4)水面波是横波;..........................................................................[×](5)介质的速度与波的速度是两个不同的物理量;·······································[✓](6)介质能够随着波动一起向远方传送;......................................................[×](7)波的传播速度由介质决定;·······················································[✓] 6.19波动绕过障碍物传播的现象叫做衍射.6.20某种介质中的光速是真空光速的1/k,则该介质的折射率是k.6.21驻波中静止不动的点叫做波节,振幅最大的点叫做波腹;两个波节之间的距离是波长的0.5倍.6.22一段两端固定的琴弦,长度为0.5m,它的基波波长为1m.6.23一支细长玻璃管的一端密封,另一端开口.在玻璃管中注入水,可以改变其中的空气柱长度.假设空气中的声速为340m/s,想要在玻璃管中吹奏出基频为1000Hz的声波,玻璃管中的空气柱长度应为85mm.6.24电磁波垂直穿过厚度为e折射率为n的玻璃,则玻璃中的波程为ne6.25振幅相同的普通声波(500Hz)和超声波(50000Hz),后者的声强是前者的10000倍,后者的声强级比前者多40dB.6.26声强级增加1B,则声波的声强变成原来的10倍.6.27假设声速为330m/s,高速列车鸣笛的频率为1000Hz,而铁路边的执勤人员接收到的频率为1500Hz,则此时列车的速度为396km/h.6.28据说俄罗斯的“米格-31”战斗机可以在高空加速到3.2马赫,这表示此飞机的速度可以达到声速的3.2倍.如果某战斗机以2.0马赫的速度巡航,它在空气中激发的激波的半顶角大小为30◦.课堂练习答案February16,2014第七章波动光学7.1双缝的间距为0.15mm,在距离1.0m处测得第1级暗纹和第10级暗纹之间的距离为36mm,则相邻明条纹的间距为4mm,光的波长等于600nm.7.2在双缝中某一个缝的后面覆盖一片玻璃,使得从此缝出射的光的光程增大5λ,则屏幕上的干涉图案将整体平移5个条纹.7.3判断正误:(1)双缝的距离减小,则干涉条纹的间距增大;······························[✓](2)光的波长增大,则双缝干涉条纹的间距变小;.................................[×](3)接收屏的距离增大,则双缝干涉条纹的间距变小;.............................[×](4)用白光进行双缝干涉,零级明纹是彩色的;...................................[×](5)将整个双缝干涉装置从空气中搬到水中,干涉条纹的间距变小;·············[✓]7.4判断正误:(1)光从空气中垂直入射到玻璃上,其反射光存在半波损失;···················[✓](2)光从空气中垂直入射到玻璃上,其折射光存在半波损失;......................[×](3)光从水中垂直入射到空气中,其反射光存在半波损失;........................[×](4)光从水中垂直入射到空气中,其折射光存在半波损失;........................[×](5)雷达波从大气中近似平行入射到湖面上,其反射波存在半波损失;···········[✓](6)透镜的物点与像点之间的所有光线是等光程的.··························[✓]7.5判断正误:(1)若尖劈膜的顶角减小,则等厚干涉条纹的间距也减小;........................[×](2)若尖劈膜的顶角减小,则等厚干涉条纹向顶尖方向移动;......................[×](3)若尖劈膜的顶角增大,则顶尖处干涉条纹的明暗交替变化;....................[×](4)保持尖劈膜的倾角不变而使其厚度增大,则干涉条纹向着顶尖方向移动;·····[✓](5)保持尖劈膜的倾角不变而使其厚度增大,则干涉条纹间距不变;·············[✓]“等厚干涉”就是厚度均匀的薄膜产生的干涉.................................[×](6)7.6增透膜的最小光学厚度是真空波长的1/4倍;增反膜的最小光学厚度是真空波长的1/4倍.7.7等厚干涉中,相邻明(暗)条纹对应的薄膜厚度之差为薄膜中的波长的0.5倍.7.8在反射光干涉中,空气尖劈顶尖处的干涉条纹是明还是暗?透射光形成的空气中的牛顿环,中心点是明还是暗?解答:暗;明7.9判断正误:(1)若狭缝的宽度减小,则单缝衍射的中央明纹角宽度减小;......................[×](2)若波长减小,则单缝衍射中央明纹的角宽度减小;························[✓]。

大学物理学(第三版上) 课后习题3答案详解

大学物理学(第三版上)  课后习题3答案详解

习题33.1选择题(1) 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为(A) (B) 02ωmRJ J+02)(ωR m J J +(C) (D) 02ωmRJ0ω[答案: (A)](2) 如题3.1(2)图所示,一光滑的内表面半径为10cm 的半球形碗,以匀角速度ω绕其对称轴OC 旋转,已知放在碗内表面上的一个小球P 相对于碗静止,其位置高于碗底4cm ,则由此可推知碗旋转的角速度约为(A)13rad/s (B)17rad/s (C)10rad/s (D)18rad/s (a)(b)题3.1(2)图[答案: (A)](3)如3.1(3)图所示,有一小块物体,置于光滑的水平桌面上,有一绳其一端连结此物体,;另一端穿过桌面的小孔,该物体原以角速度ω在距孔为R 的圆周上转动,今将绳从小孔缓慢往下拉,则物体(A )动能不变,动量改变。

(B )动量不变,动能改变。

(C )角动量不变,动量不变。

(D )角动量改变,动量改变。

(E )角动量不变,动能、动量都改变。

[答案: (E)]3.2填空题(1) 半径为30cm 的飞轮,从静止开始以0.5rad·s -2的匀角加速转动,则飞轮边缘上一点在飞轮转过240˚时的切向加速度a τ= ,法向加速度a n = 。

0.15; 1.256[答案:](2) 如题3.2(2)图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O转动,今有一子弹沿着与水平面成一角度的方向击中木球而嵌于其中,则在此击中过程中,木球、子弹、细棒系统的 守恒,原因是 。

木球被击中后棒和球升高的过程中,对木球、子弹、细棒、地球系统的 守恒。

题3.2(2)图[答案:对o轴的角动量守恒,因为在子弹击中木球过程中系统所受外力对o轴的合外力矩为零,机械能守恒](3) 两个质量分布均匀的圆盘A和B的密度分别为ρA和ρB (ρA>ρB),且两圆盘的总质量和厚度均相同。

大学物理课后习题答案(高教版 共三册)(2020年7月整理).pdf

大学物理课后习题答案(高教版 共三册)(2020年7月整理).pdf

直的平面上有一点 P,它到板的距离为 x 。求 P 点的磁感应强度的大小。
解: 取如图坐标系,在电流平板上取一条形平面,其在 P 点产生的磁场为
dB = 0dI =
0
I0 2a
dy

dB
的方向垂直
r

2r 2 x2 + y 2
由于电流平板相对 x 轴对称,所以在 P 点的总磁感应强度 B
x 轴的分量: Bx = dBx = 0 ;
B = 0 I (3 + 2 ) 4 2a b
6、如图,流出纸面的电流为 2I,流进纸面的电流为 I, 请写出每一个线圈中的环路公式。 解:根据线圈的绕向和线圈中电流和的方向是否满足右 手螺旋定则来判断。
L1
2I
L3
I L2
L4
所以由磁场中的安培环路定理有:
(A) H • dl = −2I
(B) H • dl = −I
解: 因为截流圆线圈轴线上的磁场
B=
0 IR2
3
2(R2 + x2 ) 2
而 I = 2R 2 = R
B
=
Bx
=
0 R 3
2(R2
+
x
2
)
3 2
,B
的方向与 x
轴的正方向一致。
x
o
R
ω
14、设氢原子基态的电子轨道半径为 a0,求由于电子的轨道运动(如图)在原子核处(圆心处)
产生的磁感强度的大小和方向. 解:①电子绕原子核运动的向心力是库仑力提供的.
值不为零。
18、如图所示,一无限长载流平板宽度为 a,线电流密
度(即沿 x 方向单位长度上的电流)为 ,求与平板共面且

