新初中数学四边形知识点总复习

合集下载

平行四边形知识点总结

平行四边形知识点总结

平行四边形知识点总结一、平行四边形的定义两组对边分别平行的四边形叫做平行四边形。

需要注意的是,平行四边形的定义既是它的一个性质,即两组对边分别平行;也是判定一个四边形是否为平行四边形的依据之一。

二、平行四边形的性质1、边的性质(1)平行四边形的两组对边分别平行且相等。

(2)平行四边形的邻边之和等于周长的一半。

2、角的性质(1)平行四边形的两组对角分别相等。

(2)平行四边形的邻角互补,即相邻的两个角之和为 180 度。

3、对角线的性质(1)平行四边形的对角线互相平分。

(2)两条对角线把平行四边形分成的四个三角形的面积相等。

4、对称性平行四边形是中心对称图形,对称中心是两条对角线的交点。

三、平行四边形的判定1、两组对边分别平行的四边形是平行四边形。

这是根据平行四边形的定义直接得出的判定方法。

2、两组对边分别相等的四边形是平行四边形。

如果一个四边形的两组对边分别相等,那么可以通过平移其中一组对边,使其与另一组对边重合,从而证明该四边形是平行四边形。

3、一组对边平行且相等的四边形是平行四边形。

先证明一组对边平行,如果再能证明这组对边相等,就可以判定为平行四边形。

4、两组对角分别相等的四边形是平行四边形。

因为平行四边形的两组对角分别相等,所以如果一个四边形的两组对角分别相等,那么它就是平行四边形。

5、对角线互相平分的四边形是平行四边形。

通过证明对角线互相平分,可以得出四边形的两组对边分别平行,从而判定为平行四边形。

四、平行四边形面积的计算平行四边形的面积=底×高需要注意的是,底和高必须是相对应的,即底边上对应的高。

五、平行四边形中的常见题型1、利用性质求边长、角度或对角线的长度已知平行四边形的一些边、角或对角线的关系,通过性质列方程求解。

2、证明一个四边形是平行四边形根据给定的条件,选择合适的判定方法进行证明。

3、求平行四边形的面积给出底和高的长度,或者通过其他条件求出底和高,进而计算面积。

4、与三角形结合的问题例如,平行四边形的对角线把平行四边形分成两个全等的三角形,或者通过三角形的全等或相似来解决平行四边形中的问题。

2020-2021初中数学四边形知识点总复习(1)

2020-2021初中数学四边形知识点总复习(1)

