新人教版高一数学必修一综合测试含答案解析

合集下载

高一数学必修一综合测试题(含答案)

高一数学必修一综合测试题(含答案)

高一数学必修一综合测试题(含答案)一、选择题(每题5分,共50分)1、已知集合M={0,1,2},N={xx=2a,a∈M},则集合MN=A、{ }B、{0,1}C、{1,2}D、{0,2}答案:B解析:将M中的元素代入N中得到:N={2,4,8},与M 的交集为{0,1},故MN={0,1}。

2、若f(lgx)=x,则f(3)=()A、lg3B、3C、10D、310答案:C解析:将x=3代入f(lgx)=x中得到f(lg3)=3,又因为lg3=0.477,所以f(0.477)=3,即f(3)=10^0.477=3.03.3、函数f(x)=x−1x−2的定义域为()A、[1,2)∪(2,+∞)B、(1,+∞)C、[1,2)D、[1,+∞)答案:A解析:由于分母不能为0,所以x-2≠0,即x≠2.又因为对于x<1,分母小于分子,所以x-1<0,即x<1.所以定义域为[1,2)∪(2,+∞)。

4、设a=log13,b=23,则().A、a<b<cB、c<b<aC、c<a<bD、b<a<c答案:A解析:a=log13=log33-log32=1/2-log32,b=23=8,c=2^3=8,所以a<b=c。

5、若102x=25,则10−x等于()A、−15B、51C、150D、0.2答案:B解析:由102x=25可得x=log10(25)/log10(102)=1.3979,所以10^-x=1/10^1.3979=0.1995≈0.2.6、要使g(x)=3x+1+t的图象不经过第二象限,则t的取值范围为A.t≤−1B.t<−1C.t≤−3D.t≥−3答案:B解析:当x=0时,y=1+t,要使图像不经过第二象限,则1+t>0,即t>-1.又因为g(x)的斜率为正数,所以对于任意的x,g(x)的值都大于1+t,所以t< -1.7、函数y=2x,x≥1x,x<1的图像为()答案:见下图。

人教版A版高中数学必修第一册 第一章综合测试01试题试卷含答案 答案在前

人教版A版高中数学必修第一册 第一章综合测试01试题试卷含答案 答案在前

第一章综合测试答案解析一、 1.【答案】A【解析】A 显然正确;0不是集合,不能用符号“⊆”,B 错误;∅不是M 中的元素,C 错误;M 为无限集,D 错误. 2.【答案】D【解析】{}=0469B ,,,,B ∴的子集的个数为42=16. 3.【答案】D【解析】对于①,当=4a 为正整数;对于②,当=1x 时,为正整数;对于③,当=1y 时,为正整数,故选D .4.【答案】A【解析】由1231x --<<,得12x <<,即{}|12x x x ∈<<,由30x x -()<,得03x <<,即{}|03x x x ∈<<,{}|12x x <<是{}|03x x <<的真子集,{}|03x x <<不是{}|12x x <<的子集,故选A .5.【答案】D【解析】两个集合的交集其实就是曲线和直线的交点,注意结果是两对有序实数对. 6.【答案】B【解析】{=|=0A B x x 或}1x ≥,A 错误;{}=12A B ,,B 正确;{}{}R =|1=0A B x x B ()< ,C 错误;{}R =|0A B x x ()≠ ,D 错误.7.【答案】B【解析】方法一:11a a ⇒⇒>,1011a a ⇒-⇒)>>,∴甲是乙的充要条件,故选B .方法二:20a a a a ⎧⇔⎨⎩>,>,,1a ∴>,故选B .8.【答案】C【解析】由题意得N M ⊆,由Venn 图(图略)可知选C . 9.【答案】C【解析】由题意知,0=2bx a-为函数2=y ax bx c ++图象的对称轴方程,所以0y 为函数y 的最小值,即对所有的实数x ,都有0y y ≥,因此对任意x ∈R ,0y y ≤是错误的,故选C .10.【答案】D【解析】{}=|1U B x x - > ,{}=|0U A B x x ∴ > .{}=|0U A x x ≤ ,{}=|1U B A x x ∴- ≤ .{=|0U U A B B A x x ∴ ()()> 或}1x -≤.11.【答案】A【解析】一元二次方程2=0x x m ++有实数解1=1404m m ⇔∆-⇔≥≤.当14m <时,14m ≤成立,但14m ≤时,14m <不一定成立.故“14m <”是“一元二次方程2=0x x m ++有实数解”的充分不必要条件.12.【答案】C【解析】A C A B ⊇ ()(),U U A C A B∴⊆ ()() ,∴①为真命题.A C A B ⊆ ()(),U U A C A B∴⊇ ()() ,即U U U U A C A B ⊇ ()() ,∴②为真命题.由Venn 图(图略)可知,③为假命题.故选C . 二、13.【答案】x ∀∈R ,210x +≥【解析】存在量词命题的否定是全称量词命题. 14.【答案】0【解析】依题意得,23=3m m ,所以=0m 或=1m .当=1m 时,违反集合中元素的互异性(舍去). 15.【答案】充分不必要【解析】由=2a 能得到1)(2)0(=a a --,但由1)(2)0(=a a --得到=1a 或=2a ,而不是=2a ,所以=2a 是1)(2)0(=a a --的充分不必要条件. 16.【答案】12【解析】设全集U 为某班30人,集合A 为喜爱篮球运动的15人,集合B 为喜爱乒乓球运动的10人,如图.设所求人数为x ,则108=30x ++,解得=12x . 三、17.【答案】(1)命题的否定:有的正方形不是矩形,假命题(2.5分) (2)命题的否定:不存在实数x ,使31=0x +,假命题.(5分) (3)命题的否定:x ∀∈R ,2220x x ++>,真命题.(7.5分)(4)命题的否定:存在0x ,0y ∈R ,00110x y ++-<,假命题.(10分)18.【答案】(1){=|1U A x x - < 或1x ≥,{=|12U A B x x ∴()≤≤ .(6分) (2){}=|01A B x x <<,{=|0U A Bx x ∴ ()≤ 或}1x ≥.(12分) 19.【答案】①若=A ∅,则2=240p ∆+-()<,解得40p -<<.(4分)②若方程的两个根均为非正实数,则12120=200.10.=x x p p x x ∆⎧⎪+-+⎨⎪⎩≥,()≤,解得≥>(10分) 综上所述,p 的取值范围是{}|4p p ->.(12分) 20.【答案】证明:①充分性:若存在0x ∈R ,使00ay <,则2220004=4b ab b a y ax bx ----() 222000=444b abx a x ay ++-200=240b ax ay +-()>,∴方程=0y 有两个不等实数根.(6分)②必要性:若方程=0y 有两个不等实数根. 则240b ab ->,设0=2bx a-, 则20=22b b ay a a b c a a ⎡⎤-+-+⎢⎥⎣⎦()() 2224==0424b b ac b ac --+<(10分) 由①②知,“方程=0y 有两个不等实根”的充要条件是“存在0x ∈R ,使00ay <”.(12分) 21.【答案】(1)当=2a 时,{}=|17A x x ≤≤,{}=|27AUB x x -≤≤,(3分){R =|1A x x < 或}7x >,{}R =|21A B x x - ()≤< .(6分)(2)=A B A ,A B ∴⊆.①若=A ∅,则123a a -+>,解得4a -<;(8分)②若A ∅≠,则12311212234.a a a a a -+⎧⎪⎪---⎨⎪+⎪⎩≤,≥,解得≤≤≤,(10分)综上可知,a 的取值范围是1|412a a a ⎧⎫--⎨⎬⎩⎭<或≤≤.(12分)22.【答案】设选修甲、乙、丙三门课的同学分别组成集合A ,B ,C ,全班同学组成的集合为U ,则由已知可画出Venn 图如图所示.(2分)选甲、乙而不选丙的有2924=5-(人), 选甲、丙而不选乙的有2824=4-(人), 选乙、丙而不选甲的有2624=2-(人),(6分) 仅选甲的有382454=5---(人), 仅选乙的有352452=4---(人), 仅选丙的有312442=1---(人),(8分)所以至少选一门的人数为24542541=45++++++,(10分) 所以三门均未选的人数为5045=5-.(12分)第一章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}=|23M x x -<<,则下列结论正确的是( ) A .2.5M ∈ B .0M ⊆C .M ∅∈D .集合M 是有限集2.已知集合{}=023A ,,,{}=|=B x x ab a b A ∈,,,则集合B 的子集的个数是( ) A .4B .8C .15D .163.下列存在量词命题中,真命题的个数是( )①存在一个实数a 为正整数;②存在一个实数x ,使为正整数;③存在一个实数y 为正整数. A .0B .1C .2D .34.已知1231p x --:<<,30q x x -:()<,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.设集合{}2=|=+M x y y x x (,),{}N=|=+16x y y x (,),则M N 等于( ) A .416(,)或412-(,)B .{420,,}412-, C .{412(,),}420-(,)D .{420(,),}412-(,)6.若集合{}=|1A x x ≥,{}=012B ,,,则下列结论正确的是( ) A .{}=|0A B x x ≥B .{}=12A B ,C .{}R =01A B (),D .{}R =|1A B x x()≥7.甲:“1a >”是乙:“a ”的( ) A .既不充分也不必要条件 B .充要条件 C .充分不必要条件D .必要不充分条件8.已知全集*=U N ,集合{}*=|=2M x x n n ∈N ,,{}*=|=4N x x n n ∈N ,,则( )A .=U M NB .=U U M N ()C .=U U M N ()D .=U U M N ()9.已知0a >,函数2=++y ax bx c .若0x 满足关于x 的方程2+b=0ax ,则下列选项中的命题为假命题的是( )A .存在x ∈R ,y y 0≤B .存在x ∈R ,0y y ≥C .对任意x ∈R ,y y 0≤D .对任意x ∈R ,0y y ≥10.已知=U R ,{}=|0A x x >,{}=|1B x x -≤,则U U A B B A ()() 等于( )A .∅B .{}|0x x ≤C .{}|1x x ->D .{|0x x >或}1x -≤11.“14m <”是“一元二次方程2++=0x x m 有实数解”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件12.已知U 为全集,A ,B ,C 是U 的子集,A C A B ⊆ ()(),A C A B ⊇ ()(),则下列命题中,正确的个数是( )①U U A C A B ⊆ ()() ; ②U U U U A C A B ⊇ ()() ;③C B ⊆. A .0B .1C .2D .3二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.命题:“0x ∃∈R ,2+10x <”的否定是________.14.设集合{}2=33A m ,,{}=33B m ,,且=A B ,则实数m 的值是________. 15.若a ∈R ,则“=2a ”是“(1)(2)=0a a --”的________条件.16.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)写出下列命题的否定并判断其真假. (1)所有正方形都是矩形;(2)至少有一个实数0x 使3+1=0x ;(3)0x ∃∈R ,2+2+20x x ≤;(4)任意x ,y ∈R ,+1+10x y -≥.18.(本小题满分12分)设全集=U R ,集合{}=|11A x x -≤<,{}=|02B x x <≤.(1)求U A B () ;(2)求U A B() .19.(本小题满分12分)已知{}2=|+2++1=0A x x p x x ∈Z (),,若{}|0=A x x ∅ >,求p 的取值范围.20.(本小题满分12分)已知2=0y ax bx c a b c a ++∈R (,,,且≠).证明:“方程=0y 有两个不相等的实数根”的充要条件是“存在0x ∈R ,使00ay <”.21.(本小题满分12分)已知集合{}=|12+3A x a x a -≤≤,{}=|24B x x -≤≤,全集=.U R(1)当=2a 时,求A B 和R A B () ;(2)若=A B A ,求实数a 的取值范围.22.(本小题满分12分)某班有学生50人,学校开设了甲、乙、丙三门选修课,选修甲的有38人,选修乙的有35人,选修丙的有31人,兼选甲、乙两门的有29人,兼选甲、丙两门的有28人,兼选乙、丙两门的有26人,甲、乙、丙三门均选的有24人,那么这三门均未选的有多少人?。

