一元二次方程十个注意点

合集下载

人教版九年级上册数学——一元二次方程知识点总结

人教版九年级上册数学——一元二次方程知识点总结

21章 一元二次方程知识点一、一元二次方程1、一元二次方程概念:等号两边是整式,含有一个未知数,并且未知数的最高次数是2的方程叫做一元二次方程。

注意:(1)一元二次方程必须是一个整式方程;(2)只含有一个未知数;(3)未知数的最高次数是2 ;(4)二次项系数不能等于02、一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边是一个关于未知数x 的二次三项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。

注意:(1)二次项、二次项系数、一次项、一次项系数,常数项都包括它前面的符号。

(2)要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它先化为一般形式。

(3)形如02=++c bx ax 不一定是一元二次方程,当且仅当0≠a 时是一元二次方程。

二、 一元二次方程的解使方程左、右两边相等的未知数的值叫做方程的解,如:当2=x 时,0232=+-x x 所以2=x 是0232=+-x x 方程的解。

一元二次方程的解也叫一元二次方程的根。

一元二次方程有两个根(相等或不等)三、一元二次方程的解法1、直接开平方法:直接开平方法理论依据:平方根的定义。

利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。

根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。

三种类型:(1)()02≥=a a x 的解是a x ±=;(2)()()02≥=+n n m x 的解是m n x -±=;(3)()()0,02≥≠=+c m c n mx 且的解是mn c x -±=。

2、配方法:配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。

一元二次方程的重难点及题型

一元二次方程的重难点及题型

一元二次方程的重难点及题型【重难点1 一元二次方程的概念】【方法点拨】解决此类问题掌握一元二次方程的定义是关键;等号两边都是整式,只含有一个未知数,并且未知数的最高次数是2的方程,叫做一元二次方程。

【思路点拨】根据一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程进行分析即可.【题型】①ax2+x+2=0,当a=0时,该方程属于一元一次方程,故错误;②3(x﹣9)2﹣(x+1)2=1、④(a2+a+1)x2﹣a=0符合一元二次方程的定义,故正确;③x+3=1/x属于分式方程,故错误;⑤√x+1=x﹣1属于无理方程,故错误;故选:B【点睛】此题主要考查了一元二次方程的定义,关键是掌握一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2。

【重难点2 一元二次方程的解】【方法点拨】一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解,解决此类问题,通常是将方程的根或解反代回去再进行求解.【思路点拨】把x=0代入方程(m﹣3)x²+3x+m²﹣9=0中,解关于m的一元二次方程,注意m的取值不能使原方程对二次项系数为0【题型】把x=0代入方程(m﹣3)x²+3x+m²﹣9=0中,得m²﹣9=0,解得m=﹣3或3,当m=3时,原方程二次项系数m﹣3=0,舍去,故选:B【点睛】本题考查的是一元二次方程解的定义.能使方程成立的未知数的值,就是方程的解,同时,考查了一元二次方程的概念【重难点3 用指定方法解一元二次方程】【方法点拨】解决此类问题需熟练掌握直接开方法、配方法、公式法、因式分解法的步骤【思路点拨】(1)方程变形后,利用平方根的定义开方即可求出解;(2)方程常数项移到右边,两边加上一次项系数一半的平方,左边化为完全平方式,右边合并,开方即可求出解;(3)方程整理为一般形式,找出a,b,c的值,当根的判别式大于等于0时,代入求根公式即可求出解;(4)方程左边提取公因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【点睛】此题考查了解一元二次方程﹣因式分解法,配方法,公式法,以及直接开平方法,熟练掌握各自解法是解本题的关键.【重难点4 一元二次方程根的判别式】【方法点拨】解决此类问题需熟练掌握根的判别式:当①b²-4ac>0时,方程有两个不相等的实数根;②b²-4ac=0时,方程有两个相等的实数根;③b²-4ac<0时,方程无实数根,反之亦成立.【思路点拨】(1)根据一元二次方程根的判别式列出不等式,结合一元二次方程的定义可得a的范围;(2)将a的值代入得出方程,解之可得.【题型】(1)由题意知△≥0,即4(a﹣1)²﹣4(a﹣2)(a+1)≥0,解得:a≤3,∴a≤3且a≠2;(2)由题意知a=3,则方程为x2﹣4x+4=0,解得:x1=x2=2.【点睛】本题考查的是根的判别式,熟知一元二次方程ax²+bx+c=0(a≠0)的根与△=b²﹣4ac的关系是解答此题的关键.【重难点5 一元二次方程根与系数的关系】【方法点拨】解决此类问题需熟练掌根与系数的关系,熟记两根之和与两根之积,并且能够灵活运用所学知识对代数式进行变形得到两根之和与两根之积的形式,代入即可求值.【思路点拨】(1)将所求的代数式进行变形处理:x₁²+x₂²=(x₁+x₂)²﹣2x₁x₂。

