光学零件检验方法
苏瑛-光学零件制造工艺学
光学零件特种加工工艺:特种加工工艺是按照不同技术要求 对冷加工或热加工之后的光学零件进行特殊加工。主要有光 学零件表面镀膜工艺、刻镀工艺、照相工艺、胶合工艺。 (1)光学零件镀膜工艺:它是在抛光或磨边好的零件表面上 镀一层薄膜,如镀增加透光或反光的膜层或其他用途的膜层。 该技术现在已形成一个薄膜光学技术,应用十分广泛。 (2)刻镀、照相工艺是在光学零件表面上制作各种分划标记 的工艺技术。 (3)胶合是将透镜、平面镜或棱镜按要求用光学胶胶合起来 的工艺。通常是将凸凹透镜胶合在一起来改善系统象差;棱 镜相胶来改变光路等。
图样绘制的要求应按照国家机械制图标准和光学制图标准及图样管理制度的 有关规定执行,一般应符合下列原则:
有关尺寸数据的标注均应符合国家制图标准。工艺图纸一般都要求标注允许 的公差范围,而不标注公差代号。需检验的尺寸、数据必须给出公差。
图样中所标注尺寸或数据有三种表示方法。 公称值:不带公差的名义值。加工中此值不做验收的依据,如透镜图中等焦距和
(2)按应力双折射大小分成三类
(3)按条纹大小分成四类
(4)按气泡大小和多少分成八类六级。
特殊玻璃
光学仪器中常用的特殊玻璃有耐辐射光学玻璃、石英光学玻璃、 微晶玻璃、窗用平板玻璃、硬质玻璃等。 一、耐辐射光学玻璃:在γ射线或高剂量的X射线的作用下,具有一 定的抗辐射性能的光学玻璃。耐辐射光学玻璃牌号的命名,按“无 色光学玻璃”牌号,根据其耐辐射性能的大小来分。 二、光学石英玻璃: 三、微晶玻璃:从原来的玻璃态经过热处理改变成的一种多晶体材 料。它的强度比普通玻璃大8倍;硬度比熔融石英还高,接近淬火 钢;密度低;具有高的热稳定性。 四、吸热玻璃:吸热滤光玻璃在可见光区域内有高的透过率而在红 外区域则大量吸收,对于光源的热辐射具有吸收性能。这种玻璃长 用于照明系统,吸收量随玻璃厚度的增加而增加,常用厚度为3mm。
激光干涉仪检测球面光学零件面形精度分析
激光干涉仪检测球面光学零件面形精度分析作者:权艳红来源:《中国高新技术企业》2010年第16期摘要:文章通过使用激光球面干涉仪对不同光学零件面形的测量从而作出其精度测量的分析,探讨了实验中产生问题的原因,并对实验数据加以讨论,以找出误差产生的规律。
关键词:激光球面干涉仪;等厚干涉;光学零件面形;干涉仪器;精度分析中图分类号:TH744文献标识码:A文章编号:1009-2374 (2010)24-0191-031检测仪器1.1激光球面干涉仪1.1.1干涉仪的分类干涉仪的设计方式有许多种,按照形成干涉的光束数目分为双光束及多光束两大类,双光束干涉仪所产生的条纹其亮度多呈正弦曲线的分布情形。
其基本原理都是通过各种光学元件形成参考和检测光路的方法。
就是采用了一种常见的干涉方式制成的,一般称为菲索干涉仪,这种干涉仪一般用来检测元件表面或光学系统的波相差。
由于所用激光的带宽很窄,因此它的相干长度很长可以在光程差很大的情况下得到干涉图样,对待测物体放置的要求不是很严格。
泰曼格林干涉仪、菲索干涉仪、麦克詹达干涉仪及麦克森干涉仪,皆属于此种双光束干涉方式。
1.1.2干涉仪检测光学零件表面的优点其一,它是非接触监测,不会损伤被探测物体表面。
其二,它获取数据的信息量大,图样本身是一个连续变化的过程,有着极高的分辨率。
其三,测量范围大,它可以同时对一个很大表面进行并行的分析和处理。
局限性:因为是分析反射光,所以有足够的反射才能得到干涉图样进行分析。
这就对光源和被探测物体的表面粗糙度提出了条件。
1.1.3干涉仪的应用光学仪器中的透镜、棱镜等,其表面质量要求很高,通常要求磨制面与理想几何形状间的误差不超过光波波长的数量级,用干涉法可检验出微小的误差(小于波长的几十分之一)。
所以在光学系统评价、表面的粗糙度、面形和元件的微小偏移的测量都采用了干涉仪进行分析。
1.2OSI-75TQ型激光球面干涉仪OSI-75TQ型激光球面干涉仪(如图1)是用稳频的氦氖激光器作为光源,由于它的相干长度很大,干涉仪的测量范围可以大大的扩展;而且由于它的光束发散角小,能量集中,因而它产生的干涉条纹可以用光电接收器接收,变为电讯号,并由计数器一个不漏的记录下来,从而提高了测量速度和测量精度。
光学表面疵病标准
表5 0.02mm-3.0mm光学零件表面的疵病级数参考值
二、麻点
(3)美军标规定表面疵病的第二个数字(如80-50)表示麻点 的级数(计量单位为 1%mm),是该光学表面允许麻点的最 大直径。任何一个光学表面上,每 20mm 直径上,最多只允 许有一个最大尺寸的麻点,该 20mm 直径上所有麻点的直径 总和,不得超过最大尺寸麻点直径的一倍。而直径小于 0.0025mm 的麻点可不作统计。同时还规定,若图样上未规定 表面疵病的极限尺寸时,应按表 6 求算。
下面对各种情况的擦痕进行举例说明:
三、擦痕
当零件的擦痕级数超过表面疵病要求的擦痕级数时,零件不合格。 例1,零件的表面质量要求为60-40,则代表零件的擦痕宽度必须 ≤60μm,如果零件表面有宽度>60μm的擦痕,则该零件不合格。
当零件的擦痕级数未超过表面质量要求的级数,且只存在最大擦痕 时,所有最大擦痕的长度之和应不超过零件直径的1/4,即
表4 0.004mm-0.025mm光学零件表面的疵病级数参考值
二、麻点
俄国标准规定,对位于光学系统像平面及其像平 面附近的光学零件表面采用 0-10、0-20 或 0-40级 别的表面疵病还分别给出了不同通光孔径的表面 中心区和边缘区,某一级别表面疵病麻点的最大 直径和最大麻点的个数。使用这个标准,设计师 在图样上很好标注,检验人员也很容易计算。不 在光学系统像平面附近的光学零件表面采用Ⅰ、 Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ、Ⅶ、Ⅷ、Ⅷ a、Ⅸ、Ⅸa等 11个级别的表面疵病(麻点直径从0.02mm至 3.0mm)见表 5。
