求基波的傅氏算法公式

合集下载

基于傅氏滤波的频率测量新方法

基于傅氏滤波的频率测量新方法

f = f0
M
6 - U
2 Ii
U2 I ( i- 1)
i= 1
M
6 - U 2 R (i- 1)
U
2 R
i
i= 1
(14)
第 18 卷第 4 期 李一泉等: 基于傅氏滤波的频率测量新方法
·47·
其中M ≥ 2, 可根据具体情况来选择。显然, 对于单
次计算,
- U 2 R (i- 1)
0
∫ U ( T0
T0
sin (2Π∃f t +
0
Υ) d t +

T0
sin (4Πf
0t +
2Π∃f t +
Υ) d t =
0
2U (f 0 + ∃f ) sin (Π∃f T 0) ΠT 0∃f (2f 0 + ∃f )
sin (Π∃f T 0 + Υ)
(4)

K=
2U sin (Π∃f T 0) ΠT 0∃f (2f 0 + ∃f )
U
2 R
i
可能较小甚至为 0, 但对于
连续M 点而言, 式 (14) 分母必不为 0, 且此时分子
分母都比较大, 这就解决了分母过零点的问题。
值得一提的是, 上文推导虽然是建立在全波傅
氏的基础上, 但对于半波傅氏, 其结论也成立, 而且
这样算法所需时间窗可以减小半个周波, 从而更能
满足快速测频及频率跟踪的需要。但由于半波算法
2 测频算法的基本原理
假 设系统中仅含有基波分量, 其额定频率为 f 0, 由于系统真实频率 f 未知, 因此只能根据 f 0 进 行采样, 不妨设每周波采样点数为N 。若用 ∃f 表示 频差, 则真实频率 f 可表示为

微机保护的算法

微机保护的算法

微 机 保 护 的 算 法一、数字滤波数字滤波器不同于模拟滤波器,它不是一种纯硬件构成的滤波器,而是由软件编程去实现,改变算法或某些系数即可改变滤波性能,即滤波器的幅频特性和相频特性。

在微机保护中广泛使用的简单的数字滤波器,是一类用加减运算构成的线性滤波单元。

差分滤波它们的基本形式 加法滤波 积分滤波等以差分滤波为例做简单介绍。

差分滤波器输出信号的差分方程形式为)()()(k n x n x n y --= (8—1)式中,x (n )、y (n )分别是滤波器在采样时刻n (或n )的输入与输出;x (n -k )是n 时刻以前第k 个采样时刻的输入,k ≥1。

对式(8-1)进行Z变换,可得传递函数H (z))1)(()(k z z x z y --= kz z X z Y z H --==1)()()( (8—2)将 ST j e z ω=代入式(8-2)中,即得差分滤波器的幅频特性和相频特性分别为式(8-3)及式(8-4)2sin2sin )cos 1()(22SS S T j T k T k T k e H S ωωωω=+-= (8—3)(8—4)由式(8-3)可知,设需滤除谐波次数为m ,差分步长为k (k 次采样),则此时ω=m ω1=m·2ƒ1,应使)(ST j e H ω=0。

令 0sin21=sf kmf π则有ππl f kmf s=1 )3,2,1,0(⋅⋅⋅⋅⋅⋅=l01lm K N l kf f lm s ===;k N m =0 (8—5) 当N (即ƒs 和ƒ1)取值已定时,采用不同的l 和k 值,便可滤除m 次谐波。

二、正弦函数模型算法1.半周积分算法半周积分算法的依据是mm T mT m U TU tU tdt U S πωωωω==-==⎰2cos sin 2020(8—6)即正弦函数半周积分与其幅值成正比。

式(8-6)的积分可以用梯形法则近似求出:sN N k k T u u u S ]2121[2/110++≈∑-= (8—7)式中k u ——第K 次采样值;N ——一周期T 内的采样点数; k u ——k =0时的采样值;2N u ——k =N /2时的采样值。

第六节 变压器的零序电流保护

第六节  变压器的零序电流保护

二、变电所多台变压器的零序电流保护每台变压器都装有同样的零序电流保护,它是由电流元件和电压元件两部分组成。

正常时零序电流及零序电压很小,零序电流继电器及零序电压继电器皆不动作,不会发出跳闸脉冲。

发生接地故障时,出现零序电流及零序电压,当它们大于起动值后,零序电流继电器及零序电压继电器皆动作。

电流继电器起动后,常开触点闭合,起动时间继电器KT1。

时间继电器的瞬动触点闭合,给小母线A接通正电源,将正电源送至中性点不接地变压器的零序电流保护。

不接地的变压器零序电流保护的零序电流继电器不会动作,常闭触点闭合。

小母线A的正电源经零序电压继电器的常开触点、零序电流继电器的常闭触点起动有较短延时的时间继电器KT2经较短时限首先切除中性点不接地的变压器。

若接地故障消失,零序电流消失,则接地变压器的零序电流保护的零序电流继电器返回,保护复归。

若接地故障没有消失,接地点在接地变压器处,零序电流继电器不返回,时间继电器KT1一直在起动状态,经过较长的延时KT1跳开中性点接地的变压器。

零序电流保护的整定计算:动作电流:(1)与被保护侧母线引出线零序电流第三段保护在灵敏度上相配合,所以(2)与中性点不接地变压器零序电压元件在灵敏度上相配合,以保证零序电压元件的灵敏度高于零序电流元件的灵敏度。