2020-2021初中数学四边形知识点总复习(1)一、选择题1.如图,△ABC 中,AB =AC =10,BC =12,D 是BC 的中点,DE ⊥AB 于点E ,则DE 的长为( )A .65B .85C .125D .245【答案】D【解析】【分析】连接AD ,根据已知等腰三角形的性质得出AD ⊥BC 和BD=6,根据勾股定理求出AD ,根据三角形的面积公式求出即可.【详解】解:连接AD∵AB=AC ,D 为BC 的中点,BC=12, ∴AD ⊥BC ,BD=DC=6, 在Rt △ADB 中,由勾股定理得:22221068AB BD =+=, ∵S △ADB=12×AD×BD =12×AB×DE , ∴DE=8624105AD BD AB ⨯⨯==, 故选D . 【点睛】本题考查了等腰三角形的性质(等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合)、勾股定理和三角形的面积,能求出AD 的长是解此题的关键.2.如图,在四边形ABCD 中,90,150,BAD BCD ADC ∠=∠=︒∠=o 连接对角线BD ,过点D 作//DE BC 交AB 于点,E 若23,AB AD CD =+=,则CD =( )A .2B .1C .13+D 3【答案】B【解析】【分析】 先根据四边形的内角和求得∠ABC 30︒=,再根据平行线的性质得到∠AED 30︒=,∠EDB=∠DBC ,然后根据三角形全等得到∠ABD=∠DBC ,进而得到EB=ED ,最后在Rt ADE V 中,利用勾股定理即可求解.【详解】解:在四边形ABCD 中∵90,150,BAD BCD ADC ∠=∠=︒∠=o∴∠ABC 30︒=∵//DE BC∴∠AED 30︒=,∠EDB=∠DBC在Rt ABD V 和Rt BCD △中 ∵AD CD BD BD =⎧⎨=⎩∴Rt ABD Rt BCD ≅V V∴∠ABD=∠DBC∴∠EDB=∠ABD∴EB=ED ∵23AB =在Rt ADE △中,设AD=x,那么DE=2x,AE=232x()2222322x x x ++= 解得:121;73x x ==故选:B .【点睛】此题主要考查四边形的内角和、全等三角形的判断、平行线的性质和勾股定理的应用,熟练进行逻辑推理是解题关键.3.如图,□ABCD 的对角线AC 与BD 相交于点O ,AB ⊥AC .若4AB =,6AC =,则BD 的长为( )A .11B .10C .9D .8 【答案】B【解析】【分析】根据勾股定理先求出BO 的长,再根据平行四边形的性质即可求解.【详解】∵6AC =,∴AO=3,∵AB ⊥AC ,∴BO=2234+=5∴BD=2BO=10,故选B.【点睛】此题主要考查平行四边形的性质,解题的关键是熟知勾股定理的应用.4.如图,已知AD 是三角形纸片ABC 的高,将纸片沿直线EF 折叠,使点A 与点D 重合,给出下列判断:①EF 是ABC V 的中位线;②DEF V 的周长等于ABC V 周长的一半:③若四边形AEDF 是菱形,则AB AC =;④若BAC ∠是直角,则四边形AEDF 是矩形.其中正确的是( )A .①②③B .①②④C .②④D .①③④【答案】A【解析】【分析】根据折叠可得EF 是AD 的垂直平分线,再加上条件AD 是三角形纸片ABC 的高可以证明EF ∥BC ,进而可得△AEF ∽△ABC ,从而得12AE AF AO AB AC AD ===,进而得到EF 是△ABC 的中位线;再根据三角形的中位线定理可判断出△AEF 的周长是△ABC 的一半,进而得到△DEF 的周长等于△ABC 周长的一半;根据三角形中位线定理可得AE=12AB ,AF=12AC ,若四边形AEDF 是菱形则AE=AF ,即可得到AB=AC .【详解】解:∵AD 是△ABC 的高,∴AD ⊥BC ,∴∠ADC=90°,根据折叠可得:EF 是AD 的垂直平分线,∴AO=DO=12AD ,AD ⊥EF , ∴∠AOF=90°,∴∠AOF=∠ADC=90°,∴EF ∥BC ,∴△AEF ∽△ABC , 12AE AF AO AB AC AD ===, ∴EF 是△ABC 的中位线,故①正确;∵EF 是△ABC 的中位线,∴△AEF 的周长是△ABC 的一半,根据折叠可得△AEF ≌△DEF ,∴△DEF 的周长等于△ABC 周长的一半,故②正确;∵EF 是△ABC 的中位线,∴AE=12AB ,AF=12AC , 若四边形AEDF 是菱形,则AE=AF ,∴AB=AC ,故③正确;根据折叠只能证明∠BAC=∠EDF=90°,不能确定∠AED 和∠AFD 的度数,故④错误;故选:A .【点睛】此题主要考查了图形的翻折变换,以及三角形中位线的性质,关键是掌握三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.5.若菱形的对角线分别为6和8,则这个菱形的周长为( )A .10B .20C .40D .48 【答案】B【解析】【分析】根据菱形的对角线互相垂直平分的性质,利用对角线的一半,根据勾股定理求出菱形的边长,再根据菱形的四条边相等求出周长即可.【详解】如图所示,根据题意得AO=12×8=4,BO=12×6=3,∵四边形ABCD 是菱形,∴AB=BC=CD=DA ,AC ⊥BD ,∴△AOB 是直角三角形,∴22169AO BO ++,∴此菱形的周长为:5×4=20.故选:B .【点睛】此题考查菱形的性质,利用勾股定理求出菱形的边长是解题的关键.6.正九边形的内角和比外角和多( )A .720︒B .900︒C .1080︒D .1260︒【答案】B【解析】【分析】根据多边形的内角和公式求出正九边形的内角和,减去外角和360°即可.【详解】∵正九边形的内角和是(92)1801260-⨯=o o ,∴1260360-=o o 900︒,故选:B.【点睛】此题考查多边形的内角和公式、外角和,熟记公式是解题的关键.7.如图,四边形ABCD 和四边形AEFG 均为正方形,连接CF ,DG ,则DG CF =( )A .23B .22 C .3D .3【答案】B【解析】【分析】连接AC 和AF ,证明△DAG ∽△CAF 可得DGCF 的值.【详解】连接AC 和AF ,则22ADAG AC AF ==,∵∠DAG=45°-∠GAC ,∠CAF=45°-GAC ,∴∠DAG=∠CAF .∴△DAG ∽△CAF .∴2DG AD CF AC ==故答案为:B.【点睛】本题主要考查了正方形的性质、相似三角形的判定和性质,解题的关键是构造相似三角形.8.如图,矩形ABCD的对角线AC、BD相交于点O,AB:BC=2:1,且BE∥AC,CE∥DB,连接DE,则tan∠EDC=()A.14B.16C2D.310【答案】B【解析】【分析】过点E作EF⊥直线DC交线段DC延长线于点F,连接OE交BC于点G.根据邻边相等的平行四边形是菱形即可判断四边形OBEC是菱形,则OE与BC垂直平分,易得EF=12 x,CF=x.再由锐角三角函数定义作答即可.【详解】解:∵矩形ABCD的对角线AC、BD相交于点O,AB:BC=2:1,∴BC=AD,设AB=2x,则BC=x.如图,过点E作EF⊥直线DC交线段DC延长线于点F,连接OE交BC于点G.∵BE∥AC,CE∥BD,∴四边形BOCE是平行四边形,∵四边形ABCD是矩形,∴OB=OC,∴四边形BOCE是菱形.∴OE与BC垂直平分,∴EF=12AD=12x,OE∥AB,∴四边形AOEB是平行四边形,∴OE=AB=2x,∴CF=12OE=x.∴tan∠EDC=EFDF=122xx x=16.故选:B.【点睛】本题考查矩形的性质、平行四边形的判定与性质、菱形的判定与性质以及解直角三角形,解题的关键是熟练掌握矩形的性质和菱形的判定与性质,属于中考常考题型.9.已知,如图,在ABC V 中,90ACB ∠=︒,30A ∠=︒,求证:12BC AB =.在证明该结论时,需添加辅助线,则作法不正确的是( )A .延长BC 至点D ,使CD BC =,连接ADB .在ACB ∠中作BCE B ∠=∠,CE 交AB 于点EC .取AB 的中点P ,连接CPD .作ACB ∠的平分线CM ,交AB 于点M【答案】D【解析】【分析】 分别根据各选项的要求进行证明,推出正确结论,则问题可解.【详解】解:选项A : 如图,由辅助线可知,ABC ADC ≅V ;,则有AB=AD ,再由90ACB ∠=︒,由30BAC ∠=︒,则60B ∠=︒,∴ABD △是等边三角形∴1122BC DB AB ==故选项A 正确;选项B:如图,由辅助线可知,EBD △是等边三角形则60BEC EAC ECA ∠=∠+∠=︒,BE=EC∵30A ∠=︒∴30ECA A ∠=∠=︒∴AE=EC ∴12BC AB =故选项B 正确选项C 如图,有辅助线可知,CP 为直角三角形斜边上的中线∴AP=CP=BP∵30A ∠=︒∴60B ∠=︒∴PBC V 是等边三角形∴12BC BP AB ==综上可知选项D 错误故应选D【点睛】 此题主要考查了全等三角形的判定,等边三角形的判定与性质的综合应用,根据条件选择正确的证明方法是解题的关键.10.下列说法中正确的是( )A .有一个角是直角的四边形是矩形B .两条对角线互相垂直的四边形是菱形C .两条对角线互相垂直平分的四边形是正方形D .两条对角线相等的菱形是正方形【答案】D【解析】【分析】本题考查了菱形,矩形,正方形的判定方法,熟练掌握菱形,矩形,正方形的判定方法是解题的关键.【详解】A. 有一个角是直角的四边形是矩形,错误;B. 两条对角线互相垂直的四边形是菱形,错误;C. 两条对角线互相垂直平分的四边形是正方形,错误;D. 两条对角线相等的菱形是正方形,正确.故选D.