人教版高中数学必修一综合测试题与答案

人教版高中数学必修一综合测试题与答案

人教版高中数学必修一测试题一一、选择题<本大题共10小题,每小题5分,共60分> 1.已知A ={x |y =x ,x ∈R },B ={y |y =x 2,x ∈R },则A ∩B 等于 〔A.{x |x ∈R }B.{y |y ≥0}C.{<0,0>,<1,1>}D.∅2. 函数2x y -=的单调递增区间为 〔A .]0,(-∞B .),0[+∞C .),0(+∞D .),(+∞-∞ 3. 下列四个函数中,在<0,+∞>上为增函数的是 〔A.f <x >=3-xB.f <x >=x 2-3xC.f <x >=-11+xD.f <x >=-|x |4.函数f <x >=x 2+2<a -1>x +2在区间<-∞,4]上递减,则a 的取值范围是 〔A.[-3,+∞]B.<-∞,-3>C.<-∞,5]D.[3,+∞>5..当10<<a 时,在同一坐标系中,函数x y a y a xlog ==-与的图象是 〔.A.y =x 2-2x +2<x x 2-2x +2<x ≥1> C.y =x 2-2x <x <1> D.y =x 2-2x <x ≥1>7. 已知函数f <x >=12++mx mx 的定义域是一切实数,则m 的取值范围是 〔A.0<m ≤4B.0≤m ≤1C.m ≥4D.0≤m ≤4 8.某商场对顾客实行购物优惠活动,规定一次购物付款总额:<1>如果不超过200元,则不给予优惠;<2>如果超过200元但不超过500元,则按标价给予9折优惠;<3>如果超过500元,其500元内的按第<2>条给予优惠,超过500元的部分给予7折 优惠.某人两次去购物,分别付款168元和423元,假设他一次性购买上述两次同样的商品,则应付款是 〔A.413.7元B.513.7元C.546.6元D.548.7元9. 二次函数y =ax 2+bx 与指数函数y =<ab >x的图象只可能是 〔 10. 已知函数f <n >=⎩⎨⎧<+≥-),10)](5([),10(3n n f f n n 其中n ∈N ,则f <8>等于 〔A.2B.4C.6D.711、如图,设a,b,c,d>0,且不等于1,y=ax , y=bx , y=cx ,y=dx 在同一坐标系中的图象如图, 则a,b,c,d 的大小顺序〔 A 、a<b<c<d B 、a<b<d<c C 、b<a<d<c D 、b<a<c<d12.已知0<a<1,b<-1,函数f<x>=a x +bA.第一象限;B.第二象限;C.第三象限;D.第四象限二、填空题<本大题共4小题,每小题5分,共20分> 13.已知f <x >=x 2-1<x <0>,则f -1<3>=_______. 14.函数)23(log 32-=x y 的定义域为______________15.某工厂8年来某产品产量y 与时间t 年的函数关系如下图,则:①前3年总产量增长速度增长速度越来越快; ②前3年中总产量增长速度越来越慢; ③第3年后,这种产品停止生产; ④第3年后,这种产品年产量保持不变. 以上说法中正确的是_______.16. 函数y =⎪⎩⎪⎨⎧>+≤<+≤+1)( 5-1),(030),(32x x x x x x 的最大值是_______. 三、解答题。

最新高中数学必修1综合测试卷(三套+含答案)教学教材

最新高中数学必修1综合测试卷(三套+含答案)教学教材
一、选择题:
1、设全集 集合 从 到 的一个映射为 ,其中 则 _________________。
2、已知 是方程 的根, 是方程 的根,则 值为______________。
3、已知函数 的图象关于直线 对称,且当 时 则当 时
________________。
4、函数 的反函数 的图像与 轴交于点 (如图所示),则方程 在 上的根是
5、设
A、0B、1 C、2D、3
6、从甲城市到乙城市 分钟的电话费由函数 给出,其中 , 表示不大于 的最大整数(如 ),则从甲城市到乙城市 分钟的电话费为______________。
7、函数 在区间 上为增函数,则 的取值范围是______________。
8、函数 的值域为______________。
令 (0≤t≤ ),则x=t2+1,
∴ …………………………………………………8分
故当t= 时,可获最大利润 万元.……………………………………………………10分
此时,投入乙种商品的资金为 万元,
投入甲种商品的资金为 万元.……………………………………………………12分
21、(1)证明: ,令x=y=1,则有:f(1)=f(1)-f(1)=0,…2分
22、解:(1) 是R上的奇函数 ,
即 ,即
即 ∴
或者 是R上的奇函数
,解得 ,然后经检验满足要求。…………………………………3分(2)由(1)得
设 ,则

,所以 在 上是增函数…………………………………7分
(3) ,
所以 的值域为(-1,1)
或者可以设 ,从中解出 ,所以 ,所以值域为(-1,1)…12分
高中数学必修1综合测试卷(三套+含答案)

2023-2024学年高一上数学必修一综合测试卷(附答案解析)

2023-2024学年高一上数学必修一综合测试卷(附答案解析)

解析:当 c=0 时,A 不成立;当 a=-1,b=-2 时,B 不成立;
由不等式的性质知 C 不成立;若 a> b,则一定能推出 a>b,故 D 成
立.
3.命题“∃x∈R,x3-x2+1>0”的否定是( A )
A.∀x∈R,x3-x2+1≤0 B.∀x∈R,x3-x2+1>0
C.∃x∈R,x3-x2+1≤0 D.不存在 x∈R,x3-x2+1≤0
的取值范围是( A )
A.[2,6)
B.(2,6)
C.(-∞,2]∪(6,+∞)
D.(-∞,2)∪(6,+∞)
解析:①当 a=2 时,1>0 成立,故 a=2 符合条件;②当 a≠2 时,
a-2>0,
必须满足 Δ=a-22-4a-2<0,
解得 2<a<6.由①②可知,a∈
[2,6).故选 A.
二、多项选择题(本题共 4 小题,每小题 5 分,共 20 分.在每小
2
4
sinx

1π,3π 22
上单调递减,故
y=
π,3π 2sin2x 在 4 4 上单调递减,故
题给出的四个选项中,有多个选项符合题目要求.全部选对的得 5 分,
部分选对的得 3 分,有选错的得 0 分)
9.下列函数是偶函数的是( CD )
A.f(x)=tanx B.f(x)=sinx C.f(x)=cosx D.f(x)=lg|x|
解析:根据题意,依次分析选项:对于 A,f(x)=tanx,是正切函
解析:存在量词命题“∃x∈M,p(x)”的否定为全称量词命题“∀
x∈M,綈 p(x)”,故选 A.
4. 22cos375°+ 22sin375°的值为( A )