设零序电压元件的动作电压为U dz.0,则U dz.0=3I0X0.T零序电流元件的动作电流为动作电压整定:按躲开正常运行时的最大不平衡零序电压进行整定。

根据经验,零序电压继电器的动作电压一般为5V。

当电压互感器的变比为nTV时,电压继电器的一次动作电压为U dz.0=5n TV变压器零序电流保护作为后备保护,其动作时限应比线路零序电流保护第三段动作时限长一个时限阶段。

即灵敏度校验:按保证远后备灵敏度满足要求进行校验返回第二节微机保护的硬件框图简介微机保护硬件示意框图如下图所示。

一、电压形成回路微机保护要从被保护的电力线路或设备的电流互感器、电压互感器或其他变换器上取得信息,但这些互感器的二次数值、输入范围对典型的微机电路却不适用,故需要降低和变换。

基于DSP交流采样电路设计与实现_高瑜

基于DSP交流采样电路设计与实现_高瑜
2. Luoyang Institute of Science and Technology,Luoyang 471023,Henan,China )
Abstract: This paper presents a three - phase ac sampling method based on TMS320F2812DSP,gives the system hardware circuit of prior to channel and the software programming flowchart. Through processing the conversion results ,it can measure the numerical of RMS,power and so on,the results can be used in relay protection,fault wave record etc,ensuring detection accuracy also reducing the complexity of the hardware. Key words: DSP,alternating current sampling,current signal
参考文献
[1]贺 家 李. 电 力 系 统 继 电 保 护 原 理[M]. 北 京: 中 国 电 力 出 版 社,2000.
[2]孙肖子. 电子设计指南[M]. 北京: 高等教育出版社,2006. [3]万山明. TMS320F2812xDSP 原理及应用实例[M]. 北京: 北京航
空航天大学出版社,2007. [4]李全利,王振春. 一种基于 DSP 的三相交流采样技术[J]. 自动化
相交流采样应用方法。通过对硬件电路的设计和软 件的编程,完成了对电网电压和电流的采集和数据处 理,并能够模拟继电保护跳闸和显示系统实时显示输 入电压。实践 证 明,采 用 交 流 采 样 算 法 方 法 进 行 数 据采集,能够 获 得 的 电 压、电 流 等 电 参 数,有 较 好 的 精度和稳定性,具有一定的应用价值。

信号与系统课后习题答案

信号与系统课后习题答案

习 题 一 第一章习题解答基本练习题1-1 解 (a) 基频 =0f GCD (15,6)=3 Hz 。

因此,公共周期3110==f T s 。

(b) )30cos 10(cos 5.0)20cos()10cos()(t t t t t f ππππ+==基频 =0f GCD (5, 15)=5 Hz 。

因此,公共周期5110==f T s 。

(c) 由于两个分量的频率1ω=10π rad/s 、1ω=20 rad/s 的比值是无理数,因此无法找出公共周期。

所以是非周期的。

(d) 两个分量是同频率的,基频 =0f 1/π Hz 。

因此,公共周期π==01f T s 。

1-2 解 (a) 波形如图1-2(a)所示。

显然是功率信号。

t d t f TP T TT ⎰-∞→=2)(21lim16163611lim 22110=⎥⎦⎤⎢⎣⎡++=⎰⎰⎰∞→t d t d t d T T T W(b) 波形如图1.2(b)所示。

显然是能量信号。

3716112=⨯+⨯=E J (c) 能量信号 1.0101)(lim101025=-===⎰⎰∞∞---∞→T t ttT e dt edt eE J(d) 功率信号,显然有 1=P W1-3 解 周期T=7 ,一个周期的能量为 5624316=⨯+⨯=E J 信号的功率为 8756===T E P W 1-5 解 (a) )(4)2()23(2t tt δδ=+; (b) )5.2(5.0)5.2(5.0)25(5.733-=-=----t e t e t et tδδδ(c) )2(23)2()3sin()2()32sin(πδπδπππδπ+-=++-=++t t t t 题解图1-2(a) 21题解图1-2(b) 21(d) )3()3()(1)2(-=----t e t t et δδε。

1-6 解 (a) 5)3()94()3()4(2-=+-=+-⎰⎰∞∞-∞∞-dt t dt t t δδ(b) 0)4()4(632=+-⎰-dt t t δ(c) 2)]2(2)4(10[)]42(2)4()[6(63632=+++-=+++-⎰⎰--dt t t dt t t t δδδδ(d)3)3(3)(3sin )(1010=⋅=⎰⎰∞-∞-dt t Sa t dt ttt δδ。