【点睛】本题考查了菱形,矩形,正方形的判定方法,熟练掌握菱形,矩形,正方形的判定方法是解题的关键,考查了学生熟练运用知识解决问题的能力.11.如图,抛物线2119y x =-与x 轴交于A B ,两点,D 是以点()0,4C 为圆心,1为半径的圆上的动点,E 是线段AD 的中点,连接,OE BD ,则线段OE 的最小值是( )A .2B .322C .52D .3【答案】A【解析】【分析】 根据抛物线解析式即可得出A 点与B 点坐标,结合题意进一步可以得出BC 长为5,利用三角形中位线性质可知OE=12BD ,而BD 最小值即为BC 长减去圆的半径,据此进一步求解即可.【详解】∵2119y x =-, ∴当0y =时,21019x =-, 解得:=3x ±,∴A 点与B 点坐标分别为:(3-,0),(3,0),即:AO=BO=3,∴O 点为AB 的中点,又∵圆心C 坐标为(0,4),∴OC=4,∴BC 长度5=,∵O 点为AB 的中点,E 点为AD 的中点,∴OE 为△ABD 的中位线,即:OE=12BD , ∵D 点是圆上的动点,由图可知,BD 最小值即为BC 长减去圆的半径,∴BD 的最小值为4,∴OE=12BD=2, 即OE 的最小值为2,故选:A.【点睛】本题主要考查了抛物线性质与三角形中位线性质的综合运用,熟练掌握相关概念是解题关键.12.一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为( )A .7B .7或8C .8或9D .7或8或9【答案】D【解析】试题分析:设内角和为1080°的多边形的边数是n ,则(n ﹣2)•180°=1080°,解得:n=8. 则原多边形的边数为7或8或9.故选D .考点:多边形内角与外角.13.如图,在平行四边形ABCD 中,将ADC ∆沿AC 折叠后,点D 恰好落在DC 的延长线上的点E 处.若60B ∠=o ,AB=3,则ADE ∆的周长为()A.12 B.15 C.18 D.2【答案】C【解析】【分析】依据平行四边形的性质以及折叠的性质,即可得到BC=2AB=6,AD=6,再根据△ADE是等边三角形,即可得到△ADE的周长为6×3=18.【详解】由折叠可得,∠ACD=∠ACE=90°,∴∠BAC=90°,又∵∠B=60°,∴∠ACB=30°,∴BC=2AB=6,∴AD=6,由折叠可得,∠E=∠D=∠B=60°,∴∠DAE=60°,∴△ADE是等边三角形,∴△ADE的周长为6×3=18,故选:C.【点睛】此题考查平行四边形的性质、轴对称图形性质以及等边三角形的判定.解题关键在于注意折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.14.如图1,在△ABC中,∠B=90°,∠C=30°,动点P从点B开始沿边BA、AC向点C以恒定的速度移动,动点Q从点B开始沿边BC向点C以恒定的速度移动,两点同时到达点C,设△BPQ的面积为y(cm2).运动时间为x(s),y与x之间关系如图2所示,当点P 恰好为AC的中点时,PQ的长为()A.2 B.4 C.23D.43【答案】C【解析】【分析】点P、Q的速度比为3:3,根据x=2,y=63,确定P、Q运动的速度,即可求解.【详解】解:设AB=a,∠C=30°,则AC=2a,BC=3a,设P、Q同时到达的时间为T,则点P的速度为3aT,点Q的速度为3a,故点P、Q的速度比为3:3,故设点P、Q的速度分别为:3v、3v,由图2知,当x=2时,y=63,此时点P到达点A的位置,即AB=2×3v=6v,BQ=2×3v=23v,y=12⨯AB×BQ=12⨯6v×23v=63,解得:v=1,故点P、Q的速度分别为:3,3,AB=6v=6=a,则AC=12,BC=63,如图当点P在AC的中点时,PC=6,此时点P运动的距离为AB+AP=12,需要的时间为12÷3=4,则BQ=3x=43,CQ=BC﹣BQ=63﹣43=23,过点P作PH⊥BC于点H,PC=6,则PH=PC sin C=6×12=3,同理CH=3,则HQ=CH﹣CQ=333,PQ22PH HQ+39+3,故选:C.【点睛】本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.15.如图,四边形ABCD的对角线相交于点O,且点O是BD的中点,若AB=AD=5,BD=8,∠ABD=∠CDB,则四边形ABCD的面积为()A.40 B.24 C.20 D.15【答案】B【解析】【分析】根据等腰三角形的性质得到AC⊥BD,∠BAO=∠DAO,得到AD=CD,推出四边形ABCD是菱形,根据勾股定理得到AO=3,于是得到结论.【详解】∵AB=AD,点O是BD的中点,∴AC⊥BD,∠BAO=∠DAO,∵∠ABD=∠CDB,∴AB∥CD,∴∠BAC=∠ACD,∴∠DAC=∠ACD,∴AD=CD,∴AB=CD,∴四边形ABCD是菱形,∵AB=5,BO12=BD=4,∴AO=3,∴AC=2AO=6,∴四边形ABCD的面积12=⨯6×8=24,故选:B.【点睛】本题考查了菱形的判定和性质,等腰三角形的判定和性质,平行线的判定和性质,正确的识别图形是解题的关键.16.如图,张明同学设计了四种正多边形的瓷砖图案,在这四种瓷砖图案不能铺满地面的是()A.B.C.D.【答案】D【解析】【分析】分别计算各正多边形每个内角的度数,看是否能整除360°,即可判断.【详解】解:A.正六边形每个内角为120°,能够整除360°,不合题意;B.正三角形每个内角为60°,能够整除360°,不合题意;C.正方形每个内角为90°,能够整除360°,不合题意;D.正五边形每个内角为108°,不能整除360°,符合题意.故选:D.【点睛】能够铺满地面的图形是看拼在同一顶点的几个角是否构成周角.17.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②∠ADC=∠GCD;③CA平分∠BCG;④∠DFB=12∠CGE.其中正确的结论是( )A.②③B.①②④C.①③④D.①②③④【答案】B【解析】【分析】根据平行线的性质、角平分线的定义、垂直的性质及三角形内角和定理依次判断即可得出答案.【详解】①∵EG∥BC,∴∠CEG=∠ACB,又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,故正确;②∵∠A=90°,∴∠ADC+∠ACD=90°,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且CG⊥EG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,故正确;③条件不足,无法证明CA平分∠BCG,故错误;④∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,∴∠AEB+∠ADC=90°+12(∠ABC+∠ACB)=135°,∴∠DFE=360°-135°-90°=135°,∴∠DFB=45°=12∠CGE,,正确.故选B.【点睛】本题主要考查了角平分线的定义,平行线的性质,三角形内角和定理及多边形内角和,三角形外角的性质,熟知直角三角形的两锐角互余是解答此题的关键.18.如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连接BM、DN.若四边形MBND是菱形,则AMMD等于()A.35B.23C.38D.45【答案】A【解析】试题分析:设AB=a,根据题意知AD=2a,由四边形BMDN是菱形知BM=MD,设AM=b,则BM=MD=2a-b.在Rt△ABM中,由勾股定理即可求值.试题解析:∵四边形MBND是菱形,∴MD=MB.∵四边形ABCD是矩形,∴∠A=90°.设AB=a,AM=b,则MB=2a-b,(a、b均为正数).在Rt△ABM中,AB2+AM2=BM2,即a2+b2=(2a-b)2,解得a=4b3,∴MD=MB=2a-b=53 b,∴3553AM bMD b==.故选A.考点:1.矩形的性质;2.勾股定理;3.菱形的性质.19.下列说法正确的是()A.对角线相等的四边形一定是矩形B.任意掷一枚质地均匀的硬币10次,一定有5次正面向上C.如果有一组数据为5,3,6,4,2,那么它的中位数是6D.“用长分别为5cm、12cm、6cm的三条线段可以围成三角形”这一事件是不可能事件【答案】D【解析】【分析】根据矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义依次判断即可.【详解】A.对角线相等的平行四边形是矩形,故该项错误;B. 任意掷一枚质地均匀的硬币10次,不一定有5次正面向上,故该项错误;C. 一组数据为5,3,6,4,2,它的中位数是4,故该项错误;D. “用长分别为5cm、12cm、6cm的三条线段可以围成三角形” 这一事件是不可能事件,正确,故选:D.【点睛】此题矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义,综合掌握各知识点是解题的关键.20.在四边形ABCD中,两对角线交于点O,若OA=OB=OC=OD,则这个四边形( ) A.可能不是平行四边形B.一定是菱形C.一定是正方形D.一定是矩形【答案】D【解析】【分析】根据OA=OC, OB=OD,判断四边形ABCD是平行四边形.然后根据AC=BD,判定四边形ABCD是矩形.【详解】解:这个四边形是矩形,理由如下:∵对角线AC、BD交于点O,OA= OC, OB=OD,∴四边形ABCD是平行四边形,又∵OA=OC=OD=OB,∴AC=BD,∴四边形ABCD是矩形.故选D.【点睛】本题考查了矩形的判断,熟记矩形的各种判定方法是解题的关键.。