表7 擦痕间的相关数据
三、擦痕
(2)俄国标准也在表 4 和表 5 中分别规定了不同 通光孔径的光学表面中,某一表面疵病级别允许 擦痕的最大直径和最大尺寸擦痕的长度。
(光学测量技术)第4章光学零件的测量
第4章 光学零件的测量 用同样的办法可以计算像散偏差 Δ 1 N 和局部偏差 Δ 2 N。 最后应指出,在不同方向观察等厚条纹,会得到不同的 结果。为了测量沿球面法线方向的偏差,除了要保证照明光 线沿法线入射外,观察方向也应与该法线方向对应的出射光 线的方向一致。 样板法通常用目视法观察,测量精度一般为 0.1 个光圈 左右。
第4章 光学零件的测量 当被测面的曲率半径很大时,就应选择具有更大半径的 标准面。当标准波面的焦点受结构限制无法与被测球面顶点 实现瞄准时,对顶点的瞄准就不得不采用接触式瞄准方法, 但对球心的瞄准则仍可采用干涉法。如图 4.2 所示,( a )、 ( b )两图分别对应检验凸面和凹面的情况。此时,只有测出 Δ R ,才能求得被检球面的曲率半径 R x 。由图知:
第4章 光学零件的测量 应该注意的是,在激光球面干涉仪上,使用 He-Ne 激 光器作为光源,波长为 632.8nm ,这与光圈识别标准规定 的标准波长 λ =546.1nm 不同,因此,在激光球面干涉仪上 测得的面形偏差 Δ1 N 和 Δ 2 N应该换算成用标准波长表示的 相应的数值,这可以通过乘上修正系数 k =632.8 / 546. 1=1. 16 实现。
第4章 光学零件的测量 GB2831-81 规定,光圈的度量法如下: | N |>1 时,以有效检验范围内直径方向上最多光圈数 N max 的二分之一表示,即
如图 4.1 ( a )中所示, | N |<1 时,在有效检验范围内看不到完整的光圈或只 能看到逐渐变化的颜色(干涉色)。 对于球面,可利用颜色 ─ 间隙对照表查出边缘与中间 颜色对应间隙的差值来计算光圈数,见表 4-1 。
第4章 光学零件的测量 下面先讨论面形偏差的表示方法和光圈的识别方法。 1 )球面零件面形偏差的表示方法 半径偏差:即使零件的表面是标准球面,它还可能与样 板有不同的曲率半径,此时产生规则的牛顿环(光圈),这种 半径偏差就可以用有效孔径内的光圈数 N 表示。为表示偏 差的性质,光圈数 N 用代数量表示。高光圈 N 取正值;反之, N 取负值。样板的孔径一般要大于被测零件的孔径。 面形偏差:指被检面对球面的偏离。这种偏差一般可分 为两种情况。
光学无损检测实验报告
光学无损检测实验报告1. 引言光学无损检测是一种利用光学原理进行材料和构件缺陷检测的方法。
本实验旨在通过光学无损检测的方法,探究不同材料的缺陷检测效果,并分析其优缺点。
2. 实验设备和材料- 光学无损检测设备:包括光源、光路系统、传感器等。
- 多种材料样本:包括金属、塑料、陶瓷等。
3. 实验方法3.1 准备工作1. 检查光学无损检测设备是否正常运行,并进行必要的校准。
2. 准备各种材料样本,并对其进行必要的处理,如清洗、抛光等。
3.2 实验步骤1. 将待检测样本放置在检测平台上,保证样本平整。
2. 打开光源,调整光线强度和角度,保证光线能够充分照射到样本表面。
3. 打开传感器,调整传感器位置和参数,以及合适的检测模式。
4. 开始检测,并记录检测结果。
5. 对比不同材料的检测结果,分析其优缺点,并得出结论。
4. 实验结果与分析4.1 不同材料的检测结果在实验中,我们选取了金属、塑料和陶瓷等材料进行检测。
4.1.1 金属样本金属样本的光学无损检测效果较好,能够清晰地显示出缺陷、裂纹等。
金属材料的导电性和反射性使得传感器能够较为准确地捕捉到光线的反射信息,从而提高了检测的灵敏度和准确性。
4.1.2 塑料样本塑料样本的光学无损检测效果相对较差,很难观察到细小的缺陷。
塑料材料存在吸光现象,会导致光线无法充分反射,从而降低了检测的灵敏度。
此外,塑料的透明性也会对光学无损检测造成一定的影响。
4.1.3 陶瓷样本陶瓷样本的光学无损检测效果较好,能够显示出不同类型的缺陷。
陶瓷材料的硬度和光线的折射特性使得传感器能够较为准确地捕捉到缺陷的反射信号,从而提高了检测的灵敏度和准确性。
4.2 光学无损检测方法的优缺点4.2.1 优点- 非破坏性:光学无损检测不会对样本造成任何损伤,可以进行大规模的缺陷检测,节约了成本和时间。
- 快速高效:光学无损检测可以实现实时检测,操作简便,适用于大规模生产检测。
- 可视化:光学无损检测能够直观地显示出缺陷的位置和形貌,便于分析和判断。
(整理)光学零件检验方法
光学零件加工技术实验讲义实验一 光学零件毛坯的成型一、实验目的:1、了解古典法加工块料毛坯粗磨成型的工艺过程;2、熟悉所用设备、材辅料等相关知识。
二、实验设备及用品切割机、粗磨机、滚圆机、K9玻璃、金刚砂 三、实验步骤1、 取块料玻璃,在切割机上按30x30x20mm 切割;2、 在平面粗磨机上,分别用100#,240#金刚砂磨平第一面;3、 将磨平的一面用胶粘在平的垫板上,排列均匀;4、 在粗磨机上,手持垫板,用100#,240#金刚砂整盘研磨第二面,要不断更换垫板位置,使之研磨均匀。
同时要用卡尺测量,保证厚度和平行度; 5、 将两面磨平的平行玻璃板粘成条,宽:长=1:8~1:10;6、 在滚圆机上,将玻璃条滚圆成棒,∆Φ+Φ=Φ0;7、 将玻璃棒在电热板上加热,使粘胶熔化并逐一拆开玻璃板; 8、 用酒精等有机溶剂清洗玻璃;9、 用粗磨盘开球面,手持比例移动,更换位置,开出具有一定曲率半径的球面零件; 10、检验,用铁样板或试擦贴度的方法。