傅里叶变换常用公式

傅里叶变换常用公式

傅里叶变换常用公式1.傅里叶变换定义:F(w) = ∫[f(t)e^(-jwt)] dt2.傅里叶逆变换定义:f(t) = ∫[F(w)e^(jwt)] dw / (2π)傅里叶逆变换定义了将频域函数F(w)转换回时域函数f(t)的方式。

3.单位冲激函数的傅里叶变换:F(w) = ∫[δ(t)e^(-jwt)] dtδ(t)是单位冲激函数,其傅里叶变换结果为14.周期函数的傅里叶级数展开:f(t) = ∑[a(n)cos(nω0t) + b(n)sin(nω0t)]f(t)可以用无穷级数形式表示,其中ω0为基本角频率,a(n)和b(n)为系数。

5.周期函数的傅里叶变换:F(w)=2π∑[δ(w-nω0)]周期函数f(t)的频谱是一系列频率为nω0的冲激函数。

6.卷积定理:FT[f*g]=F(w)G(w)f*g表示函数f(t)和g(t)的卷积,FT表示傅里叶变换,*表示复数乘法。

卷积定理说明卷积在频域中的运算等于对应的傅里叶变换相乘。

7.积分定理:∫[f(t)g(t)] dt = 1/2π ∫[F(w)G(-w)] dw积分定理表明函数f(t)和g(t)的乘积在时域中的积分等于它们在频域中的乘积的逆变换。

8.平移定理:g(t) = f(t - t0) 对应的傅里叶变换 F(w) = e^(-jwt0) G(w)平移定理说明在时域中将函数f(t)右移t0单位,等价于在频域中将F(w)乘以e^(-jwt0)。

9.缩放定理:g(t) = f(at) 对应的傅里叶变换 G(w) = 1/,a, F(w/a)缩放定理说明在时域中将函数f(t)横向拉伸为af(t),等价于在频域中将F(w)纵向压缩为1/,a,F(w/a)。

除了以上列举的公式,傅里叶变换还有许多性质和定理,如频移定理、频域微分定理、频域积分定理等,这些公式和定理在信号处理中非常有用,可以加速计算和简化问题的分析。

傅氏变换公式

傅氏变换公式

傅氏变换公式全文共四篇示例,供读者参考第一篇示例:傅氏变换公式,又称傅里叶变换公式,是数学中一种非常重要的变换公式,它在信号处理、图像处理、物理学、工程等领域都有广泛应用。

傅氏变换公式的提出,来源于法国数学家傅里叶的研究成果,其贡献被誉为“物理学之母”。

傅氏变换公式的核心思想是将一个函数表示为频域中的若干个不同频率的正弦和余弦函数的叠加,从而实现对信号的频域分析。

简单来说,就是将时域的函数转换为频域的函数。

通过傅氏变换,我们可以了解信号的频率成分,进而对信号进行分析和处理。

傅里叶变换的数学表达式如下:\[F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t} dt\]\(f(t)\)表示原始信号函数,\(F(\omega)\)表示信号在频域中的表示,\(\omega\)为频率,\(e\)为自然对数的底,\(j\)为虚数单位。

在实际应用中,傅氏变换公式经常与傅里叶逆变换公式相对应使用。

傅里叶逆变换公式可以将频域中的函数恢复到时域中,实现频域到时域的转换。

傅氏变换公式在信号处理领域有着广泛的应用。

利用傅氏变换可以将时域中的信号转换为频域中的频谱图,从而对信号的频率成分进行分析。

在音频处理和图像处理中,傅氏变换也被广泛应用。

在通信系统中,傅氏变换有助于信号的调制和解调,提高信号传输的效率。

除了傅里叶变换外,还有一种相关的变换称为离散傅里叶变换(DFT)。

离散傅里叶变换是将离散信号转换为频域中的频谱图,通常应用于数字信号处理和通信系统中。

傅里叶变换公式是一种非常重要的数学工具,它在信号处理、图像处理、物理学和工程等领域都有着广泛的应用。

通过傅氏变换,我们可以实现对信号的频域分析,了解信号的频率成分和特征,为信号处理和系统设计提供有力支持。

希望通过本文的介绍,读者对傅里叶变换有一个初步的了解,并深入学习其更多的应用和理论知识。

【字数已超2000字】第二篇示例:傅氏变换公式,又称为傅立叶变换,是数学中常见的一个重要工具,用于描述一个信号在频域上的分解和重建。

输电线路单相接地故障测距算法研究毕业设计(论文)

输电线路单相接地故障测距算法研究毕业设计(论文)

毕 业 设 计(论文)`院系 电力工程系 专业班级 农业电气化与自动化0901班 学生姓名 王雯婷 指导教师 王 宁 二○一三年六月 题 目 输电线路单相接地故障测距算法研究输电线路单相接地故障测距算法研究摘要输电线路是电力系统的重要组成部分,是电力系统的命脉,精确的输电线路故障测距对保证电力系统的安全稳定和经济运行有着十分重要的作用。