一元二次方程易错点

一元二次方程易错点

一元二次方程易错点
一元二次方程易错点主要有:
1. 未正确识别方程的形式:有时候题目给出的方程可能不是标
准的一元二次方程形式,容易误以为是其他类型的方程。

因此,要注
意检查方程中是否有二次项、一次项和常数项,确保正确识别方程类型。

2. 错误地标记未知数:在解一元二次方程时,常常用字母表示
未知数,如通常用x表示。

然而,在一些情况下,可能会错误地将其
他字母或符号当作未知数。

因此,应该仔细检查并确保正确标记未知数。

3. 求平方根时忽略正负号:在解一元二次方程时,通常需要使
用平方根。

但容易忽略平方根的正负号,导致忽略了可能存在的另一
个解。

解决这个问题的方法是在解方程时考虑两个解,一个是取正平
方根,另一个是取负平方根。

4. 运算错误导致计算结果出错:在解一元二次方程时,可能会
有繁琐的运算过程,容易出现计算错误。

例如,错误地计算平方项、
未正确对齐等。

为避免这些错误,应该仔细地进行每一步的运算、检
查计算过程和结果。

5. 未检查解是否符合题目条件:解一元二次方程后,得到的解
有时候需要符合题目中给出的条件。

如果未仔细检查解是否满足条件,可能会得到不正确的结果。

因此,在解完方程后,应该将解代入原方
程中检查是否成立。

以上就是一元二次方程易错点的一些常见问题,注意避免这些错误,能够提高解题的准确性。

初中数学一元二次方程知识点总结(含习题)

初中数学一元二次方程知识点总结(含习题)

