第4章数字频率合成器的设计讲解
基于FPGA平台的数字频率合成器的设计和实现
![基于FPGA平台的数字频率合成器的设计和实现](https://img.taocdn.com/s3/m/02b2737cb207e87101f69e3143323968011cf49c.png)
基于FPGA平台的数字频率合成器的设计和实现数字频率合成技术是一种实现高精度频率合成的方法,具有广泛应用价值。
在数字频率合成中,FPGA是一种非常重要的平台,能够实现高速、高精度、可编程的数字频率合成。
本文将介绍基于FPGA平台的数字频率合成器的设计和实现。
一、FPGA简介FPGA是一种可以编程的数字集成电路,具有非常灵活的可编程性。
FPGA中包含了大量的逻辑单元、存储单元和输入输出接口,可以通过编程实现各种数字电路功能。
FPGA具有高速、高度集成、低功耗等优点,在数字电路的设计和实现中得到了广泛应用。
二、数字频率合成的基本原理数字频率合成是通过一组特定的频率合成器和相位加法器来合成所需要的频率。
首先,将参考频率和相位加法器连接起来,形成一个频率合成器。
然后,将输出频率与参考频率的比例进行数字控制,并将输出频率的相位与参考频率相位进行加法计算,最终输出要求的频率。
三、数字频率合成器的设计1. 参考频率生成模块参考频率生成模块是数字频率合成器的核心模块。
参考频率一般使用晶振作为输入信号,并通过频率除和锁相环等技术来产生高精度的参考频率。
在FPGA中,可以使用PLL、DCM等IP核来实现参考频率的生成。
2. 分频器分频器是将参考频率转化为所需的输出频率的模块,一般使用计数器实现。
在FPGA中,可以使用计数器IP核或使用Verilog等HDL语言来实现。
3. 相位加法器相位加法器用于将输出频率的相位和参考频率的相位相加。
在FPGA中,可以使用LUT(查找表)实现相位加法器。
4. 控制单元控制单元用于控制数字频率合成器的各个模块,并实现与外部设备的接口。
在FPGA中,可以使用微处理器或FPGA内部逻辑来实现控制单元。
四、数字频率合成器的实现数字频率合成器的实现需要进行数字电路设计和FPGA编程。
一般来说,可以采用Verilog或VHDL等硬件描述语言进行FPGA编程,实现各个模块的功能。
数字电路设计过程中,需要考虑到功耗、面积和时序等问题,同时需要进行仿真和验证。
数字频率合成器设计实例
![数字频率合成器设计实例](https://img.taocdn.com/s3/m/60f60f7130126edb6f1aff00bed5b9f3f80f7210.png)
数字频率合成器设计实例数字频率合成器设计实例数字频率合成器(Digital Frequency Synthesizer)是一种能够产生不同频率信号的设备。
它通过使用数字技术和数学算法来合成所需的频率,具有高精度和稳定性。
在本文中,我们将逐步介绍数字频率合成器的设计过程。
1. 设定所需频率范围:首先,确定所需合成的频率范围。
这取决于具体应用,例如音频处理、无线通信等。
假设我们的频率范围为1Hz到10kHz。
2. 确定采样率:采样率是指每秒钟对信号进行采样的次数。
根据香农抽样定理,采样率应大于信号最高频率的两倍。
在我们的例子中,最高频率为10kHz,因此选择采样率为至少20kHz。
3. 选择数字信号处理器(DSP):为了实现数字频率合成器,我们需要选择一种适合的DSP芯片。
DSP芯片能够高效地执行数字信号处理任务,例如信号生成和滤波。
选择一款性能强大且易于编程的DSP 芯片,以满足所需的合成要求。
4. 设计频率控制模块:频率控制模块是数字频率合成器的核心部分,用于生成所需频率的数字信号。
它通常由相位锁定环(PLL)和数字控制振荡器(NCO)组成。
a. 相位锁定环(PLL):PLL是一种控制系统,通过比较输入信号的相位和参考信号的相位差异来产生所需频率的输出信号。
通过调整参考信号的频率和相位,PLL可以实现精确的频率合成。
b. 数字控制振荡器(NCO):NCO是一种可编程振荡器,能够生成具有可变频率的数字信号。
通过调整输入的控制参数,NCO能够实现不同频率的信号合成。
5. 编程实现:根据DSP芯片的编程手册和软件开发工具,编写相应的代码实现频率控制模块。
通过配置PLL和NCO的参数,以及设置合适的参考信号,实现所需频率的合成。
6. 验证和调试:使用示波器或频谱分析仪等测试工具,验证合成的频率是否符合要求。
如果发现频率偏差或其他问题,可以通过调整PLL和NCO的参数来进行调试和校准。
7. 优化和改进:根据实际应用需求和反馈,对数字频率合成器进行优化和改进。
直接数字频率合成器DDS的设计
![直接数字频率合成器DDS的设计](https://img.taocdn.com/s3/m/3e96965b312b3169a451a440.png)
直接数字频率合成器DDS 的设计DDS 的基本原理DDS 技术是一种把一系列数字量形式的信号通过DAC 转换成模拟量形式的信号的合成技术,它是将输出波形的一个完整的周期、幅度值都顺序地存放在波形存储器中,通过控制相位增量产生频率、相位可控制的波形。
DDS 电路一般包括基准时钟、相位增量寄存器、相位累加器、波形存储器、D/A 转换器和低通滤波器(LPF )等模块,如图1所示。
相位增量寄存器寄存频率控制数据,相位累加器完成相位累加的功能,波形存储器存储波形数据的单周期幅值数据,D/A 转换器将数字量形式的波形幅值数据转化为所要求合成频率的模拟量形式信号,低通滤波器滤除谐波分量。
整个系统在统一的时钟下工作,从而保证所合成信号的精确。
每来一个时钟脉冲,相位增量寄存器频率控制数据与累加寄存器的累加相位数据相加,把相加后的结果送至累加寄存器的数据输出端。
这样,相位累加器在参考时钟的作用下,进行线性相位累加,当相位累加器累加满量时就会产生一次溢出,完成一个周期性的动作,这个周期就是DDS 合成信号的一个频率周期,累加器的溢出频率就是DDS 输出的信号频率。
相位累加器输出的数据的高位地址作为波形存储器的地址,从而进行相位到幅值的转换,即可在给定的时间上确定输出的波形幅值。