然而,电力系统本身是一个复杂的动态系统,基于经济因素考虑,长距离、重负荷的输电系统常常运行在临界稳定的状态下,当系统发生扰动、故障等情况时会不可避免地存在各种复杂多样的动态过程。

文章首先介绍了各种测距方法的基本原理,并将现有的各种测距方法分为行波测距、单端测距和双端测距三类,然后逐类对各种算法的理论基础和应用条件进行了分析、对比和讨论。

然后主要针对一种单回线双端电气量测距算法进行研究,相比于传统的算法该算法提出了实部相等的解决办法,再利用故障分量进行测距计算,这样一来可以消除负荷电流的影响,并且测距精度也几乎不受过渡电阻、故障类型等因素的影响。

最后通过MTLAB仿真,对全波傅氏算法和全波差分傅氏算法进行了比较,最后得出全波差分傅氏算法滤波效果更好,测距结果更精确。

而对应于不同的过渡电阻,实际测量到的故障距离相差不大,说明过渡电阻对于测距影响不大。

关键词:输电线路;故障测距方法;双端测距算法;MATLAB/simulink仿真TRANSMISSION LINE OF SINGLE-PHASE GROUNDING FAULT LOCATIONALGORITHMSAbstractAs an important elements of power system, transmission line is the lifeblood of the power system. So, precise fault location method for transmission line plays a very important role in ensuring security, stability and economic operation of power system. Yet, it is a complex and dynamic system for power system itself, and long and heavy transmission line systems are often running in the critical stable state based on some economic benefits. When some disturbances or faults occured, a variety of complex and dynamic process will inevitably exist in transmission line system.The article first introduces the basic principles of a variety of methods ranging and ranging method is divided into various existing traveling wave, single-ended and double-ended ranging ranging three categories, then the various algorithms by category theory and application conditions were analyzed, compared and discussed. Then focused on a single-loop algorithm for two-terminal electrical quantities ranging study, compared to the conventional algorithm the algorithm proposed real part equal solutions for fault component reuse distance calculations, so that the load can be eliminated currents, and the ranging precision is almost free from transition resistance, fault type and other factors.Finally, the simulation of the full-wave and full-wave Fourier algorithm differential Fourier algorithm are compared, and finally come to a full-wave Fourier algorithm differential filtering effect is better, ranging results more precise. And correspond to different transition resistance, the actual measured fault distance less, indicating that the transition resistance ranging little impact.Keywords: Transmission line; fault location method; double ended ranging algorithm; MATLAB / simulink simulation目录摘要 (I)Abstract (II)1绪论 (1)1.1故障测距定位的意义和作用 (1)1.2输电线路故障 (1)1.2.1输电线路故障类型 (1)1.2.2输电线路故障对测距装置的基本要求 (2)1.3输电线路故障测距技术的发展 (3)1.4本文主要研究内容 (4)2输电线路故障测距方法 (6)2.1阻抗法 (6)2.2行波法 (6)2.3故障分析法 (7)2.3.1利用单端电气量法测距 (8)2.3.2利用双端电气量法测距 (10)2.4智能化测距方法 (12)2.5各类测距方法的比较 (12)2.6本章小结 (13)3线路模型的建立与信号提取 (14)3.1输电线路常见数学模型 (14)3.1.1 R-L模型 (14)3.1.2 π型或T型模型 (15)3.1.3分布参数模型 (16)3.2 数字滤波算法 (17)3.2.1 全波傅氏算法 (18)3.2.2 全波差分傅氏算法 (18)3.2.3 带通滤波 (19)3.2.4 最小二乘滤波算法 (20)3.3 本章小结 (20)4单回线双端电气量故障测距算法 (22)4.1 算法原理 (22)4.2 相模变换 (24)4.3正序故障分量的提取 (25)4.4算例仿真与对比分析 (26)4.4.1 算法仿真流程 (26)4.4.2 线路模型及参数设置 (27)4.4.3 MATLAB仿真模型及参数设置 (28)4.4.4 单相接地故障情况下的仿真计算和结果分析 (28)4.5本章小结 (31)结论 (32)参考文献 (33)致谢..................................................... 错误!未定义书签。

傅里叶变换基础知识

傅里叶变换基础知识

傅里叶变换基础知识1. 傅里叶级数展开最简单有最常用的信号是谐波信号,一般周期信号利用傅里叶级数展开成多个乃至无穷多个不同频率的谐波信号,即一般周期信号是由多个乃至无穷多个不同频率的谐波信号线性叠加而成。

1.1 周期信号的傅里叶级数在有限区间上,任何周期信号()x t 只要满足狄利克雷(dirichlet )条件,都可以展开成傅里叶级数。

1.1.1 狄利克雷(dirichlet )条件狄利克雷(dirichlet )条件为:(1)信号()x t 在一个周期内只有有限个第一类间断点(当t 从左或右趋向于这个间断点时,函数有左极限值和右极限值);(2)信号()x t 在一周期内只有有限个极大值和极小值;(3)信号在一个周期内是绝对可积分的,即00/2/2()dt T T x t -⎰应为有限值。