初中数学一元二次方程知识点总结(含习题)一元二次方程知识点的总结知识结构梳理:1、概念1) 一元二次方程含有一个未知数。

2) 未知数的最高次数是2.3) 是方程。

4) 一元二次方程的一般形式是ax²+bx+c=0.2、解法1) 因式分解法,适用于能化为(x+m)(x+n)=0的一元二次方程。

2) 公式法,即把方程变形为ax²+bx+c=0的形式,一元二次方程的解为x=[-b±√(b²-4ac)]/(2a)。

3) 完全平方式,其中求根公式是(x±a)²=b,当时,方程有两个不相等的实数根。

4) 配方法,其中求根公式是(x±a)(x±b)=0,当时,方程有两个实数根。

5) 二次函数图像法,当时,方程有没有实数根。

3、应用1) 一元二次方程可用于解某些求值题。

2) 一元二次方程可用于解决实际问题的步骤包括:列方程、化简方程、解方程、检验答案。

知识点归类:考点一:一元二次方程的定义如果一个方程通过移项可以使右边为0,而左边只含有一个未知数的二次多项式,那么这样的方程叫做一元二次方程。

一元二次方程必须同时满足以下三点:①方程是整式方程。

②它只含有一个未知数。

③未知数的最高次数是2.考点二:一元二次方程的一般形式一元二次方程的一般形式为ax²+bx+c=0,其中a、b、c分别叫做二次项系数、一次项系数、常数项。

要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它先化为一般形式。

考点三:解一元二次方程的方法一元二次方程的解也叫一元二次方程的根。

解一元二次方程的方法包括因式分解法、公式法、完全平方式、配方法和二次函数图像法。

解一元二次方程有四种常用方法:直接开平方法、配方法、因式分解法和公式法。

选择哪种方法要根据具体情况而定。

直接开平方法是解形如x²=a的方程的方法,解为x=±√a。

配方法是将方程的左边加上一次项系数一半的平方,再减去这个数,使得含未知数的项在一个完全平方式里,然后用因式分解法或直接开平方法解方程。

一元二次方程知识点整理

一元二次方程知识点整理

一元二次方程一、本节学习指导本节中我们要注意一元二次方程成立的条件,填空题最青睐这简单而又易忽视的知识。

其次就是根与系数的关系(韦达定理)、判别式,求根公式,这些需要我们重点记忆。

本节有配套学习视频。

二、知识要点1、定义:只含有一个未知数,且未知数最高次数为2的方程叫做一元二次方。

一元二次方程的标准式:ax2+bx+c=0 (a≠0)其中:ax2叫做二次项,bx叫做一次项,c叫做常数项a是二次项系数,b是一次项系数2、一元二次方程根的判别式(二次项系数不为0):“△”读作德尔塔,在一元二次方程ax2+bx+c=0 (a≠0)中△=b2-4ac△=b2-4ac>0 <====> 方程有两个不相等的实数根,即:x1,x2△=b2-4ac=0 <====> 方程有两个相等的实数根,即:x1=x2△=b2-4ac<0 <====> 方程没有实数根。

注:“<====>”是双向推导,也就是说上面的规律反过来也成立,如:告诉我们方程没有实数根,我们便可以得出△<03、一元二次方程根与系数的关系(二次项系数不为0;△≥0),韦达定理。

ax2+bx+c=0 (a≠0)中,设两根为x1,x2,那么有:因为:ax2+bx+c=0 (a≠0)化二次项系数为1可得,所以:韦达定理也描述为:两根之和等于一次项系数的相反数,两根之积等于常数项。

注意:(1)在一元二次方程应用题中,如果解出来得到的是两个根,那么我们要根据实际情况判断是否应舍去一个跟。

5、一元二次方程的求根公式:注:任何一元二次方程都能用求根公式来求根,虽然使用起来较为复杂,但非常有效。

三、经验之谈:对于韦达定理的文字描述希望同学们能理解,试着把二次项系数化1来观察一下。

求根公式也要牢记于心,使用很广泛。

一元二次方程总复习全章知识点梳理.

一元二次方程总复习全章知识点梳理.

一元二次方程总复习考点 1:一元二次方程的概念一元二次方程:只含有一个未知数,未知数的最高次数是 2,且系数不为 0,这样的方程叫一元二次方程.一般形式:ax 2+bx+c=0(a≠ 0 。

注意:判断某方程是否为一元二次方程时,应首先将方程化为一般形式。

考点 2:一元二次方程的解法1. 直接开平方法2. 配方法:3.公式法:4. 因式分解法:因式分解的方法:提公因式、公式法、十字相乘法、分组分解法。

5.一元二次方程的注意事项:⑴在一元二次方程的一般形式中要注意,强调a ≠ 0.因当 a=0时,不含有二次项,即不是一元二次方程.⑵应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定 a , b ,c 的值;②若 b 2 -4ac <0,则方程无解.★⑶利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式.如-2(x+4 2 =3 (x +4中,不能随便约去 x +4。

⑷注意:解一元二次方程时一般不使用配方法 (除特别要求外但又必须熟练掌握,解一元二次方程的一般顺序是:开平方法→因式分解法→公式法.6.一元二次方程解的情况⑴ b 2-4ac ≥ 0⇔方程有两个不相等的实数根;⑵ b 2-4ac=0⇔方程有两个相等的实数根;⑶ b 2-4ac ≤ 0⇔方程没有实数根。

解题小诀窍:当题目中含有“两不等实数根” “两相等实数根” “没有实数根”时,往往首先考虑用b 2-4ac 解题。

主要用于求方程中未知系数的值或取值范围。

考点 3:根与系数的关系 :韦达定理对于方程 ax 2+bx+c=0(a≠ 0 利用韦达定理可以求一些代数式的值(式子变形。

解题小诀窍:当一元二次方程的题目中给出一个根让你求另外一个根或未知系数时,可以用韦达定理。

二、经典考题剖析:【易错】下列方程是关于 x 的一元二次方程的是(A. 02=++c bx axB. 0652=++k x kC. 01232=++xx x D. 012 3(22=+++x x k 1、 (2009成都若关于 x 的方程 kx 2 -2x -1=0有两个不相等的实数根,则 k 的取值范围是(A.k>-1B. k>-1且k ≠ 0C. k<1D. k<1且k ≠ 02、解方程:(1 1(2 1(3-=-y y y y (20862=+-x x3、 (2009鄂州关于 x 的方程 kx 2+(k+2x+4k=0有两个不相等的实数根,(1求 k 的取值范围;(2是否存在实数 k 使方程的两个实数根的倒数和等于 0?若存在求出 k 的值;不存在说明理由。