图1 DDS 原理图波形存储器产生的所需波形的幅值的数字数据通过D/A 转换器转换成模拟信号,经过低通滤波器滤除不需要的分量以便输出频谱纯净的所需信号。
信号发生器的输出频率fo 可表示为:Ns f M f M f 2..0=∆= ( 1)式中s f 为系统时钟,f ∆为系统分辨率,N 为相位累加器位数,M 为相位累加器的增量。
参数确定及误差分析首先确定系统的分辨率f ∆,最高频率max f ,及最高频率max f 下的最少采样点数min N 根据需要产生的最高频率max f 以及该频率下的最少采样点数min N ,由公式m i n m a x.N f f s ≥ (2)确定系统时钟s f 的下限值。
频率合成器的设计与制作
![频率合成器的设计与制作](https://img.taocdn.com/s3/m/20c5ecb04b35eefdc8d333ac.png)
频率合成器的设计与制作这次课程设计的主要内容是频率合成器的设计与制作,首先了解什么是频率合成器。
它有哪几个部分组成,哪些参数对它的技术指标有影响,然后是选择元器件,搭试电路,排版安装,测试数据,分析结果。
随着通信、雷达、宇航和遥控遥测技术的不断发展,对频率源的频率稳定度、频谱纯度、频率范围和输出频率的个数提出越来越高的要求。
为了提高频率稳定度,经常采用晶体振荡器等方法来解决,但它不能满足频率个数多的要求,因此,目前大量采用频率合成技术。
频率合成器:通过对频率进行加、减、乘、除的运算,可从一个高稳定度和高准确度的标准频率源,产生大量的具有同一稳定度和准确度的不同频率。
频率合成的方法很多,大致可分为直接合成法和间接合成法俩种。
直接合成法是通过倍频器、分频器、混频器对频率进行加、减、乘、除运算,得到各种所需频率。
直接合成法的优点是频率转换时间短,并能产生任意小的频率增量。
但它也存在一些不可克服的缺点,用这种方法合成的频率范围将受到限制。
更重要的是由于大量的倍频,混频等电路,就要有不少滤波电路,使合成器的设备十分复杂,而且输出端的谐波、噪声及寄生频率难以抑制。
而间接合成法就是利用锁相环路的窄带跟踪特性来得到不同的频率。
频率合成器是从一个或多个参考频率中产生多种频率的器件。
它在信息通信方面得到了广泛的应用,并有新的发展。
频率合成器的核心组成是锁相环路(PLL)。
锁相的意义是一种相位负反馈控制系统,它利用相位的稳定来实现频率锁定,即“锁相”。
控制电路是利用反馈原理实现对自身的调节与控制。
AGC、AFC、PLL 分别对交流信号的三个参数振幅、频率、相位进行自动控制。
能够完成两个电信号相位同步的自动控制闭环系统叫做锁相环,简称PLL。
实现锁相的方法称为“锁相技术”。
锁相环路广泛应用于广播通信、频率合成、自动控制及时钟同步等技术领域。
这里首先对锁相环路作一个简单介绍。
9.1 锁相环路的基本组成及工作原理9.1.1 锁相环路的基本组成锁相环路的基本组成框图如图9.1.1所示。
频率合成器的设计
![频率合成器的设计](https://img.taocdn.com/s3/m/56d271240a4e767f5acfa1c7aa00b52acfc79c83.png)
频率合成器的设计频率合成器的设计1 前言频率合成器是现代无线通信设备中一个重要的组成部分,直接影响着无线通信设备的性能。
频率合成技术历经了早期的直接合成技术(DS)和锁相合成技术(PLL),发展到如今的直接数字合成技术(D DS)。
直接数字合成技术具有分辨率高,转换速度快,相位噪声低等优点,在无线通信中发挥着越来越重要的作用。
随着大规模集成电路的发展,利用锁相环频率合成技术研制出了很多频率合成集成电路。
频率合成器是电子系统的心脏,是决定电子系统性能的关键设备,随着通信、数字电视、卫星定位、航空航天、雷达和电子对抗等技术的发展,对频率合成器提出了越来越高的要求。
频率合成技术是将一个或多个高稳定、高精确度的标准频率经过一定变换,产生同样高稳定度和精确度的大量离散频率的技术。
频率合成理论自20世纪30年代提出以来,已取得了迅速的发展,逐渐形成了目前的4种技术:直接频率合成技术、锁相频率合成技术、直接数字式频率合成技术和混合式频率合成技术。
本文是以如何设计一个锁相环频率合成器为重点,对频率合成器做了一下概述,主要介绍了锁相环这一部分,同时也对锁相环频率合成器的设计及调试等方面进行了阐述。
2总体方案设计实现频率合成的方法有多种,可用直接合成,锁相环式,而锁相环式的实现方法又有多种,例如可变晶振,也可变分频系数M,还可以用单片机来实现等等。
下面列出了几种用锁相法实现频率合成的方案。
2.1方案一SHAPE \* MERGEFORMAT图2.1 方案一原理框图如图2.1所示,在VCO的输出端和鉴相器的输入端之间的反馈回路中加入了一个÷N的可变分频器。
高稳定度的参考振荡器信号f R经R 次分频后,得到频率为f r的参考脉冲信号。
同时,压控振荡器的输出经N次分频后,得到频率为f d的脉冲信号,两个脉冲信号在鉴频鉴相器进行频率或相位比较。
当环路处于锁定状态时,输出信号频率:fo= N*f d。
只要改变分频比N,即可实现输出不同频率的fo,从而实现由fr合成fo的目的。
频率合成器PPT课件
![频率合成器PPT课件](https://img.taocdn.com/s3/m/0b31a5045ef7ba0d4b733b88.png)
调频控制FM、调相控制PM和调幅控制AM),即可方便灵活地实现调频、调相
和调幅功能,产生FSK、 PSK、 ASK和MSK等信号。另外,只要在DDS的波形
存储器存放不同波形数据,就可以实现各种波形输出,如三角波、 锯齿波和
矩形波甚至任意的波形。当DDS的波形存储器分别存放正弦和余弦函数表时,
可得到正交的两路输出。
低通
滤波器
f0
fs
(a)
地址计算单 元 (相 位 累 加 器 )
相位增量 X (频 率 数 据 )
N位 Y 全加器
锁存 电路
fCLK 标准时钟
波 形 存 储 器 D/A 转 换 器 数据
地址
LPF
fo ut
(b)
图 10-3 DDS基本结构
第11页/共102页
•
相位累加器由N位加法器与N位累加寄存器级联构成。每来
每个元件都有关。降低相位噪声是频率合成器的主要设计任务。下面将详细讨论。
第1页/共102页
•
4.