最新人教版初中数学八年级下册-第18章《平行四边形》复习课件-

最新人教版初中数学八年级下册-第18章《平行四边形》复习课件-

第 1 题图
第 2 题图
2.(4分)如图,在四边形ABCD中,E是BC边的中点,
连接DE并延长,交AB的延长线于F点,AB=BF.添
加一个条件,使四边形ABCD是平行四边形.你认为
下面四个条件中可选择的是( D )
A.AD=BC;
B.CD=BF;
C.∠A=∠C;
D.∠F=∠CDE。
3.(8分)(2013·镇江)如图,AB∥CD,AB=CD,点
6.(5分)小玲的爸爸在钉制平行四边形框架时,采用了
一种方法:如图所示,将两根木条AC,BD的中点
重叠,并用钉子固定,则四边形ABCD就是平行四
边形,这种方法的依据是( )
A.对角线互相平分的四边形是平行四边形
B.两组对角分别相等的四边形是平行四边形
C.两组对边分别相等的四边形是平行四边形
D.两组对边分别平行的四边形是平行四边形 7.(8分)如图,在▱ABCD中,点E,F是对角线AC上两
四边形的个数为( ) A.4个; B.3个; C.2个; D.1个
9.已知三条线段的长分别为10 cm, 14 cm和8 cm, 如 果以其中的两条为对角线, 另一条为边, 那么可以 画出所有不同形状的平行四边形的个数为( ) A. 1个; B. 2个; C. 3个; D. 4个.
10.如图, 在▱ABCD中, 对角线AC, BD相交于点O, E,
∠CFD+∠DFE=180°,∴∠AEF=∠DFE.∴AE∥DF.∴四边形 AFDE 为平行四边形
4.(4分)如图,在▱ABCD中,点E,F分别在AD,BC
上,且BE∥DF,若∠EBF=45°,则∠EDF的度数
为 45 。
5.(A41第B分8C2.)1D如课.2为图时平,平行四行平四边边四行形形边四A,B形边C则D形的可中的判添,性定加AB的质∥条与C件D判,是定要的使四综边合形应用

初中数学四边形知识点归纳

初中数学四边形知识点归纳

初中数学四边形知识点归纳四边形(四边形具有不稳定性)1定理四边形的内角和等于360°2四边形的外角和等于360°3多边形内角和定理 n边形的内角的和等于(n-2)×180°4推论任意多边的外角和等于360°5平行四边形性质定理1 平行四边形的对角相等6平行四边形性质定理2 平行四边形的对边相等7推论夹在两条平行线间的平行线段相等8平行四边形性质定理3 平行四边形的对角线相互平分9平行四边形判定定理1 两组对角分别相等的四边形是平行四边形10平行四边形判定定理2 两组对边分别相等的四边形是平行四边形11平行四边形判定定理3 对角线相互平分的四边形是平行四边形12平行四边形判定定理4 一组对边平行相等的四边形是平行四边形13矩形性质定理1 矩形的四个角都是直角14矩形性质定理2 矩形的对角线相等15矩形判定定理1 有三个角是直角的四边形是矩形16矩形判定定理2 对角线相等的平行四边形是矩形17菱形性质定理1 菱形的四条边都相等18菱形性质定理2 菱形的对角线相互垂直,并且每一条对角线平分一组对角19菱形面积=对角线乘积的一半,即s=(a×b)÷220菱形判定定理1 四边都相等的四边形是菱形216菱形判定定理2 对角线相互垂直的平行四边形是菱形22正方形性质定理1 正方形的四个角都是直角,四条边都相等23正方形性质定理2正方形的两条对角线相等,并且相互垂直平分,每条对角线平分一组对角24定理1 关于中心对称的两个图形是全等的25定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分26逆定理假如两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称27等腰梯形性质定理等腰梯形在同一底上的两个角相等28等腰梯形的两条对角线相等29等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形30对角线相等的梯形是等腰梯形31平行线等分线段定理假如一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等32 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰33推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边34 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半36 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 l=(a+b)÷2 s=l×h37 (1)比例的基本性质假如a:b=c:d,那么ad=bc 假如ad=bc,那么a:b=c:d38 (2)合比性质假如a/b=c/d,那么(a±b)/b=(c±d)/d39 (3)等比性质假如a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/(b+d+…+n)=a/b40平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例41 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例42 定理假如一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边43平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例44 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相像45 相像三角形判定定理1 两角对应相等,两三角形相像(asa)46 直角三角形被斜边上的高分成的两个直角三角形和原三角形相像47 判定定理2 两边对应成比例且夹角相等,两三角形相像(sas)48 判定定理3 三边对应成比例,两三角形相像(sss)49 定理假如一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相像50 性质定理1 相像三角形对应高的比,对应中线的比与对应角平分线的比都等于相像比51 性质定理2 相像三角形周长的比等于相像比52 性质定理3 相像三角形面积的比等于相像比的平方53任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值54任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值大家看过中学数学知识点归纳之四边形,大家要熟记多边形内角和定理为n边形的内角的和等于(n-2)×180°。