一元二次方程知识点归纳和重难点精析

一元二次方程知识点归纳和重难点精析

一元二次方程知识点归纳和重难点精析一、知识点归纳1.一元二次方程的基本概念一元二次方程是指只含有一个未知数,且未知数的最高次数为2的整式方程。

其一般形式为ax²+bx+c=0(a≠0)。

2.一元二次方程的解法公式一元二次方程的解法公式为x=[-b ±sqrt(b²-4ac)] / (2a)。

其中,sqrt表示求平方根,x为未知数,a、b、c为方程的系数。

二、重难点精析九年级数学一元二次方程的重难点1.高次项:一元二次方程中,二次项的系数a不能为0.且最高次数为2.这是在解一元二次方程时需要特别注意的难点。

2.整体化简:在求解一元二次方程时,需要将方程进行整体化简,从而得到未知数的值。

这需要学生具备一定的化简和运算能力。

针对重难点的解决方法及相关思考题1.高次项注意事项:在一元二次方程中,要确保二次项的系数不为0.且最高次数不超过2.如有其他高次项,可将其合并或转化为二次项。

2.整体化简技巧:为了更好地求解一元二次方程,学生需要掌握整体化简的方法。

可以通过移项、合并同类项等方式,将方程化简为更易于求解的形式。

思考题:求解一元二次方程x²-6x+9=0时,有哪些方法可以解题?哪种方法更适合处理此类方程?三、扩展知识一元二次方程的历史背景及应用领域一元二次方程作为九年级数学的重要知识点,在实际生活和后续学习中有着广泛的应用。

例如,在解决实际问题时,一元二次方程可用于解决诸如最大化、最小化、平均值等优化问题。

此外,在物理、化学、生物等科学领域中,一元二次方程也常常用于描述现象和解决问题。

相关知识点补充在求解一元二次方程的过程中,可能会涉及到其他数学知识点,如三角函数、平移和缩放等。

这些知识点对于理解一元二次方程的解法和实际应用都有一定的帮助。

例如,三角函数可以用于求解一元二次方程的近似解;平移和缩放可以用于将复杂的一元二次方程转化为简单的形式,从而更容易求解。

因此,学生在学习的过程中需要注意知识点的联系与运用。

一元二次方程知识点总结与易错题

一元二次方程知识点总结与易错题

一元二次方程知识点总结考点一、一元二次方程1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。

2、一元二次方程的一般形式:)0(02≠=++a c bx ax x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。

考点二、一元二次方程的解法b a x =+2)(的一元二次方程。

根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。

222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,那么有222)(2b x b bx x ±=+±。

1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式3、公式法一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b aac b b x公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的系数为b ,常数项的系数为c 。

4、因式分解法分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法〔这里指的是分解因式中的公式法〕或十字相乘,如果可以,就可以化为乘积的形式5、韦达定理 利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和等于-ab ,二根之积等于a c ,也可以表示为x 1+x 2=-ab ,x 1 x 2=ac。

利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用。

考点三、一元二次方程根的判别式 根的判别式:一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆〞来表示,即ac b 42-=∆ I 当△>0时,一元二次方程有2个不相等的实数根; II 当△=0时,一元二次方程有2个相同的实数根; III 当△<0时,一元二次方程没有实数根。

一元二次方程知识点总结

一元二次方程知识点总结

一元二次方程知识点总结标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-第二章 一元二次方程本章中考动向:会用因式分解法、公式法、配方法解简单系数的一元二次方程;了解一元二次方程根的判别式和根与系数的关系并能进行简单运用;能根据具体问题中的数量关系列方程,能根据具体问题的实际意义检验方程的解的合理性。

