分数的四则运算和简便计算
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分数的四则运算—计算题
专题复习
一、分数四则运算的运算法则和运算顺序
运算法则 是: 1、加减:同分母分数相加减,分母不变,分子相加减:
异分母分数相加减,先通分,再分母不变,分子相加减。
2、乘法:先约分,分子乘分子作为积的分子,分母乘分母作为积的分母
3、除法:除以一个数就等于乘这个数的倒数
运算顺序 是:混合计算,先算乘除法再算加减;如果有括号,先算括号里面的(先算小括号,再算中括号)同一级运算,一般从左往右计算。如果符合运算定律,可以进行简算。练习:
3
1 1 9
2
1 1 7 1、4- ( 5 +
3 )×
8
2
、 1
3
5
13
10
3、
1
1 1 ÷ 1
4、 1
1 8
7 5、12
7 2 9 2
4
6 12
4 9 9
9 3 10
6、
5
1 9
2 7
、
1
5 4 8 8
、 (2-1
)÷
1
4
3 5 5
8
9 9
5 8
40
二、分数四则运算的简便运算
引言:分数乘法简便运算所涉及的公式定律和整数乘法的简便运算是一样的,基本上有以下三个:
①乘法交换律:________________________
②乘法结合律:________________________
③乘法分配律:________________________
做题时,我们要善于观察,仔细审题,发现数字与数字之间的关系,根据题意来选择适
当的公式或方法,进行简便运算。
分数简便运算常见题型
第一种:连乘——乘法交换律的应用
例题: 1)5
4142)3153)1336 1375614826
涉及定律:乘法交换律 a b c a c b
基本方法:将分数相乘的因数互相交换,先行运算。第二种:乘法分配律的应用
例题: 1)(84
) 272)(
11
) 43)(
31
) 16 92710442
涉及定律:乘法分配律(a b) c ac bc
基本方法:将括号中相加减的两项分别与括号外的分数相乘,符号保持不变。第三种:乘法分配律的逆运算
例题: 1)1
1112)
5
5513)
4
717 21532699655
涉及定律:乘法分配律逆向定律 a b a c a(b c)
基本方法:提取两个乘式中共有的因数,将剩余的因数用加减相连,同时添加括号,先行运算。
第四种:添加因数“ 1”
例题:1)5
552)2723)1423
17
23 23 79791693131
涉及定律:乘法分配律逆向运算
基本方法:添加因数“ 1”,将其中一个数 n 转化为 1× n 的形式,将原式转化为两两之积相加减的形式,再提取公有因数,按乘法分配律逆向定律运算。
第五种:数字化加式或减式(拆项法)
例题: 1)1732)1873)67
31
161969
涉及定律:乘法分配律逆向运算
基本方法:将一个大数转化为两个小数相加或相减的形式,或将一个普通的数字转化为整式整百或 1 等与另一个较小的数相加减的形式,再按照乘法分配律逆向运算解题。
注意:将一个数转化成两数相加减的形式要求转化后的式子在运算完成后依然等于原数,其值不发生变化。例如:999 可化为 1000-1。其结果与原数字保持一致。
第六种:带分数化加式
例题: 1)25
7
42)13
2
33)7 12
5 1615113
涉及定律:乘法分配律
基本方法:将带分数转化为整数部分和分数部分相加的形式,再按照乘法分配律计算。第七种:乘法交换律与乘法分配律相结合
例题: 1)5
9472)116683)1391371371 1724172413191319138138
涉及定律:乘法交换律、乘法分配律逆向运算
基本方法:将各项的分子与分子(或分母与分母)互换,通过变换得出公有因数,按
照乘法分配律逆向运算进行计算。
注意:只有相乘的两组分数才能分子和分子互换,分母和分母互换。不能分子和分母
互换,也不能出现一组中的其中一个分子(或分母)和另一组乘式中的分子(或分母)进
行互换。
课堂练习
535193551
1、9×4+9×4
2、 17×16
3、(4+8)×32
4、4×8×16
5、1
+
2
×
3
6、44- 72×
5241
+
1 591012
7、× ×108、 6.8 ××3.2
52155
1244
11、 (
2
+
3
-
151
9、(5 )10、 46×
34) ×1212、× ×24
63452124