•
控制码对应关系: 指定控制码与输出频率的对应关系。
•
电源:
•
•
1.
•
直接频率合成器是早期的频率合成器。基准信号通过脉冲
形成电路产生谐波丰富的窄脉冲,经过混频、 分频、 倍频、 滤波等进行频
率的变换和组合,产生大量离散频率, 最后取出所需频率。
它在相对带宽、 频率转换时间、 相位连续性、 正交输出、 高分辨率以及集成化
等一系列性能指标方面已远远超过了传统的频率合成技术,是目前运用最广泛的频
率合成方法。
•
DDS以有别于其他频率合成方法的优越性能和特点成为现代频率合
成技术中的佼佼者。具体体现在相对带宽宽,频率转换时间短,频率分辨率高,输出
简易DDS频率合成器设计
![简易DDS频率合成器设计](https://img.taocdn.com/s3/m/b4c0e92e482fb4daa58d4ba2.png)
目录第一章系统分析与设计方案 (1)1.1 DDS设计原理介绍 (1)1.2直接数字式频率合成器(DDS)的基本结构 (1)1.3基本DDS结构的常用参量计算 (1)1.3.1 DDS的输出频率f out 。
(1)1.3.2 DDS产生的相位。
(1)1.3.3 DDS的频率分辨率。
(1)1.3.4 DDS的频率输入字FW计算。
(2)1.4 DDS的工作原理 (2)1.4.1相位累加器与频率控制字FW (2)1.4.2 相位控制字PW (2)第二章软件设计 (3)2.1 Verilog HDL程序 (3)2.1.1 8位加法器程序代码 (3)2.1.2 16位加法器程序代码 (3)2.1.3 8位寄存器程序代码 (3)2.1.4 16位寄存器程序代码 (4)2.1.5 dds代码程序 (4)2.1.6 ROM的创建 (4)第三章实验仿真 (5)3.1 原理图 (5)3.1.1 ROM (5)3.1.2 八位加法器 (5)3.1.3 十六位加法器 (5)3.1.4 八位寄存器 (6)3.1.5 十六位寄存器 (6)3.2 仿真波形 (6)3.3 D/A转换电路 (9)3.3.1 DAC0832结构及工作原理 (9)3.3.2 D/A转换电路模块 (10)3.4 实验结果 (10)3.5 调试过程 (10)3.5.1对adder8、adder16、reg8、reg16的调试 (10)3.5.2. D/A转换电路的调试 (10)3.5.3.输出波形的调试 (10)第四章心得体会 (11)第五章参考文献 (12)第一章系统分析与设计方案1.1 DDS设计原理介绍DDS即Direct Digital Synthesizer数字频率合成器,是一种基于全数字技术,从相位概念出发直接合成所需波形的一种频率合成技术,是一种新型的数字频率合成技术。
具有相对带宽大、频率转换时间短、分辨力高、相位连续性好等优点,很容易实现频率、相位和幅度的数控调制,广泛应用于通讯领域。
数字频率合成器的技术方案
![数字频率合成器的技术方案](https://img.taocdn.com/s3/m/00cfe0b7162ded630b1c59eef8c75fbfc77d9434.png)
数字频率合成器的技术方案在这个数字化的时代,频率合成技术已成为电子系统中的关键组成部分。
今天,我就来和大家分享一下关于数字频率合成器的技术方案,希望能为各位提供一个全新的视角。
一、方案背景频率合成器是一种能够产生多种频率信号的设备,广泛应用于通信、雷达、导航、仪器测量等领域。
随着数字信号处理技术的发展,数字频率合成器逐渐成为主流。
相比模拟频率合成器,数字频率合成器具有更高的频率精度、更低的相位噪声和更宽的频率范围。
二、技术方案1.基本原理数字频率合成器基于数字信号处理技术,通过数字信号处理器(DSP)对数字信号进行运算和处理,所需的频率信号。
其主要原理如下:(1)采用相位累加器(PhaseAccumulator)对输入的参考时钟信号进行累加,得到一个线性增长的相位值。
(2)将相位值映射到正弦波查找表(SinLookupTable),得到对应的正弦波采样值。
(3)通过数字到模拟转换器(DAC)将数字信号转换为模拟信号,再经过低通滤波器(LPF)滤波,得到平滑的正弦波信号。
2.关键技术(1)相位累加器相位累加器是数字频率合成器的核心部件,其性能直接影响到合成器的频率精度和相位噪声。
我们采用高性能的FPGA器件实现相位累加器,确保高速运算和低功耗。
(2)正弦波查找表正弦波查找表用于存储正弦波采样值,其大小和精度决定了合成器的频率分辨率和幅度精度。
我们采用16位精度,存储1024个采样点,以满足高精度需求。
(3)数字到模拟转换器(DAC)DAC将数字信号转换为模拟信号,其性能影响到合成器的输出信号质量。
我们选用高性能的DAC芯片,具有14位精度和500MHz的转换速率。
(4)低通滤波器(LPF)低通滤波器用于滤除DAC输出信号中的高频噪声,保证输出信号的平滑。
我们设计了一个4阶椭圆函数低通滤波器,具有-60dBc的带外抑制能力和50MHz的截止频率。
3.系统架构数字频率合成器系统架构如下:(1)输入接口:接收外部参考时钟信号和频率控制信号。
EDA课程设计直接数字频率合成器(DDS)
![EDA课程设计直接数字频率合成器(DDS)](https://img.taocdn.com/s3/m/0d7aaf7da22d7375a417866fb84ae45c3b35c2f6.png)
,a click to unlimited possibilities
汇报人:
目录
01 添 加 目 录 项 标 题
02 D D S 的 原 理
03 D D S 的 硬 件 实 现
04 D D S 的 应 用
05 D D S 的 软 件 仿 真 与实现
06 D D S 的 优 化 与 改 进
医疗领域:用于 医疗设备的信号 处理和传输
军事领域:用于 雷达、通信、电 子对抗等设备的 信号处理
工业领域:用于 工业自动化设备 的信号处理和控 制
Part Five
DDS的软件仿真与 实现
软件仿真工具介绍
MATL AB:强大的数学计算和图形处理 能力,适合进行信号处理和仿真
Simulink:MATL AB的扩展工具,可以 进行系统级仿真,支持DDS模块
DDS的动态范围扩展
动态范围扩展原理:通过调整DDS的输出电压和频率,实现动态范围的 扩展 动态范围扩展方法:采用数字信号处理技术,如滤波、放大、压缩等
动态范围扩展效果:提高DDS的输出信号质量,降低噪声和失真
动态范围扩展应用:在通信、雷达、电子对抗等领域具有广泛应用
THANKS
汇报人:
DDS的频率分辨率优化
频率分辨率定义:衡 量DDS性能的重要参 数,表示输出信号的 频率精度和稳定度。
优化方法1:采用高 精度的参考时钟源, 提高时钟频率,减小 DDS的相位截断误差。
优化方法2:增加相 位累加器的位数,扩 大频率调制的范围, 提高频率分辨率。
优化方法3:采用数 字滤波技术,对DDS 输出信号进行滤波处 理,减小杂散分量, 提高频率分辨率。
实际应用:通过对DDS的相位噪声 进行降低,可以提高信号的纯度, 减小干扰和失真,从而提高通信、 雷达、电子对抗等系统的性能。
FPGA技术-直接数字频率合成器
![FPGA技术-直接数字频率合成器](https://img.taocdn.com/s3/m/dad5b950da38376bae1fae57.png)
COMPONENT REG32B PORT ( LOAD : IN STD_LOGIC; DIN : IN STD_LOGIC_VECTOR(31 DOWNTO 0); DOUT : OUT STD_LOGIC_VECTOR(31 DOWNTO 0) );