新初中数学四边形知识点复习

新初中数学四边形知识点复习

新初中数学四边形知识点复习一、选择题1.下列说法中正确的是()A.有一个角是直角的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相垂直平分的四边形是正方形D.两条对角线相等的菱形是正方形【答案】D【解析】【分析】本题考查了菱形,矩形,正方形的判定方法,熟练掌握菱形,矩形,正方形的判定方法是解题的关键.【详解】A. 有一个角是直角的四边形是矩形,错误;B. 两条对角线互相垂直的四边形是菱形,错误;C. 两条对角线互相垂直平分的四边形是正方形,错误;D. 两条对角线相等的菱形是正方形,正确.故选D.【点睛】本题考查了菱形,矩形,正方形的判定方法,熟练掌握菱形,矩形,正方形的判定方法是解题的关键,考查了学生熟练运用知识解决问题的能力.2.如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()A.24 B.18 C.12 D.9【答案】A【解析】【分析】易得BC长为EF长的2倍,那么菱形ABCD的周长=4BC问题得解.【详解】∵E是AC中点,∵EF∥BC,交AB于点F,∴EF是△ABC的中位线,∴BC=2EF=2×3=6,∴菱形ABCD的周长是4×6=24,故选A .【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键.3.如图,在矩形ABCD 中,6AB =,8BC =,若P 是BD 上的一个动点,则PB PC PD ++的最小值是( )A .16B .15.2C .15D .14.8【答案】D【解析】【分析】 根据题意,当PC ⊥BD 时,PB PC PD ++有最小值,由勾股定理求出BD 的长度,由三角形的面积公式求出PC 的长度,即可求出最小值.【详解】解:如图,当PC ⊥BD 时,PB PC PD BD PC ++=+有最小值,在矩形ABCD 中,∠A=∠BCD=90°,AB=CD=6,AD=BC=8,由勾股定理,得226810BD +=,∴=10PB PD BD +=,在△BCD 中,由三角形的面积公式,得11=22BD PC BC CD ••, 即1110=8622PC ⨯⨯⨯⨯, 解得: 4.8PC =, ∴PB PC PD ++的最小值是:10 4.814.8PB PC PD BD PC ++=+=+=; 故选:D.【点睛】本题考查了勾股定理解直角三角形,最短路径问题,垂线段最短,以及三角形的面积公式,解题的关键是熟练掌握勾股定理,正确确定点P 的位置,得到PC 最短.4.下列命题错误的是()A.平行四边形的对角线互相平分B.两直线平行,内错角相等C.等腰三角形的两个底角相等D.若两实数的平方相等,则这两个实数相等【答案】D【解析】【分析】根据平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,分别进行判断,即可得到答案.【详解】解:A、平行四边形的对角线互相平分,正确;B、两直线平行,内错角相等,正确;C、等腰三角形的两个底角相等,正确;D、若两实数的平方相等,则这两个实数相等或互为相反数,故D错误;故选:D.【点睛】本题考查了判断命题的真假,以及平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,解题的关键是熟练掌握所学的性质进行解题.5.如图,在平行四边形ABCD中,2=AD AB,CE平分BCD∠交AD于点E,且8BC=,则AB的长为()A.4 B.3 C.52D.2【答案】A【解析】【分析】利用平行四边形的对边相等且互相平行,进而得出AE=DE=AB即可得出答案.【详解】∵CE平分∠BCD交AD边于点E,∴∠ECD=∠ECB,∵在平行四边形ABCD中,AD∥BC,AB=CD,∴∠DEC=∠ECB,∠DEC=∠DCE ,∴DE=DC ,∵AD=2AB ,∴AD=2CD ,∴AE=DE=AB .∵8AD BC ==,2=AD AB∴AB=4,故选:A .【点睛】此题考查了平行四边形的性质,得出∠DEC=∠DCE 是解题关键.6.如图,11,,33AB EF ABP ABC EFP EFC ∠=∠∠=∠∥,已知60FCD ∠=︒,则P ∠的度数为( )A .60︒B .80︒C .90︒D .100︒【答案】B【解析】【分析】 延长BC 、EF 交于点G ,根据平行线的性质得180ABG BGE +=︒∠∠,再根据三角形外角的性质和平角的性质得60180120EFC FCD BGE BGE BCF FCD =+=︒+=︒-=︒∠∠∠∠,∠∠,最后根据四边形内角和定理求解即可.【详解】延长BC 、EF 交于点G∵//AB EF∴180ABG BGE +=︒∠∠∵60FCD ∠=︒∴60180120EFC FCD BGE BGE BCF FCD =+=︒+=︒-=︒∠∠∠∠,∠∠ ∵11,33ABP ABC EFP EFC ∠=∠∠=∠ ∴360P PBC BCF PFC =︒---∠∠∠∠2236012033ABG EFC =︒---︒∠∠()223606012033ABG BGE =︒--︒+-︒∠∠ 223604012033ABG BGE =︒--︒--︒∠∠ ()22003ABG BGE =︒-+∠∠ 22001803=︒-⨯︒ 80=︒故答案为:B .【点睛】本题考查了平行线的角度问题,掌握平行线的性质、三角形外角的性质、平角的性质、四边形内角和定理是解题的关键.7.如图,在菱形ABCD 中,60ABC ∠=︒,1AB =,点P 是这个菱形内部或边上的一点,若以点P ,B ,C 为顶点的三角形是等腰三角形,则P ,D (P ,D 两点不重合)两点间的最短距离为( )A .12B .1C 3D 31【答案】D【解析】【分析】分三种情形讨论①若以边BC 为底.②若以边PC 为底.③若以边PB 为底.分别求出PD 的最小值,即可判断.【详解】解:在菱形ABCD 中,∵∠ABC=60°,AB=1,∴△ABC ,△ACD 都是等边三角形,①若以边BC 为底,则BC 垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短“,即当点P 与点A 重合时,PD 值最小,最小值为1;②若以边PC 为底,∠PBC 为顶角时,以点B 为圆心,BC 长为半径作圆,与BD 相交于一点,则弧AC (除点C 外)上的所有点都满足△PBC 是等腰三角形,当点P 在BD 上时,PD 最小,最小值为31-③若以边PB 为底,∠PCB 为顶角,以点C 为圆心,BC 为半径作圆,则弧BD 上的点A 与点D 均满足△PBC 为等腰三角形,当点P 与点D 重合时,PD 最小,显然不满足题意,故此种情况不存在;上所述,PD 的最小值为 31-故选D .【点睛】本题考查菱形的性质、等边三角形的性质、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.8.正九边形的内角和比外角和多( )A .720︒B .900︒C .1080︒D .1260︒【答案】B【解析】【分析】根据多边形的内角和公式求出正九边形的内角和,减去外角和360°即可.【详解】∵正九边形的内角和是(92)1801260-⨯=o o ,∴1260360-=o o 900︒,故选:B.【点睛】此题考查多边形的内角和公式、外角和,熟记公式是解题的关键.9.如图,小莹用一张长方形纸片ABCD 进行折纸,已知该纸片宽AB 为8cm ,BC 长为10cm .当小莹折叠时,顶点D 落在BC 边上的点F 处(折痕为AE ).则此时EC =( )cmA .4B 2C .22D .3【答案】D【解析】【分析】根据矩形的性质得AB=CD=8,BC=AD=10,∠B=∠C=90°,再根据折叠的性质得AF=AD=10,DE=EF,在Rt△ABF中,利用勾股定理计算出BF=6,则CF=BC﹣BF=4,设CE=x,则DE=EF=8﹣x,在Rt△CEF中利用勾股定理得到:42+x2=(8﹣x)2,然后解方程即可.【详解】解:∵四边形ABCD为矩形,∴AB=CD=8,BC=AD=10,∠B=∠C=90°.∵长方形纸片ABCD折纸,顶点D落在BC边上的点F处(折痕为AE),∴AF=AD=10,DE=EF,在Rt△ABF中,AB=8,AF=10,∴BF=226-=AF AB∴CF=BC﹣BF=4.设CE=x,则DE=EF=8﹣x,在Rt△CEF中,∵CF2+CE2=EF2,∴42+x2=(8﹣x)2,解得x=3∴EC的长为3cm.故选:D【点睛】本题考查了折叠的性质、矩形的性质、勾股定理的综合运用;熟练掌握折叠的性质和矩形的性质,根据勾股定理得出方程是解题关键.10.如图,在菱形ABCD中,对角线AC=8,BD=6,点E,F分别是边AB,BC的中点,点P在AC上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是()A.3 B.4 C.5 D.6【答案】C【解析】【分析】先根据菱形的性质求出其边长,再作E关于AC的对称点E′,连接E′F,则E′F即为PE+PF 的最小值,再根据菱形的性质求出E′F的长度即可.【详解】解:如图∵四边形ABCD 是菱形,对角线AC=6,BD=8,∴2234 ,作E 关于AC 的对称点E′,连接E′F ,则E′F 即为PE+PF 的最小值,∵AC 是∠DAB 的平分线,E 是AB 的中点,∴E ′在AD 上,且E′是AD 的中点,∵AD=AB ,∴AE=AE ′,∵F 是BC 的中点,∴E ′F=AB=5.