1.1.2 间断点在非连续函数()y f x =中某点处0x 处有中断现象,那么,0x 就称为函数的不连续点。

(1)第一类间断点(有限型间断点):a. 可去间断点:函数在该点左极限、右极限存在且相等,但不等于该点函数值或函数在该点无定义(0x 令分母为零时等情况);b. 跳跃间断点:函数在该点左极限、右极限存在,但不相等(0/y x x =在点0x =处等情况)。

(2)第二类间断点:除第一类间断点的间断点。

1.1.3 傅里叶级数三角函数表达式傅里叶级数三角函数表达式为式中:0a 为信号的常值分量;n a 为信号的余弦信号幅值;n b 为信号的正弦信号幅值。

0a 、n a 、n b 分别表示为:式中:0T 为信号的周期;0ω为信号的基频,即角频率,002/T ωπ=,1,2,3...n =。

合并同频项也可表示为式中:信号的幅值n A 和初相位n θ分别为1.1.4 频谱的相关概念(1)信号的频谱(三角频谱):构成信号的各频率分量的集合,表征信号的幅值和相位随频率的变化关系,即信号的结构,是n A ω-(或n A f -)和n θω-(或n f θ-)的统称;(2)信号的幅频谱:周期信号幅值n A 随ω(或f )的变化关系,用n A ω-(或n A f -)表示;(3)信号的相频谱:周期信号相位n θ随ω(或f )的变化关系,用n θω-(或n f θ-)表示;(4)信号的频谱分析:对信号进行数学变换,获得频谱的过程; (5)基频:0ω或0f ,各频率成分都是0ω或0f 的整数倍; (6)基波:0ω或0f 对应的信号;(7)n 次谐波: 0(n 2,3,...)n ω=或0(n 2,3,...)nf =的倍频成分0c o s ()n n A n t ωϕ+或0cos(2)n n A nf t πθ+;1.1.5 周期信号的傅里叶级数的复指数函数展开根据欧拉公式cos sin (j te t j t j ωωω±=±=,则1cos ()21sin j()2j t j t j tj t t e e t e e ωωωωωω--=+=- 因此,傅里叶级数三角函数表达式()0001()cos sin n n n x t a a n t b n t ωω∞==++∑可改写成令 则 或这就是周期信号的傅里叶复指数形式的表达式。

傅里叶变换的由来及复数下的傅里叶变换公式证明[精选合集]

傅里叶变换的由来及复数下的傅里叶变换公式证明[精选合集]

傅里叶变换的由来及复数下的傅里叶变换公式证明[精选合集]第一篇:傅里叶变换的由来及复数下的傅里叶变换公式证明1、考虑到一个函数可以展开成一个多项式的和,可惜多项式并不能直观的表示周期函数,由于正余弦函数是周期函数,可以考虑任意一个周期函数能否表示成为一系列正余弦函数的和。

假设可以,不失一般性,于是得到:2、将后面的正弦函数展开:于是得到:那么如何计算an,bn,a0这些参数成为能否展开成为正余弦函数的关键。

上面的这些积分为0被称之为正余弦函数的正交性。

这些证明很简单,可惜当初学习正余弦函数的时候可能遇到过,但是却不知道这些东西能干什么用。

下面的处理手段凸显了大师的风范:如果我们队原函数进行如下积分,得到很神奇的东西:后面的积分很明显是0,于是我们求出了a0的值。

那么如何求出an,如果让原函数乘以cos(nx)再进行积分。

利用三角函数的正交性,可以得到:再用sin(nx)乘,再进行积分就会得到bn,于是乎得到了一个任意函数展开成为正余弦函数的通用表达式,同时为什么会出现A0/2而不是直接的A0的原因也很明朗:就是让整个表达式更具有通用性,体现一种简洁的美。

通过了以上的证明过程,应该很容易记住傅里叶变换的公式。

到此为止,作为一个工程人员不用再去考虑了,可是作为每一个数学家他们想的很多,他们需要知道右侧的展开式为什么收敛于原函数,这个好难,有个叫Dirichlet的家伙证明出如下结论:有兴趣的可以继续找书看,可惜我有兴趣没时间····至此以2π为周期的傅里叶变换证明完毕,只不过我们经常遇到的周期函数我想应该不会这么凑巧是2π,于是乎任意的一个周期函数如何知道其傅里叶变换呢,数学向来都是一个很具有条理性的东西,任意周期的函数的傅里叶变换肯定也是建立在2π周期函数的基础之上的。

也就是说如何让一个以2l为周期的函数变成一个以2π为周期的函数,于是乎可以使用z=2π*x/(2l),这样就z就是一个以2π为周期的函数了,于是乎得到如下公式:傅里叶函数看起来其实还是比较复杂的,有没有一种更简单的表达形式来表示呢。