大学物理课后习题答案下册(20200513212333)

大学物理课后习题答案下册(20200513212333)

用 l 15 cm ,
1
dx
dE P 4 π 0 (a x) 2
EP
dE P
l 2
dx
4π 0
l 2
(a
x) 2
[1 4π 0 a l
2
1] l
a 2
l π 0 (4a 2 l 2 )
5.0 10 9 C m 1 , a 12.5 cm 代入得
E P 6.74 10 2 N C 1 方向水平向右
(2) 同理
说,因为 f = qE , E
q
q2
,所以 f =
.试问这两种说法对吗
?为什么 ?
0S
0S
f 到底应等于多少 ?
解 : 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对
的,第二种说法把合场强 E
q
看成是一个带电板在另一带电板处的场强
0S
也是不对的.正确解答应为一个板的电场为
q
E
,另一板受它的作用
要发生火花放电.今有一高压平行板电容器,极板间距离为
题 8-6 图
8-6 长 l = 的直导线 AB上均匀地分布着线密度
=· m-1 的正电荷.试求:
(1) 在导线的延长线上与导线 B端相距 a1 =处 P 点的场强; (2) 在导线的垂直平
分线上与导线中点相距 d 2 = 处 Q 点的场强.
解: 如题 8-6 图所示
(1) 在带电直线上取线元 dx ,其上电量 dq 在 P 点产生场强为
立方体六个面,当 q 在立方体中心时,每个面上电通量相等
∴ 各面电通量
q
e

60
(2) 电荷在顶点时,将立方体延伸为边长 2a 的立方体,使 q 处于边长 2a 的

大学物理课后习题答案详解

大学物理课后习题答案详解

第一章质点运动学1、(习题1.1):一质点在xOy 平面内运动,运动函数为2x =2t,y =4t 8-。

(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。

解:(1)由x=2t 得,y=4t 2-8 可得: y=x 2-8 即轨道曲线 (2)质点的位置 : 22(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j =则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8ri j v i j a j =+=+=2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速度为0v ,求运动方程)(t x x =.解:kv dtdv-= ⎰⎰-=t vv kdt dv v 001 tk e v v -=0t k e v dtdx-=0 dt ev dx tk tx-⎰⎰=000)1(0t k e kv x --=3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ⎰⎰=vv 0d 4d tt t v 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020⎰⎰= x 2= t 3 /3+10 (SI)4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的d d r t ,d d v t ,tv d d . 解:(1) t v x 0= 式(1)2gt 21h y -= 式(2) 201()(h -)2r t v t i gt j =+(2)联立式(1)、式(2)得 22v 2gx h y -=(3)0d -gt d rv i j t = 而落地所用时间 gh2t = 所以 0d -2g h d r v i jt = d d v g j t=- 2202y 2x )gt (v v v v -+=+= 2120212202)2(2])([gh v gh g gt v t g dt dv +=+=5、 已知质点位矢随时间变化的函数形式为22r t i tj =+,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。