四、讨论1、在粗磨平面时,为什么第一面磨平单块加工,而第二面磨平可成盘加工?2、检验时,铁样板或试擦贴度为何从边缘接触密切?实验二金刚石磨轮铣磨球面一、实验目的1、验证光学零件铣磨原理;2、了解粗磨铣磨工艺过程;3、熟悉铣磨机工作原理和调整方法;4、要求铣磨如图1所示的透镜。
二、实验设备与用具透镜铣磨机QM08A 、金刚石磨轮(M D =20mm ,r=2mm ,粒度#100,浓度100%)、千分尺、扳手、透镜毛胚 (mm 010.025-φ,d15mm )、擦镜盘等。
三、铣磨原理球面零件的铣磨原理如图2、图3所示。
磨轮轴轴线与工作轴轴线相交于0点,两轴线的交角为α,筒形磨轮1绕自身轴线作高速旋转,工件2绕工件轴转动。
磨轮断面在工件表图3-2凸球面铣磨原理 图3-3凹球面铣磨原理 按图2与图3,有以下关系式:)(2sin r R D M±=α (1)式中 α——磨轮轴与工作轴夹角;M D ——磨轮中径;R ——工件被加工面的曲率半径; r ——磨轮端面圆弧半径(凸面取“+”号,凹面取“-”号)上式也可以写成r D R Mαsin 2=(2)当磨轮选定后,M D 与r 均为,调节不同的α角,既可加不同曲率半径的球面零件。
光学及光学仪器光学零件表面疵病试验方法
3 3 擦痕等效宽度(n—q i l t it ,E . 1 eeu a n dh L W) i ve w 全显露的擦痕的宽度或与所拦截的部分显露擦痕的透光量相当的吸光擦痕的宽度。
注: 全显露 的擦 痕的宽度即为其几何宽 度 。
34 麻点等效直径 ( o~ uvl t i e rS D) . s t q i e a t ,E p e andm e
光学及光学仪器光学零件表面疵病试验方法
IO1 9 7: 0 3 S 49 20
1 范
围
本 国际标准规 定了实旃 IO 1 107中测量表面疵病的两种方法 ( S 0 1— 方法 I ——疵病面积法和方法
Ⅱ —— 疵病 可 见法 ) 的物理 准则 和实 用手 段 。
这两种方法适用于各种大小规格 的光学零件的表面疵病 , 以及 由供需双方为特殊零件协定的特定公
在规定的疵病公差内, 设计者具体选择哪种方法取决于零件的应用场合 , 以及对疵病的测量要求。如 需实测所有的疵病采用方法 I 如要求对零件质量进行快速全面地评估采用方法 Ⅱ ; 。由于辐射量的差异 ,
这两种方法所作的质量评估是无法比较的。 5 方法 I 阻光面积截的部分显露麻点的透光量相当的吸光麻点的直径。
注: 全显露 的麻点直径 即为其几何直径 , 而级数是麻点面积的平方根 。
3 5 疵病 阈值( pr c o rso ) . i ef t nt eh l m ei h d
零件表面疵病 总量的限定值 , 超过该值时该零件不再适用其特定的应用。
维普资讯
・ 2・ 9
光
学 仪
器
第 2 卷 9
观察者刚好能察觉物体细节时所需的物体亮度与其背景光亮度之 比的最小值 。
光学品质、功能性及检测
光学品质、功能性及检测1.光学零件的技术要求:1.1.光圈数:被检光学表面的曲率半径相对于参考光学表面曲率半径的偏差,用N表示通常用工作原器与加工面贴合观察牛顿环来测量以判断高光圈(相对于是中间接触,颜色序列从中到边为黄、红、蓝),低光圈(相对于边的接触,颜色序列从中到边为蓝、红、黄)。
1.2.局部不规则度:被检光学表面与参考光学表面在任何一方向上产生的干涉条纹的局部不规则程度通常也称为面精度,采用干涉仪来测量(用△N表示)。
1.3.表面光洁度:加工光学表面所要求达到的粗糙度。
1.4.光学的镜片外观要求:(主要参考U.S MIL-013830A)。
1.5.光学镀膜:1.6.镜片光轴偏差:镜片机械与光学轴不同轴的偏差,一般用M2镭射激光检测仪和光轴显微仪测量。
1.7.镜片的机械尺寸要求:中心厚度、外径、深度、边厚、一般采用厚度计、光学投影仪、千分尺、深度仪。
2.镜片代号及含义:2.1.≠表示镜片表面有伤痕,亦是一种直线状不良(因硬物触及镜片表面而造成)。
2.1.セ表示镜片表面徵(Stain),亦是一种在反射检验时,可以看出表面上一种颜色深浅不良(因镜片表面发生化学变化而造成)。
2.3.ス表示镜片表面的砂目(Grty),亦即镜片表面仍可看到许多点状不良。
2.4.X表示镜片边缘的裂边(Chip),亦即镜片表面边缘处,有因碰伤或夹伤造成的破裂。
2.5.F表示镜片表面有“喷药”,亦即镜片表面镀膜后有因蒸镀物熔解过快未完全气化即喷药到镜片表面,造成点状不良为镜片报废原因之一。
2.6.R 表示镜片曲率半径值。
2.7.N表示镜片相对于原器的牛顿圈及光圈数。
2.8.△N表示镜片面精度即局部不规则度(Irreyularuty)。
2.9.C 表示镜片表面镀膜后,颜色超过规格要求即称过色。
2.10.CO表示镜片未镀膜面积超过图面规格要求。
3.光学镜头的功能性测量:3.1.投影解像力:在被测镜头的焦平面上放置CHART或成实像CHART图案,通过投影方式在投影屏上判读镜头的解像能力。
干涉检查、间隙检查 孔对齐检查
干涉检查、间隙检查孔对齐检查标题:干涉检查、间隙检查孔对齐检查
引言:
在机械制造和装配过程中,干涉检查、间隙检查和孔对齐检查是非常重要的步骤,可以保证产品的质量和性能。
本文将详细介绍这三种检查方法的原理和操作步骤。
一、干涉检查
1.1 干涉检查的原理
干涉检查是通过光学干涉原理来检测工件表面的平整度和平行度。
1.2 干涉检查的操作步骤
1.3 干涉检查的应用领域
二、间隙检查
2.1 间隙检查的原理
间隙检查是通过测量两个工件之间的间隙来检测其装配质量。
2.2 间隙检查的操作步骤
2.3 间隙检查的应用领域
三、孔对齐检查
3.1 孔对齐检查的原理
孔对齐检查是通过测量孔的位置和直径来检测其对齐情况。
3.2 孔对齐检查的操作步骤
3.3 孔对齐检查的应用领域
四、干涉检查与间隙检查的比较
4.1 检测原理的差异
4.2 操作步骤的异同
4.3 适用场景的区别