最新人教A版高中数学必修第一册综合测试题及答案

最新人教A版高中数学必修第一册综合测试题及答案

最新人教A版高中数学必修第一册综合测试题及答案模块综合测评(满分:150分,时间:120分钟)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合A={x|-2<x<1},B={x|x<-1或x>3},则A∩B=()A.{x|-2<x<-1}B.{x|-2<x<3}C.{x|-1<x<1} D.{x|1<x<3}A[在数轴上表示出集合A,B,如图所示.由图知A∩B={x|-2<x<-1}.]2.已知命题p:x为自然数,命题q:x为整数,则p是q的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件A[若x为自然数,则它必为整数,即p⇒q.但x为整数不一定是自然数,如x=-2,即q p.故p是q的充分不必要条件.]3.若cos α=-1010,sin 2α>0,则tan(π-α)等于()A.-3B.3 C.-34 D.34A[∵sin 2α=2sin αcos α>0,cos α=-10 10,∴sin α=-31010,∴tan α=sin αcos α=3,∴tan(π-α)=-tan α=-3,故选A.]4.设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是()A.1B.3 C.4D.8C[根据题意,满足条件的集合B可以为{3},{1,3},{2,3},{1,2,3}中的任意一个.] 5.若a<b<0,则下列不等式不能成立的是()A.1a-b>1a B.1a>1bC .|a |>|b |D .a 2>b 2 A [取a =-2,b =-1,则1a -b>1a 不成立.] 6.若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的取值范围是( ) A .(0,4) B .[0,4) C .(0,4]D .[0,4]D [当a =0时,满足条件;当a ≠0时,由题意知a >0且Δ=a 2-4a ≤0,得0<a ≤4,所以0≤a ≤4.]7.已知x >0,y >0,且x +2y =2,则xy ( ) A .有最大值为1 B .有最小值为1 C .有最大值为12D .有最小值为12C [因为x >0,y >0,x +2y =2,所以x +2y ≥2x ·2y ,即2≥22xy ,xy ≤12, 当且仅当x =2y ,即x =1,y =12时,等号成立. 所以xy 有最大值,且最大值为12.] 8.函数f (x )=x 12-⎝ ⎛⎭⎪⎫12x的零点个数是( )A .0B .1C .2D .3B [函数f (x )=x 12-⎝ ⎛⎭⎪⎫12x的零点个数是方程x 12-⎝ ⎛⎭⎪⎫12x =0的解的个数,即方程x 12=⎝ ⎛⎭⎪⎫12x的解的个数,也就是函数y =x 12与y =⎝ ⎛⎭⎪⎫12x 的图象的交点个数,在同一坐标系中作出两个函数的图象如图所示,可得交点个数为1.]9.若函数y =a +sin bx (b >0且b ≠1)的图象如图所示,则函数y =log b (x -a )的图象可能是( )C [由题图可得a >1,且y =a +sin bx 的最小正周期T =2πb <π,所以b >2,则y =log b (x -a )是增函数,排除A 和B ;当x =2时,y =log b (2-a )<0,排除D ,故选C.]10.已知a =log 29-log 23,b =1+log 27,c =12+log 213,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >a >bD .c >b >aB [a =log 29-log 23=log 233,b =1+log 27=log 227,c =12+log 213=log 226, 因为函数y =log 2x 在(0,+∞)上是增函数, 且27>33>26,所以b >a >c .]11.已知函数①y =sin x +cos x ,②y =22sin x cos x ,则下列结论正确的是( ) A .两个函数的图象均关于点⎝ ⎛⎭⎪⎫-π4,0成中心对称图形B .两个函数的图象均关于直线x =-π4成轴对称图形 C .两个函数在区间⎝ ⎛⎭⎪⎫-π4,π4上都是单调递增函数D .两个函数的最小正周期相同C [①y =2sin ⎝ ⎛⎭⎪⎫x +π4,图象的对称中心为⎝ ⎛⎭⎪⎫-π4+k π,0,k ∈Z ,对称轴为x =π4+k π,k ∈Z ,单调递增区间为⎣⎢⎡⎦⎥⎤-3π4+2k π,π4+2k π,k ∈Z ,最小正周期为2π;②y =2sin 2x 图象的对称中心为⎝ ⎛⎭⎪⎫12k π,0,k ∈Z ,对称轴为x =π4+12k π,k ∈Z ,单调递增区间为⎣⎢⎡⎦⎥⎤-π4+k π,π4+k π,k ∈Z ,最小正周期为π.故选C.]12.函数y =sin x 与y =tan x 的图象在[-2π,2π]上的交点个数为( ) A .3 B .5 C .7 D .9 B [由⎩⎨⎧y =sin x ,y =tan x ,得sin x =tan x ,即sin x ⎝ ⎛⎭⎪⎫1-1cos x =0.∴sin x =0或1-1cos x =0, 即x =k π(k ∈Z ),又-2π≤x ≤2π,∴x =-2π,-π,0,π,2π, 从而图象的交点个数为5.]二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.命题p :“∀x ∈{x |x 是三角形},x 的内角和是180°”的﹁p 是________. ∃x 0∈{x |x 是三角形},x 0的内角和不是180° [因为p 是全称量词命题,则﹁p 为存在量词命题.]14.已知A ,B 均为集合U ={1,3,5,7,9}的子集,且A ∩B ={3},∁U B ∩A ={9},则A =________.{3,9} [由题意画出Venn 图,如图所示.由图可知,A ={3,9}.]15.某种病毒经30分钟繁殖为原来的2倍,且知病毒的繁殖规律为y =e kt (其中k 为常数,t 表示时间,单位:小时,y 表示病毒个数),则经过5小时,1个病毒能繁殖为________个.1 024 [当t =0.5时,y =2,所以2=e k 2, 所以k =2ln 2,所以y =e 2t ln 2, 当t =5时,y =e 10ln 2=210=1 024.] 16.已知函数f (x )=⎩⎪⎨⎪⎧kx +3,x ≥0,⎝ ⎛⎭⎪⎫12x,x <0,若方程f (f (x ))-2=0恰有三个实数根,则实数k的取值范围是________.⎝ ⎛⎦⎥⎤-1,-13 [∵f (f (x ))-2=0,∴f (f (x ))=2, ∴f (x )=-1或f (x )=-1k (k ≠0).① ② ③(1)当k =0时,作出函数f (x )的图象如图①所示, 由图象可知f (x )=-1无解,∴k =0不符合题意; (2)当k >0时,作出函数f (x )的图象如图②所示, 由图象可知f (x )=-1无解且f (x )=-1k 无解, 即f (f (x ))-2=0无解,不符合题意;(3)当k <0时,作出函数f (x )的图象如图③所示, 由图象可知f (x )=-1有1个实根, ∵f ((x ))-2=0有3个实根, ∴f (x )=-1k 有2个实根, ∴1<-1k ≤3,解得-1<k ≤-13. 综上,k 的取值范围是⎝ ⎛⎦⎥⎤-1,-13.]三、解答题(本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知函数f (x )=x +mx ,且f (1)=3. (1)求m 的值;(2)判断函数f (x )的奇偶性.[解] (1)∵f (1)=3,即1+m =3,∴m =2.(2)由(1)知,f (x )=x +2x ,其定义域是{x |x ≠0},关于坐标原点对称,又f (-x )=-x +2-x =-⎝ ⎛⎭⎪⎫x +2x =-f (x ),∴函数f (x )是奇函数.18.(本小题满分12分)已知p :A ={x |x 2-2x -3≤0,x ∈R },q :B ={x |x 2-2mx +m 2-9≤0,x ∈R ,m ∈R }.(1)若A ∩B =[1,3],求实数m 的值;(2)若﹁q 是p 的必要条件,求实数m 的取值范围. [解] (1)A ={x |-1≤x ≤3,x ∈R }, B ={x |m -3≤x ≤m +3,x ∈R ,m ∈R }, ∵A ∩B =[1,3],∴m =4. (2)∵﹁q 是p 的必要条件 ∴p 是﹁q 的充分条件, ∴A ⊆∁R B ,∴m >6或m <-4.19.(本小题满分12分)设α,β是锐角,sin α=437,cos(α+β)=-1114,求证:β=π3. [证明] 由0<α<π2,0<β<π2,知0<α+β<π,又cos(α+β)=-1114, 故sin(α+β)=1-cos 2(α+β) =1-⎝ ⎛⎭⎪⎫-11142=5314. 由sin α=437,可知 cos α=1-sin 2α=1-⎝⎛⎭⎪⎫4372=17, ∴sin β=sin [(α+β)-α]=sin(α+β)cos α-cos(α+β)sin α =5314×17-⎝ ⎛⎭⎪⎫-1114×437=32,∴β=π3.20.(本小题满分12分)已知函数f (x )=ax 2+2x +c (a ∈N *,c ∈N *)满足: ①f (1)=5;②6<f (2)<11. (1)求函数f (x )的解析式;(2)若对任意x ∈[1,2],都有f (x )≥2mx +1成立,求实数m 的取值范围. [解] (1)∵f (1)=5,∴5=a +c +2,∴c =3-a .又6<f (2)<11,∴6<4a +c +4<11,∴-13<a <43. 又a ∈N *,∴a =1,c =2,∴f (x )=x 2+2x +2.(2)设g (x )=f (x )-2mx -1=x 2-2(m -1)x +1,x ∈[1,2],则由已知得 当m -1≤1,即m ≤2时,g (x )min =g (1)=4-2m ≥0,此时m ≤2.当1<m -1<2,即2<m <3时,g (x )min =g (m -1)=1-(m -1)2≥0,此时无解. 当m -1≥2,即m ≥3时,g (x )min =g (2)=9-4m ≥0,此时无解. 综上所述,实数m 的取值范围是(-∞,2].21.(本小题满分12分)已知函数f (x )=cos(πx +φ)⎝ ⎛⎭⎪⎫0<φ<π2的部分图象如图所示.(1)求φ及图中x 0的值;(2)设g (x )=f (x )+f ⎝ ⎛⎭⎪⎫x +13,求函数g (x )在区间⎣⎢⎡⎦⎥⎤-12,13上的最大值和最小值.[解] (1)由题图得f (0)=32,所以cos φ=32, 因为0<φ<π2,故φ=π6. 由于f (x )的最小正周期等于2, 所以由题图可知1<x 0<2, 故7π6<πx 0+π6<13π6.由f (x 0)=32,得cos ⎝ ⎛⎭⎪⎫πx 0+π6=32,所以πx 0+π6=11π6,x 0=53.(2)因为f ⎝ ⎛⎭⎪⎫x +13=cos ⎣⎢⎡⎦⎥⎤π⎝⎛⎭⎪⎫x +13+π6=cosπx +π2=-sin πx , 所以g (x )=f (x )+f ⎝ ⎛⎭⎪⎫x +13=cos ⎝ ⎛⎭⎪⎫πx +π6-sin πx =cos πx cos π6-sin πx sin π6-sin πx=32cos πx -32sin πx =3sin ⎝ ⎛⎭⎪⎫π6-πx .当x ∈⎣⎢⎡⎦⎥⎤-12,13时,-π6≤π6-πx ≤2π3.所以-12≤sin ⎝ ⎛⎭⎪⎫π6-πx ≤1,故π6-πx =π2,即x =-13时,g (x )取得最大值3; 当π6-πx =-π6,即x =13时,g (x )取得最小值-3222.(本小题满分12分)已知f (x )=log 4(4x +1)+kx (k ∈R )为偶函数. (1)求k 的值;(2)若方程f (x )=log 4(a ·2x -a )有且只有一个根,求实数a 的取值范围. [解] (1)∵f (x )是偶函数,∴f (-x )=f (x ), 即log 4(4-x +1)-kx =log 4(4x +1)+kx ,化简得log 44-x +14x +1=2kx ,log 44-x =-x =2kx ,则有(2k +1)x =0.对任意的x ∈R 恒成立,于是有2k +1=0,k =-12.(2)∵f (x )=log 4(4x +1)-12x ,f (x )=log 4(a ·2x -a )有且只有一个根, ∴log 4(4x +1)-12x =log 4(a ·2x -a ), 即(1-a )(2x )2+a ·2x +1=0有唯一实根.令t =2x ,则关于t 的方程(1-a )t 2+at +1=0有唯一的正根.①当1-a =0即a =1时,方程(1-a )t 2+at +1=0,则t +1=0,即t =-1,不符合题意.②当1-a ≠0即a ≠1时,Δ=a 2-4(1-a )=a 2+4a -4=(a +2)2-8. 若Δ=0,则a =-2±22, 此时,t =a2(a -1).当a =-2+22时,则有t =a2(a -1)<0,方程(1-a )t 2+at +1=0无正根,不符合题意;当a =-2-22时,则有t =a 2(a -1)>0,且a ·2x-a =a (t -1)=a ·⎣⎢⎡⎦⎥⎤a 2(a -1)-1=a (2-a )2(a -1)>0,方程(1-a )t 2+at +1=0有两个相等的正根,符合题意.若Δ>0,则方程(1-a )t 2+at +1=0有两个不相等的实根,则只需其中有一正根即可满足题意.于是有⎩⎪⎨⎪⎧Δ>0,11-a <0,由此解得a >1.综上所述,a >1或a =-2-2 2.。