一. 知识点:1. 一元二次方程的概念只含有一个未知数x 的整式方程,并且都可以化成20ax bx c ++=(a ,b ,c 为常数,a ≠0)的形式,这样的方程叫做一元二次方程。

注:(①整式方程,含有一个未知数;②整理后未知数的最高次数是2)2. 一元二次方程的一般形式一般地,任何一个关于x 的一元二次方程,经过整理,化成:20ax bx c ++=(a ≠0)。

这种形式叫做一元二次方程的一般形式,其中2ax 是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数,c 是常数项。

关键:(1)a ≠0;(2)系数带上符号3.一元二次方程的解(根)能使一元二次方程两边的值相等的未知数的值,叫做一元二次方程的解,也叫一元二次方程的根。

应用:若是方程的解(根),则代入方程,可使其成立。

通常结合恒等变形来求一些式子的值。

例:已知a 是方程2310x x -+= 的一个根,试求3222511a a a a --++ 的值。

4. 配方法解一元二次方程:将一元二次方程转化成()2x m n += (n ≥0)的形式。

通过配成完全平方式的方法得到一元二次方程的根。

()2x m n += (n ≥0)。

x m =- 关键:将二次项系数化为1的方程的两边同时加上一次项系数一半的平方注:在求解一些式子的最值问题时,我们是将式子配成完全平方,再利用完全平方式子的非负性来解决。

例如:当x 取何值时,代数式2267x x -+ 的值最小求出这个最小值5. 公式法解一元二次方程对于一元二次方程20ax bx c ++=(a ≠0),当24b ac -≥0时,利用配方法可算出它的根是2b x a-±= 关键步骤:(1)将方程化为一般形式,确定公式中a ,b ,c 的值;(2)先求出 24b ac -的值,再考虑是否用公式。

一元二次方程基础知识点注意事项

一元二次方程基础知识点注意事项

一元二次方程基础知识点注意事项
一元二次方程是数学中重要的概念之一,也是数学中的必考知识点。

为了帮助大家更好地理解和掌握一元二次方程的基础知识,以下总结了一些注意事项:
一、定义
一元二次方程是指只含有一个未知数,且未知数的最高次数是2的方程。

其一般形式为:ax^2+bx+c=0(a≠0)
其中,a、b、c是常数,a≠0。

二、解法
一元二次方程的解法主要有以下几种:
1.公式法:利用求根公式求解一元二次方程的解。

2.配方法:通过配方化简方程,从而求解一元二次方程的解。

3.因式分解法:将一元二次方程分解为两个一次因式的乘积,从而求解一元二次方程的解。

4.直接开平方法:对于某些特殊的一元二次方程,可以直接开平求解。

三、注意事项
在解一元二次方程时,要注意方程的类型。

对于无常数项的一元二次方程,可以直接用平方根公式求解;对于有常数项的一元二次方程,需要先化简方程,再用求根公式求解。

在使用求根公式求解一元二次方程时,要注意判别式的值。

当判别式大于0时,方程有两个不相等的实数根;当判别式等于0时,方程有两个相等的实数根;当判别式小于0时,方程无实数根。

在使用因式分解法求解一元二次方程时,要注意因式分解的技巧。

常用的因式分解公式包括平方差公式、完全平方公式、十字相乘法等。

四、应用
一元二次方程可以应用于解决实际问题。

例如,可以用于求解匀速运动中的路程、时间、速度等问题;也可以用于求解抛物线的顶点坐标等问题。

一元二次方程知识点及考点精析

一元二次方程知识点及考点精析

一元二次方程知识点及考点精析一、知识结构: 一元二次方程⎪⎩⎪⎨⎧*⇒韦达定理根的判别解与解法二、考点精析(1)定义:只含有一个未知数........,并且②未知数的最高次数是.........2.,这样的③整式方程....就是一元二次方程。

(2)一般表达式:)0(02≠=++a c bx ax 其中2ax 是二次项,a 叫二次项系数;bx 是一次项,b 叫一次项系数,c 是常数项。

二次项系数、一次项系数及常数项都是方程在一般形式下定义的,所以求一元二次方程的各项系数时,必须先将方程化为一般形式。

①该项系数不为“0”; ②未知数指数为“2”;③若存有某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。