END COMPONENT; COMPONENT REG10B
接下页
PORT ( LOAD : IN STD_LOGIC;
DIN : IN STD_LOGIC_VECTOR(9 DOWNTO 0);
DOUT : OUT STD_LOGIC_VECTOR(9 DOWNTO 0) );
END COMPONENT;
COMPONENT ADDER32B
PORT ( A : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
B : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
S : OUT STD_LOGIC_VECTOR(31 DOWNTO 0) );
END COMPONENT;
COMPONENT SIN_ROM
PORT ( address : IN STD_LOGIC_VECTOR(9 DOWNTO 0);
inclock
: IN STD_LOGIC ;
接下页
q
: OUT STD_LOGIC_VECTOR(9 DOWNTO 0) );
END COMPONENT;
SIGNAL F32B,D32B,DIN32B : STD_LOGIC_VECTOR(31 DOWNTO 0);
为了对进行数字量化,把切割成2N份,由此每个clk周期的 相 为整数
数字频率合成器原理
![数字频率合成器原理](https://img.taocdn.com/s3/m/f38e8cb8d5d8d15abe23482fb4daa58da0111c95.png)
数字频率合成器原理
数字频率合成器(DigitalFrequencySynthesizer)是一种电子设备,用于产生高精度和可调节的频率信号。
其原理基于数字信号处理技术和参考时钟信号。
数字频率合成器的工作原理如下:
1.参考时钟:数字频率合成器首先接收一个高精度稳定的参考时钟信号,通常是一个晶体振荡器提供的恒定频率信号。
这个参考时钟作为系统的时基。
2.相位积累器:参考时钟信号经过相位积累器,对其相位进行连续的积累。
相位积累器根据所需输出频率的要求,按照一定的步进值或相位增量来累加相位。
每个时钟周期,相位积累器的相位都会根据步进值逐渐增加,并形成一个随时间线性增长的相位。
3.相位加法器:相位积累器的输出与一个可编程的相位加法器进行相位叠加。
该相位加法器接收用户输入的频率控制字(FrequencyControlWord),用于设定所需频率的分辨率和范围。
在每个时钟周期中,相位加法器将相位积累器的输出相位与频率控制字相加,得到一个新的相位。
4.数字到模拟转换器(DAC):经过相位加法器得到的新相位被输
入到数字到模拟转换器中,将其转换为连续的模拟信号。
这个模拟信号的频率由相位积累器的输出相位和频率控制字来决定。
5.滤波器:通过一个低通滤波器对模拟信号进行滤波,去除高频噪声,得到所需频率信号的纯净输出。
滤波后的信号即为数字频率合成器的输出信号。
由于数字频率合成器采用数字信号处理技术,可以精确控制输出频率,并具有较低的抖动和相位噪声。
它在电子通信、射频信号生成、音频合成等领域有广泛应用。
直接数字频率合成技术及其设计方案
![直接数字频率合成技术及其设计方案](https://img.taocdn.com/s3/m/2cd3d645001ca300a6c30c22590102020640f25e.png)
直接数字频率合成技术及其设计方案随着数字信号处理技术的发展,数字频率合成技术也日益趋向于成熟。
在通信领域、音频处理以及控制领域等众多应用中,数字频率合成技术已经发挥了重要作用。
直接数字频率合成技术是其中的一种经典的技术方案,本文将详细阐述直接数字频率合成技术及其设计方案。
直接数字频率合成技术简介直接数字频率合成技术是指利用数字信号处理技术,通过一定的算法和硬件实现直接合成目标频率的数字信号。
这种技术可以说是最直接的一种频率合成技术,能够实现高速、高精度的频率合成,同时也可以实现复杂的波形合成。
实现直接数字频率合成技术的基础是数字信号处理技术。
数字信号处理技术是将模拟信号转换为数字信号并对其进行加工处理的一种技术手段。
其中,经典的暂态周期采样、离散傅里叶变换、数字滤波等都是数字信号处理技术的重要组成部分。
直接数字频率合成技术设计方案在实际应用中,直接数字频率合成技术的设计方案一般包括以下几个步骤:第一步:频率合成算法设计。
一般情况下,直接数字频率合成技术的频率合成算法主要分为幅度调制算法和相位调制算法两类。
其中,幅度调制算法主要是通过改变目标频率对应的幅度值来实现频率合成,而相位调制算法则是通过改变目标频率对应的相位值来实现频率合成。
具体使用哪种算法,需要根据具体合成需求来确定。
第二步:数字信号处理系统设计。
数字信号处理系统是直接数字频率合成技术的核心部件。
它主要包括模数转换器、数字信号处理器、传感器阵列等。
其中模数转换器用于将模拟信号转换为数字信号,数字信号处理器则负责对数字信号进行加工处理,传感器阵列则负责接收来自环境的信号信息。
第三步:数字信号处理系统调试及测试。
设计好数字信号处理系统后,需要对其进行调试和测试。
主要包括硬件连接、调试软件和设备、系统参数的设置以及系统的稳定性测试。
第四步:直接数字频率合成技术的应用。
经过以上的步骤,直接数字频率合成技术的设计方案就完成了。
接下来可以将其应用到具体的项目中,如通信领域、音频处理领域以及控制领域等。
频率合成器工作原理ppt课件
![频率合成器工作原理ppt课件](https://img.taocdn.com/s3/m/d98dd13e90c69ec3d5bb756e.png)
频率合成器的结构框图
产生高稳定度的中频fi和混频所需要的频率fi+f0'.频率 合成器内部有一个频率为fi的晶体振荡器,其频率稳 定性很高,再利用锁相环(PLL)合成出fi=f0',当 PLL处于锁定状态时f0'=f0,
4
石英晶体振荡器是利用石英晶体(二氧化硅的结晶体)的压电效应制成 的一种谐振器件,它的基本构成大致是:从一块石英晶体上按一定方位 角切下薄片(简称为晶片,它可以是正方形、矩形或圆形等),在它的 两个对应面上涂敷银层作为电极,在每个电极上各焊一根引线接到管脚 上,再加上封装外壳就构成了石英晶体谐振器,简称为石英晶体或晶体 、晶振。其产品一般用金属外壳封装,也有用玻璃壳、陶瓷或塑料封装 的。
(2)、鉴相
1、由参考通道输入的频率为fo的信号与LPF输出频率为fo’ 的正弦波在鉴相器中进行鉴相,当fo'=fo且两者同相(或正交, 取决于鉴相器)时,鉴相器的输额出电压为零,积分器的输 出电压也为零,VCO振荡频率不变,锁相环处于锁定状态。
8
2、当fo'<fo时,鉴相器的输出电压为负,经积分和放大施 加给VCO控制输入端,这会使vco输出频率上升,从而使 fo'趋近于fo,直到fo'=fo,此时环路达到新的平衡。
3、当fo'>fo时,鉴相器的输出电压为正,这会使vco输出 频率下降,也会使fo'趋近于fo,直到fo'=fo时环路重新锁 定在fo处。
9
thank you!!!
10
微弱信号处理
频率合成器工作原理
1
外差式锁定放大器结构框图
2
频率合成器的工作原理
频率合成器:利用一个或多个标准信号,通过 各种技术途径产生大量离散信号的设备
EDA设计III-直接数字频率合成器(DDS)设计
![EDA设计III-直接数字频率合成器(DDS)设计](https://img.taocdn.com/s3/m/6801340c79563c1ec5da71c4.png)