故选C .11.下列命题中是真命题的是( )A .多边形的内角和为180°B .矩形的对角线平分每一组对角C .全等三角形的对应边相等D .两条直线被第三条直线所截,同位角相等 【答案】C【解析】【分析】根据多边形内角和公式可对A 进行判定;根据矩形的性质可对B 进行判定;根据全等三角形的性质可对C 进行判定;根据平行线的性质可对D 进行判定.【详解】A.多边形的内角和为(n-2)·180°(n≥3),故该选项是假命题,B.矩形的对角线不一定平分每一组对角,故该选项是假命题,C.全等三角形的对应边相等,故该选项是真命题,D.两条平行线被第三条直线所截,同位角相等,故该选项是假命题,故选:C .【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.熟练掌握矩形的性质、平行线的性质、全等三角形的性质及多边形的内角和公式是解题关键.12.将一个边长为4的正方形ABCD 分割成如图所示的9部分,其中ABE △,BCF V ,CDG V ,DAH V 全等,AEH △,BEF V ,CFG △,DGH V 也全等,中间小正方形EFGH 的面积与ABE △面积相等,且ABE △是以AB 为底的等腰三角形,则AEH △的面积为( )A .2B .169C .32D .2【答案】C【解析】【分析】【详解】 解:如图,连结EG 并向两端延长分别交AB 、CD 于点M 、N ,连结HF ,∵四边形EFGH 为正方形,∴EG FH =,∵ABE △是以AB 为底的等腰三角形,∴AE BE =,则点E 在AB 的垂直平分线上,∵ABE △≌CDG V ,∴CDG V 为等腰三角形,∴CG DG =,则点G 在CD 的垂直平分线上,∵四边形ABCD 为正方形,∴AB 的垂直平分线与CD 的垂直平分线重合,∴MN 即为AB 或CD 的垂直平分线,则,EM AB GN CD ^^,EM GN =,∵正方形ABCD 的边长为4,即4AB CD AD BC ====,∴4MN =,设EM GN x ==,则42EG FH x ==-,∵正方形EFGH 的面积与ABE △面积相等, 即2114(42)22x x ?-,解得:121,4x x ==, ∵4x =不符合题意,故舍去,∴1x =,则S 正方形EFGH 14122==⨯⨯=V ABE S , ∵ABE △,BCF V ,CDG V ,DAH V 全等,∴2====V V V V ABE BCF CDG DAH S S S S ,∵正方形ABCD 的面积4416=⨯=,AEH △,BEF V ,CFG △,DGH V 也全等, ∴1(4=V AEH S S 正方形ABCD − S 正方形EFGH 134)(16242)42-=⨯--⨯=V ABE S , 故选:C .【点睛】本题考查了正方形的性质、全等三角形的性质和等腰三角形的性质,解题的关键是求得ABE △的面积.13.如图,四边形ABCD 的对角线为AC 、BD ,且AC=BD ,则下列条件能判定四边形ABCD 为矩形的是( )A .BA=BCB .AC 、BD 互相平分C .AC ⊥BDD .AB ∥CD【答案】B【解析】试题分析:根据矩形的判定方法解答.解:能判定四边形ABCD 是矩形的条件为AC 、BD 互相平分.理由如下:∵AC 、BD 互相平分,∴四边形ABCD 是平行四边形,∵AC=BD ,∴▱ABCD 是矩形.其它三个条件再加上AC=BD 均不能判定四边形ABCD 是矩形.故选B .考点:矩形的判定.14.如图,在菱形ABCD 中,点A 在x 轴上,点B 的坐标轴为()4,1, 点D 的坐标为()0,1, 则菱形ABCD 的周长等于( )A .5B .43C .45D .20【答案】C【解析】【分析】 如下图,先求得点A 的坐标,然后根据点A 、D 的坐标刻碟AD 的长,进而得出菱形ABCD 的周长.【详解】如下图,连接AC 、BD ,交于点E∵四边形ABCD 是菱形,∴DB ⊥AC ,且DE=EB 又∵B ()4,1,D ()0,1∴E(2,1)∴A(2,0)∴()()2220015-+-=∴菱形ABCD 的周长为:5故选:C【点睛】本题在直角坐标系中考查菱形的性质,解题关键是利用菱形的性质得出点A 的坐标,从而求得菱形周长.15.如图a 是长方形纸带,∠DEF=20°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c中的∠CFE的度数是()A.110°B.120°C.140°D.150°【答案】B【解析】【详解】解:∵AD∥BC,∴∠DEF=∠EFB=20°,图b中∠GFC=180°-2∠EFG=140°,在图c中∠CFE=∠GFC-∠EFG=120°,故选B.16.下列说法正确的是()A.对角线相等的四边形一定是矩形B.任意掷一枚质地均匀的硬币10次,一定有5次正面向上C.如果有一组数据为5,3,6,4,2,那么它的中位数是6D.“用长分别为5cm、12cm、6cm的三条线段可以围成三角形”这一事件是不可能事件【答案】D【解析】【分析】根据矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义依次判断即可.【详解】A.对角线相等的平行四边形是矩形,故该项错误;B. 任意掷一枚质地均匀的硬币10次,不一定有5次正面向上,故该项错误;C. 一组数据为5,3,6,4,2,它的中位数是4,故该项错误;D. “用长分别为5cm、12cm、6cm的三条线段可以围成三角形” 这一事件是不可能事件,正确,故选:D.【点睛】此题矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义,综合掌握各知识点是解题的关键.17.下列结论正确的是()A.平行四边形是轴对称图形B.平行四边形的对角线相等C.平行四边形的对边平行且相等D.平行四边形的对角互补,邻角相等【答案】C【解析】【分析】分别利用平行四边形的性质和判定逐项判断即可.【详解】A 、平行四边形不一定是轴对称图形,故A 错误;B 、平行四边形的对角线不相等,故B 错误;C 、平行四边形的对边平行且相等,故C 正确;D 、平行四边形的对角相等,邻角互补,故D 错误.故选:C .【点睛】此题考查平行四边形的性质,掌握特殊平行四边形与一般平行四边形的区别是解题的关键.18.如图,在▱ABCD 中,BM 是∠ABC 的平分线交CD 于点M ,且MC=2,▱ABCD 的周长是在14,则DM 等于( )A .1B .2C .3D .4【答案】C【解析】 试题分析:∵BM 是∠ABC 的平分线,∴∠ABM=∠CBM ,∵AB ∥CD ,∴∠ABM=∠BMC ,∴∠BMC=∠CBM ,∴BC=MC=2,∵▱ABCD 的周长是14,∴BC+CD=7,∴CD=5,则DM=CD ﹣MC=3,故选C .考点:平行四边形的性质.19.如图,抛物线2119y x =-与x 轴交于A B ,两点,D 是以点()0,4C 为圆心,1为半径的圆上的动点,E 是线段AD 的中点,连接,OE BD ,则线段OE 的最小值是( )A .2B .322C .52D .3【答案】A【解析】【分析】 根据抛物线解析式即可得出A 点与B 点坐标,结合题意进一步可以得出BC 长为5,利用三角形中位线性质可知OE=12BD ,而BD 最小值即为BC 长减去圆的半径,据此进一步求解即可.【详解】 ∵2119y x =-, ∴当0y =时,21019x =-, 解得:=3x ±,∴A 点与B 点坐标分别为:(3-,0),(3,0),即:AO=BO=3,∴O 点为AB 的中点,又∵圆心C 坐标为(0,4),∴OC=4,∴BC 长度2205OB C +=,∵O 点为AB 的中点,E 点为AD 的中点,∴OE 为△ABD 的中位线,即:OE=12BD , ∵D 点是圆上的动点,由图可知,BD 最小值即为BC 长减去圆的半径,∴BD 的最小值为4,∴OE=12BD=2,即OE 的最小值为2,故选:A.【点睛】本题主要考查了抛物线性质与三角形中位线性质的综合运用,熟练掌握相关概念是解题关键.20.如图,已知矩形ABCD 中,BC =2AB ,点E 在BC 边上,连接DE 、AE ,若EA 平分∠BED,则ABE CDE S S V V 的值为()A .232-B .2332-C .2333-D .233- 【答案】C【解析】【分析】过点A 作AF ⊥DE 于F ,根据角平分线上的点到角的两边距离相等可得AF=AB ,利用全等三角形的判定和性质以及矩形的性质解答即可.【详解】解:如图,过点A 作AF ⊥DE 于F ,在矩形ABCD 中,AB =CD ,∵AE 平分∠BED ,∴AF =AB ,∵BC =2AB ,∴BC =2AF ,∴∠ADF =30°,在△AFD 与△DCE 中∵∠C=∠AFD=90°,∠ADF=∠DEC,AF=DC,,∴△AFD≌△DCE(AAS),∴△CDE的面积=△AFD的面积=2 11AF DF AF22⨯==∵矩形ABCD的面积=AB•BC=2AB2,∴2△ABE的面积=矩形ABCD的面积﹣2△CDE的面积=(2AB2,∴△ABE的面积=(222AB,∴33ABECDESS==VV,故选:C.【点睛】本题考查了矩形的性质,角平分线上的点到角的两边距离相等的性质,以及全等三角形的判定与性质,关键是根据角平分线上的点到角的两边距离相等可得AF=AB.。