(完整版)大学物理学(第三版)课后习题答案

(完整版)大学物理学(第三版)课后习题答案

1-4 在离水面高h 米的岸上,有人用绳子拉船靠岸,船在离岸S 处,如题1-4图所示.当人以0v (m ·1-s )的速率收绳时,试求船运动的速度和加速度的大小.图1-4解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知222s h l +=将上式对时间t 求导,得tss t l ld d 2d d 2= 题1-4图根据速度的定义,并注意到l ,s 是随t 减少的, ∴ tsv v t l v d d ,d d 0-==-=船绳 即 θcos d d d d 00v v s l t l s l t s v ==-=-=船 或 sv s h s lv v 02/1220)(+==船 将船v 再对t 求导,即得船的加速度1-6 已知一质点作直线运动,其加速度为 a =4+3t 2s m -⋅,开始运动时,x =5 m ,v=0,求该质点在t =10s 时的速度和位置. 解:∵ t tva 34d d +==分离变量,得 t t v d )34(d +=积分,得 12234c t t v ++= 由题知,0=t ,00=v ,∴01=c故 2234t t v += 又因为 2234d d t t t x v +==分离变量, t t t x d )234(d 2+= 积分得 232212c t t x ++= 由题知 0=t ,50=x ,∴52=c故 521232++=t t x 所以s 10=t 时m70551021102s m 190102310432101210=+⨯+⨯=⋅=⨯+⨯=-x v1-10 以初速度0v =201s m -⋅抛出一小球,抛出方向与水平面成幔 60°的夹角,求:(1)球轨道最高点的曲率半径1R ;(2)落地处的曲率半径2R .(提示:利用曲率半径与法向加速度之间的关系)解:设小球所作抛物线轨道如题1-10图所示.题1-10图 (1)在最高点,o 0160cos v v v x == 21s m 10-⋅==g a n又∵ 1211ρv a n =∴ m1010)60cos 20(22111=︒⨯==n a v ρ(2)在落地点,2002==v v 1s m -⋅,而 o60cos 2⨯=g a n∴ m 8060cos 10)20(22222=︒⨯==n a v ρ1-13 一船以速率1v =30km ·h -1沿直线向东行驶,另一小艇在其前方以速率2v =40km ·h -1沿直线向北行驶,问在船上看小艇的速度为何?在艇上看船的速度又为何?解:(1)大船看小艇,则有1221v v v ρϖϖ-=,依题意作速度矢量图如题1-13图(a)题1-13图由图可知 1222121h km 50-⋅=+=v v v方向北偏西 ︒===87.3643arctan arctan21v v θ (2)小船看大船,则有2112v v v ρϖϖ-=,依题意作出速度矢量图如题1-13图(b),同上法,得5012=v 1h km -⋅2-2 一个质量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度0v 运动,0v 的方向与斜面底边的水平线AB 平行,如图所示,求这质点的运动轨道.解: 物体置于斜面上受到重力mg ,斜面支持力N .建立坐标:取0v ϖ方向为X 轴,平行斜面与X 轴垂直方向为Y 轴.如图2-2.题2-2图X 方向: 0=x F t v x 0= ①Y 方向: y y ma mg F ==αsin ②0=t 时 0=y 0=y v2sin 21t g y α=由①、②式消去t ,得220sin 21x g v y ⋅=α 2-4 质点在流体中作直线运动,受与速度成正比的阻力kv (k 为常数)作用,t =0时质点的速度为0v ,证明(1) t 时刻的速度为v =t mk ev )(0-;(2) 由0到t 的时间内经过的距离为x =(k mv 0)[1-t m ke )(-];(3)停止运动前经过的距离为)(0kmv ;(4)证明当k m t =时速度减至0v 的e1,式中m 为质点的质量. 答: (1)∵ tvm kv a d d =-=分离变量,得mtk v v d d -=即 ⎰⎰-=vv t mt k v v00d d m kte v v -=ln ln 0∴ tm k ev v -=0(2) ⎰⎰---===tttm k m ke kmv t ev t v x 000)1(d d (3)质点停止运动时速度为零,即t →∞,故有 ⎰∞-=='00d kmv t ev x tm k(4)当t=km时,其速度为 ev e v ev v km m k 0100===-⋅- 即速度减至0v 的e1. 2-10 一颗子弹由枪口射出时速率为10s m -⋅v ,当子弹在枪筒内被加速时,它所受的合力为F =(bt a -)N(b a ,为常数),其中t 以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量. 解: (1)由题意,子弹到枪口时,有0)(=-=bt a F ,得ba t =(2)子弹所受的冲量⎰-=-=t bt at t bt a I 0221d )(将bat =代入,得 ba I 22=(3)由动量定理可求得子弹的质量202bv a v I m == 2-13 以铁锤将一铁钉击入木板,设木板对铁钉的阻力与铁钉进入木板内的深度成正比,在铁锤击第一次时,能将小钉击入木板内1 cm ,问击第二次时能击入多深,假定铁锤两次打击铁钉时的速度相同.解: 以木板上界面为坐标原点,向内为y 坐标正向,如题2-13图,则铁钉所受阻力为题2-13图ky f -=第一锤外力的功为1A⎰⎰⎰==-='=ssky ky y f y f A 112d d d ① 式中f '是铁锤作用于钉上的力,f 是木板作用于钉上的力,在0d →t 时,f 'f -=.设第二锤外力的功为2A ,则同理,有⎰-==21222221d y kky y ky A ② 由题意,有2)21(212kmv A A =∆== ③即222122k k ky =- 所以, 22=y于是钉子第二次能进入的深度为cm 414.01212=-=-=∆y y y2-15 一根劲度系数为1k 的轻弹簧A 的下端,挂一根劲度系数为2k 的轻弹簧B ,B 的下端 一重物C ,C 的质量为M ,如题2-15图.求这一系统静止时两弹簧的伸长量之比和弹性势能之比.解: 弹簧B A 、及重物C 受力如题2-15图所示平衡时,有题2-15图Mg F F B A ==又 11x k F A ∆=22x k F B ∆=所以静止时两弹簧伸长量之比为1221k k x x =∆∆ 弹性势能之比为12222211121212k kx k x k E E p p =∆∆= 2-17 由水平桌面、光滑铅直杆、不可伸长的轻绳、轻弹簧、理想滑轮以及质量为1m 和2m 的滑块组成如题2-17图所示装置,弹簧的劲度系数为k ,自然长度等于水平距离BC ,2m 与桌面间的摩擦系数为μ,最初1m 静止于A 点,AB =BC =h ,绳已拉直,现令滑块落下1m ,求它下落到B 处时的速率.解: 取B 点为重力势能零点,弹簧原长为弹性势能零点,则由功能原理,有])(21[)(21212212l k gh m v m m gh m ∆+-+=-μ 式中l ∆为弹簧在A 点时比原长的伸长量,则h BC AC l )12(-=-=∆联立上述两式,得()()212221122m m khgh m m v +-+-=μ题2-17图2-19 质量为M 的大木块具有半径为R 的四分之一弧形槽,如题2-19图所示.质量为m 的小立方体从曲面的顶端滑下,大木块放在光滑水平面上,二者都作无摩擦的运动,而且都从静止开始,求小木块脱离大木块时的速度.解: m 从M 上下滑的过程中,机械能守恒,以m ,M ,地球为系统,以最低点为重力势能零点,则有222121MV mv mgR +=又下滑过程,动量守恒,以m ,M 为系统则在m 脱离M 瞬间,水平方向有0=-MV mv联立,以上两式,得()M m MgR v +=2习题八8-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系?解: 如题8-1图示(1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷2220)33(π4130cos π412a q q a q '=︒εε解得 q q 33-=' (2)与三角形边长无关.题8-1图 题8-2图8-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ ,如题8-2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量.解: 如题8-2图示⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得 θπεθtan 4sin 20mg l q = 8-3 根据点电荷场强公式204r q E πε=,当被考察的场点距源点电荷很近(r →0)时,则场强→∞,这是没有物理意义的,对此应如何理解?解: 020π4r r q E ϖϖε=仅对点电荷成立,当0→r 时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.8-4 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f =2024dq πε,又有人说,因为f =qE ,SqE 0ε=,所以f =Sq 02ε.试问这两种说法对吗?为什么? f 到底应等于多少?解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强Sq E 0ε=看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为Sq E 02ε=,另一板受它的作用力Sq S qq f 02022εε==,这是两板间相互作用的电场力. 8-5一电偶极子的电矩为l q p ϖϖ=,场点到偶极子中心O 点的距离为r ,矢量r ϖ与l ϖ的夹角为θ,(见题8-5图),且l r >>.试证P 点的场强E 在r 方向上的分量r E 和垂直于r 的分量θE 分别为r E =302cos r p πεθ, θE =304sin r p πεθ证: 如题8-5所示,将p ϖ分解为与r ϖ平行的分量θsin p 和垂直于r ϖ的分量θsin p .∵ l r >> ∴ 场点P 在r 方向场强分量30π2cos r p E r εθ=垂直于r 方向,即θ方向场强分量300π4sin r p E εθ=题8-5图 题8-6图8-6 长l =15.0cm的直导线AB 上均匀地分布着线密度λ=5.0x10-9C ·m-1的正电荷.试求:(1)在导线的延长线上与导线B 端相距1a =5.0cm 处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2d =5.0cm 处Q 点的场强. 解: 如题8-6图所示(1)在带电直线上取线元x d ,其上电量q d 在P 点产生场强为20)(d π41d x a x E P -=λε222)(d π4d x a x E E l l P P -==⎰⎰-ελ]2121[π40l a l a +--=ελ)4(π220l a l-=ελ用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得21074.6⨯=P E 1C N -⋅方向水平向右(2)同理2220d d π41d +=x xE Qλε 方向如题8-6图所示由于对称性⎰=l QxE 0d ,即Q E ϖ只有y 分量,∵ 22222220dd d d π41d ++=x x x E Qyλε 22π4d d ελ⎰==l QyQy E E ⎰-+2223222)d (d l l x x2220d4π2+=l lελ以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Qy Q E E 1C N -⋅,方向沿y 轴正向8-7 一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强.解: 如8-7图在圆上取ϕRd dl =题8-7图ϕλλd d d R l q ==,它在O 点产生场强大小为 20π4d d R R E εϕλ=方向沿半径向外则 ϕϕελϕd sin π4sin d d 0RE E x==ϕϕελϕπd cos π4)cos(d d 0RE E y-=-= 积分RR E x 000π2d sin π4ελϕϕελπ==⎰ 0d cos π400=-=⎰ϕϕελπRE y ∴ RE E x0π2ελ==,方向沿x 轴正向. 8-8 均匀带电的细线弯成正方形,边长为l ,总电量为q .