典型例题:例1、下列方程中是关于x 的一元二次方程的是( )A ()()12132+=+x xB 02112=-+x xC 02=++c bx axD 1222+=+x x x 变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。

例2、方程()0132=+++mx x m m 是关于x 的一元二次方程,则m 的值为 。

★1、方程782=x 的一次项系数是 ,常数项是 。

★2、若方程()021=--m xm 是关于x 的一元一次方程,⑴求m 的值;⑵写出关于x 的一元一次方程。

★★3、若方程()112=•+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。

★★★4、若方程nx m +x n -2x 2=0是一元二次方程,则下列不可能的是( )B.m=2,n=1C.n=2,m=1D.m=n=1⑴概念:使方程两边相等的未知数的值,就是方程的解。

⑵应用:利用根的概念求代数式的值;例1、已知322-+y y 的值为2,则1242++y y 的值为 。

例2、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。

例3、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。

一元二次方程十个注意点

一元二次方程十个注意点

一元二次方程十个注意点一元二次方程是初中代数的一个重要内容,也是中考的热点之一。

为了帮助同学们学好这部分内容,现谈谈应注意的十个问题。

一.要善于选择简捷的方法解一元二次方程1.解方程:2 .解关于x的一元二次方程二解关于m .t的方程时结果写成x1.x21 t 2+t-2=02 m2-4m-5=0三.含字母系数的一元二次方程注意二次项系数不为03 关于X的一元二次方程kx2-2x-1=0有两个不相等实数根,求K的取值范围?4 关于x一元二次方程(m-1)x2-mx+1=0有两个不相等的实数根,则m的取值范围?四..在应用根与系数关系时,要注意,a不为05.已知关于x的方程两实数根为x1、x2是否存在常数k使成立?若存在,求出k的值,若不存在,请说明理由。

五.要认真审题,在未点明方程次数(或根的个数)时要考虑(与)的两种情况6 .解关于x的方程7. 若关于X的方程ax2+2(x+2)+a=0有实数根,那么实数a的取值范围是------------[ a>-1]六.注意一元二次方程对称根的解法8 .如果m、n是两个不相等的实数,且满足,求:代数式2m2+4n2-4n+2015的值。

七.解一元二次方程时对字母取值范围进行验证9 当m取什么整数时,关于x的一元二次方程mx2-4x+4=0与x2-4mx+4m2-4m-5=0的根都是整数。

八注意一元二次方程题目中的隐含条件10 已知关于X的一元二次方程(a2-1)x2+2(a+2)+1=0有实数根,求a的取值范围?九注意用韦达定理求K值时,△≥011 .若关于x的一元二次方程x2+kx=k2-3=0的两个实数根分别是x1,x2,且满足x1+x2=x1x2则K的值为()A -1或0.75B -1C 0.75D 不存在十.注意应用题双重检测(验根,是否符合题意)12 甲乙两艘旅客客轮同时从台湾省某港出发去夏门,甲沿直线航行180海里到达厦门,乙沿原来航线绕道香港后到达厦门,共航行了720海里,结果乙比甲晚20h到达厦门。

人教版九年级数学上册知识点总结:第二十一章一元二次方程

人教版九年级数学上册知识点总结:第二十一章一元二次方程

人教版九年级数学上册知识点总结第二十一章一元二次方程21.1 一元二次方程知识点一一元二次方程的定义等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。

注意一下几点:①只含有一个未知数;②未知数的最高次数是2;③是整式方程。

知识点二一元二次方程的一般形式一般形式:ax2 + bx + c = 0(a ≠0).其中,ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。

知识点三一元二次方程的根使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根。

方程的解的定义是解方程过程中验根的依据。

典型例题:1、已知关于x的方程()x21m-+(m-3)-1=0是一元二次方程,求m的值。

21.2 降次——解一元二次方程21.2.1 配方法知识点一直接开平方法解一元二次方程(1)如果方程的一边可以化成含未知数的代数式的平方,另一边是非负数,可以直接开平方。

一般地,对于形如x2=a(a≥0)的方程,根据平方根的定义可解得x1=a,x2=a-.(2)直接开平方法适用于解形如x2=p或(mx+a)2=p(m≠0)形式的方程,如果p≥0,就可以利用直接开平方法。