直接数字频率合成器(DDS)设计摘要直接数字合成(DDS)是一种数字式技术,产生的频率和相位可调输出信号引用到一个固定频率时钟源模块的精度数字数据技术。
本质上,参考时钟脉冲频率间隔分开一个DDS结构提出的二进制控制字。
控制字通常是24到48位长,使DDS的实施提供优越的输出频率调谐分辨率。
在日益竞争成本的今天,高性能,功能与作用相结合,DDS 产品正迅速地成为除传统的高速频率的模拟合成器解决办法之外的另一种选择。
高速,高性能,D/A变换器和DDS结构到单片机(通常是一个完整DDS的解决办法)上的综合使这项技术能够瞄准广泛应用,而且在许多场合提供一种替代基于模拟的PLL合成器。
在许多应用中,使用DDS的解决方案拥有灵活的特性,相较模拟等效电路锁相环频率合成器它有一些独特的优势。
DDS 优势:微赫兹的输出频率和相位调整功能,这些全部在数字控制下完成。
极其快的调相输出频率(或者相位),相位频率连续无畸变/使未达到的相关模拟还原时间异常。
DDS数字化实现了消除了手工系统调谐的需要操控和零部件老化和温度模拟合成器解决办法。
DDS实现了数字的控制接口,当它在处理器下控制时系统可被遥控的环境变得容易、精确且尽可能完善。
当它作为一个相位合成器时,DDS能够前所未有的匹配来控制I和Q的输出。
关键字直接频率合成器(DDS),任意的波形发生器,频率计SummaryDirect digital synthesis (DDS) is a technique for using digital data processing blocks as a means to generate a frequency- and phase-tunable output signal referenced to a fixed-frequency precision clock source. In essence, the reference clock frequency is “divided down” in a DDS architecture by the scaling factor set forth in a programmable binary tuning word. The tuning word is typically 24-48 bits long which enables a DDS implementation to provide superior output frequency tuning resolution.Today’s cost-competitive, high-performance, functionally-integrated, and small package-sized DDS products are fast becoming an alternative to traditional frequency-agile analog synthesizer solutions. The integration of a high-speed, high-performance, D/A converter and DDS architecture onto a single chip (forming what is commonly known as a Complete-DDS solution) enabled this technology to target a wider range of applications and provide, in many cases, an attractive alternative to analog-based PLL synthesizers. For many applications, the DDS solution holds some distinct advantages over the equivalent agile analog frequency synthesizer employing PLL circuitry.DDS advantages:Micro-Hertz tuning resolution of the output frequency and sub-degree phase tuning capability, all under complete digital control.Extremely fast “hopping speed” in tuning output frequency (or phase), phase-continuous frequency hops with no over/undershoot or analog-related loop settling time anomalies.The DDS digital architecture eliminates the need for the manual system tuning and tweaking associated with component aging and temperature drift in analog synthesizer solutions.The digital control interface of the DDS architecture facilitates an environment where systems can be remotely controlled, and minutely optimized, under processor control.When utilized as a quadrature synthesizer, DDS afford unparalleled matching and control of I and Q synthesized outputs.KeywordsDirect digital synthesis (DDS),The generator of arbitrary wave form, Frequency measure目录I、正文 (4)一、设计要求说明 (4)二、方案论证 (4)三、各模块设计原理 (6)1、相位累加器 (6)2、建立ROM宏单元 (7)3、频率控制与相位控制模块 (12)4、动态显示模块 (15)5、分频模块 (18)6、测频模块 (20)7、控制模块 (22)四、总装图 (23)五、编程下载 (24)II、结论 (25)III、参考文献 (25)IV、实验感想 (26)I、正文一、设计要求说明:本实验的内容是使用DDS的方法设计一个任意频率的正弦信号发生器,利用Quartus II完成设计、仿真等工作,并进行硬件测试。
数字频率合成器
![数字频率合成器](https://img.taocdn.com/s3/m/8881b613a300a6c30c229ffc.png)
2. 32位寄存器模块功能仿真
输入:load,din
输出:dout
分析:前两个上升沿,dinbu不变,dout值保持不变 从第2个上升沿后din值发生变化,所以从第3个上升沿开始,dout也发生变化 由以上分析可以看出 ,32位寄存器在上升沿时,将缓存数据送出, 未达到上升沿时维持原有数据不变,实现了寄存的功能。
仿真结果如下:
图1
Quartus中仿真结果
图2 matlab 中仿真结果
2、DDS调相功能仿真
保持调频功能功能仿真时仿真参数不变,将P设置为255, 根据pout=(p*2)/2^Y,得出输出信号相位偏移应为1/4个周期。
图3
Quartus中仿真结果
图4
matlab 中仿真结果
谢谢各位老师!