(1)求这正方形轴线上离中心为r 处的场强E ;(2)证明:在l r >>处,它相当于点电荷q 产生的场强E .解: 如8-8图示,正方形一条边上电荷4q 在P 点产生物强PE ϖd方向如图,大小为()4π4cos cos d 22021l r E P +-=εθθλ∵ 22cos 221l r l +=θ12cos cos θθ-=∴ 24π4d 22220l r l l r E P++=ελP E ϖd 在垂直于平面上的分量βcos d d P E E =⊥∴ 424π4d 2222220l r rl r l r lE +++=⊥ελ题8-8图由于对称性,P 点场强沿OP 方向,大小为2)4(π44d 422220l r l r lrE E P ++=⨯=⊥ελ∵ lq 4=λ∴ 2)4(π422220l r l r qrE P++=ε 方向沿8-9 (1)点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?*(3)如题8-9(3)图所示,在点电荷q 的电场中取半径为R 的圆平面.q 在该平面轴线上的A 点处,求:通过圆平面的电通量.(xR arctan =α)解: (1)由高斯定理0d εqS E s⎰=⋅ϖϖ立方体六个面,当q 在立方体中心时,每个面上电通量相等 ∴ 各面电通量06εq e=Φ.(2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则边长a 2的正方形上电通量06εqe=Φ对于边长a 的正方形,如果它不包含q 所在的顶点,则24εq e =Φ,如果它包含q 所在顶点则0=Φe.如题8-9(a)图所示.题8-9(3)图题8-9(a)图 题8-9(b)图 题8-9(c)图(3)∵通过半径为R 的圆平面的电通量等于通过半径为22x R +的球冠面的电通量,球冠面积*]1)[(π22222xR x x R S +-+=∴ )(π42200x R Sq +=Φε02εq =[221xR x +-]*关于球冠面积的计算:见题8-9(c)图ααα⎰⋅=0d sin π2r r Sααα⎰⋅=02d sin π2r)cos 1(π22α-=r8-10 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×510-C ·m -3求距球心5cm ,8cm ,12cm 各点的场强. 解: 高斯定理0d ε∑⎰=⋅qS E s ϖϖ,02π4ε∑=qr E当5=r cm 时,0=∑q ,0=E ϖ8=r cm 时,∑q 3π4p=3(r )3内r - ∴ ()2023π43π4rr r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外. 12=r cm时,3π4∑=ρq -3(外r )内3r ∴ ()420331010.4π43π4⨯≈-=r r r E ερ内外 1C N -⋅ 沿半径向外.8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E sϖϖ取同轴圆柱形高斯面,侧面积rl S π2=则 rl E S E Sπ2d =⋅⎰ϖϖ对(1) 1R r < 0,0==∑E q (2) 21R r R << λl q =∑ ∴ rE 0π2ελ=沿径向向外(3) 2R r > 0=∑q ∴ 0=E题8-12图8-12 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强.解: 如题8-12图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ,两面间, n E ϖϖ)(21210σσε-= 1σ面外, n E ϖϖ)(21210σσε+-= 2σ面外, n E ϖϖ)(21210σσε+= n ϖ:垂直于两平面由1σ面指为2σ面.8-13 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题8-13图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的. 解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题8-13图(a). (1) ρ+球在O 点产生电场010=E ϖ,ρ-球在O 点产生电场'dπ4π3430320OO r E ερ=ϖ∴ O 点电场'd 33030OO r E ερ=ϖ;(2) ρ+在O '产生电场'dπ4d 3430301OO E ερπ='ϖρ-球在O '产生电场002='E ϖ∴ O ' 点电场 003ερ='E ϖ'OO题8-13图(a) 题8-13图(b)(3)设空腔任一点P 相对O '的位矢为r ϖ',相对O 点位矢为r ϖ (如题8-13(b)图)则 03ερrE PO ϖϖ=,3ερr E O P '-='ϖϖ,∴ 0003'3)(3ερερερdOO r r E E E O P PO P ϖϖϖϖϖϖ=='-=+='∴腔内场强是均匀的.8-14 一电偶极子由q =1.0×10-6C 的两个异号点电荷组成,两电荷距离d=0.2cm ,把这电偶极子放在1.0×105N ·C -1的外电场中,求外电场作用于电偶极子上的最大力矩.解: ∵ 电偶极子p ϖ在外场E ϖ中受力矩E p M ϖϖϖ⨯=∴ qlE pE M ==max 代入数字4536max 100.2100.1102100.1---⨯=⨯⨯⨯⨯⨯=M m N ⋅8-15 两点电荷1q =1.5×10-8C ,2q =3.0×10-8C ,相距1r =42cm ,要把它们之间的距离变为2r =25cm ,需作多少功?解: ⎰⎰==⋅=22210212021π4π4d d r r r rq q r r q q r F A εεϖϖ)11(21r r - 61055.6-⨯-=J外力需作的功 61055.6-⨯-=-='A A J题8-16图8-16 如题8-16图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的功. 解: 如题8-16图示0π41ε=O U 0)(=-RqR q 0π41ε=O U )3(R qR q -Rq 0π6ε-= ∴ Rqq U U q A o C O 00π6)(ε=-= 8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强和电势.解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点E ϖd 如图,由于对称性,O 点场强沿y 轴负方向题8-17图θεθλππcos π4d d 2220⎰⎰-==R R E E yR 0π4ελ=[)2sin(π-2sin π-] R0π2ελ-=(2) AB 电荷在O 点产生电势,以0=∞U⎰⎰===A B200012ln π4π4d π4d R R x x x x U ελελελ同理CD 产生 2ln π402ελ=U 半圆环产生 0034π4πελελ==R R U∴ 0032142ln π2ελελ+=++=U U U U O8-18 一电子绕一带均匀电荷的长直导线以2×104m ·s -1的匀速率作圆周运动.求带电直线上的线电荷密度.(电子质量0m =9.1×10-31kg ,电子电量e =1.60×10-19C)解: 设均匀带电直线电荷密度为λ,在电子轨道处场强rE 0π2ελ=电子受力大小 re eE F e0π2ελ== ∴ rv mr e 20π2=ελ得 1320105.12π2-⨯==emv ελ1m C -⋅ 8-19 空气可以承受的场强的最大值为E =30kV ·cm -1,超过这个数值时空气要发生火花放电.今有一高压平行板电容器,极板间距离为d =0.5cm ,求此电容器可承受的最高电压.解: 平行板电容器内部近似为均匀电场 ∴ 4105.1d ⨯==E U V8-20 根据场强E ϖ与电势U 的关系U E -∇=ϖ,求下列电场的场强:(1)点电荷q 的电场;(2)总电量为q ,半径为R 的均匀带电圆环轴上一点;*(3)偶极子ql p =的l r >>处(见题8-20图).解: (1)点电荷 rqU 0π4ε=题 8-20 图∴ 0200π4r r q r r U E ϖϖϖε=∂∂-= 0r ϖ为r 方向单位矢量. (2)总电量q ,半径为R 的均匀带电圆环轴上一点电势220π4xR q U +=ε∴ ()i x R qxi x U E ϖϖϖ2/3220π4+=∂∂-=ε(3)偶极子l q pϖϖ=在l r >>处的一点电势 200π4cos ])cos 21(1)cos 2(1[π4r ql llr qU εθθθε=+--=∴ 30π2cos r p r U E rεθ=∂∂-= 30π4sin 1r p U r E εθθθ=∂∂-=8-21 证明:对于两个无限大的平行平面带电导体板(题8-21图)来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同.证: 如题8-21图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ题8-21图(1)则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时,有0)(d 32=∆+=⋅⎰S S E sσσϖϖ∴ +2σ03=σ 说明相向两面上电荷面密度大小相等、符号相反; (2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=---εσεσεσεσ 又∵ +2σ03=σ ∴ 1σ4σ=说明相背两面上电荷面密度总是大小相等,符号相同. 8-22 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0 mm .B ,C 都接地,如题8-22图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少?解: 如题8-22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题8-22图(1)∵ AB ACU U =,即 ∴ AB AB AC AC E E d d =∴2d d 21===ACABAB AC E E σσ 且 1σ+2σSq A =得 ,32Sq A =σ Sq A 321=σ而 7110232-⨯-=-=-=A Cq S q σCC10172-⨯-=-=S q B σ(2) 301103.2d d ⨯===AC ACAC A E U εσV 8-23 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计算:(1)外球壳上的电荷分布及电势大小;(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势;*(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量.解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势题8-23图⎰⎰∞∞==⋅=22020π4π4d d R R R qrr q r E U εεϖϖ (2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:0π4π42020=-=R q R q U εε(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且0π4'π4'π4'202010=+-+-=R q q R q R q U A εεε 得 q R R q 21=' 外球壳上电势()22021202020π4π4'π4'π4'R qR R R q q R q R q U B εεεε-=+-+-=8-24 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量.解: 如题8-24图所示,设金属球感应电荷为q ',则球接地时电势0=O U8-24图由电势叠加原理有:=O U 03π4π4'00=+RqR q εε 得 -='q 3q8-25 有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0F .试求:(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力;(2)小球3依次交替接触小球1,2很多次后移去,小球1,2之间的库仑力.