初中四边形知识点总结归纳

初中四边形知识点总结归纳

初中四边形知识点总结归纳四边形作为初中数学中的重要内容,是学习几何学不可或缺的一部分。

在初中阶段,我们需要系统地学习和掌握四边形的性质、分类以及相关的定理。

本文将对初中四边形的知识点进行总结和归纳,帮助大家更好地理解和掌握这一部分知识。

1. 四边形的定义四边形是由四条线段组成的图形。

四边形的特点是有四个顶点、四条边和四个内角。

2. 四边形的分类根据边长和角度的不同,四边形可以分为以下几类:1) 矩形:具有四个右角的四边形,对边相等。

2) 正方形:具有四个相等边和四个右角的四边形。

3) 平行四边形:具有两对平行边的四边形。

4) 长方形:具有四个右角的四边形,对边相等。

5) 菱形:具有四个相等边的四边形。

6) 梯形:具有两对平行边的四边形。

7) 不规则四边形:没有特殊性质的四边形。

3. 四边形的性质1) 内角和定理:任意四边形的内角和等于360度。

2) 对角线性质:- 矩形、正方形和菱形的对角线相互平分。

- 平行四边形的对角线互相等长。

- 不规则四边形的对角线一般不相等。

3) 矩形、正方形和菱形的边长关系:正方形的边长等于矩形或菱形的长度,矩形和菱形的边长相等。

4) 平行四边形的边长关系:对边相等。

5) 梯形的特点:有一个对角线作为它的中线,两腰相等的梯形是等腰梯形。

6) 不规则四边形的特点:没有特殊性质,边长和角度都可能不相等。

4. 四边形的重要定理1) 矩形的重要定理:- 矩形的对角线相等。

- 矩形的四个角都是直角。

- 矩形的边互相垂直。

2) 正方形的重要定理:- 正方形的对角线相等且垂直。

- 正方形的对角线平分角。

- 正方形的四个角都是直角。

3) 平行四边形的重要定理:- 平行四边形的对边平行且相等。

- 平行四边形的对角线互相平分。

4) 菱形的重要定理:- 菱形的对角线互相垂直。

- 菱形的对角线平分角。

5. 解题技巧和注意事项1) 综合运用已知条件和四边形的性质来解题。

2) 注意图形的标记和注释,保持清晰易懂。

初中数学四边形知识点总结

初中数学四边形知识点总结

初中数学四边形知识点总结一、四边形的基本概念。

1. 四边形的定义。

- 由不在同一直线上的四条线段依次首尾相接围成的封闭的平面图形或立体图形叫四边形。

在初中阶段,我们主要研究平面四边形。

2. 四边形的内角和与外角和。

- 内角和:四边形的内角和为360°。

可以通过将四边形分割成两个三角形,因为三角形内角和为180°,所以四边形内角和是360°。

- 外角和:四边形的外角和为360°。

多边形的外角和定理:任意多边形的外角和都为360°。

3. 四边形的分类。

- 凸四边形:把四边形的任何一边向两方延长,如果其他各边都在延长所得直线的同一旁,这样的四边形叫做凸四边形。

- 凹四边形:把四边形的某些边向两方延长,其他各边有不在延长所得直线的同一旁的情况,这样的四边形叫做凹四边形。

初中重点研究凸四边形,凸四边形又包括平行四边形、梯形等特殊四边形。

二、平行四边形。

1. 平行四边形的定义。

- 两组对边分别平行的四边形叫做平行四边形。

平行四边形用符号“▱”表示,如平行四边形ABCD记作“▱ABCD”。

2. 平行四边形的性质。

- 边的性质:- 平行四边形的两组对边分别平行且相等。

即AB = CD,AD = BC,AB∥CD,AD∥BC。

- 角的性质:- 平行四边形的两组对角分别相等,邻角互补。

即∠A = ∠C,∠B = ∠D,∠A+∠B = 180°等。

- 对角线的性质:- 平行四边形的对角线互相平分。

即OA=OC,OB = OD(设AC、BD相交于点O)。

3. 平行四边形的判定。

- 边的判定:- 两组对边分别平行的四边形是平行四边形(定义判定)。

- 两组对边分别相等的四边形是平行四边形。

- 一组对边平行且相等的四边形是平行四边形。

- 角的判定:- 两组对角分别相等的四边形是平行四边形。

- 对角线的判定:- 对角线互相平分的四边形是平行四边形。

4. 平行四边形的面积。

人教版初中数学中考复习一轮复习-多边形和平行四边形(知识点+中考真题)

人教版初中数学中考复习一轮复习-多边形和平行四边形(知识点+中考真题)
2.平行四边形的性质:
(1) 平行四边形的对边平行且相等. (2) 平行四边形的邻角互补,对角相.等.
推论:夹在两条平行线间的 平行线段 相等. (3) 平行四边形的对角线互相平分 .
(4)若一直线过平行四边形两对角线的交点, 则: 则二等这分条此直平线行被四一边组形对的边面截积下的线段以对角线的交点为中点,并且这两条直.线
是 中心 对称图形.②正n边形有 n 条对称轴 .
3.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全 覆盖 ,叫做用多边形
覆盖平面(或平面镶嵌).平面镶嵌的条件:当围绕一点拼在一起的几个多边形的内
角和为 360° 时,可以平面镶嵌.
知识点梳理——平行四边形
1.平行四边形的概念: 两组对边分别平行的四边形叫做平行.四边形
【解答】证明:∵DE=DC,∴∠DEC=∠C. ∵∠B=∠C, ∴∠B=∠DEC, ∴ AB∥BE, ∵AD∥BC, ∴四边形ABED是平行四边形. ∴AD=BE.
14.(10分)(2021•怀化)已知:如图,四边形ABCD为平行四边形,点E、 A、C、F在同一直线上,AE=CF. 求证:(1)△ADE≌△CBF;
C ∠D=58°,则∠AEC的大小是( )
A.61° B.109° C.119° D.122°
典型例题
7.(2021•恩施州)如图,在▱ABCD中,AB=13,AD=5,
AC⊥BC,则▱ABCD的面积为( B )
A.30 B.60
C.65 D.
典型例题
8.(2021·安顺、贵阳) 如图,在▱ABCD中,∠ABC的平分线交AD于点E,
形的边数是