大学物理波动学公式集

大学物理波动学公式集

大学物理波动学公式集波动学1.定义和概念简谐波方程: x 处t 时刻相位 振幅简谐振动方程:ξ=Acos(ωt+φ) 波形方程:ξ=Acos(2πx/λ+φ′)相位Φ——决定振动状态的量振幅A ——振动量最大值 决定于初态 x0=Acos φ 初相φ——x=0处t=0时相位 (x 0,V 0) V 0= –A ωsin φ 频率ν——每秒振动的次数圆频率ω=2πν 决定于波源如: 弹簧振子ω=m k /周期T ——振动一次的时间 单摆ω=l g /波速V ——波的相位传播速度或能量传播速度。

决定于介质如: 绳V=μ/T 光速V=C/n 空气V=ρ/B波的干涉:同振动方向、同频率、相位差恒定的波的叠加。

光程:L=nx(即光走过的几何路程与介质的折射率的乘积。

相位突变:波从波疏媒质进入波密媒质时有相位π的突变(折合光程为λ/2)。

拍:频率相近的两个振动的合成振动。

驻波:两列完全相同仅方向相反的波的合成波。

多普勒效应:因波源与观察者相对运动产生的频率改变的现象。

衍射:光偏离直线传播的现象。

自然光:一般光源发出的光偏振光(亦称线偏振光或称平面偏振光):只有一个方向振动成份的光。

部分偏振光:各振动方向概率不等的光。

可看成相互垂直两振幅不同的光的合成。

2.方法、定律和定理 ①旋转矢量法: 如图,任意一个简谐振动ξ=Acos(ωt+φ)可看成初始角位置为φ以ω逆时针旋转的矢量A ϖ在x方向的投影。

相干光合成振幅: A=φ∆++cos 2212221A A A A其中:Δφ=φ1-φ2–λπ2(r 2–r 1当φ1-φ2=0时,光程差δ=(r 2–r 1)②惠更斯原理:波面子波的包络面为新波前。

(用来判断波的传播方向) ③菲涅尔原理:波面子波相干叠加确定其后任一点的振动。

④*马吕斯定律:I 2=I 1cos 2θ ⑤*布儒斯特定律:当入射光以I p 入射角入射时则反射光为垂直入射面振动的完全偏振光。

傅氏级数

傅氏级数

傅氏级数傅氏级数即傅立叶级数一.傅里叶级数的三角函数形式设f(t)为一非正弦周期函数,其周期为T,频率和角频率分别为f , ω1。

由于工程实际中的非正弦周期函数,一般都满足狄里赫利条件,所以可将它展开成傅里叶级数。

即其中A0/2称为直流分量或恒定分量;其余所有的项是具有不同振幅,不同初相角而频率成整数倍关系的一些正弦量。

A1cos(ω1t+ψ1)项称为一次谐波或基波,A1,ψ1分别为其振幅和初相角;A2cos(ω2t+ψ2)项的角频率为基波角频率ω1的2倍,称为二次谐波,A2,ψ2分别为其振幅和初相角;其余的项分别称为三次谐波,四次谐波等。

基波,三次谐波,五次谐波……统称为奇次谐波;二次谐波,四次谐波……统称为偶次谐波;除恒定分量和基波外,其余各项统称为高次谐波。

式(10-2-1)说明一个非正弦周期函数可以表示一个直流分量与一系列不同频率的正弦量的叠加。

上式有可改写为如下形式,即当A0,An, ψn求得后,代入式 (10-2-1),即求得了非正弦周期函数f(t)的傅里叶级数展开式。

把非正弦周期函数f(t)展开成傅里叶级数也称为谐波分析。

工程实际中所遇到的非正弦周期函数大约有十余种,它们的傅里叶级数展开式前人都已作出,可从各种数学书籍中直接查用。

从式(10-2-3)中看出,将n换成(-n)后即可证明有a-n=anb-n=-bnA-n=Anψ-n=-ψn即an和An是离散变量n的偶函数,bn和ψn是n的奇函数。

二.傅里叶级数的复指数形式将式(10-2-2)改写为可见与互为共轭复数。

代入式(10-2-4)有上式即为傅里叶级数的复指数形式。

下面对和上式的物理意义予以说明:由式(10-2-5)得的模和辐角分别为可见的模与幅角即分别为傅里叶级数第n次谐波的振幅An与初相角ψn,物理意义十分明确,故称为第n次谐波的复数振幅。

的求法如下:将式(10-2-3a,b)代入式(10-2-5)有上式即为从已知的f(t)求的公式。

微型机继电保护考试复习

微型机继电保护考试复习

1、什么是微机继电保护?答:微机继电保护就是,利用微机来反映电力系统故障或不正常的运行状态,并动作于断路器跳闸或发出信号的一种自动化装置。

2、电力系统对继电保护的要求有哪些?答:选择性,速动性、灵敏性、可靠性。

3、微机保护相对于传统继电器保护有哪些优点?答:1)维护调试方便2)可靠性高3)易于获得附加功能4)灵活性大5)保护性能得到很好的改善第一章题目一、填空题1.某工频信号的数据采集系统,其采样间隔为T s=5/3m s,则其采样频率是600h z,一个采样间隔相当于电角度330,每个周波有12个采样点。