图1
10位加法器功能仿真
图2
10位寄存器功能仿真
通过分析发现, 10位加法器和10位寄存器分别实现了 两数相加和缓存数据的功能
DDS总体功能仿真
1、DDS调频功能仿真
设置仿真参数:将仿真结束时间设置为50ms,将输入时钟clk设置 成结束时间为50ms,时钟周期为500us, 时钟频率fc为2000HZ ,将P设置为0.
分类:
频率合成器
直接频率合成器
锁相频率合成器 锁相频率合成器
直接数字频率合成器 直接数字频率合成器
混合式频率合成器
直接数字频率合成器(DDS)
1.直接数字频率合成(DDS)技术是继直接频率合 成和间接频率合成之后,随着数字集成电路和微 电子技术的发展而迅速发展起来的第三代频率合 成技术。 2.它从相位概念出发,直接合成所需波形。 3. DDS 的 频率分辨率高
基于EDA的数字频率合成器的设计
锁相式数字频率合成器的设计实验报告解析甄选范文
![锁相式数字频率合成器的设计实验报告解析甄选范文](https://img.taocdn.com/s3/m/08f3560d551810a6f42486e1.png)
锁相式数字频率合成器的设计实验报告解析实验四锁相式数字频率合成器的设计一. 实验目的1. 掌握锁相环及频率合成器原理。
2. 利用数字锁相环CD4046设计制作频率合成器。
3. 利用有源滤波器将CD4046输出方波。
二. 实验仪器1. DSO-2902示波器/逻辑分析仪一台 2. 模拟信号源一台 3. 锁相环电路板一个 4. 微机一台5. 微机专用直流电源一台 三. 实验原理1.锁相频率合成器原理锁相频率合成器是基于锁相环路的同步原理,由一个高准度、高稳定度的参考晶体振荡器,合成出许多离散频率。
即将某一基准频率经过锁相环(PLL )的作用,产生需要的频率。
原理框图如图4-1所示。
图4-1 锁相环原理框图由图4-1可知,晶体振荡器的频率i f 经M 固定分频后得到步进参考频率REF f ,将REF f 信号作为鉴相器的基准与N 分频器的输出进行比较,鉴相器的输出d U 正比与两路输入信号是相位差,d U 经环路滤波器得到一个平均电压c U ,c U 控制压控振荡器(VCO )频率0f 的变化,使鉴相器的两路输入信号相位差不断减小,直到鉴相器的输出为零或为某一直流电平,这时称为锁定。
锁定后的频率为0//i REF f M f N f ==即()0/i REF f N M f N f ==⋅。
当预置分频数N 变化时,输出信号频率0f 随着发生变化。
锁相环中的滤波器时间常数决定了跟随输入信号的速度,同时也限制了锁相环的捕捉范围,详细原理见参考书。
2.CD4046锁相环工作原理数字锁相环CD4046由两个鉴相器、一个压控振荡器、一个源极跟随器和一个齐纳二极管组成。
鉴相器有两个共用输入端INPCA和INPCB,输入端INPCA既可以与大信号直接匹配,又可直接与小信号相接。
自偏置电路可在放大器的线性区调整小信号电压增益。
鉴相器Ⅰ为异或门,鉴相器Ⅱ为四组边沿触发器。
由于CD4046的两个鉴相器输入信号均为数字信号,所以称CD4046位数字锁相环。
数字频率合成实验报告(3篇)
![数字频率合成实验报告(3篇)](https://img.taocdn.com/s3/m/adb9ec1e30b765ce0508763231126edb6e1a765e.png)
第1篇一、实验目的1. 了解数字频率合成(DDS)的基本原理和实现方法;2. 掌握基于FPGA的DDS信号发生器的搭建与调试方法;3. 通过实验验证DDS信号发生器的性能,包括频率、相位、幅度等。
二、实验原理数字频率合成(Direct Digital Synthesis,简称DDS)是一种利用数字技术实现频率合成的技术。
它将数字信号处理与模拟信号合成相结合,具有频率转换速度快、频率分辨率高、输出信号质量好等优点。
本实验采用FPGA实现DDS信号发生器,主要原理如下:1. 波形存储器:存储预先计算好的正弦波、方波、三角波等波形数据;2. 频率控制字:通过调整频率控制字,改变输出信号的频率;3. 相位累加器:根据频率控制字,累加相位值,生成波形数据的地址;4. 波形选择器:根据用户选择,从波形存储器中读取相应的波形数据;5. DAC(数模转换器):将数字波形数据转换为模拟信号。
三、实验设备1. FPGA开发板(如Xilinx、Altera等);2. 数字信号发生器;3. 信号分析仪;4. 电源;5. 连接线。
四、实验步骤1. 波形存储器设计:根据所需的波形类型(正弦波、方波、三角波等),计算并存储相应波形的采样点数据;2. 频率控制字设计:根据所需的频率范围和步进值,设计频率控制字生成算法;3. 相位累加器设计:根据频率控制字,设计相位累加器,实现相位累加功能;4. 波形选择器设计:根据用户输入,选择相应的波形数据;5. DAC设计:将数字波形数据转换为模拟信号;6. 硬件搭建:将上述设计模块在FPGA开发板上进行搭建;7. 软件编程:编写控制程序,实现对DDS信号发生器的频率、相位、幅度等参数的调节;8. 测试与调试:使用数字信号发生器和信号分析仪,对DDS信号发生器的性能进行测试和调试。