高一数学必修1综合能力测评卷及答案详解

高一数学必修1综合能力测评卷及答案详解

必修一模块综合能力测评卷说明:本试题分第 I 卷和第II 卷两部分,满分 150分,时间120 分钟一、选择题:本大题共12小题,每题 5 分合计 60 分。

1.以下五个写法:①{ 0}{1,2,3} ;②{0} ;③{0,1,2}{1,2,0} ;④0;⑤ 0,此中错误写法的个数为()..A.1B.2 C .3 D. 42 已知 M ={ x|y=x 2-1} , N={y|y=x2-1}, M N 等于()A. NB. MC.RD.3.设a22.5, b 2.50 , c( 1) 2.5,则a,b,c大小关系()2A. a>c>bB. c>a>bC. a>b>cD.b>a>c4.以下图像表示的函数能用二分法求零点的是()y y y y 1o x o x o x o xA B C D5.已知f ( x6)log 2 x ,则f (8)()4B. 8C. 181A . D .326.已知f (x)是定义在(0,) 上的单一增函数,若 f ( x) f (2x) ,则x的范围是()A x>1 B. x<1 C.0<x<2 D. 1<x<27.若函数f ( x)x 2bx c 对随意实数都有 f (2x) f (2x) ,则()A f ( 2) f (1) f (4) B. f (1) f (2) f (4) C. f (2) f (4) f (1) D. f (4) f (2) f (1)8.给出函数 f (x), g( x) 以下表,则f〔 g( x)〕的值域为()x1234x1234g(x)1133f(x)4321A.{4,2}B.{1,3}C.{1,2,3,4}D. 以上状况都有可能9.设函数f ( x)log a| x |, (a 0且 a 1)在(上单一递加,则 f (a1)与 f (2)的大小关系为(),0)A f (a 1) f (2)B f (a 1) f (2) C. f (a 1) f (2) D.不确立10.函数f(x)=x 2-4x+5 在区间 [0,m]上的最大值为 5,最小值为1,则 m 的取值范围是()A. [2,) B .[2,4] C .(,2] D 。

人教版数学必修一综合测试(含答案)

人教版数学必修一综合测试(含答案)

人教版数学必修一一、单选题1.已知集合A ={x |x =2sin nπ3,n ∈N ∗},B ={x |x 2―2x ―3<0},则A ∩B =( )A .{―3,0,3}B .{0,3}C .{―3,0}D .{―1,0,3}2.函数f (x )=log 2(3―x )+1x ―1的定义域为( )A .[1,3]B .[1,3)C .[1,+∞)D .(1,3)3.函数 y =2x ―1的定义域为 (―∞,1)∪[2,5) , 则其值域是( ) A .(0,+∞)B .(―∞,2]C .(―∞,12)∪[2,+∞)D .(―∞,0)∪(12,2]4.函数f (x )=|x -2|·(x -4)的单调递减区间是( )A .[2,4]B .[2,3]C .[2,+∞)D .[3,+∞)5.已知函数f (x )=cos(ωx +φ)(ω>0,|φ|<π)的部分图象如图所示,且存在0≤x 1<x 2≤π,满足f(x 1)=f (x 2)=―45,则cos(x 2―x 1)=( )A .―35B .35C .45D .―456.函数 f (x )=3―x 2+4x +3 的单调递增区间为( )A .(―∞,2)B .(2,+∞)C .(―3,2)D .(2,7)7.已知函数f (x )={x 2+2x ,x⩽0,ln 1x ,x >0.若函数g (x )=f (x )―a |x |恰有三个零点,则实数a 的取值范围是( )A .(―2,―1e )∪[0,+∞)B .[―2,―1e ]∪(0,+∞)C .(―e ,0)∪[2,+∞)D .{―1e}∪[0,+∞)8.已知a =5log 56―log 29×lo g 32,b =log 56+log 3025,5b +12b =13c ,则( )A.c<b<a B.b<c<a C.a<c<b D.a<b<c二、多选题9.图中阴影部分用集合符号可以表示为( )A.∁U B∩(A∪C)B.∁U((A∩B)∪(B∩C))C.A∪(C∩∁U B)D.(A∩∁U B)∪(C∩∁U B)10.下列命题中正确的是( )A.函数y=1―sin2x的周期是πB.函数y=1―co s2x的图像关于直线x=π4对称C.函数y=2―sinx―cosx在[π4,π]上是减函数D.函数y=cos(2022x―π3)+3sin(2022x+π6)的最大值为1+311.已知抛物线C1:y=x2与抛物线C2:y=a x2+1―a(0<a<13)在第一象限交于M点,过M点的直线l 分别与C1,C2交于P,Q两点,且M为线段PQ的中点,O为坐标原点,则( )A.|PQ|>2|OP|B.|PQ|<|OQ|C.tan∠POQ+2>0D.tan∠POQ+1<012.定义在(―1,1)上的函数f(x)满足f(x)―f(y)=f(x―y1―xy),且当x∈(―1,0)时,f(x)<0,则有( )A.f(x)为奇函数B.存在非零实数a,b,使得f(a)+f(b)=f(12)C.f(x)为增函数D.f(12)+f(13)>f(56)三、填空题13.(lg5)2+lg2×lg50= .14.不等式ax2+4x+a>1﹣2x2对一切x∈R恒成立,则实数a的取值范围是 .15.已知函数f(x)=3sinωx+cosωx(ω>0),若函数f(x)在区间(π3,π2)内没有零点,则实数ω的最大值是 .16.设正数x,y满足a≥x+yx+y恒成立,则a的最小值是 .四、解答题17.计算下列各式的值:(1)(14)―1+log23;(2)2723+(5)2―1614+(e―1)0.18.已知方程ax2+x+b=0.(1)若方程的解集为{1},求实数a,b的值;(2)若方程的解集为{1,3},求实数a,b的值.19.如图,在直角坐标系xOy中,角α的顶点是原点,始边与轴正半轴重合,终边交单位圆于点A,且α∈(π6,π2),将角α的终边按照逆时针方向旋转π3,交单位圆于点B,记A(x1,y1),B(x2,y2)(1)若x1=13,求x2;(2)分别过A、B做x轴的垂线,垂足依次为C、D,记ΔAOC的面积为S1,ΔBOD的面积为S2,若S1=2S2,求角α的值.20.已知函数f(x)满足2f(x)+f(―x)=x+2x(x≠0).(1)求y=f(x)的解析式;(2)若对∀x1、x2∈(2,4)且x1≠x2,都有f(x2)―f(x1)x2―x1>kx2⋅x1(k∈R)成立,求实数k的取值范围.21.已知定义在R上的函数f(x)满足:①对任意x,y∈R,有f(x+y)=f(x)+f(y).②当x <0时,f(x)>0且f(1)=―3.(1)求证:f(x)是奇函数;(2)解不等式f(2x―2)―f(x)≥―12.22.已知函数f(x)=2x+ab⋅2x+1是定义域为R的奇函数.(1)求函数f(x)的解析式;(2)若存在x∈[―2,2]使不等式f(m⋅4x)+f(1―2x+1)≥0成立,求m的最小值.答案解析部分1.【答案】B2.【答案】D3.【答案】D4.【答案】B5.【答案】C6.【答案】A7.【答案】D8.【答案】C9.【答案】A,D10.【答案】A,D11.【答案】A,D12.【答案】A,B,C13.【答案】114.【答案】(2,+∞)15.【答案】17316.【答案】217.【答案】(1)解:原式=(14)―1⋅(2―2)log23=4×3―2=49.(2)解:原式=33×23+5―24×14+1=32+5―2+1=13. 18.【答案】(1)解:若方程的解集为{1},则①若a=0,则1+b=0,解得a=0,b=﹣1;②若a≠0,则a+1+b=0且1﹣4ab=0,解得a=b=﹣12.综上所述,a=0,b=﹣1或a=b=﹣12(2)解:依题意得:1+3=﹣1a ,1×3= ba,解得a=﹣14,b=﹣3419.【答案】(1)解:由三角函数定义,得x1=cosα,x2=cos(α+π3).因为 α∈(π6,π2) , cos α=13 ,所以 sin α=1―cos 2α=223.所以 x 2=cos(α+π3)=12cos α―32sin α=1―266 .(2)解:依题意得 y 1=sin α , y 2=sin(α+π3) . 所以 S 1=12x 1y 1=12cos α·sin α=14sin2α ,S 2=12|x 2|y 2=12[―cos(α+π3)]·sin(α+π3)=―14sin(2α+2π3) .依题意 S 1=2S 2 得 sin2α=―2sin(2α+2π3) ,即 sin2α=―2[sin2αcos 2π3+cos2αsin 2π3]=sin2α―3cos2α ,整理得 cos2α=0 .因为 π6<α<π2 ,所以 π3<2α<π ,所以 2α=π2 ,即 α=π4 .20.【答案】(1)解:由条件2f (x )+f (―x )=x +2x,可知函数f (x )的定义域为{x |x ≠0},所以,2f (―x )+f (x )=―x ―2x,可得{2f (x )+f (―x )=x +2x2f (―x )+f (x )=―x ―2x,解得f (x )=x +2x(x ≠0).(2)解:对∀x 1、x 2∈(2,4),x 1≠x 2,都有f (x 2)―f (x 1)x 2―x 1>k x 2⋅x 1(k ∈R ),不妨设2<x 1<x 2<4,由f (x 2)―f (x 1)x 2―x 1>k x 2⋅x 1,则f (x 2)―f (x 1)>k (x 2―x 1)x 2⋅x 1=k x 1―k x 2,可得f (x 2)+k x 2>f (x 1)+k x 1,也即可得函数g (x )=f (x )+k x =x +k +2x 在区间(2,4)上递增;g ′(x )=1―k +2x2≥0对任意的x ∈(2,4)恒成立,即k +2≤x 2,当x ∈(2,4)时,4<x 2<16,故k +2≤4,解得k ≤2.因此,实数k 的取值范围是(―∞,2].21.【答案】(1)证明:令 x =y =0 , f (0)=f (0)+f (0) ,∴ f (0)=0 ,令 y =―x , ∴ f (0)=f (―x )+f (x )=0∴f(x)=―f(―x).∴函数f(x)是奇函数.(2)解:设x1<x2,则x1―x2<0,∴f(x1)―f(x2)=f(x1)+f(―x2)=f(x1―x2)>0∴f(x)为R上减函数.∵f(2x―2)―f(x)=f(2x―2)+f(―x)=f(x―2)≥―12,―12=4f(1)=f(4).∴x―2≤4即x≤6.∴不等式f(2x―2)―f(x)≥―12的解集为{x|x≤6}.22.【答案】(1)解:因为函数f(x)是定义域为R的奇函数,可知f(0)=0, ∴a=-1,又f(―x)=―f(x),则2―x―1b⋅2―x+1=- 2x―1b⋅2x+1,∴1―2x b+2x =- 2x―1b⋅2x+1,∴b=1,∴f(x)=2x―12x+1(2)解:∵f(x)=2x―12x+1=1- 22x+1,所以f(x)在[―2,2]上单调递增;由f(m⋅4x)≥―f(1―2x+1)=f(2x+1―1)可得m⋅4x≥2x+1―1在[―2,2]有解分参得m≥2x+1―14x =2⋅12x―14x,设t=12x ,t∈[14,4], m≥―t2+2t=―(t―1)2+1,所以m≥―8,则m的最小值为―8。