2.一个8位的逐次逼近型模数转换器,采用二分搜索法,需要比较8次后方可确定输出值。

3.模数转换器的溢出现象有两种,一种是平顶溢出,其危害不大,可以通过数字滤波方法对它做出一些修正;另一种是清零溢出,这种溢出对微机保护的危害是致命的,必须避免。

4.微机保护选择A D时主要考虑两个指标,转换时间和转换精度。

5.电压频率转换器(VFC)输出的脉冲信号的频率和输入电压成正比,而对脉冲的计数值和输入模拟量在Ts内的积分成正比。

6.V F C的分辨率取决于两个因素:一是最高频率;二是采样间隔和积分间隔的大小.7.某V F C数据采集系统,最高频率f V F C=4MHz,采样间隔T s=5/3ms,积分间隔数N=1,则其最大输出数字量为6667,其分辨率相当于12.7 位的AD转换器。

二、问答1.简述积分间隔对V F C型数据采集系统的影响。

答:积分间隔越大,V F C的精度越高;但作为低通滤波器,积分间隔越大,截止频率越低。

三、计算1.如图所示的4位模数转换电路,参考电压为U R,求数字输入B1B2B3B4=1000时对应的输出电压u s c。

第二章题目一、填空1、根据采样定理,要使信号采样后能够不失真还原,采样频率f S与信号最高频率f m a x的关系为:f S》2f m a x2、线性时不变系统的单位冲激响应为h(n),输入为x(n),y(n)=h(n )*x(n)。

微机继电保护3(优选.)

微机继电保护3(优选.)

一、 简答题,1.与传统继电保护相比,微机保护具有哪些突出特点?2.微机保护的数据采集系统通常由哪几部分组成?各部分的作用是什么?3.微机保护中常用的A/D 转换器有哪些类型?它们的基本工作原理是什么?4. 绘出微机保护的开关量输入回路和输出回路的典型电路图,说明电路中各部分的作用。

见收藏夹5.与模拟滤波器相比,数字滤波器主要有哪些优点?6.微机保护基于正弦函数模型的算法有哪些?各有什么优缺点?二、 相减(差分)滤波单元的差分方程为:y(n)=x(n)-x(n-k)导出可滤除的谐波次数m 与步长K 之间的关系。

设每工频周期的采样点数为N=12,若要滤除直流分量、三次谐波和六次谐波,k 该取多少?三、 设有一微机保护系统,其采样频率为600Hz ,若要完全滤除其输入信号中的三次和五次谐波,并使基波得到放大,试在Z 平面上确定出零点和极点的位置(用图示出)。

四、 已知傅氏算法实虚部的计算公式分别为:设N=12,试导出计算基波和五次谐波电压实部和虚部的具体计算公式。

五、设一输电线路的参数可以用电阻和电感来表示,如图所示试分别用微分方程算法和积分方程算法导出R 、L 的计算式。

答案 1、(1)改善和提高继电保护的动作特性和性能;(2)可以方便地扩充其他辅助功能;(3)工艺结构条件优越;(4)可靠性容易提高;(5)使用方便;(6)保护内部动作过程不像模拟式保护那样直观。

2、答:微机保护的硬件组成:数据采集系统,微型机主系统,开关量(或数字量)输入/输出系统。

数据采集系统将模拟输入量准确地转换为微型机所需的数字量。

微型机主系统执行存放在只读存储器中的程序,将数据采集系统输入至RAM 区的原始数据进行分析处理,完成各种继电保护的功能。

开关量(或数字量)输入/输出系统完成各种保护的出口跳闸、信号报警、外部接点输入及人机对话、通信等功能。

3、A/D 转换器有多种类型,这里仅以目前应用最多的逐次逼近型A/D 转换器为例,说明其工作原理。

快速傅里叶变换的原理及公式

快速傅里叶变换的原理及公式

快速傅里叶变换的原理及公式快速傅里叶变换(Fast Fourier Transform,FFT)是一种基于分治策略的计算离散傅里叶变换(Discrete Fourier Transform,DFT)的高效算法。

FFT算法的基本原理是利用对称性和周期性来减少计算量,将O(n^2)的复杂度降低到O(nlogn)。

傅里叶变换是一种将信号从时域转换到频域的方法,能够将信号拆分成不同频率的正弦和余弦波的叠加。

傅里叶变换的计算公式为:X(k) = Σ(x(n) * e^(-2πikn/N))其中,X(k)表示频域上第k个频率的幅度和相位,x(n)表示时域上第n个采样点的值,N表示采样点的总数。