解: 由题意知 2020π4r q F ε=(1)小球3接触小球1后,小球3和小球1均带电 2q q =',小球3再与小球2接触后,小球2与小球3均带电 q q 43=''∴此时小球1与小球2间相互作用力00220183π483π4"'2F rqr q q F =-=εε (2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为 32q .∴ 小球1、2间的作用力 00294π432322F r q q F ==ε *8-26 如题8-26图所示,一平行板电容器两极板面积都是S ,相距为d ,分别维持电势A U =U ,B U =0不变.现把一块带有电量q 的导体薄片平行地放在两极板正中间,片的面积也是S ,片的厚度略去不计.求导体薄片的电势.解: 依次设A ,C ,B 从上到下的6个表面的面电荷密度分别为1σ,2σ,3σ,4σ,5σ,6σ如图所示.由静电平衡条件,电荷守恒定律及维持U U AB =可得以下6个方程题8-26图⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧++++==+=+-==+=+===+6543215432065430021001σσσσσσσσσσεσσσσεσσd US q S qdU U C S S q B A解得 Sq 261==σσSq d U2032-=-=εσσ Sq dU2054+=-=εσσ所以CB 间电场 S qd U E 00422εεσ+==)2d(212d 02Sq U E U U CB C ε+=== 注意:因为C 片带电,所以2U U C≠,若C 片不带电,显然2U U C =8-27 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求: (1)电介质内、外的场强; (2)电介质层内、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅q S D S ϖϖd(1)介质内)(21R r R <<场强 303π4,π4r rQ E r r Q D r εεϖϖϖϖ==内;介质外)(2R r <场强 303π4,π4r rQ E r Qr D εϖϖϖ==外(2)介质外)(2R r >电势 rQE U 0r π4r d ε=⋅=⎰∞ϖϖ外 介质内)(21R r R <<电势2020π4)11(π4R Q R r qr εεε+-=)11(π420R r Qr r -+=εεε (3)金属球的电势 r d r d 221ϖϖϖϖ⋅+⋅=⎰⎰∞R R RE E U 外内⎰⎰∞+=22220π44πdr R R Rr r Qdr r Q εεε)11(π4210R R Qr r-+=εεε 8-28 如题8-28图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题8-28图所示,充满电介质部分场强为2E ϖ,真空部分场强为1E ϖ,自由电荷面密度分别为2σ与1σ由∑⎰=⋅0d q S D ϖϖ得 11σ=D ,22σ=D 而 101E D ε=,202E D r εε=d21U E E ==∴r D D εσσ==1212 r d r d ϖϖϖϖ⋅+⋅=⎰⎰∞∞rrE E U 外内题8-28图 题8-29图8-29 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求: (1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量; (2)电介质中的总电场能量; (3)圆柱形电容器的电容. 解: 取半径为r 的同轴圆柱面)(S则 rlD S DS π2d )(=⋅⎰ϖϖ当)(21R r R <<时,Q q =∑ ∴ rlQ D π2=(1)电场能量密度 22222π82l r Q D w εε== 薄壳中 rlrQ rl r l r Q w W εευπ4d d π2π8d d 22222===(2)电介质中总电场能量 ⎰⎰===211222ln π4π4d d R RV R R l Q rl r Q W W εε(3)电容:∵ CQ W 22=∴ )/ln(π22122R R lW Q C ε== *8-30 金属球壳A 和B 的中心相距为r ,A 和B 原来都不带电.现在A 的中心放一点电荷1q ,在B 的中心放一点电荷2q ,如题8-30图所示.试求:(1) 1q 对2q 作用的库仑力,2q 有无加速度;(2)去掉金属壳B ,求1q 作用在2q 上的库仑力,此时2q 有无加速度.解: (1)1q 作用在2q 的库仑力仍满足库仑定律,即2210π41r q q F ε=但2q 处于金属球壳中心,它受合力..为零,没有加速度. (2)去掉金属壳B ,1q 作用在2q 上的库仑力仍是2210π41r q q F ε=,但此时2q 受合力不为零,有加速度.题8-30图 题8-31图8-31 如题8-31图所示,1C =0.25μF ,2C =0.15μF ,3C =0.20μF .1C 上电压为50V .求:AB U .解: 电容1C 上电量111U C Q =电容2C 与3C 并联3223C C C += 其上电荷123Q Q =∴ 355025231123232⨯===C U C C Q U 86)35251(5021=+=+=U U U AB V 8-321C 和2C 两电容器分别标明“200 pF 、500 V ”和“300 pF 、900 V ”,把它们串联起来后等值电容是多少?如果两端加上1000 V的电压,是否会击穿?解: (1) 1C 与2C 串联后电容1203002003002002121=+⨯=+='C C C C C pF (2)串联后电压比231221==C C U U ,而100021=+U U∴ 6001=U V ,4002=U V即电容1C 电压超过耐压值会击穿,然后2C 也击穿. 8-33 将两个电容器1C 和2C 充电到相等的电压U 以后切断电源,再将每一电容器的正极板与另一电容器的负极板相联.试求:(1)每个电容器的最终电荷; (2)电场能量的损失.解: 如题8-33图所示,设联接后两电容器带电分别为1q ,2q题8-33图则⎪⎪⎩⎪⎪⎨⎧==-=-=+2122112121201021U U U C U C q q U C U C q q q q解得 (1) =1q UC C C C C q U C C C C C 21212221211)(,)(+-=+-(2)电场能量损失W W W -=∆0)22()2121(2221212221C q C q U C U C +-+= 221212U C C C C +=8-34 半径为1R =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =4.0cm 和3R =5.0cm ,当内球带电荷Q =3.0×10-8C 时,求:(1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量; (3)此电容器的电容值.解: 如图,内球带电Q ,外球壳内表面带电Q -,外表面带电Q题8-34图(1)在1R r <和32R r R <<区域0=E ϖ在21R r R <<时 301π4r r Q E εϖϖ=3R r >时 302π4r r Q E εϖϖ=∴在21R r R <<区域⎰=21d π4)π4(21222001R R r r rQ W εε ⎰-==21)11(π8π8d 2102202R R R R Q r r Q εε 在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r rQ W εεε∴ 总能量 )111(π83210221R R R Q W W W +-=+=ε41082.1-⨯=J(2)导体壳接地时,只有21R r R <<时30π4r r Q E εϖϖ=,02=W∴ 4210211001.1)11(π8-⨯=-==R R Q W W ε J(3)电容器电容 )11/(π422102R R QW C -==ε 121049.4-⨯=F习题九9-1 在同一磁感应线上,各点B ϖ的数值是否都相等?为何不把作用于运动电荷的磁力方向定义为磁感应强度B ϖ的方向? 解: 在同一磁感应线上,各点B ϖ的数值一般不相等.因为磁场作用于运动电荷的磁力方向不仅与磁感应强度B ϖ的方向有关,而且与电荷速度方向有关,即磁力方向并不是唯一由磁场决定的,所以不把磁力方向定义为B ϖ的方向.9-2 (1)在没有电流的空间区域里,如果磁感应线是平行直线,磁感应强度B ϖ的大小在沿磁感应线和垂直它的方向上是否可能变化(即磁场是否一定是均匀的)?(2)若存在电流,上述结论是否还对?解: (1)不可能变化,即磁场一定是均匀的.如图作闭合回路abcd 可证明21B B ρϖ=∑⎰==-=⋅0d 021I bc B da B l B abcdμϖϖ∴ 21B B ρϖ=(2)若存在电流,上述结论不对.如无限大均匀带电平面两侧之磁力线是平行直线,但B ϖ方向相反,即21B B ρϖ≠.9-3 用安培环路定理能否求有限长一段载流直导线周围的磁场?答: 不能,因为有限长载流直导线周围磁场虽然有轴对称性,但不是稳恒电流,安培环路定理并不适用.9-4 在载流长螺线管的情况下,我们导出其内部nI B 0μ=,外面B =0,所以在载流螺线管外面环绕一周(见题9-4图)的环路积分⎰外B L ϖ·d l ϖ=0但从安培环路定理来看,环路L 中有电流I 穿过,环路积分应为⎰外B L ϖ·d l ϖ=I 0μ这是为什么?解: 我们导出nl B 0μ=内,0=外B 有一个假设的前提,即每匝电流均垂直于螺线管轴线.这时图中环路L 上就一定没有电流通过,即也是⎰∑==⋅LI l B 0d 0μϖϖ外,与⎰⎰=⋅=⋅Ll l B 0d 0d ϖϖϖ外是不矛盾的.但这是导线横截面积为零,螺距为零的理想模型.实际上以上假设并不真实存在,所以使得穿过L 的电流为I ,因此实际螺线管若是无限长时,只是外B ϖ的轴向分量为零,而垂直于轴的圆周方向分量rIB πμ20=⊥,r 为管外一点到螺线管轴的距离.题 9 - 4 图9-5 如果一个电子在通过空间某一区域时不偏转,能否肯定这个区域中没有磁场?如果它发生偏转能否肯定那个区域中存在着磁场?解:如果一个电子在通过空间某一区域时不偏转,不能肯定这个区域中没有磁场,也可能存在互相垂直的电场和磁场,电子受的电场力与磁场力抵消所致.如果它发生偏转也不能肯定那个区域存在着磁场,因为仅有电场也可以使电子偏转.9-6 已知磁感应强度0.2=B Wb ·m-2的均匀磁场,方向沿x轴正方向,如题9-6图所示.试求:(1)通过图中abcd 面的磁通量;(2)通过图中befc 面的磁通量;(3)通过图中aefd 面的磁通量.解: 如题9-6图所示题9-6图(1)通过abcd 面积1S 的磁通是24.04.03.00.211=⨯⨯=⋅=S B ϖϖΦWb(2)通过befc 面积2S 的磁通量022=⋅=S B ϖϖΦ(3)通过aefd 面积3S 的磁通量24.0545.03.02cos 5.03.0233=⨯⨯⨯=θ⨯⨯⨯=⋅=S B ϖϖΦWb(或曰24.0-Wb )题9-7图9-7 如题9-7图所示,AB 、CD 为长直导线,C B )为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O 点的磁感应强度.解:如题9-7图所示,O 点磁场由AB 、C B )、CD 三部分电流产生.其中AB产生 01=B ϖ CD产生RIB 1202μ=,方向垂直向里CD段产生 )231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,方向⊥向里 ∴)6231(203210ππμ+-=++=R I B B B B ,方向⊥向里. 9-8 在真空中,有两根互相平行的无限长直导线1L 和2L ,相距0.1m ,通有方向相反的电流,1I =20A,2I =10A ,如题9-8图所示.A ,B 两点与导线在同一平面内.这两点与导线2L 的距离均为5.0cm .试求A ,B 两点处的磁感应强度,以及磁感应强度为零的点的位置.题9-8图解:如题9-8图所示,A B ϖ方向垂直纸面向里42010102.105.02)05.01.0(2-⨯=⨯+-=πμπμI I B A T(2)设0=B ϖ在2L 外侧距离2L 为r 处 则02)1.0(220=-+rI r Iπμπμ 解得 1.0=r m题9-9图9-9 如题9-9图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连.已知圆环的粗细均匀,求环中心O 的磁感应强度.解: 如题9-9图所示,圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。