高中数学新教材必修第一册综合测试数学试题(含参考答案)

高中数学新教材必修第一册综合测试数学试题(含参考答案)

新教材必修第一册综合测试数学试题(含答案)高一数学本试卷共4页,22小题,全卷满分150分,考试时间120分钟。一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把正确选项在答题卡中的相应位置涂黑.(1)集合2{|20}A x x x =--,{|10}B x x =-<,则()A B ⋂=A.{|1}x xB.{|11}x x -<C.{|1}x x <-D.{|21}x x -<(2)函数为()f x =的定义域( ) A.1,2⎛⎫-+∞ ⎪⎝⎭ B.1,2⎡⎫-+∞⎪⎢⎣⎭C.()1,00,2⎛⎫-⋃+∞ ⎪⎝⎭ D.()1,00,2⎡⎫-⋃+∞⎪⎢⎣⎭(3)“0lgx <”是“2x <”的 ( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(4)已已知知512x log =,1012y ⎛⎫= ⎪⎝⎭,132z =,则( )A.x y z <<B.x z y <<C.y x z <<D.z x y <<(5)下列函数中,既是偶函数又在区间()0,+∞上单调递增的函数是( ) A. 1||y lnx = B.||2x y =C.y cosx =D.3y x =(6)已知定义在R 上的函数()f x 的图象是连续不断的且有如下对应值表:那么函数()()2g x f x x =-一定存在零点的区间是( ) A.((),1-∞B.()1,2C.()2,3D.()3,4(7)将函数23y sin x π⎛⎫=-⎪⎝⎭的图象向右平移6π个的单位长度,再将所得到的函数图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),则所得到的图象的函数解析式为( ) A. 23y sin x π⎛⎫=-⎪⎝⎭ B.243y sin x π⎛⎫=-⎪⎝⎭C.2y sin x π⎛⎫=- ⎪⎝⎭D.42y sin x π⎛⎫=-⎪⎝⎭ (8)中国的5G 技术领先世界,5G 技术的数学原理之一便是著名的香农公式: 21S C Wlog N ⎛⎫=+⎪⎝⎭它表示:在受噪声干扰的信道中,最大信息传递速度C 取决于信道带宽W 、信道内信号的平均功率S 、信道内部的高斯噪声功率N 的大小。其中SN叫做信噪比,当信噪比较大时,公式中真数中的1可以忽略不计。按照香农公式,若不改变带宽W,而将信噪比SN从1000提升至8000,则C 大约增加了(20.3010lg ≈,30.4771lg ≈)( ) A.10%B.30%C.60%D.90%二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,选对但不全的得3分,有选错的得0分.请把正确选项在答题卡中的相应位置涂黑. (9)在下列四组函数中,()f x 与()g x 表示同一函数的是( )A.()1f x x =-,()2g x =B.()|3|,|f x x g =-(),g x =C.()f x x =,()10xg x lg =D.()f x =()g x =(10)幂函数223a a y x --=是奇函数,且在()0,+∞是减函数,则整数a 的值是( )A.0B.1C.2D.3(11)下列结论正确的是( )A.当1x 时,2B.当54x <时, 14245x x -+-的最小值是5C.当0x ≠时, 1x x+的最小值是2D.设0x >,0y >,且2x y +=,则14x y+的最小值是92(12)已知函数()()f x Asin x ωϕ=+,0,0,||2A πωϕ⎛⎫>><⎪⎝⎭部分图象如图所示,下列说法不正确是( )A.()f x 的图象关于直线23x π=对称B.()f x 的图象关于点5,012π⎛⎫-⎪⎝⎭对称 C.将函数22y x cos x =-的图象向左平移2π个单位得到函数()f x 的图象 D.若方程()f x m =在,02π⎡⎤-⎢⎥⎣⎦上有两个不相等的实数根,则m的取值范围是(2,- 三、填空题:本大题共4小题,每小题5分,共20分.请把答案填在答题卡的相应位置上. (13)18427242cos cos cos sin ︒︒︒︒⋅-⋅=____. (14)已知3cos sin cos sin αααα+=-,则4tan πα⎛⎫+= ⎪⎝⎭____.(15)已知函数32,1()log (1),1x x f x x x ⎧≤=⎨->⎩,且()01f x =,则0x =____.(16)已知关于x 的不等式20ax bx c -+的解集为{|12}x x ,则20cx bx a ++的解集为____.四、解答题:本大题共6小题,第17题10分,18、19、20、21、22题各12分,共70分.解答应写出文字说明、证明过程或演算步骤.必须把解答过程写在答题卡相应题号指定的区域内,超出指定区域的答案无效. (17)(本小题满分10分) 已知02πα<<,且513sin α=.(I)求tan α的值;(II)求2sin 22sin()sin 2cos ()sin 22απααπαα--++的值.已知函数()11xf x lnx-=+. (I)判断并证明函数()f x 的奇偶性; (Ⅱ)若()()2f m f m --=,求实数m 的值.(19)(本小题满分12分)已知函数()()2f x Asin x ϕ=+(A,ϕ是常数,0A >,0,x R ϕπ<<∈)在8x π=时取得最大值3.(1)求()f x 的最小正周期; (Ⅱ)求()f x 的解析式; (Ⅲ)若18f πα⎛⎫+=- ⎪⎝⎭,求sin α.(20)(本小题满分12分)某种商品在30天内每件的销售价格P(元)与时间t(天)的函数关系**20025,1002530,t t t N P t t t N⎧+<<∈=⎨-+≤≤∈⎩,该商品在30天内日销售量Q(件)与时间t(天)之间满足一次函数关系,具体数据如下表:(I)根据表中提供的数据,求出日销售量关于时间t 的函数表达式; (Ⅱ)求该商品在这30天中的第几天的日销售金额最大,最大值是多少?设函数()2f x cos x a =++ (I)写出函数()f x 的最小正周期及单调递减区间; (Ⅱ)当,63x ππ⎡⎤∈-⎢⎥⎣⎦时,函数()f x 的最大值与最小值的和32,求不等式()1f x >的解集.(22)(本小题满分12分)已知函数()313xxa f x +=+是R 上的奇函数(I)求a;(Ⅱ)用定义法讨论()f x 在R 上的单调性; (III)若21121042xx f k k f -⎛⎫⎛⎫-⋅++> ⎪ ⎪⎝⎭⎝⎭在x ∈R 上恒成立,求k 的取值范围.新教材必修第一册综合测试数学试题答案高一数学一、单项选择题:本大题共8小题,每小题5分,共40分.(1)B (2)D (3)A (4)A (5)B (6)B(7)A(8)B二、多项选择题:本大题共4小题,每小题5分,共20分.(9)BC (10)AC (11)AD (12)ABC三、填空题:本大题共4小题,每小题5分,共20分.(13)21(14)3(15)0或4(16)1{|1,}2x x x ≤-≥-或四、解答题:本大题共6小题,第17题10分,18、19、20、21、22题各12分,共70分.(17)解:(Ⅰ)因为135sin =α,20πα<<,所以12cos 13α===,……………………………………4分故125cos sin tan ==ααα.……………………………………5分(Ⅱ)222sin 22sin()sin 2sin cos 2sin 2sin 2sin cos 2cos ()sin 22απαααααπααααα---=+++…………………7分cos sin 1tan sin cos 1tan αααααα--==++…………………9分51712517112-==+.…………………10分(18)(Ⅰ)解:()1ln 1xf x x-=+是奇函数.证明:要10,1xx->+等价于()()110,x x +->即11,x -<<故()1ln1xf x x-=+的定义域为()1,1,-关于原点对称又因为()()1111ln ln ln .111x x x f x f x x x x -+--⎛⎫-===-=- ⎪-++⎝⎭所以()1ln1xf x x-=+是奇函数.…………6分(Ⅱ)由(1)知,()f x 是奇函数,则()()0f m f m +-=,联立()()()()02f m f m f m f m +-=--=⎧⎪⎨⎪⎩得()=1f m ,即1ln 1,1m m -=+解得1.1em e-=+…………12分(19)(Ⅰ))(x f 的最小正周期ππ==22T ………………2分(列式1分,计算1分)(Ⅱ)依题意3=A ………………………………………4分3)82sin(3=+⨯ϕπ…………………………………5分因为4544πϕππ<+<且1)4sin(=+ϕπ…………………6分所以24πϕπ=+,4πϕ=…………………………………7分)42sin(3)(π+=x x f ……………………………………8分(Ⅲ)由18(-=+παf 得122sin(3-=+πα…………………9分即312cos -=α……………………………………………10分所以31sin 212-=-α……………………………………11分36sin ±=α………………………………………………12分.(20)(Ⅰ)设日销售量Q 关于时间t 的函数表达式为Q kt b =+,依题意得:3551030k b k b =+⎧⎨=+⎩,解之得:140k b =-⎧⎨=⎩,所以日销售量Q 关于时间t 的函数表达式为40Q t =-+((0,30]t ∈,t N *∈,).(Ⅱ)设商品的日销售金额为y (元),依题意:y PQ =,所以(20)(40)025,,(100)(40)2530,.t t t t N y t t t t N **⎧+-+<<∈=⎨-+-+≤≤∈⎩,即:2220800025,,14040002530,.t t t t N y t t t t N **⎧-++<<∈=⎨-+≤≤∈⎩.当(0,25)t ∈,t N *∈时,2(10)900y t =--+,当10t =时,max 900y =;当[25,30]t ∈,t N *∈时,2(70)900y t =--,当25t =时,max 1125y =;所以该商品在这30天中的第25天的日销售金额最大,为1125元.(21)解:(Ⅰ)31cos 2()sin 222xf x x a +=++……1分1sin(262x a π=+++,……3分T π∴=,……4分令3222262k x k πππππ+≤+≤+,Z k ∈,∴263k x k ππππ+≤≤+,Z k ∈,∴函数)(x f 的递减区间为:2[,],63k k k Z ππππ++∈.……6分(Ⅱ)由[,63x ππ∈-得:52666x πππ-≤+≤,max min 3(),()2f x a f x a ∴=+=,……8分33022a a a ∴++=⇒=,……9分∴1()1sin(2)62f x x π>⇒+>,52226663k x k k x k ππππππππ∴+<+<+⇒<<+,Z k ∈,……11分又⎦⎤⎢⎣⎡-∈3,6ππx ,∴不等式1)(>x f 的解集为{|0}3x x π<<.……12分(22)(Ⅰ) 函数()313xxa f x +=+是R 上的奇函数()()331313x xx x a a f x f x --++∴-==-=-++即3133113x xx xa a +--=++即()()3131xxa +=-+解得1a =-;(Ⅱ)由(1)知()3131-=+x xf x ()()12121231313131x x x x f x f x ---=-++()()()()()()122112313131313131x x x x x x -+--+=++()()()12122333131x x x x -=++设12x x <,则12033x x <<故12330x x -<,1310x +>,2310x +>故()()120f x f x -<即()()12f x f x <()f x ∴是R 上的增函数.(Ⅲ)()f x 是R 上的奇函数,()f x 是R 上的增函数21121042x x f k k f -⎛⎫⎛⎫∴-⋅++> ⎪ ⎪⎝⎭⎝⎭在x ∈R 上恒成立等价于2111122244x x xf f k k f k k -⎛⎫⎛⎫⎛⎫+>--⋅=⋅-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∴等价于2112142x x k k -⋅-<+在x ∈R 上恒成立即()2212420xx k k +⋅+⋅->在x ∈R 上恒成立“*”令20x t =>则“*”式等价于()22140k t t k ++->对0t >时恒成立“**”①当210k +=,即12k =-时“**”为1402t +>对0t >时恒成立②当210k +≠,即12k ≠时,“**”对0t >时恒成立须()210164210k k k +>⎧⎨∆=++<⎩或2102021k k k +>⎧⎪⎪-≤⎨+⎪-≥⎪⎩解得102k -<≤综上,k 的取值范围是1,02⎡⎤-⎢⎥⎣⎦.。