五、干涉检查、间隙检查和孔对齐检查在工程中的重要性
5.1 保证产品质量
5.2 提高装配效率
5.3 预防装配故障的发生
结语:
通过干涉检查、间隙检查和孔对齐检查,可以有效地保证产品的装配质量和性能,提高生产效率,降低故障率。
在实际工程中,我们应该根据具体情况选择合适的检查方法,并严格按照操作步骤进行检查,以确保产品质量。
【光电集成】光学零件的面形偏差 检验方法(光圈识别)-概述说明以及解释
【光电集成】光学零件的面形偏差检验方法(光圈识别)-概述说明以及解释1.引言1.1 概述概述:在光电集成领域,光学零件的面形偏差是一个重要的参数,它直接影响到光学元件的光学性能和品质。
因此,准确地检验光学零件的面形偏差是非常关键的。
本文将针对光学零件的面形偏差进行检验方法的探讨,特别是使用光圈识别技术来实现更精确的检测。
通过本文的研究和分析,希望能为光学零件的制造和检验提供一定的参考和指导,提高光学元件的质量和性能。
1.2文章结构1.2 文章结构本文主要由引言、正文和结论三部分组成。
在引言部分,首先对光学零件的面形偏差进行了概述,然后介绍了文章的结构和目的。
接下来在正文部分,详细探讨了光学零件的面形偏差和检验方法,并重点介绍了光圈识别技术的应用。
最后在结论部分,对整篇文章进行了总结,展望了未来可能的研究方向,并得出了结论。
整篇文章通过逐步展开的结构,层层深入地探讨了光电集成中光学零件面形偏差的检验方法,并提供了一种新的检验技术,为相关研究提供了新的思路和方法。
1.3 目的本文旨在探讨光学零件的面形偏差检验方法中的一种新技术——光圈识别。
通过详细介绍光学零件的面形偏差和当前常用的检验方法,结合光圈识别技术的原理和应用,旨在提供一种更精准、高效的面形偏差检验手段。
通过本文的研究,希望能够为光学零件制造和质量控制领域提供有益的参考,推动光电集成技术的发展和应用,提高光学零件加工的精度和质量。
2.正文2.1 光学零件的面形偏差光学零件的面形偏差是指光学元件的表面与理想形状之间的偏差。
在实际生产过程中,光学零件的制造往往会受到各种因素的影响,导致表面形状的偏差,从而影响光学设备的性能和精度。
光学零件的面形偏差通常包括以下几种类型:1. 曲率偏差:表面的曲率与理想曲率之间的偏差。
2. 相位偏差:表面的相位与理想相位之间的偏差。
3. 波面偏差:表面的波面与理想波面之间的偏差。
这些面形偏差会导致光学元件在光学系统中的成像质量下降,影响设备的分辨率和成像清晰度。
光学零件检验方法
光学零件检验方法光学零件的检验方法是确保光学零件质量和性能的重要步骤。
以下是常见的光学零件检验方法:1.外观检验:外观检验是最简单和最常见的检验方法之一、它涉及对光学零件表面的检查,以确保没有明显的缺陷、瑕疵或污染。
常用的外观检查仪器有放大镜、显微镜和光谱仪等。
2.尺寸检验:尺寸检验是测量光学零件尺寸和形状的方法。
常用的尺寸测量仪器有投影仪、坐标测量机和光学分光计等。
这些仪器可以精确测量光学零件的长度、宽度、直径、圆度和平面度等。
3.表面粗糙度检验:表面粗糙度是表面微小不规则性的度量标准,对光学零件的性能具有重要影响。
常用的表面粗糙度检测仪器有光学轮廓仪、表面粗糙度仪和压电表面粗糙度仪等。
4.平整度检验:平整度是表面平坦性的度量标准,对光学零件的质量和性能有着重要影响。
常用的平整度测量仪器有检测平台和激光干涉仪等。
5.光学性能检验:光学性能检验涉及到对光学零件传输、透射、反射、折射、散射等光学性能的测量和评估。
常用的光学性能测量仪器有光谱仪、干涉仪、激光测距仪和分光光度计等。
6.工作环境检验:在一些特殊应用中,光学零件需要在特定的环境条件下工作,比如高温、低温、高湿度或低湿度等。
在这种情况下,光学零件的工作环境稳定性也需要进行检验。
7.强度检验:一些光学零件可能会经受较大的外力作用,因此需要进行强度检验。
常用的强度检验方法包括拉伸测试、弯曲测试、冲击测试和疲劳测试等。
总之,光学零件的检验方法是多样的,根据具体需要选择合适的检验方法进行检验,以确保光学器件的质量和性能符合要求。
精密零件的尺寸检测原理
精密零件的尺寸检测原理精密零件的尺寸检测原理可以通过以下几个方面进行说明:1. 直接测量法:直接测量法是最常见也是最直接的尺寸检测方法之一。
该方法利用各种测量工具(如千分尺、游标卡尺、卡尺、百分尺、电子测量仪等)对零件的各个尺寸进行测量,并与设计要求进行比较以判断尺寸是否合格。
2. 视觉检测法:视觉检测法是一种利用人眼或机器视觉系统对零件进行观察和检验的方法。
通过使用显微镜、目镜等设备,对零件的形状、结构和尺寸等进行观察和判断。
视觉检测法尤其适用于检测形状复杂或微小尺寸的零件。
3. 光学检测法:光学检测法是利用光学原理对精密零件的尺寸进行测量的方法。
常用的光学检测方法包括投影仪法、测量仪表法和干涉仪法等。
其中,投影仪法通过将零件的投影放大到屏幕上进行观察和测量;测量仪表法通过使用光学测量仪表(如光栅测量仪、激光测量仪等)对零件进行尺寸测量;干涉仪法则利用干涉光学原理来测量零件的尺寸。
4. 接触式测量法:接触式测量法是利用测量探针接触零件表面,通过感应或机械装置来测量其尺寸的方法。
接触式测量法包括游标测量法、划线法、角度测量法等。
这些方法都依赖于探针与零件表面的接触,可以测量出线型、面型或角度等尺寸参数。
5. 影像测量法:影像测量法是一种利用数字图像处理和分析技术对零件尺寸进行测量的方法。
通常需要借助数码相机、计算机、图像处理软件等设备和工具来实现。
影像测量法不仅可以实现对尺寸的测量,还可以进行形状、位置和表面质量等的检测。
综上所述,精密零件的尺寸检测可以通过直接测量法、视觉检测法、光学检测法、接触式测量法和影像测量法等多种方法来实现。
每种方法都有其适用的场景和特点,可以根据具体的零件类型、材料和精度要求来选择合适的测量方法。