大学物理课后习题答案(上下册全)武汉大学出版社 习题2详解

大学物理课后习题答案(上下册全)武汉大学出版社 习题2详解

2-1 如题2-1图所示,弹簧秤挂一滑轮,滑轮两边各挂一质量为m 和2m 的物体,绳子与滑轮的质量忽略不计,轴承处摩擦忽略不计,在m 及2m 的运动过程中,弹簧秤的读数为[ ]A. 3mg .B. 2mg .C. 1mg .D. 8mg / 3.答案: D题 2-1图 2-2 一质点作匀速率圆周运动时,[ ] A.它的动量不变,对圆心的角动量也不变。

B.它的动量不变,对圆心的角动量不断改变。

C.它的动量不断改变,对圆心的角动量不变。

D.它的动量不断改变,对圆心的角动量也不断改变。

答案: C2-3 质点系的内力可以改变[ ] A.系统的总质量。

B.系统的总动量。

C.系统的总动能。

D.系统的总角动量。

答案: C2-4 一船浮于静水中,船长L ,质量为m ,一个质量也为m 的人从船尾走到船头。

不计水和空气阻力,则在此过程中船将:[ ] A.不动 B.后退LC.后退L 21 D.后退L 31答案: C2-5 对功的概念有以下几种说法:[ ]①保守力作正功时,系统内相应的势能增加。

②质点运动经一闭合路径,保守力对质点作的功为零。

③作用力与反作用力大小相等、方向相反,所以两者所作功的代数和必为零。

在上述说法中:A.①、②是正确的。

B.②、③是正确的。

C.只有②是正确的。

D.只有③是正确的。

答案: C2-6 某质点在力(45)F x i =+(SI )的作用下沿x 轴作直线运动。

在从x=0移动到x=10m的过程中,力F所做功为 。

答案: 290J2-7 如果一个箱子与货车底板之间的静摩擦系数为μ,当这货车爬一与水平方向成θ角的平缓山坡时,要不使箱子在车底板上滑动,车的最小加速度 。

< < < < <m 2m答案: ()cos sin g μθθ-2-8 一质量为1Kg 的球A ,以5m /s 的速率与原来静止的另一球B 作弹性碰撞,碰后A 球以4m /s 的速率垂直于它原来的运动方向,则B 球的动量大小为 。

大学物理(上册—第三版—修订版)课后习题答案

大学物理(上册—第三版—修订版)课后习题答案

大学物理(上册)课后习题答案第三版·修订版习题一1-6|r ∆|与r ∆有无不同?t d d r 和t d d r 有无不同?t d d v 和td d v 有无不同?其不同在哪里?试举例说明。

解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r-=∆;(2)t d d r 是速度的模,即t d d r ==v tsd d .trd d 只是速度在径向上的分量.∵有r r ˆr =(式中r ˆ叫做单位矢),则tˆr ˆt r t d d d d d d rrr +=式中trd d 就是速度径向上的分量,∴trt d d d d 与r 不同如题1-1图所示.题1-6图(3)t d d v 表示加速度的模,即t v a d d=,tv d d 是加速度a 在切向上的分量.∵有ττ(v =v 表轨道节线方向单位矢),所以tv t v t v d d d d d d ττ+=式中dt dv就是加速度的切向分量.(tt r d ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论)1-7设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t r d d ,及a =22d d tr 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=,jty i t x t r a jt y i t x t r v222222d d d d d d d d d d d d +==+==∴故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x yx而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d tr a t rv ==其二,可能是将22d d d d t r t r 与误作速度与加速度的模。