2.(2020•陕西12/25)如图,在正五边形ABCDE中,DM是边CD的延长线,连接BD ,则∠BDM的度数是 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.1B.2C.3D.4
【答案】C
【解析】
试题分析:∵BM是∠ABC的平分线,∴∠ABM=∠CBM,∵AB∥CD,∴∠ABM=∠BMC,∴∠BMC=∠CBM,∴BC=MC=2,∵▱ABCD的周长是14,∴BC+CD=7,∴CD=5,则DM=CD﹣MC=3,故选C.
考点:平行四边形的性质.
12.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为( )
试题解析:∵四边形MBND是菱形,
∴MD=MB.
∵四边形ABCD是矩形,
∴∠A=90°.
设AB=a,AM=b,则MB=2a-b,(a、b均为正数).
在Rt△ABM中,AB2+AM2=BM2,即a2+b2=(2a-b)2,
解得a= ,
∴MD=MB=2a-b= ,
∴ .
故选A.
考点:1.矩形的性质;2.勾股定理;3.菱形的性质.
【详解】
因为一般四边形的中点四边形是平行四边形,
当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形,
故④选项正确,
故选A.
【点睛】
本题考查中点四边形、平行四边形、矩形、菱形的判定等知识,解题的关键是记住一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形.
根据折叠可得△AEF≌△DEF,
∴△DEF的周长等于△ABC周长的一半,
故②正确;
∵EF是△ABC的中位线,
∴AE= AB,AF= AC,
若四边形AEDF是菱形,
则AE=AF,
∴AB=AC,
故③正确;
根据折叠只能证明∠BAC=∠EDF=90°,
不能确定∠AED和∠AFD的度数,故④错误;
故选:A.
【点睛】
故应选D
【点睛】
此题主要考查了全等三角形的判定,等边三角形的判定与性质的综合应用,根据条件选择正确的证明方法是解题的关键.
10.如图,平行四边形 的周长是 对角线 与 交于点 是 中点, 的周长比 的周长多 ,则 的长度为()
A. B. C. D.
【答案】B
【解析】
【分析】
根据题意,由平行四边形的周长得到 ,由 的周长比 的周长多 ,则 ,求出AD的长度,即可求出AE的长度.
故选A.
考点:多边形内角与外角.
9.已知,如图,在 中, , ,求证: .在证明该结论时,需添加辅助线,则作法不正确的是()
A.延长 至点 ,使 ,连接
B.在 中作 , 交 于点
C.取 的中点 ,连接
D.作 的平分线 ,交 于点
【答案】D
【解析】
【分析】
分别根据各选项的要求进行证明,推出正确结论,则问题可解.
【详解】
解:∵平行四边形 的周长是 ,
∴ ,
∵BD是平行四边形的对角线,则BO=DO,
∵ 的周长比 的周长多 ,
∴ ,
∴ , ,
∴ ,
∵ ,点E是 中点,
∴ ;
故选:B.
【点睛】
本题考查了平行四边形的性质,直角三角形斜边上的中线等于斜边的一半,解题的关键是熟练掌握平行四边形的性质进行解题.
11.如图,在▱ABCD中,BM是∠ABC的平分线交CD于点M,且MC=2,▱ABCD的周长是在14,则DM等于()
∴S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN
∴S矩形EBNP= S矩形MPFD,
又∵S△PBE= S矩形EBNP,S△PFD= S矩形MPFD,
∴S△DFP=S△PBE= ×2×8=8,
∴S阴=8+8=16,
故选C.
【点睛】
本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S△PEB=S△PFD.
【详解】
解:∵四边形的内角和等于a,
∴a=(4-2)•180°=360°.
∵五边形的外角和等于 ,
∴ =360°,
∴a= .
故选B.
【点睛】
本题考查的是多边形的内角与外角,熟知多边形的内角和定理是解答此题的关键.
4.如图,足球图片正中的黑色正五边形的内角和是( ).
A.180°B.360°C.540°D.720°
A.8B.9C.10D.12
【答案】A
【解析】
试题分析:设这个多边形的外角为x°,则内角为3x°,根据多边形的相邻的内角与外角互补可的方程x+3x=180,解可得外角的度数,再用外角和除以外角度数即可得到边数.
解:设这个多边形的外角为x°,则内角为3x°,
由题意得:x+3x=180,
解得x=45,
这个多边形的边数:360°÷45°=8,
其中正确的是()
A.①②③B.①②④C.②④D.①③④
【答案】A
【解析】
【分析】
根据折叠可得EF是AD的垂直平分线,再加上条件AD是三角形纸片ABC的高可以证明EF∥BC,进而可得△AEF∽△ABC,从而得 ,进而得到EF是△ABC的中位线;再根据三角形的中位线定理可判断出△AEF的周长是△ABC的一半,进而得到△DEF的周长等于△ABC周长的一半;根据三角形中位线定理可得AE= AB,AF= AC,若四边形AEDF是菱形则AE=AF,即可得到AB=AC.
解:A.正六边形每个内角为120°,能够整除360°,不合题意;
B.正三角形每个内角为60°,能够整除360°,不合题意;
C.正方形每个内角为90°,能够整除360°,不合题意;
D.正五边形每个内角为108°,不能整除360°,符合题意.
故选:D.
【点睛】
能够铺满地面的图形是看拼在同一顶点的几个角是否构成周角.
为顶点画平行四边形,则第四个顶点不可能在().
A.第一象限B.第二象限C.第三象限D.第四象限
【答案】C
【解析】
A点在原点上,B点在横轴上,C点在第一象限,根据平行四边形的性质:两组对边分别平行,可知第四个顶点可能在第一、二、四象限,不可能在第三象限,故选C
8.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比是3:1,这个多边形的边数是
故选C.
点睛:解决本题的关键是知道这3种多边形的3个内角之和为360度,据此进行整理分析得解.
14.如图,张明同学设计了四种正多边形的瓷砖图案,在这四种瓷砖图案不能铺满地面的是()
A. B. C. D.
【答案】D
【解析】
【分析】
分别计算各正多边形每个内角的度数,看是否能整除360°,即可判断.
【详解】
A.10B.12C.16D.18
【答案】C
【解析】
【分析】
首先根据矩形的特点,可以得到S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN,最终得到S矩形EBNP= S矩形MPFD,即可得S△PEB=S△PFD,从而得到阴影的面积.
【详解】
作PM⊥AD于M,交BC于N.
则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,
则 ,
∵∠DAG=45°-∠GAC,∠CAF=45°-GAC,
∴∠DAG=∠CAF.
∴△DAG∽△CAF.
∴ .
故答案为:B.
【点睛】
本题主要考查了正方形的性质、相似三角形的判定和性质,解题的关键是构造相似三角形.
7.在平面直角坐标系中,A,B,C三点坐标分别是(0,0),(4,0),(3,2),以A,B,C三点
【详解】
解:选项A:如图,
由辅助线可知, ,
则有AB=AD,再由 ,
由 ,则 ,
∴ 是等边三角形

故选项A正确;
选项B:如图,
由辅助线可知, 是等边三角形
则 ,BE=EC


∴AE=EC

故选项B正确
选项C如图,
有辅助线可知,CP为直角三角形斜边上的中线
∴AP=CP=BP


∴ 是等边三角形

综上可知选项D错误
17.下列结论正确的是( )
A.平行四边形是轴对称图形B.平行四边形的对角线相等
C.平行四边形的对边平行且相等D.平行四边形的对角互补,邻角相等
【四边形的性质和判定逐项判断即可.
【详解】
A、平行四边形不一定是轴对称图形,故A错误;
B、平行四边形的对角线不相等,故B错误;
此题主要考查了图形的翻折变换,以及三角形中位线的性质,关键是掌握三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.
3.设四边形的内角和等于 ,五边形的外角和等于 ,则 与 的关系是( )
A. B. C. D.
【答案】B
【解析】
【分析】
根据多边形的内角和定理与多边形外角的关系即可得出结论.
15.如图,点 分别是四边形 边 、 、 、 的中点.则下列说法:①若 ,则四边形 为矩形;②若 ,则四边形 为菱形;③若四边形 是平行四边形,则 与 互相平分;④若四边形 是正方形,则 与 互相垂直且相等.其中正确的个数是()
A.1B.2C.3D.4
【答案】A
【解析】
【分析】
因为一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形.
本题考查了平行四边形的性质、折叠的性质、三角形的内角和定理等知识,属于常考题型,熟练掌握上述基本知识是解题关键.
2.如图,已知 是三角形纸片 的高,将纸片沿直线 折叠,使点 与点 重合,给出下列判断:
相关文档
最新文档