该公式根据欧拉公式展开,可以得到正弦和余弦函数的和的形式。

FFT算法的核心思想是将DFT的计算分解成多个较小规模的DFT计算,并通过递归进行计算。

它利用了信号的对称性和周期性,将2个互为共轭的频率分量合并成一个复数,从而减少计算量。

FFT算法的具体过程如下:1.如果采样点数N不是2的幂次,则通过添加零补足为2的幂次,得到一个新的序列x'(n)。

2.如果序列的长度为1,即N=1,则返回序列x'(n)。

3.将x'(n)分为两个长度为N/2的子序列x1(n)和x2(n)。

4.使用递归调用FFT算法计算x1(n)的DFT结果X1(k)和x2(n)的DFT结果X2(k)。

5.根据DFT的定义,计算输出DFT序列X(k)。

-对于k=0,X(0)=X1(0)+X2(0)-对于k=1至N/2-1,X(k)=X1(k)+W_N^k*X2(k)-对于k=N/2至N-1其中W_N^k = e^(-2πik/N),是旋转因子。

6.返回DFT结果X(k)。

通过将FFT算法应用于信号处理、图像处理、语音识别等领域,可以大大加速傅里叶变换的计算过程,提高算法的效率和性能。

总结起来,快速傅里叶变换(FFT)是一种高效的算法,可以将信号从时域转换到频域,通过利用信号的对称性和周期性,将DFT的计算复杂度从O(n^2)降低到了O(nlogn)。

基础知识积累—傅里叶变换

基础知识积累—傅里叶变换

概念
傅立叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分 合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅立叶 变换用正弦波作为信号的成分。 定义:f(t)是 t 的周期函数,如果 t 满足狄里赫莱条件:在一个以 2T 为周期内 f(X)连续或只有有限个第一类间断点,附 f(x)单调或可划分成有限个单调区 间,则 F(x)以 2T 为周期的傅里叶级数收敛,和函数 S(x)也是以 2T 为周期 的周期函数,且在这些间断点上,函数是有限值;在一个周期内具有有限个极值 点;绝对可积。 则有下图①式成立,称为积分运算 f(t)的傅立叶变换。 ②式的积分运算叫做 F(ω)的傅立叶逆变换。 F(ω)叫做 f(t)的像函数, f(t)叫做 F(ω)的像原函数。 F(ω)是 f(t)的像。 f(t)是 F(ω) 原像。 ①傅立叶变换:
傅里叶变换
作为现代信号处理的基本方法,有必要重新开始理顺信号处理的来龙去脉, 让基础更加牢靠, 并重最初的经典中探寻前人的智慧结晶,以现代的角度了解事 物发展的过程中的相互联系。 科学家在描述自然过程中, 自然而然的就是建立物理模型,期望用数学表达 式来精确描述这个过程。傅里叶变换在物理学、电子类学科、数论、组合数学、 信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域 都有着广泛的应用 (例如在信号处理中,傅里叶变换的典型用途是将信号分解成 幅值谱——显示与频率对应的幅值大小)。
i
f (n i N ) 。并且当 N 时,

f'[n]实际上就是 f[n],那么我们现在可以求出 f'[n]的傅里叶级数。同 样,当 N 时无穷级数变成了积分,得到的结果是一个连续的周期函 数 X (e j ) (正如离散傅里叶变换一文中所述),这就是 f[n]的离散时间 傅里叶变换。这时,只需在它的主值区间上采样,就可以得到离散傅里叶 变换的变换序列。

第三章 算法分析

第三章 算法分析
(1)模拟滤波器:是应用无源或有源电路元件组 成的一个物理装置或系统。
作用:采样前的模拟低通滤波器主要是为了防止 频率混叠,其叠止频率一般较高。 (2)数字滤波器:直接对输入信号的离散采样值 进行滤波计算,形成一组新的采样序列,然后根 据新的采样值进行参数计算。 作用:抑制数据采集系统引起的各种噪声;滤除 保护子系统在故障发生后,电流和电压信号中混 有衰减的直流分量和高次谐波。
2 2
2
, 1 arctg ( b 1 / a 1 )
傅氏算法求出电流和电压的实部与虚部后就可以 计算有功、无功和功率因数。
P 1 2 ( u b i b u a i a ), Q 1 2 ( ua ib ub ia )
cos
ub ib ua ia 2 ua ub
一、算法的概念 将计算机处理的数字量进行分析、计算,得到 所需的电流、电压的有效值和相位及有功功率、 无功功率等量,或者算出它们的序分量,或者线 路和元件的视在阻抗,或者某次谐波的大小和相 位等,并根据这些参数的计算结果与定值比较决 定装置的动作行为,而完成上述分析计算和比较 判断以实现各种预期功能的方法,就称算法。 算法的主要任务是如何从包含有噪声分量的输 入信号中快速、准确地计算出所需的各种电气量 参数。
四、几种常用的数字滤波器 差分(减法)滤波器、加法滤波器、积分滤波器 1、差分(减法)滤波器 设Ts为采样周期,x(nTs)为t=nTs时的输 入数据(采样值),x(nTs-KTs)为前K个Ts 时刻的输入数据,y(nTs)为t= nTs的滤波器输 出,则差分滤波器的差分方程为:
y ( nTs ) x ( nTs ) x ( nTs KTs )
3.2 常用算法
一、算法介绍
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档