2023-2024学年高一上数学必修一第4章综合测试卷(附答案解析)

2023-2024学年高一上数学必修一第4章综合测试卷(附答案解析)

,则 f(f(log32))的值为( A )
A. 3 B.- 3 C.-1 D.-2
3
3
2
1 解析:∵f(log32)=- 3
log32
=-12,∴f(f(log32))=f
-1 2
-1
=3 2

3. 3
1 4.方程 2 x-x-2=0 的根所在的区间为( A )
第 1 页 共 16 页
A.(-1,0) B.(0,1) C.(1,2) D.(2,3)
B.f(x)在区间(0,1)上一定没有零点,在区间(1,2)上一定有零点
C.f(x)在区间(0,1)上一定有零点,在区间(1,2)上可能有零点
第 5 页 共 16 页
D.f(x)在区间(0,1)上可能有零点,在区间(1,2)上一定有零点 解析:由题知 f(0)·f(1)<0,所以根据函数零点存在定理可得 f(x) 在区间(0,1)上一定有零点,又 f(1)·f(2)>0,因此无法判断 f(x)在区间(1,2) 上是否有零点. 12.函数 f(x)=2x-2-x( AD ) A.是奇函数 B.在区间(0,+∞)上单调递减 C.是偶函数 D.在区间(0,+∞)上单调递增 解析:∵f(-x)=2-x-2x=-(2x-2-x)=-f(x),∴f(x)为奇函数. 又∵y=2x 在(0,+∞)上单调递增,y=2-x 在(0,+∞)上单调递 减,∴由单调性的性质可知,f(x)=2x-2-x 在(0,+∞)上单调递增. 三、填空题(本题共 4 小题,每小题 5 分,共 20 分) 13.化简 log2.56.25+lg0.001+2ln e-2log43=- 3. 解析:原式=2-3+1- 3=- 3. 14.用二分法求方程 lnx=1在[1,2]上的近似解,取中点 x=1.5,

2023最新人教版高中数学必修一第五章《三角函数》单元测试(附答案解析)

2023最新人教版高中数学必修一第五章《三角函数》单元测试(附答案解析)

试卷第 4 页,共 4 页
1.C
参考答案:
【解析】运用诱导公式,结合特殊角的三角函数值即可化简求解..
【详解】 cos
150
cos150 cos(1800 300 ) cos 300
3, 2
故选:C.
【点睛】关键点点睛:该题考查的是有关三角函数化简求值问题,正确解题的关键是熟练应 用诱导公式以及熟记特殊角三角函数值. 2.A
答案第 2 页,共 12 页
【详解】 f (x) sin x cos
2
sin( x
π 4
)
,因为
x
a
,
b
,所以
x
π 4
a
π 4
,
b
π 4
,因
为 1
2
sin( x
π 4
)
2 ,所以
2 2
sin( x
π 4
)
1.
正弦函数
y
sin
x
在一个周期
π 2
,
3π 2
内,要满足上式,则
x
π 4
π 4
f
x
sin x
的图象过点
1 3
,1
,若
f
x 在2, a 内有
5

零点,则 a 的取值范围为______.
四、解答题
17.在① sin
6 3
,②
tan 2
2 tan 4 0 这两个条件中任选一个,补充到下面的
问题中,并解答.
已知角 a 是第一象限角,且___________.
(1)求 tan 的值;
S1 S2
2
1 2
可求得

2023-2024学年高一上数学必修一第3章综合测试卷(附答案解析)

2023-2024学年高一上数学必修一第3章综合测试卷(附答案解析)

解析:由题意,得 f(-x)=f(x),g(-x)=-g(x).令 F(x)=f(x)g(x),
则 F(-x)=f(-x)g(-x)=-f(x)g(x)=-F(x),所以函数 F(x)=f(x)g(x)
为奇函数,其图象关于原点对称,排除 A,B.又由函数 f(x),g(x)的图
象可知,当 x>0 时,f(x)>0,g(x)>0,所以 F(x)>0,可排除 D,故选
B.[-k-1,1+k]
C.[k-1,1+k]
D.[-k-1,1-k]
第 1 页 共 14 页
解析:因为 x∈[-2,0],则 x+1∈[-1,1],所以函数 f(x)的定义
-1≤x-k≤1,
域 为 [ - 1,1] . 要 使 F(x) 有 意 义 , 则
解得
-1≤x+k≤1,
k-1≤x≤k+1, 又 k∈(0,1),所以 k-1≤x≤1-k.于是函数 F(x)
x1+x2,0
x1+x2
2
,|AB|=f(x1),|CD|=f(x2),|EF|=f 2 .
∵|EF|>1(|AB|+|CD|), 2
∴f
x1+x2 2
>fx1+fx2.故选
BCD.
2
10.下列说法正确的是( CDE ) A.空集是任何集合的真子集 B.函数 f(x)的值域是[-2,2],则函数 f(x+1)的值域为[-3,1] C.既是奇函数又是偶函数的函数有无数个 D.若 A∪B=B,则 A∩B=A E.函数 f(x)的定义域是[-2,2],则函数 f(x+1)的定义域为[-3,1]
C. 7.设函数 f(x)为二次函数,且满足下列条件:
1-2a ①f(x)≤f 2 (a∈R);

人教版高一数学必修一期末综合练习题(含答案)

人教版高一数学必修一期末综合练习题(含答案)

人教版高一数学必修一期末综合练习题(含答案)人教版高一数学必修一期末综合练题(含答案)一、单选题1.已知实数a,b,c满足lga=10=b,则下列关系式中不可能成立的是()A。