五、实验结果与分析1. 频率测试:调整频率控制字,观察输出信号的频率是否满足要求;2. 相位测试:调整相位累加器,观察输出信号的相位是否满足要求;3. 幅度测试:调整DAC的输出幅度,观察输出信号的幅度是否满足要求;4. 波形测试:使用信号分析仪观察输出信号的波形,验证波形是否正确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4章数字频率合成器的设计随着通信、雷达、宇航和遥控遥测技术的不断发展,对频率源的频率稳定度、频谱纯度、频率范围和输出频率的个数提出越来越高的要求。
为了提高频率稳定度,经常采用晶体振荡器等方法来解决,但它不能满足频率个数多的要求,因此,目前大量采用频率合成技术。
频率合成是通信、测量系统中常用的一种技术,它是将一个或若干个高稳定度和高准确度的参考频率经过各种处理技术生成具有同样稳定度和准确度的大量离散频率的技术。
频率合成的方法很多,可分为直接式频率合成器、间接式频率合成器、直接式数字频率合成器( DDS)。
直接合成法是通过倍频器、分频器、混频器对频率进行加、减、乘、除运算,得到各种所需频率。
该方法频率转换时间快(小于100ns),但是体积大、功耗大,目前已基本不被采用。
锁相式频率合成器是利用锁相环(PLL)的窄带跟踪特性来得到不同的频率。
该方法结构简化、便于集成,且频谱纯度高,目前使用比较广泛。
直接数字频率合成器(Direct Digital Frequency Synthesis简称:DDS)是一种全数字化的频率合成器,由相位累加器、波形ROM,D/A转换器和低通滤波器构成,DDS技术是一种新的频率合成方法,它具有频率分辨率高、频率切换速度快、频率切换时相位连续、输出相位噪声低和可以产生任意波形等优点。
但合成信号频率较低、频谱不纯、输出杂散等。
这里将重点研究锁相式频率合成器。
本章采用锁相环,进行频率合成器的设计与制作。
4.1 设计任务与要求1.设计任务:利用锁相环,进行频率合成器的设计与制作2.设计指标:(1)要求频率合成器输出的频率范围f0为1kHz~99kHz;(2)频率间隔 f 为1kHz;(3)基准频率采用晶体振荡频率,要求用数字电路设计,频率稳定度应优于10-4;(4)数字显示频率;(5)频率调节采用计数方式。
3.设计要求:(1)要求设计出数字锁相式频率合成器的完整电路。
(2)数字锁相式频率合成器的各部分参数计算和器件选择。
(3)画出锁相式数字频率合成器的原理方框图、电路图(4)数字锁相式频率合成器的仿真与调试。
4.制作要求:自行装配和调试,并能发现问题解决问题。
测试主要参数:包括晶体振荡器输出频率;1/M分频器输出频率;1/N可编程分频器的测试;锁相环的捕捉带和同步带测试。
5.课程设计报告要求。
写出设计与制作的全过程,附上有关资料和图纸,有心得体会。
6.答辩要求在规定的时间内,完成叙述,并回答提问。
4.2 频率合成器的组成及工作原理频率合成器是现代通信设备的重要组成部分,频率合成技术是将一个高稳定度和高准确度的基准频率经过四则运算,产生同样稳定度和准确度的任意频率。
锁相式频率合成器, 其优点是可以实现任意频率和带宽的频率合成, 具有极低的相位噪声和杂散。
是目前应用最为广泛的一种频率合成方法。
4.2.1 数字锁相式频率合成器的组成数字锁相式频率合成器根据信道间隔和工作频率可分为间接式频率合成器和吞脉冲式频率合成器。
(1)基本单环锁相频率合成器如图 4.2.1所示是一个典型的基本单环锁相频率合成器的原理图。
它由参考振荡源、参考分频器一个典型的频率合成器主要由鉴相器(PD)、环路滤波器(LF)、压控振荡器(VCO)和可编程分频器组成。
图4.2.1 基本单环锁相频率合成器组成框图它仅在锁相环的反馈支路中插入一个可编程控制的分频器(N)。
信号源产生一个标准的参考信号源, 输出频率为fI, 经过R 次分频后,得到频率为fR 的参考脉冲信号。
且f r = f i/ R , f r 加至鉴相器。
另一方面, 压控振荡器产生频率为f 0 的信号, 并经过可变分频器的N次分频后获得反馈信号, 频率为f N 。
鉴相器输出相位误差信号, 经过环路滤波器后, 送到压控振荡器, 调整其输出频率 f o , 在环路锁定时,鉴相器两输入的频率相同,同时压控振荡器输出经N 次分频后得到频率为fN 的脉冲信号,它们通过鉴相器进行比相。
当环路处于锁定状态时,fR = fN = fo /N ,则:R N o Nf Nf f ==。
显然,只要改变分频比N ,即可达到改变输出频率fo 的目的,从而实现了由fR 合成fo 的任务。
在该电路中,输出频率点间隔∆f=fR 。
这样,环中带有可变分频器的PLL 就提供了一种从单个参考频率获得大量频率的方法。
环中的除N 分频器用可编程分频器来实现,这就可以按增量fr 来改变输出频率。
这是组成锁相频率合成的一种最简便的方法。
(2)变模分频锁相频率合成器变模分频锁相频率合成器也称吞脉冲式数字锁相频率合成器。
在基本的单环锁相频率合成器中,VCO 的输出频率是直接加在可编程分频器上的。
目前可编程分频器还不能工作到很高的频率,这就限制了这种合成器的应用。
加前置分频器后固然能提高合成器的工作频率,但这是以降低频率分辨力为代价的。
若以减小参考频率fr 的办法来维持原来的频率分辨力,这又将造成转换时间的加长。
最好的办法在不改变频率分辨力的同时提高合成器输出频率的有效方法之一是采用变模分频器,也称吞脉冲技术。
它的工作速度虽不如固定模数的前置分频器那么快,但比可编程分放器要快得多.图4.2.2就是一个采用双模分频器的锁相频率合成器。
0N 1N N N 0A 1A N A图4.2.2 变模分频锁相频率合成器组成框图为保证足够小的信道间隔和比较高的工作频率,可采用吞除脉冲式数字锁相频率合成器。