在实际应用中,常常需要结合多种检测方法来对精密零件进行全面的尺寸检测,以确保其质量和性能的符合要求。
非球面光学元件加工及检测技术综述
去 除材 料 加 工法 是 一 种 在原 始 毛 坯 ( 接 近 非球 面
2 . 2 热复 制成 型技 术
光学玻璃在室温下脆而硬 , 去除材料加工法生产
效 率和工 艺稳 定性 无 法满 足迅 速发展 的行 业需 求 。高 温 下玻 璃 是 一种 典 型 的黏 弹 性材 料 , 具 有 良好 的型 面 复 制性 , 鉴 于此研 究者 开发 了非 球面 热复 制成 型技术 ,
U L P一 1 0 0 A( H ) , 英 国克 兰菲 尔 德 精 密工 程 研 究所 ( C U P E) 研制的 N a n o c e n t r e , 其可 以加工大型X 线天体 望远镜用的非球 面反射镜 ( 最大直径可达 1 4 0 0 m m, 最大 长度为 6 0 0 m m的圆锥镜) 、 中国航空工业第一集
的球 面 ) 上利用磨 、 抛等手段去除一定量材料后得到 目标非球 面的方法 。早期加工方法主要通过操作者 手工 完成 , 需 要加工者 具有较 高 的技术 及丰 富的经 验, 加工效率低 , 且容易 出错 , 其主要工序包括铣磨成
形、 研磨 、 Βιβλιοθήκη 光等 , 通 常称 为经 典研 抛法 。
第2 期
张小兵 : 非球面光学元件加工及检测技术综述
于曲率半径是 变化的 , 只有一根对称轴 线 , 无法应用 球面零 件的磨轮包 络线 的范成法加工 , 而且面形不易 修正 、 检测 困难 , 特别是高次非球面与 自由曲面加工
光学零件表面疵病标准
光学零件表面疵病标准文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-光学零件表面疵病标准擦痕、麻点说明(美国军用标准:MIL-O-13830A/11.Sep63)1.目的:光学零件表面质量说明及可接受缺陷(defects)规定,陆军用擦痕、麻点说明,MIL-13830A为了在实际检验中领会,执行此标准,特做以下文字规定。
1.1擦痕(scratch)和麻点(dig)用两个代表其限制尺寸的号数来标记。
第二个号为麻点号。
擦痕指相对较长的缺陷,一般长比宽在20:1左右,如:擦痕、划丝、划伤等。
麻点指点状缺陷,一般为圆的如麻点、麻坑包含物等。
1.2 擦痕的判断可参考有关擦痕标准。
2.擦痕2.1 擦痕号(第一个号)表示擦痕最大宽度。
2.1.1 球面光学零件:擦痕的宽度等于最大宽度时其长度不能大于零件直径或有效孔径的25%。
每个零件不能多于两条擦痕。
2.1.2 柱面光学零件在直径20mm的范围内。
擦痕宽度等于最大宽度时,擦痕长度不大于5mm可以允许。
允许擦痕的最多数目为该有效柱面上直径为20mm的区域的多少。
例如:πDH=柱面面积(有效面积)其中:D=柱面镜的过光长度(高度) H=柱面镜的过光长度(高度)π=3.1416有效柱面面积/0.25π20mm2=允许擦痕最大数 2.1.3 当存在最宽擦痕,如果较小宽度的擦痕符合下面公式,可以接受。
∑(N×(L/D))≤(Nmax)/2其中:D=直径,N=测量的擦痕数,L=擦痕长度,Nmax=规定的擦痕号光学零件中擦痕数乘以擦痕长度和零件直径之比的和不大于擦痕号(规定)的一般可以接受。
2.1.4 一个擦痕其宽度大于擦痕规定数的(0.0001英寸)0.00025mm,则不能接收。
2.1.5 当无最宽擦痕时,擦痕不能超过以下公式:光学零件中擦痕数乘以擦痕长度和零件直径之比的和不大于擦痕号,则可以接受。
2.1.6 小于10(0.01mm宽)可以忽略。
精密光学技术
精密光学技术精密光学技术是指在精密加工技术的基础上,应用光学原理和技术,设计、制造用于精确测量、检验和生产的精密光学元件、仪器和系统的技术。
精密光学技术具有高精度、快速、简洁、非接触等特点,在汽车、制造业、医疗等领域得到广泛应用。
1. 光路原理光线是沿着一定方向传播的电磁波。
在光通过空气或透明介质时,都会发生折射现象。
通过空气和玻璃的光线路径有很大区别,当光从低折射率的介质进入高折射率的介质时,发生折射弯曲,如果角度足够大,就发生全反射,折射率表示了介质对光的阻碍程度,不同材质的介质折射率不同。
2. 光学检测技术(1)显微镜检测技术显微镜检测技术通常用于检测小孔、小凹槽和小尺寸的工件表面。
其主要优点是分辨率高,精度高。
(2)投影仪检测技术投影仪检测技术通常用于检测规则的图形和径向对称的工件。
其主要优点是良好的分辨率和快速的检测速度。
(3)数字图像处理技术数字图像处理技术可以通过特定的软件来对数字图像进行分析和处理,以得到与工件特征、尺寸和质量相关的参数。
1. 商业自动化商业自动化广泛应用于生产流水线中的自动检测,其中精密光学元件的应用越来越广泛,如透镜、反射镜和光电池。
在纺织、车身和汽车生产中,光学检测系统可检测材料的尺寸、肌理和形状。
制造业自动化是与生产自动化技术相关的一种细分领域。
利用计算机技术、机器视觉和人工智能等技术,可实现工厂装配、机器人控制、输送系统的管理和自动化生产线的控制。
3. 医疗器械精密光学技术应用于医疗器械的生产中,例如运用激光切割器、聚焦光斑和整合成像技术的医疗成像设备。
具有高分辨率、高画质和高安全性等优点。
4. 环境保护环境保护领域常用的精密光学技术包括光谱测量仪、气体分析仪和红外成像技术。
这些技术常用于检测大气污染、水质污染和垃圾中的有害物质。
通过检测,可以及时采取针对性的措施来避免环境污染。
三、精密光学技术的未来发展方向光刻技术主要用于制造微电子器件,但由于其高精度、高效率的特点,可望成为其他领域的生产工具,如电子流片和生物微芯片等。
光电测试技术-第2章_基本光学量的测试技术(5/6)
2011-9-27
17