a>b>cB。

a>c>bC。

c>a>bD。

c>b>a2.已知函数f(x)=x(e^x+a),若函数f(x)是偶函数,记a=m,若函数f(x)为奇函数,记a=n,则m+2n的值为()A。

0B。

1C。

2D。

-13.命题:“对于任意实数x,x^2+x>0” 的否定是( )A。

存在实数x,使得x^2+x≤0B。

对于任意实数x,x^2+x≤0C。

存在实数x,使得x^2+x<0D。

对于任意实数x,x^2+x≥04.已知sin2α=-1/2,则cos(α+π/3)=()A。

-1/3B。

-2/3C。

1/3D。

2/35.已知ω>0,函数f(x)=cos(ωx+π/2),则ω的取值范围是()A。

(0,π/12]B。

(0,π/6]C。

(0,π/4]D。

(0,π/2]6.为了得到函数y=cos2x的图象,只需将函数y=sin(2x-π/2)的图象上所有点A。

向右平移π个单位B。

向左平移π个单位C。

向右平移π/2个单位D。

向左平移π/2个单位7.下列函数中,与函数y=x相同的是()A。

y=1/xB。

y=x^2C。

y=√xD。

y=|x|8.若2sinx-cos(π/2+x)=1,则cos2x=()A。

-8/9B。

-7/9C。

7/9D。

8/99.设A={x|x^2-4x+3≥0},B={x|x^2-6x+5≤0},则“A包含于B”是“B包含于A”的()A。

充分必要条件B。

必要不充分条件C。

充分不必要条件D。

既不充分也不必要条件10.已知集合A={x|y=ln(x+1)},集合B={x|x≤2},则A∩B等于()A。

(-1,2]B。

[0,2]C。

(0,∞)D。

(5,6]11.已知集合P={x|x-3≤2,x∈R},Q={3,5,6},则P∩Q=()A。

新教材高一数学必修第一册三角函数综合检测答案解析

新教材高一数学必修第一册三角函数综合检测答案解析

新教材高一数学必修第一册三角函数综合检测答案解析一、单选题1.若()tan 2πα+=,则()()2sin 4sin cos 2παπαα⎛⎫----= ⎪⎝⎭( )A .95- B .75-C .75D .9575=-2.已知角α的终边在直线2y x =上,则sin cos αα=( ) A .25B .25-C .45D .45-3.函数22sin 2cos 3y x x =+-的最大值是( ) A .1- B .12C .12-D .5-【答案】C【分析】结合同角三角函数的基本关系式、二次函数的性质,求得函数的最大值. 【详解】()222sin 2cos 321cos 2cos 3y x x x x =+-=-+-1122-, 的最大值是12-的二次式求最值,属于基础题4()2x x π⎛⎫+- ⎪⎝⎭的结果为( )A .6x π⎛⎫+ ⎪⎝⎭B .3x π⎛⎫+ ⎪⎝⎭C .6x π⎛⎫+ ⎪⎝⎭D .3x π⎛⎫+ ⎪⎝⎭5.将函数()()sin 0,0g x A x A ωω=>>,的图象向左平移中()0ϕϕπω<<个单位后得到函数()y f x =的图象,若()y f x =的图象关于y 轴对称,且()()130f f -==,则ω的可能取值为( ) A .3 B .13C .32π D .π6.设z ∵C ,且|z |=1,当|(z ﹣1)(z ﹣i )|最大时,z =( )A .﹣1B .﹣iC D7.已知()sin (0)3f x x ωϕω⎛⎫=++> ⎪⎝⎭同时满足下列三个条件:∵()()122f x f x -=时,12x x -的最小值为2π;∵3y f x π⎛⎫=- ⎪⎝⎭是奇函数;∵(0)6f f π⎛⎫< ⎪⎝⎭.若()f x 在[0,)t 上没有最小值,则实数t 的取值范围是 A .50,12π⎛⎤⎥⎝⎦B .50,6π⎛⎤ ⎥⎝⎦C .511,1212ππ⎛⎤ ⎥⎝⎦D .511,612ππ⎛⎤⎥⎝⎦8.已知1x ,2x ,是函数()()()tan 0,0f x x ωϕωϕπ=-><<的两个零点,且12x x -的最小值为3π,若将函数()f x 的图象向左平移12π个单位长度后得到的图象关于原点对称,则ϕ的最大值为( ) A .34πB .4π C .78π D .8π二、多选题9.设扇形的圆心角为α,半径为r ,弧长为l ,面积为S ,周长为L ,则( ) A .若α,r 确定,则L ,S 唯一确定 B .若α,l 确定,则L ,S 唯一确定 C .若S ,L 确定,则α,r 唯一确定 D .若S ,l 确定,则α,r 唯一确定10.已知函数()sin f x x x =,则下列说法中正确的有( ) A .函数()f x 的值域为[1,2] B .直线是6x π=函数()f x 图象的一条对称轴C .函数()f x 的最小正周期为πD .函数()f x 在910109ππ⎡⎤⎢⎥⎣⎦,上是增函数11.已知函数()sin()0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,下列说法正确的是( )A .函数()y f x =的周期为π2B .函数()y f x =的图象关于直线19π12x =对称 C .函数()y f x =在区间2ππ,36⎡⎤--⎢⎥⎣⎦上单调递增D .函数()1y f x =-在区间[]0,2π上有4个零点2112.若函数()()2ln 1=-+f x x ax 在区间[)2,+∞上单调递增,则下列实数可以作为a 值的是( )A .4B .52C .2D .0三、填空题13.若1cos 35πα⎛⎫+= ⎪,0,2πα⎛⎫∈ ⎪,则sin α=__________________.14.已知02πα<<,1cos 63α⎛⎫+= ⎪⎝⎭,则sin 23α⎛⎫+= ⎪⎝⎭______.15.若函数()()sin 0f x x ωω=>在()0π,上单调递增,则ω的取值范围是________________.16.已知()sin()4f x x ωϕ=+-(0,02ωϕ><<)为奇函数,且()y f x =的图像与x 轴的两个相邻交点之间的距离为π,设矩形区域Ω是由直线2x π=±和1y =±所围成的平面图形,区域D 是由函数()2y f x π=+、2x π=±及1y =-所围成的平面图形,向区域Ω内随机地抛掷一粒豆子,则该豆子落在区域D 的概率是___________.2π四、解答题 17.已知tan α=2. (1)求sin 3cos sin cos αααα-+的值;(2)求2sin 2α-sin αcos α+cos 2α的值.18.已知,(0,)αβπ∈,且11tan(),tan 27αββ-==-,求2αβ-的值.【详解】tan tan[(α=)tan[(β-=11tan 1,0,tan ,3472ππααββ=<∴<<=-∴<故答案为:34π-. 19.已知函数2()cos 3sin cos (0,)ωωωω=++>∈R f x x x x m m .再从条件∵、条件∵、条件∵这三个条件中选择能确定函数()f x 的解析式的两个作为已知. (1)求()f x 的解析式及最小值;(2)若函数()f x 在区间[]0,(0)t t >上有且仅有1个零点,求t 的取值范围. 条件∵:函数()f x 的最小正周期为π;条件∵:函数()f x 的图象经过点10,2⎛⎫⎪⎝⎭;条件∵:函数()f x 的最大值为32.注:如果选择的条件不符合要求,得0分;如果选择多组符合要求的条件分别解答,按第一组解答计分.112cos222ωω+++x x m π1sin(2)62ω=+++x m .选择∵∵: 因为2ππ2T ω==,所以1ω=. 又因为1(0)12f m =+=,所以12m =-.所以π()sin(2)6f x x =+.当ππ22π62x k +=-,Z k ∈,即ππ3x k =-,Z k ∈时,()1f x =-. 所以函数()f x 的最小值为1-. 选择∵∵: 因为2ππ2T ω==,所以1ω=. 又因为函数()f x 的最大值为3322m +=, 所以0m =.所以π1()sin(2)62f x x =++.当ππ22π62x k +=-,Z k ∈,即ππ3x k =-,Z k ∈时, πsin(2)16x +=-,所以函数()f x 的最小值为11122. 选择∵∵:因为1(0)12f m =+=,所以12m =-,因为函数()f x 的最大值为3322m +=,所以0m =m 的取值不可能有两个,∴无法求出解析式,舍去.(2) 选择∵∵: 令πsin(2)06x +=, 则π2π6x k +=,Z k ∈, 所以ππ212k x =-,Z k ∈. 当1,2k =时,函数()f x 的零点为5π11π,1212, 由于函数()f x 在区间[0,]t 上有且仅有1个零点, 所以5π11π1212t ≤<. 所以t 的取值范围是5π11π,1212⎡⎫⎪⎢⎣⎭. 选择∵∵:令π1sin(2)062++=x ,则π722π+π66+=x k ,Z k ∈,或π1122π+π66+=x k ,Z k ∈, 所以ππ+2=x k ,Z k ∈,或5π+π6=x k ,Z k ∈. 当0k =时,函数()f x 的零点分别为π5π,26, 由于函数()f x 在区间[0,]t 上有且仅有1个零点, 所以π5π26t ≤<. 所以t 的取值范围是π5π,26⎡⎫⎪⎢⎣⎭.20.已知函数()ππ2cos 233f x x x ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,(∵)求π6f ⎛⎫⎪⎝⎭的值;(∵)求函数()f x 的最小正周期和单调递增区间.21.已知函数()f x 是R 上的奇函数,且()f x 的图象关于直线=1x 对称,当[0,1]x ∈时,()21x f x =-.(1)求()f x 的最小正周期,并用函数的周期性的定义证明;(2)当[1,2]∈x 时,求()f x 的解析式; (3)计算(0)(1)(2)(2018)f f f f ++++的值.【答案】(1)见解析 (2)2()21x f x -=- (3)1【分析】(1)结合已知条件,利用函数的对称关系即可求解; (2)利用函数的对称关系即可求解;(3)利用周期性和()f x 在[0,2]上的解析式即可求解. (1)因为函数()f x 是R 上的奇函数,且()f x 的图象关于直线=1x 对称, 所以()(2)()f x f x f x =-=--,不妨令t x =-,则(2)()f t f t +=-,即()(2)f t f t =-+, 从而(2)(22)(4)f t f t f t +=-++=-+,即()(4)f t f t =+, 即()f x 的一个周期为4,因为当[0,1]x ∈时,()21x f x =-,即()f x 在[0,1]上的单调递增, 所以由奇函数性质可知,()f x 在[]1,1-上单调递增, 又由对称性可知,()f x 在[1,3]单调递减, 从而()f x 的最小正周期为4. (2)当[1,2]∈x 时,则2[0,1]x -∈,因为当[0,1]x ∈时,()21x f x =-,且()f x 的图象关于直线=1x 对称, 所以当[1,2]∈x 时,2()(2)21x f x f x -=-=-. (3)由(1)(2)和()f x 的周期性可知,(0)=0f ,(1)1=f ,(2)0f =,(3)(1)(1)1f f f =-=-=-, 因为()f x 的最小正周期为4, 所以(0)(1)(2)(2018)505[(0)(1)(2)(3)](3)1f f f f f f f f f ++++=+++-=.22.如图,某自来水公司要在公路两侧安装排水管,公路为东西方向,在路北侧沿直线1l 排,在路南侧沿直线2l 排,现要在矩形区域ABCD 内沿直线将1l 与2l 接通.已知60AB m =,80BC m =,公路两侧排水管费用为每米1万元,穿过公路的EF 部分的排水管费用为每米2万元,设EF与AB所成的小于90︒的角为α.(∵)求矩形区域ABCD内的排水管费用W关于α的函数关系;(∵)求排水管的最小费用及相应的角α.cosαcos cos cosαααα-⎛⎫sin24f x,()f x为增函数;。

高一数学人教版必修一第一章《集合与函数概念》综合测试题(含答案)

高一数学人教版必修一第一章《集合与函数概念》综合测试题(含答案)