大学物理课后答案详解

大学物理课后答案详解

大学物理课后答案详解第一章:力学1.1 牛顿定律的三种形式第一种形式:惯性定律牛顿的第一定律,也被称为惯性定律。

它的表述为:一个物体如果没有外力作用,将保持静止或匀速直线运动的状态。

这意味着在没有外力作用时,物体的加速度为零,速度保持不变。

这个定律的重要性在于它说明了运动的惯性特性。

举个例子,当我们在车上紧急刹车时,我们的身体会有向前的惯性,因为车突然减速,而我们的身体仍保持原来的运动状态。

第二种形式:动量定律牛顿的第二定律,也被称为动量定律。

它的表述为:一个物体的加速度正比于作用在它上面的合外力,反比于物体的质量。

通过数学表达式可以得到 F = ma,其中 F表示物体所受合外力的大小,m表示物体的质量,a表示加速度。

这个定律说明了力是一种导致物体加速度变化的物理量。

第三种形式:作用与反作用定律牛顿的第三定律,也被称为作用与反作用定律。

它的表述为:如果物体A对物体B施加了一个力,那么物体B对物体A也会施加一个大小相等、方向相反的力。

这一个定律解释了为什么当我们敲击桌子时,手感到疼痛,因为我们的手会受到桌子的反作用力。

同样地,当我们踢足球时,脚球会受到我们脚的力的影响而向前踢出。

1.2 动力学动力学是力学的一个重要分支,它研究的是物体在受力作用下的运动规律。

其中最常见的运动学参数有位移、速度和加速度。

1.2.1 位移位移是一个矢量量,它表示物体从初始位置到最终位置的改变。

位移的大小等于物体在运动过程中实际移动的距离。

位移的方向由初始位置和最终位置的连线所决定。

1.2.2 速度速度是一个矢量量,它表示物体单位时间内移动的位移。

速度的大小等于单位时间内移动的位移,而速度的方向由位移的方向和时间的方向所决定。

1.2.3 加速度加速度是一个矢量量,它表示单位时间内速度的变化量。

加速度的大小等于单位时间内速度的改变量,而加速度的方向由速度的方向和时间的方向所决定。

1.3 弹力和重力1.3.1 弹力弹力是一种垂直于两个物体接触面的力,它是由于两个物体之间的接触而产生的。

大学物理课后习题答案(全册)

大学物理课后习题答案(全册)

《大学物理学》课后习题参考答案习 题11-1. 已知质点位矢随时间变化的函数形式为)ωt sin ωt (cos j i +=R r其中ω为常量.求:(1)质点的轨道;(2)速度和速率。

解:1) 由)ωt sin ωt (cos j i +=R r 知 t cos R x ω= t sin R y ω=消去t 可得轨道方程 222R y x =+2) j rv t Rcos sin ωωt ωR ωdtd +-==i R ωt ωR ωt ωR ωv =+-=2122])cos ()sin [(1-2. 已知质点位矢随时间变化的函数形式为j i r )t 23(t 42++=,式中r 的单位为m ,t 的单位为s .求:(1)质点的轨道;(2)从0=t 到1=t 秒的位移;(3)0=t 和1=t 秒两时刻的速度。

解:1)由j i r )t 23(t 42++=可知2t 4x =t 23y +=消去t 得轨道方程为:2)3y (x -= 2)j i rv 2t 8dtd +==j i j i v r 24)dt 2t 8(dt 11+=+==⎰⎰Δ3) j v 2(0)= j i v 28(1)+=1-3. 已知质点位矢随时间变化的函数形式为j i r t t 22+=,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。

解:1)j i rv 2t 2dt d +==i va 2dtd ==2)212212)1t (2]4)t 2[(v +=+= 1t t 2dtdv a 2t +==2221n t a a a t =-=+1-4. 一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。

解:以地面为参照系,坐标如图,升降机与螺丝的运动方程分别为20121at t v y += (1) 图 1-420221gt t v h y -+= (2)21y y = (3) 解之 2d t g a=+1-5. 一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程;(2)小球在落地之前的轨迹方程;(3)落地前瞬时小球的t d d r ,t d d v ,t vd d .解:(1) t v x 0= 式(1)2gt 21h y -= 式(2)j i r )gt 21-h (t v (t)20+=(2)联立式(1)、式(2)得 202v 2gx h y -=(3)j i rgt -v td d 0= 而 落地所用时间 gh 2t =所以j i r 2gh -v t d d 0= j v g td d -= 2202y 2x )gt (v v v v -+=+= 21122222002[()](2)g gh g t dv dt v gt v gh ==++1-6. 路灯距地面的高度为1h ,一身高为2h 的人在路灯下以匀速1v 沿直线行走。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3-1 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 [ ] A.2ωmR J J + B. 02)(ωR m J J+ C.02ωmR JD. 0ω 答案:A3-2 如题3-2图所示,圆盘绕O 轴转动。

若同时射来两颗质量相同,速度大小相同,方向相反并在一直线上运动的子弹,子弹射入圆盘后均留在盘内,则子弹射入后圆盘的角速度ω将:[ ]A. 增大.B. 不变.C. 减小.D. 无法判断. 题3-2 图 答案: C3-3 芭蕾舞演员可绕过脚尖的铅直轴旋转,当她伸长两手时的转动惯量为J 0,角速度为ω0,当她突然收臂使转动惯量减小为J 0 / 2时,其角速度应为:[ ] A. 2ω0 . B. ω0 . C. 4ω0 . D. ω 0/2. 答案:A3-4 如题3-4图所示,一个小物体,位于光滑的水平桌面上,与一绳的一端相连结,绳的另一端穿过桌面中心的小孔O . 该物体原以角速度ω 在半径为R 的圆周上绕O 旋转,今将绳从小孔缓慢往下拉.则物体:[ ]A. 动量不变,动能改变; 题3-4图B. 角动量不变,动量不变;C. 角动量改变,动量改变;D. 角动量不变,动能、动量都改变。

答案:D3-5 在XOY 平面内的三个质点,质量分别为m 1 = 1kg, m 2 = 2kg,和 m 3 = 3kg,位置坐标(以米为单位)分别为m 1 (-3,-2)、m 2 (-2,1)和m 3 (1,2),则这三个质点构成的质点组对Z 轴的转动惯量J z = .答案: 38kg ·m 23-6 如题3-6图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O 转动,今有一子弹沿着与水平面成一角度的方向击中木球并嵌于其中,则在此击中过程中,木球、子弹、细棒系统对o 轴的 守恒。