第2章 基本光学量的测试技术
图示为自准直刀口仪镜管的光路图。 图示为自准直刀口仪镜管的光路图。 为自准直刀口仪镜管的光路图 30° 30°
刀刃 刀片 滤光片 自准直刀口仪光路图
2011-9-27 14
第2章 基本光学量的测试技术
§2-5 刀口阴影法检验
1. 刀口阴影法基本原理
1.3 刀口仪的光路和结构 仪器的调整步骤: 仪器的调整步骤: (1)出射光束的调整。要求出射光束在相对孔径为1/2的 (1)出射光束的调整。要求出射光束在相对孔径为1/2的 出射光束的调整 被检系统整个入瞳面上造成均匀的照度; 被检系统整个入瞳面上造成均匀的照度; (2)光阑的选择。被检系统的实际波面具有轴对称性时, (2)光阑的选择。被检系统的实际波面具有轴对称性时, 光阑的选择 选用狭缝较有利,否则选用小孔较为有利。 选用狭缝较有利,否则选用小孔较为有利。根据被检 系统相对孔径大小和反射回来的光束的强弱来选用小 孔的直径和狭缝的宽度。相对孔径小而反射光弱的, 孔的直径和狭缝的宽度。相对孔径小而反射光弱的, 应选直径大的小孔或宽的狭缝; 应选直径大的小孔或宽的狭缝;
2011-9-27 5
第2章 基本光学量的测试技术
§2-5 刀口阴影法检验
1. 刀口阴影法基本原理
1.2 刀口阴影法的几何原理 前面叙述了刀口阴影法的基本概念,直观而定性地阐明 前面叙述了刀口阴影法的基本概念, 了被检验实际波面形状以及刀口位置对所形成阴影图的 影响和它们之间的关系。 影响和它们之间的关系。 下面进一步从几何光学的观点来讨论在刀口阴影法中, 下面进一步从几何光学的观点来讨论在刀口阴影法中, 被检实际波面的面形、 被检实际波面的面形、刀口位置与阴影图形状的解析关 系。
简单光学镜头检验工作总结
简单光学镜头检验工作总结
光学镜头是现代科技中不可或缺的一部分,它们被广泛应用于摄影、医疗、科
学研究等领域。
然而,光学镜头的质量对其应用效果至关重要,因此在生产过程中需要进行严格的检验工作。
光学镜头检验工作通常包括以下几个步骤,首先是外观检查,通过肉眼观察镜
头表面是否有划痕、气泡、污点等缺陷。
其次是光学性能检验,包括透镜的曲率、透光性、色散性等参数的测量。
最后是机械性能检验,主要是检查镜头的结构是否牢固、焦距是否符合要求等。
在实际工作中,光学镜头的检验需要使用一系列专业设备,如显微镜、光谱仪、焦距测量仪等。
这些设备能够帮助工作人员准确地评估镜头的质量,并及时发现问题进行修正,保证产品的质量。
在光学镜头检验工作中,工作人员需要具备扎实的光学知识和丰富的实践经验,才能准确地进行检验工作。
同时,他们还需要具备细致认真的工作态度和严谨的工作作风,确保每一片镜头都符合标准。
总的来说,光学镜头检验工作是一项需要高度专业技能和严谨态度的工作。
只
有通过严格的检验工作,才能保证生产出优质的光学镜头产品,为各个领域的应用提供良好的支持。
光学零件基本加工工艺规程设计
光学零件基本加工工艺规程设计1. 引言光学零件是光学系统中不可或缺的组成部分,其加工工艺的好坏直接影响到光学器件的性能和质量。
为了确保光学零件的精度和稳定性,需要制定一套科学合理的加工工艺规程。
本文将对光学零件基本加工工艺规程进行设计,以保证光学零件的制造质量。
2. 加工工艺流程设计光学零件的加工工艺流程主要包括以下几个步骤: - 设计和确定加工方案 - 材料准备 - 加工前检验 - 粗加工 - 热处理(如有需要) - 精加工 - 检验和测量 - 清洗和包装3. 加工方案设计在加工零件前,需要制定合适的加工方案,包括选择合适的加工设备、工艺参数和加工顺序等。
根据光学零件的材料和几何形状,可以确定具体的加工方案。
4. 材料准备材料准备是加工过程中的重要环节,主要包括材料的选用和预处理。
光学零件要求使用优质的光学材料,如光学玻璃、单晶硅等。
在使用前,需要进行清洗和去除表面污染物的处理。
5. 加工前检验在进行加工前,需对材料进行检验,确保其符合零件要求。
检验内容包括材料的化学成分、力学性能和几何尺寸等。
6. 粗加工粗加工是将初始材料加工成近似形状的过程,其目的是为了减少后续加工量,提高加工效率。
粗加工方法可以采用切削、研磨等方式,根据不同材料和零件形状选择合适的工艺。
7. 热处理某些光学零件需要进行热处理,以改善其性能和结构组织。
热处理方式包括退火、淬火和回火等,根据不同零件的要求选择合适的热处理方式。
8. 精加工精加工是将经过粗加工的零件加工至最终形状和精度的过程。
精加工方法包括抛光、研磨、切削等,根据零件的要求和加工难度选择合适的工艺方法。
9. 检验和测量加工完成后,需要对光学零件进行检验和测量,以保证其质量和精度。
常用的检验方法包括光学透射率测量、平面度测量和表面粗糙度测量等。
根据零件的要求和检验标准,选择合适的检验方法和检测设备。
10. 清洗和包装最后,将加工完成的光学零件进行清洗和包装工作。
五光学零件曲率半径测量
光学测量实验指导书牟达刘智颖编写目录实验一平行光管调校(自准直法) (1)实验二平行光管调校(五棱镜法) (3)实验三V棱镜折光仪测折射率和色散 (6)实验四简式偏光应力仪测量玻璃双折射 (10)实验五光学零件曲率半径测量 (12)实验六平面光学元件的光学不平行度测量 (15)实验七刀口阴影法检验面形偏差 (18)实验八光学系统分辨率检测 (21)实验九光学系统的星点检验 (25)实验十光学系统杂光系数测量 (27)实验一平行光管调校(自准直法)一、实验项目1.了解自准直法调校平行光管的原理,并掌握其调校方法。
2.分析调校误差,并总结其特点。
二、实验要求及所用器具1.把待校平行光管的分划面校到其物镜的焦面上,并给出调校精度。
2.所用器具:装有十字丝分划板的焦距为550mm的待校平行光管、高斯式自准目镜、可调的标准平面反射镜(其有效孔径要大于平行光管物镜通光孔径)。