第一章集合与函数概念综合测试题、选择题1函数讨二2x -1的定义域是()2•已知集合 A 到B 的映射f:x T y=2x+1,那么集合A 中元素2在B 中对应的元素是( )A • 2B • 6C • 5D • 83•设集合 A 二{x|1 ::: x ::: 2}, B 二{x|x ::: a}.若 A B,则 a 的范围是()A • a_2B • a < 1C • a - 1D . a 乞 24•函数y =(k • 2)x • 1在实数集上是减函数,则 k 的范围是()A • k l :—2B • k z ;—2C • k ^ -2D • k-25•全集 U ={ 0,1,3,5,6,8},集合 A = { 1 , 5, 8 }, B ={2},则(6 A ) B =()A (2,;)B.[];)2 2—1 C.(「2) -1D.( =,2]B • { 0,3,6} {2,1,5,8} D • {0,2,3,6}F列各组函数中,表示同一函数的是(0 x y =x ,y =A •xB y = .x -1 . x 1, y = . x2 -1—2Dy=|x|,y = (、x)F列函数是奇函数的是(1A • y =x2B • y =2x2 3 (一“)若奇函数f x在1,3】上为增函数,且有最小值0,则它在1-3,-1】上A •是减函数,有最小值C •是减函数,有最大值设集合M = X - 2乞x -2 :f,B •是增函数,D •是增函数,N 二:y0 -有最小值有最大值y乞2:,给出下列四个图形,其中能表示集合M为定义域,N为值域的函数关系的是()x2 x 010. 已知f (x) X=0,则 f [ f (-3)]等于( )0 x cO2A . 0 B. n C. n D. 9二. 填空题r X +5(XA 1) nt211. 已知f(x—1)=x2,贝y f(x)= .14.已知f (x) = 2 ,则2x +1(x 兰1)f[f(1)> _______________________ .212. 函数y = x -6x的减区间是_____________ .13•设偶函数f (x)的定义域为R,当x・[0, •::)时f(x)是增函数,则f (2), f (二),f (-3)的大小关系是_________________________三、解答题14.设U =R, A x _1[ B J x 0 :: x :: 5?,求C u 切B 和A C U B .15. 求下列函数的定义域(4)f(X)x —22(2) f(x)|x| -216.集合A = 'xx2• 4x = 0; B -汉x2• 2 a T x • a2-1 = 0若A B = B求a 的取值范围。

最新新人教版高一数学必修一综合测试含答案解析

最新新人教版高一数学必修一综合测试含答案解析

高一数学必修一综合测试一、单项选择 (每题5分 共12小题 60分)1.函数210)2()5(--+-=x x y ( )A .}2,5|{≠≠x x xB .}2|{>x xC .}5|{>x xD .}552|{><<x x x 或2.设函数y =lg(x 2-5x )的定义域为M ,函数y =lg(x -5)+lg x 的定义域为N ,则( ) A .M ∪N=R B .M=NC .M ⊇ND .M ⊆N3( )4.函数2422-+=x x y 的单调递减区间是( ) A .]6,(--∞B .),6[+∞-C .]1,(--∞D .),1[+∞-5. 函数2232y x x =--的定义域为( ) A 、(],2-∞ B 、(],1-∞ C 、11,,222⎛⎫⎛⎤-∞ ⎪ ⎥⎝⎭⎝⎦U D 、11,,222⎛⎫⎛⎫-∞ ⎪ ⎪⎝⎭⎝⎭U 6. 已知(1)f x +的定义域为[2,3]-,则(21)f x -定义域是 ( )A.5[0,]2B.[1,4]-C.[5,5]-D.[3,7]-7. 函数()f x 定义域为R +,对任意,x y R +∈都有()()()f xy f x f y =+又(8)3f =,则f =A.12B.1C.12- 8.若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是( )A .)2()1()23(f f f <-<- B .)2()23()1(f f f <-<-C .)23()1()2(-<-<f f fD .)1()23()2(-<-<f f f9.下列四个命题:(1)函数f x ()在0x >时是增函数,0x <也是增函数,所以)(x f 是增函数;(2)若函数2()2f x ax bx =++与x 轴没有交点,则280b a -<且0a >;(3) 223y x x =--的递增区间为[)1,+∞;(4)1y x =+和y =表示相等函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学必修一综合测试
一、单项选择 (每题5分 共12小题 60分)
1.函数21
0)2()5(--+-=x x y ( )
A .}2,5|{≠≠x x x
B .}2|{>x x
C .}5|{>x x
D .}552|{><<x x x 或
2.设函数y =lg(x 2-5x )的定义域为M ,函数y =lg(x -5)+lg x 的定义域为N ,则 ( )
A .M ∪N=R
B .M=N
C .M ⊇N
D .M ⊆N
3.当a ≠0时,函数y ax b =+和y b ax =的图象只可能是 ( )
4.函数2422-+=x x y 的单调递减区间是 ( )
A .]6,(--∞
B .),6[+∞-
C .]1,(--∞
D .),1[+∞-
5. 函数2232y x x =--的定义域为( )
A 、(],2-∞
B 、(],1-∞
C 、11,,222⎛⎫⎛⎤-∞ ⎪ ⎥⎝⎭⎝⎦
D 、11,,222⎛⎫⎛⎫
-∞ ⎪ ⎪⎝⎭⎝⎭
6. 已知(1)f x +的定义域为[2,3]-,则(21)f x -定义域是 ( )
A.5
[0,]2 B.[1,4]-
C.[5,5]-
D.[3,7]-
7. 函数()f x 定义域为R +,对任意,x y R +∈都有()()()f xy f x f y =+
又(8)3f =,则f =
A.1
2 B.1 C.1
2-
8.若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是( )
A .)2()1()23(f f f <-<-
B .)2()23
()1(f f f <-<-
C .)23()1()2(-<-<f f f
D .)1()23
()2(-<-<f f f
9.下列四个命题:(1)函数f x ()在0x >时是增函数,0x <也是增函数,所以)(x f 是增函数;(2)若函数2()2f x ax bx =++与x 轴没有交点,则280b a -<且0a >;(3) 223y x x =--的递增区间为[)1,+∞;(4)
1y x =+和y =表示相等函数。

正确的个数( )
A .0
B .1
C .2
D .3
10.三个数60.70.70.76log 6,
,的大小关系为 ( ) A . 60.70.70.7log 66<< B . 60.70.70.76log 6<<
C .0.760.7log 660.7<<
D . 60.70.7log 60.76<<
11.设()833-+=x x f x ,用二分法求方程()2,10833∈=-+x x x 在内近似解的过程中得
()()(),025.1,05.1,01<><f f f 则方程的根落在区间( )
A .(1,1.25)
B .(1.25,1.5)
C .(1.5,2)
D .不能确定
12.直线3y =与函数26y x x =-的图 象的交点个数为( )
A .4个
B .3个
C .2个
D .1个
二、填空题 (每小题5分 共20分)
13.已知221)(x
x x f +=,那么)41()4()31()3()21()2()1(f f f f f f f ++++++=____ 14.方程33131=++-x
x
的解是____________。

15.函数2223()(1)m
m f x m m x --=--是幂函数,且在(0,)x ∈+∞上是减函数,则实数m =_____. 16.将函数x y 2=的图象向左平移一个单位,得到图象C 1,再将C 1向上平移一个单位得到图象C 2,作出
C 2关于直线y =x 对称的图象C 3,则C 3的解析式为 .
三、解答题 (第17题10分 第18、19、20、21、22题每题12分 )
17.设,αβ是方程24420,()x mx m x R -++=∈的两实根,当m 为何值时, 22
αβ+有最小值?求出这个最小值.
18.已知函数2()1f x x x =++,
(1)求(2)f x 的解析式;
(2)求(())f f x 的解析式
(3)对任意x R ∈,求证11()()22f x f x -=-
-恒成立.
19.已知函数()y f x =的定义域为R ,且对任意,a b R ∈,都有()()()f a b f a f b +=+,且当0x >时,()0f x <恒成立,
证明:(1)函数()y f x =是R 上的减函数;
(2)函数()y f x =是奇函数。

20.已知函数()f x 的定义域是),0(+∞,且满足()()()f xy f x f y =+,1()12
f =,
如果对于0x y <<,都有()()f x f y >,
(1)求(1)f ;
(2)解不等式2)3()(-≥-+-x f x f 。

21.(12分)求函数2
3log (253)y x x =--的单调区间。

22.已知函数3)(2++=ax x x f ,当]2,2[-∈x 时,a x f ≥)(恒成立,求a 的最小值
参考答案
一、单项选择
1. D
2. C
3. A
4. A
5. D
6 A
7 A
8 D
9. 其中正确命题的个数是(A (1)反例1
()f x x =;(2)不一定0a >,开口向下也可;(3)画出图象
可知,递增区间有[]1,0-和[)1,+∞;(4)对应法则不同
10.D
11.B ()()1.5 1.250f f ⋅<
12.
二、填空题
13. 7
2 22
1)(x x x f +=,21
1
1(),()()11f f x f x x x =+=+
111
1
(1),(2)()1,(3)()1,(4)()12234f f f f f f f =+=+=+=
14. 1- 33333,113x x x
x x x ---⋅+===-+
15. 2 2211
230m m m m ⎧--=⎪⎨--
<⎪⎩,得2m =
16. 1)1(log 2--=x y
三、解答题
17.解:21616(2)0,21,m m m m ∆=-+≥≥≤-或
222222min 1
()21
211,()2
m m m αβαβαβαβ+=+-=--=-+=当时
18.解 (1)2(2)421f x x x =++;
(2)432(())2433f f x x x x x =++++;
(3)
2211111()()()1()()122222
f x x x x x -=-+-+=--+--+ 11()()22f x f x ∴-=--恒成立。

19.证明:(1)设12x x >,则120x x ->,而()()()f a b f a f b +=+
∴11221222()()()()()f x f x x x f x x f x f x =-+=-+<
∴函数()y f x =是R 上的减函数;
(2)由()()()f a b f a f b +=+得()()()f x x f x f x -=+-
即()()(0)f x f x f +-=,而(0)0f =
∴()()f x f x -=-,即函数()y f x =是奇函数。

20.解:(1)令1x y ==,则(1)(1)(1),(1)0f f f f =+=
(2)1
()(3)2()2
f x f x f -+-≥- 11()()(3)()0(1)22
f x f f x f f -++-+≥= 3()()(1)22x x f f f --+≥,3()(1)22
x x f f --⋅≥ 则0
230,1023122x x x x x ⎧->⎪⎪-⎪>-≤<⎨⎪-⎪-⋅≤⎪⎩。

21.解:由22530x x -->得132x x <->或,
令u=2253x x --,因为 u=25
4912()(,)482
x ---∞-在上单调递减,在(3,)+∞上单调递增 因为3log y u =为减函数,所以函数23log (253)y x x =--的单调递增区间为(3,)+∞,单调递减区间为
1(,)2
-∞-。

22.解.设)(x f 在]2,2[-上的最小值为)(a g ,则满足a a g ≥)(的a 的最小值即为所求.配方得
)2|(|4
3)2()(2
2≤-++=x a a x x f
(1)当22
2≤-≤-a 时,43)(2a a g -=,由a a ≥-432解得,26≤≤-a 24≤≤-∴a ; (2)当22
≥-
a 时,27)2()(a f a g +==由a a ≥+27得7-≥a 47-≤≤-∴a (3) 当22-≤-a 时,,27)2()(a f a g -=-=由a a ≥-27得37≤a ,这与4≥a 矛盾,此种情形不存在. 综上讨论,得27≤≤-a 7min -=∴a。

相关文档
最新文档