所谓“吞除脉冲”技术,就是采用高速双模前置分频器,有两个分频模数,当模式控制为高电乎时分频模数为P+1,当模式控制为低电平时分频模数为P 。
双模分频器的输出同时驱动两个可编程分频器,它们分别是主计数器N 和吞食计数器A ,通常N计数(分频)器的级数大于 A 计数器的级数,即 N >A 。
并进行减法计数。
模式控制信号由两个可编程分频器产生,工作过程如下:双模分频器的输出同时驱动两个可编程分频器,它们分别预置在N 和A ,N 、A 计数器同时开始计数,并进行减法计数。
在除A 和除N未计数到零时,模式控制MC为高电平,前置分频比为P+1,双模分频器的输出频率为fo/(P十l)。
在输入A(P十1)周期之后,A计数达到零,将模式控制电平变为低电平,同时通过与门电路封锁A计数器的计数禁止端,使之停止计数,此时,除N分频器还存有N-A。
由于受模式控制低电平的控制。
双模分频器的分频模数变为P,双模分频器的输出频率为f o/P,再经(N-A)P个周期,除N,计数器也计数到零,输出低电平,将两计数器重新赋于它们的预置值N和A,同时对鉴相器输出比相脉冲,并将模式控制信号恢复到高电平。
在一个完整的周期中输入的周期数为N =A(P+1)+(N-A)P=PN+Af o=(PN+A)f N=PNf R+Af R合成频率点间隔为f R。
在这种采用变模分频器的方案中也要用可编程分频器,这时双模分频器的工作频率为合成器的工作频率fo,而两个可编程分频器的工作频率为f O/P或f O/(P十1)。
合成器的频率分辨力仍为参考频率f R,这就在保持分辨力的条件下提高了合成器的工作频率,频率转换时间也没有受到影响。
可见,合成频率点间隔变为fR。
吞脉冲式频率合成器的主要产品有MC145152、MC145156等,内部具有6位吞除计数器.这种PLL可编程频率合成器的稳定度和准确度与基准频率相当,无额外误差,在通信领域有广泛的应用。
4.2.2 锁相环路的工作原理锁相环(PLL)是一个相位误差控制系统,利用反馈控制原理实现频率及相位的同步技术。
锁相环通过比较输入信号和压控振荡器输出频率之间的相位差,产生误差控制电压来调整压控振荡器的频率,以达到与输入信号同频。
在环路开始工作时,通常输入信号的频率与压控振荡器末加控制电压时的振荡频率是不同的。
由于两信号之间存在固有的频率差,它们之间的相位差势必一直在变化,鉴相器输出的误差电压就在某一范围内摆动。
在这种误差电压控制之下,压控振荡器的频率也就在相应的范围之内变化。
若压控振荡器的频率能够变化到与输入信号频率相等,便有可能在这个频率上稳定下来(当然只有在一定的条件下才可能这样)。
达到稳定之后,输入信号和压控振荡器输出信号之间的频差为零,相位差不再随时间变化,误差控制电压为一固定值,这时环路就进入锁定状态。
1.环路组成锁相环路的基本组成框图如图4.2.3所示。
它由鉴相器(PD)、环路滤波器(LF)和压控振荡器(VCO)三部分组成,其中,PD和LF构成反馈控制器,而VCO就是它的控制对象。
图4.2.3 锁相环路的基本组成框图(1)鉴相器(PD)鉴相器是一相位比较装置,组成框图如图 4.2.4,鉴相器是相位比较装置。
它把输入信号vi(t)和压控振荡器的输出信号vo(t)的相位进行比较,产生对应于两信号相位差的误差电压vd(t)。
若PD为线性鉴相器,输出误差电压ud可表示如下:ud =Kdθe (θe =θR –θV)其中Kd 称为鉴相灵敏度,单位为V/rad 。
图4.2.4 鉴相器的框图可用模拟乘法器来实现鉴相器的功能。
利用模拟乘法器组成的鉴相器电路如图4.2.5所示。
图4.2.5 等效鉴相器设外界输入的信号电压和压控振荡器输出的信号电压分别为:式中的ω0为压控振荡器在输入控制电压为零或为直流电压时的振荡角频率,称为电路的固有振荡角频率。
则模拟乘法器的输出电压uD为:用低通滤波器LF将上式中的和频分量滤掉,剩下的差频分量作为压控振荡器的输入控制电压uC(t)。
即uC(t)为:式中的ωi为输入信号的瞬时振荡角频率,θi(t)和θO(t)分别为输入信号和输出信号的瞬时相位。
令θc(t)= △ωt+θi(t)-θO(t)为两相乘电压的瞬时相位差。
则ud(t)=Kdsinθc(t)这就是相乘器作为鉴相器时的鉴相特性。
可见它是正弦特性。
在锁相环中实际采用的鉴相电路有许多,这里只是把相乘器作为鉴相器的一个通用数学模型,供分析环路之用。
(2)环路滤波器在锁相环路中,环路滤波器实际上就是一个低通滤波器,其作用是滤出除鉴相器输出的误差电压ud中的高频分量和干扰分量,得到控制电压uC ,常用的环路滤波器有RC 低通滤波器、无源比例积分滤波器及有源比例积分滤波器等。
RC 低通滤波器图4.2.6 一阶RC 低通滤波器图4.2.6为一阶RC 低通滤波器,它的作用是将ud 中的高频分量滤掉,得到控制电压uc 。
它的传输函数为ωτωωωj c j R C j t v t v j F +=+==111/1)()()(d c 1式中,τ =RC 为时间常数。
由此绘出一阶低通滤波器的幅频特性如图4.2.7所示:上限截止频率为fH ,通频带fbw =fH 。
图4.2.7一阶RC 低通滤波器幅频特性图4.2.8所示电路为较常用的滤波器,一般R2<< R1,其作用是减少高频信号的衰减,从而提高锁相环路的捕捉和跟踪(频率)范围,但抗高频干扰的性能下降。