三、实验原理及方法自准直法调校平行光管的原理图如图1.1所示。
若忽略平行光管物镜的像差和光的波动性影响,当分划面4位于物镜焦面处时,则由平面反射镜自准回来的分划像3与分划均重合于物镜焦面处。
若分划面离开物镜焦平面一小距离(离焦量)x,则由平面反射镜反射回来的自准分划像将位于焦面另一侧,并且分划像离焦面的距离d近似等于x,即分划像至分划间的距离是离焦量x 的两倍。
故利用自准直法可使调焦精度提高一倍。
图1.1 自准法调校平行光管的原理图1—平面反射镜;2—平行光管物镜;3—分划像;4—分划;5—自准目镜自准直法调校平行光管的步骤:(1)将装有十字分划板的待检平行光管、标准平面反射镜及高斯式自准目镜按图1.1自准光路摆好,并调出自准分划像。
(2)当用清晰度法调准时,应调到使自准分划像与分划同样清晰,则认为平行光管已调好。
(3)如以消视差法调焦,即通过眼瞳在出瞳面处横向摆动,由分划像相对分划是否存在横向错动(有无视差),来判定分划面是否位于物镜焦面处。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光学零件加工技术实验讲义实验一 光学零件毛坯的成型一、实验目的:1、了解古典法加工块料毛坯粗磨成型的工艺过程;2、熟悉所用设备、材辅料等相关知识。
二、实验设备及用品切割机、粗磨机、滚圆机、K9玻璃、金刚砂 三、实验步骤1、 取块料玻璃,在切割机上按30x30x20mm 切割;2、 在平面粗磨机上,分别用100#,240#金刚砂磨平第一面;3、 将磨平的一面用胶粘在平的垫板上,排列均匀;4、 在粗磨机上,手持垫板,用100#,240#金刚砂整盘研磨第二面,要不断更换垫板位置,使之研磨均匀。
同时要用卡尺测量,保证厚度和平行度; 5、 将两面磨平的平行玻璃板粘成条,宽:长=1:8~1:10;6、 在滚圆机上,将玻璃条滚圆成棒,∆Φ+Φ=Φ0;7、 将玻璃棒在电热板上加热,使粘胶熔化并逐一拆开玻璃板; 8、 用酒精等有机溶剂清洗玻璃;9、 用粗磨盘开球面,手持比例移动,更换位置,开出具有一定曲率半径的球面零件; 10、检验,用铁样板或试擦贴度的方法。
四、讨论1、在粗磨平面时,为什么第一面磨平单块加工,而第二面磨平可成盘加工?2、检验时,铁样板或试擦贴度为何从边缘接触密切?实验二金刚石磨轮铣磨球面一、实验目的1、验证光学零件铣磨原理;2、了解粗磨铣磨工艺过程;3、熟悉铣磨机工作原理和调整方法;4、要求铣磨如图1所示的透镜。
二、实验设备与用具透镜铣磨机QM08A 、金刚石磨轮(M D =20mm ,r=2mm ,粒度#100,浓度100%)、千分尺、扳手、透镜毛胚 (mm 010.025-φ,d15mm )、擦镜盘等。
三、铣磨原理球面零件的铣磨原理如图2、图3所示。
磨轮轴轴线与工作轴轴线相交于0点,两轴线的交角为α,筒形磨轮1绕自身轴线作高速旋转,工件2绕工件轴转动。
磨轮断面在工件表图3-2凸球面铣磨原理 图3-3凹球面铣磨原理 按图2与图3,有以下关系式:)(2sin r R D M±=α (1)式中 α——磨轮轴与工作轴夹角;M D ——磨轮中径;R ——工件被加工面的曲率半径; r ——磨轮端面圆弧半径(凸面取“+”号,凹面取“-”号)上式也可以写成r D R Mαsin 2=(2)当磨轮选定后,M D 与r 均为,调节不同的α角,既可加不同曲率半径的球面零件。
四、实验步骤与内容(1)操作程序(参考图4)打开电源总开关,真空泵同时开始动作。
左手将工件轴进退轴手柄3向右扳动。
右手同时把毛胚及密封垫圈嵌入真空夹头,并轻轻转动毛坯看其是否吸牢,然后将手柄3一直扳倒右边极限位置并推入定位凹槽。
盖上防油雾罩9。
按动按钮20,磨头轴运转。
按动按钮19,工件轴运转。
加工完毕后,工件轴自动停转,同时冷却液停止供给。
按动按钮17,磨头轴停转。
打开防油雾罩,扳动手柄3将工件取下。
检查所磨的曲率半径是否符合要求(一般要求铣磨零件的表面要和擦贴盘有1/2~1/3的擦贴度),并根据加查结果修正各参数。
检查被加工面是否有凸台,若有凸台则可以观察磨削纹弧线的方向来确定磨头箱平移b 值的修正方向。
被加工面的曲率半径R 主要与磨头偏转角α有关,加工凸面时若曲率半径偏大则需增大α角。
反之则减小α角。
试磨工件的中心厚度,这只与工件轴箱体的纵向位置有关,根据试件实际厚度与所要求的厚度的差值来微量调整工件轴箱的位置。
所调值可以从箱体前的百分表上读出。
反复试磨和修正,使铣磨的R 值达到要求为止。
实验完毕,关掉总电源。
图3-4铣磨机外形图(2)操作注意事项1)试磨前必须在工件和磨轮的距离大于凸轮升程的情况下空转几个过程,观察各部位运转是否正常。
内部冷却液的喷射必须充分,真空吸附必须牢固;2)装卸磨轮时严禁敲打,为了便于装卸,装磨轮前必须把磨轮孔擦净并涂少许黄油;3)无极变速的变速手柄必须在运转的情况下进行调整。
五、实验报告实验报告中除了要求阐述本实验的实验目的,实验原理外,重点讨论实验结果。
在实验结果中要求:1. 记录实验中所用的机床型号,磨轮参数,夹具尺寸,冷却液种类,喷射方式,喷射量,磨头轴偏转角α,工件边缘线速度,工序周期等;2. 画出完工零件图;3. 总结消除工件凸台和调整磨轮轴偏转角α之间的关系。
六、思考题1. 粗磨铣磨中,如果磨削后的零件与擦贴盘成中心接触和边缘接触但是腰部不接触。
其面型是什么?并解释出现这种现象的原因,是由于机床的哪部分调整不当造成的?应如何调整?假如把擦贴度调得再紧一些,则只有边缘接触而中心不接触,此时是否还是原面型?2. QM08A球面铣磨机能否用于磨外圆?磨外圆时机床应如何调整?3. 在铣磨过程中,如果零件装夹不紧,磨出来的表面会出现什么情况?4. 在铣磨零件时,如果最后没有光刀过程将磨出怎样的表面?5. 若用调整b值消除外凸包后,零件的曲率半径R比调整前是变大还是变小?此时α应作如何调整?分别用凸零件和凹零件说明之。