木球被击中后棒和球升高的过程中,对木球、子弹、细棒、地球 题3-6图系统的 守恒。

P 0hP 1,S 1P 0,S 2A B答案:角动量; 机械能3-7 一转动惯量为J 的圆盘绕一固定轴转动,起初角速度为0ω。

设它所受的阻力矩与其角速度成正比,即ωk M −=(k 为正常数)。

求圆盘的角速度从0ω变为012ω时所需的时间t = 。

答案: ln 2Jk3-8 一质量为m 的质点位于(11,y x )处,速度为x y =+i j v v v , 质点受到一个沿x 负方向的力f 的作用,求相对于坐标原点的角动量以及作用于质点上的力的力矩. 解: 由题知,质点的位矢为11x i y j =+r作用在质点上的力为i f f−=所以,质点对原点的角动量为v m r L ⨯=011()()x y x i y j m v i v j =+⨯+k mv y mv x x y)(11−=作用在质点上的力的力矩为k f y i f j y i x f r M1110)()(=−⨯+=⨯=3-9 如题3-9图所示,一轴承光滑的定滑轮,质量为M =2.00kg ,半径为R =0.100m ,一根不能伸长的轻绳,一端固定在定滑轮上,另一端系有一质量为m =5.00kg 的物体,如图所示.已知定滑轮的转动惯量为J =MR 2/2,其初角速度ω0=10.0rad/s ,方向垂直纸面向里.求:(1) 定滑轮的角加速度的大小和方向;(2) 定滑轮的角速度变化到ω=0时,物体上升的高度; 题3-9图 (3) 当物体回到原来位置时,定滑轮的角速度的大小和方向. 解:(1) ∵mg -T =maαI TR =a R α=∴α= mgR / (mR 2+J )()R M m mg MR mR mgR +=+=222122=81.7 rad/s 2 方向垂直纸面向外.(2) ∵αθωω2202−=当ω=0 时,rad 612.0220==αωθ物体上升的高度h = R θ = 6.12×10-2 m. (3)==αθω210.0 rad/s3-10 固定在一起的两个同轴均匀圆柱体可绕其光滑的水平对称轴O O '转动.设大小圆柱体的半径分别为R 和r ,质量分别为M 和m .绕在两柱体上的细绳分别与物体1m 和2m 相连,1m 和2m 则挂在圆柱体的两侧,如题3-10图所示.设R =0.20m, r =0.10m ,m =4 kg ,M =10 kg ,1m =2m =2 kg ,且开始时1m ,2m 离地均为h =2m .求: 题3-10 图(1)柱体转动时的角加速度; (2)两侧细绳的张力.解: 设1a ,2a 和β分别为1m ,2m 和柱体的加速度及角加速度,方向如图(如图b). (1) 1m ,2m 和柱体的运动方程如下:2222a m g m T =− ① 1111a m T g m =− ②βI r T R T ='−'21 ③式中 ββR a r a T T T T ==='='122211,,, 而 222121mr MR I += 由上式求得22222222121s rad 13.68.910.0220.0210.042120.0102121.022.0−⋅=⨯⨯+⨯+⨯⨯+⨯⨯⨯−⨯=++−=gr m R m I rm Rm β(2)由①式8.208.9213.610.02222=⨯+⨯⨯=+=g m r m T βN由②式1.1713.6.2.028.92111=⨯⨯−⨯=−=βR m g m T N3-11 如题3-11图所示,滑轮为质量均匀分布的圆柱体,其质量为M ,半径为r ,在绳与轮缘的摩擦力作用下旋转,忽略桌面与物体间的摩擦,设150kg m =,2200kg m =,15kg M =, 0.1m r =。

计算系统中物体的加速度 .题3-11(a)图 题3-6(b)图解: 分别以1m ,2m 滑轮为研究对象,受力图如图(b)所示.对1m ,2m 运用牛顿定律,有a m T g m 222=− ① a m T 11= ②对滑轮运用转动定律,有β)21(212Mr r T r T =− ③又, βr a = ④ 联立以上4个方程,得2212s m 6.721520058.92002−⋅=++⨯=++=M m m g m a3-12 一匀质细杆质量为m ,长为l ,可绕过一端O 的水平轴自由转动,杆于水平位置由静止开始摆下,如题3-12图所示.求: (1)初始时刻的角加速度; (2)杆转过θ角时的角速度. 解: (1)由转动定律,有211()23mg l ml β=∴ lg23=β 题3-12图(2)由机械能守恒定律,有22)31(21sin 2ωθml l mg= ∴ lg θωsin 3=3-13 物体质量为3kg ,t =0时位于4m =r i , 16m s −=+⋅v i j ,如一恒力5N =f j 作用在物体上,求3秒后,(1)物体动量的变化;(2)相对z 轴角动量的变化.解: (1) ⎰⎰−⋅⋅===∆301s m kg 15d 5d j t j t f p(2)解(一) 73400=+=+=t v x x xj at t v y y 5.25335213621220=⨯⨯+⨯=+=即 i r41=,j i r 5.2572+=10==x x v v1133560=⨯+=+=at v v y y即 j i v611+=,j i v 112+=∴ k j i i v m r L72)6(34111=+⨯=⨯=k j i j i v m r L5.154)11(3)5.257(222=+⨯+=⨯=∴ 1212s m kg 5.82−⋅⋅=−=∆k L L L解(二) ∵dtdz M =∴ ⎰⎰⨯=⋅=∆t t t F r t M L 0d )(d⎰⎰−⋅⋅=+=⨯⎥⎦⎤⎢⎣⎡⨯+++=31302s m kg 5.82d )4(5d 5)35)216()4(2k t k t t j j t t i t3-14 如题3-14图,质量为m ,长为l 的均匀细棒,可绕过其一端的水平轴O 转动.现将棒拉到水平位置(OA ′)后放手,棒下摆到竖直位置(OA )时,与静止放置在水平面A 处的质量为M 的物块作完全弹性碰撞,物体在水平面上向右滑行了一段距离s 后停止.设物体与水平面间的摩擦系数μ处处相同,求μ.解:(1)棒由水平位置下摆至竖直位置但尚未与物块相碰.此过程机械能守恒.以棒、地球为一系统,以棒的重心在竖直位置时为重力势能零点,则有22211226l mgJ ml ωω== (2)棒与物块作完全弹性碰撞,此过程角动量守恒(动量不守恒)和机械能守恒,设碰撞后棒的角速度为'ω,物块速度为v ,则有221133mlml lMv ωω'=+222221111123232ml ml Mv ωω'⨯=⨯+(3)碰撞后物块在水平面滑行,满足动能定理2102mgs Mv μ−=−联立以上四式,可解得:226m (m 3M)slμ=+题3-14图 题3-15图3-15 一个质量为M 、半径为R 并以角速度ω转动着的飞轮 (可看作匀质圆盘),在某一瞬时突然有一片质量为m 的碎片从轮的边缘上飞出,如题3-15图.假定碎片脱离飞轮时的瞬时速度方向正好竖直向上. (1)问它能升高多少?(2)求余下部分的角速度、角动量和转动动能. 解: (1)碎片离盘瞬时的线速度即是它上升的初速度ωR v =0设碎片上升高度h 时的速度为v ,则有gh v v 2202−=令0=v ,可求出上升最大高度为2220212ωR gg v H ==(2)圆盘的转动惯量221MR I =,碎片抛出后圆盘的转动惯量2221mR MR I −=',碎片脱离前,盘的角动量为ωI ,碎片刚脱离后,碎片与破盘之间的内力变为零,但内力不影响系统的总角动量,碎片与破盘的总角动量应守恒,即R mv I I 0+''=ωω式中ω'为破盘的角速度.于是R mv mR MR MR 0222)21(21+'−=ωω ωω'−=−)21()21(2222mR MR mR MR 得ωω=' (角速度不变)圆盘余下部分的角动量为ω)21(22mR MR − 转动动能为 222)21(21ωmR MR E k −=3-16 如题3-16图所示,有一质量为1m 、长为l 的均匀细棒,静止平放在滑动摩擦系数为μ的水平桌面上,它可绕通过其端点O 且与桌面垂直的固定光滑轴转动.另有一水平运动的质量为2m 的小滑块,从侧面垂直于棒与棒的另一端A 相碰撞,设碰撞时间极短.已知小滑块在碰撞前后的速度分别为1v 和2v ,如图所示.求碰撞后从细棒开始转动到停止转动的过程所需的时间。

相关文档
最新文档