若要消除内凸包,应如何调整?实验四样板检验一、实验目的用光学样板检验光圈是光学零件制造中检验面形偏差的一种使用最广泛、最简便的精密检测方法,需要熟练地掌握。
通过实验应该达到以下目的:1、掌握识别高低光圈的方法(如样板四周加压法、一侧加压法、色序判断法等)及光圈的度量。
2、学会识别常见的几种局部光圈(如中心局部高、中心局部低、塌边、翘边等)及象散偏差。
3、了解影响光圈的工艺因素,并掌握修改光圈的方法。
二、实验设备与工具、量具Q8412型四轴透镜研磨机、球面工作样板、镜盘、抛光模、氧化铈抛光液、酒精乙A醚混合液、脱脂纱布、酒精灯、刮刀、活动扳手、台灯三、实验方法光学零件的面形偏差是指被检光学表面相对于参考光学表面(光学样板)的偏差。
它包括有三项内容:1、半径偏差,它所对应的光圈数以N表示;2、象散偏差,此偏差所对应的光圈数用N1∆表示;∆表示。
3、局部偏差,它所对应的光圈数以N2在光学零件抛光过程中,它的面形偏差一般是通过光学样板(基于光波等厚干涉原理)来检验的,根据对所观察到的干涉条纹(通称光圈)的数目、形状、变化和颜色来确定面形偏差的性质与大小。
对光圈的识别、度量与修改,其具体方法简述如下:(一)高低光圈的识别及其度量当样板与零件接触时,如果两者在中心接触,则为高光圈;反之,两者在边缘接触,则为低光圈。
常用的识别方法有:1、样板四周加压法低光圈:当空气隙缩小时,条纹从边缘向中心移动,光圈减小且变粗。
高光圈:当空气隙缩小时,条纹从中心向边缘移动,光圈也相应减小变粗。
如图4-1所示。
图4-1 样板四周加压法图4-2 一侧加压法2、一侧加压法低光圈:当空气隙缩小时,条纹弯曲方向背向加力点,条纹移动方向如图4-2所示。
高光圈:当空气隙缩小时,条纹弯曲方向朝向加力点,条纹移动方向如图4-2所示。
3、色序判断法在白光中,各色光的波长是从红光向紫光逐次减短,因此,在同一个干涉级中,波长越大,产生干涉处的间隙也越大,当从中心到边缘的颜色序列为蓝、红、黄时为低光圈;当从中心到边缘的颜色序列为黄、红、蓝时,则为高光圈,参见图4-3。
图4-3 色序判断法4、光圈数N的度量光圈数的多少,反映了被检光学表面的曲率半径相对于参考光学表面曲率半径偏差的大小。
光圈越多,偏差越大。
反之则小。
(1)当光圈数多的情况下(1>N 时),以有效检验范围内直径方向上最多条纹数的一半来度量。
在白光照明下,通常以红色为计量标准色,表面上出现几个红色光圈即为几道圈。
(2)当光圈数少的情况下(1<N 时),光圈数N 是以通过直径方向上干涉条纹的弯曲量(h )相对于条纹的间距(H )的比值来度量。
如图4-4所示。
光圈数N 可通过下式计算:HhN =(4-1) 对于较小曲率半径的球面,当1<N 时,通常是根据整个表面上边缘和中间光斑颜色和差异来度量其光圈数的。
如以荧光灯作光源,当边缘颜色为灰白色时,则可根据中间颜色来确定其光圈数,也可根据与空气隙厚度相对应的颜色和光圈数的关系来计算与颜色对应的空气隙厚度差或光圈数。
图 4-4 1<N 时光圈数的度量(二)局部光圈的识别及其度量局部偏差是指被检光学表面与参考光学表面在任一方向上产生的干涉条纹的局部不规则程度,它所对应的光圈数用N 2∆表示。
常见的局部光圈有中心高、中心低、塌边、翘边等如图4-5、图4-6所示。
图4-5中心局部光圈数N 2∆的度量 图4-6边缘局部光圈数N 2∆的度量 (·表示加力点) (·表示加力点)局部光圈数N 2∆是以局部不规则干涉条纹对理想平滑干涉条纹的偏离量(e )与两相邻条纹间距(H )的比值来度量的。
其关系式为HeN =∆2 (4-2) (三)象散光圈的识别及其度量象散偏差是指被检光学表面与参考光学表面在两个相互垂直方向上产生的光圈数不等所对应的偏差,此偏差所对应的光圈数用N 1∆表示。
常见象散光圈有椭圆形象散光圈、马鞍形象散光圈、柱形象散光圈等。
如图4-7、图4-8、图4-9、图4-10所示。
象散光圈数N 1∆是以两个相互垂直方向上光圈数N 的最大代数差的绝对值来度量的其关系式为y x N N N -=∆1 (4-3)图 4-7 椭圆形象散光圈数N 1∆的度量 图4-8马鞍形象散光圈数N 1∆的度量图4-9 柱形象散光圈数N 1∆的度量 图4-101<N 的象散光圈数N 1∆的度量 (四)影响光圈的工艺因素及光圈的修改方法在光学零件的抛光过程中,常用的调整光圈的工艺因素有:摆幅大小、顶针位置、主轴转速、摆速的增减、压力的增减、抛光模的修刮、抛光液的浓淡等。
当光圈高时,说明零件边缘磨多了,修改时应使中间多磨。
反之,光圈低时,零件中间磨多了,修改时应使边缘多磨。
在加工过程中,对光圈的修改,主要是通过正确地熟练地调整有关工艺因素来实现的。
修改光圈的具体方法归纳成下列二表。
1、规则光圈的修改方法如表4-1所示。
表4-1 规则光圈的修改方法 镜盘位置 凸镜盘在下 凹镜盘在上 原光圈情况低高低高曲率半径R的变化趋势R由大变小(光圈由低改高)R由小变大(光圈由高改低)R由小变大(光圈由低改高)R由大变小(光圈由高改低)抛光情况多抛边缘多抛中部多抛边缘多抛中部各工艺因素的调整摆幅顶针位置主轴转速摆速压力抛光模抛光液加大拉出来加快放慢略加重修刮中部浓些减小放中心放慢加快宜轻修刮边缘淡些减小放中心加快放慢略加重修刮中部浓些加大拉出来放慢加快宜轻修刮边缘淡些表4-2 局部光圈及象散偏差的修改方法工艺因素局部低和塌边局部高和翘边象散偏差抛光模的修改主轴转速摆速摆幅顶针位置压力修改抛光模有误差部分减小减小减小放中心减小修改抛光模无误差部分加大加大加大拉出来加大均匀修改整个抛光模表面减小加大对称摆幅加大表中所列系指单项工艺因素的改变对光圈的影响,运用时可根据具体情况,同时采取几项主要工艺因素措施,就可迅速达到预期目的。