(3)用直接开平方法求一元二次方程的根,要正确运用平方根的性质,即正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根。

(4)直接开平方法解一元二次方程的步骤是:①移项;②使二次项系数或含有未知数的式子的平方项的系数为1;③两边直接开平方,使原方程变为两个一元二次方程;④解一元一次方程,求出原方程的根。

知识点二配方法解一元二次方程通过配成完全平方形式来解一元二次方程的方法,叫做配方法,配方的目的是降次,把一个一元二次方程转化为两个一元一次方程来解。

配方法的一般步骤可以总结为:一移、二除、三配、四开。

(1)把常数项移到等号的右边;(2)方程两边都除以二次项系数;(3)方程两边都加上一次项系数一半的平方,把左边配成完全平方式;(4)若等号右边为非负数,直接开平方求出方程的解。

学习一元二次方程应注意的几个问题

学习一元二次方程应注意的几个问题

学习一元二次方程应注意的几个问题一元二次方程是初中数学的重要内容之一,应用十分广泛。

为了帮助同学们学好这部分内容,现将一元二次方程的考点内容归类分析,谈谈学习一元二次方程时应注意的几个问题。

一、注意隐含条件一元二次方程中除了隐含着二次项系数a≠0和一元二次方程有实根的条件(判别式Δ≥0)外,其他相关隐含条件也不能忽视。

例1 关于x的方程a2x2+(2a-1)x+1=0的两根互为倒数,求a的值。

错解:设已知方程的两根为α,β。

∵α与β互为倒数,∴αβ=1,即1a2=1。

∴a=±1。

剖析:上述解法中忽视了隐含条件“二次项系数a≠0”和“一元二次方程有实根的条件(判别式Δ≥0)”,因而答案错误。

正确答案应为a=-1。

例2 已知关于x的方程(1-2a)x2+2[]a+1x-1=0有两个不相等的实数根,求a的取值范围。

错解:由1-2a≠0得a≠12。

由Δ=(2[]a+1)2-4(1-2a)(-1)=-4a+8>0,得a<2。

故答案为a<2且a≠12。

剖析:错解中忽略了被开方数非负这个条件,即a+1≥0,解得a≥-1,所以正确答案为-1≤a<2且a≠12。

二、注意方程“有实数根”和“有两个实数根”的区别方程“有实数根”说明该方程可能是一元二次方程,也可能是一元一次方程;方程“有两个实数根”说明该方程一定是一元二次方程。

例3 若关于x的方程ax2-4x+3=0有实数根,则a 的非负整数值是()A。

1 [WB]B。

0,1C。

0,1,2[DW]D。

1,2,3错解:由题意,得a≠0且Δ=(-4)2-4×3a≥0,解得a≤43且a≠0。

故选A。

剖析:此题应分a=0和a≠0两种情况来考虑。

(1)当a=0时,x=43,方程有实根。

(2)当a≠0时,由Δ=(-4)2-4×3a≥0,得a ≤43且a≠0。

故a=1。

综上可知,a的非负整数值为0,1。

故选B。

三、注意实际问题中方程的根有意义的条件例4 一个三角形的最大边长是2[]3,其余两边是关于x的方程x2+(m-3)x-m+1=0的两个根,当m 为何值时,这个三角形是直角三角形?错解:设三角形两边为a,b,由题意,得[JB({]a+b=-(m-3),ab=-m+1,a2+b2=(2[]3)2,[JB)]解得m=5或m=-1。

人教版数学九年级上册第21章 一元二次方程知识点汇总

人教版数学九年级上册第21章 一元二次方程知识点汇总

人教版数学九年级上册第21章 一元二次方程知识点汇总1. 一元二次方程的定义及一般形式:(1) 等号两边都是整式, 只含有一个未知数(一元) , 并且未知数的最高次数式2(二次)的方程,叫做一元二次方程。

2. 一元二次方程的解法(1)直接开平方法:形如 (x+a )²=b(b≥0) 的方程可以用直接开平方法解, 两边直接开平方得 x +a =√b 或者 x +a =−√b,∴x =−a ±√b 。

注意:若b<0, 方程无解(2) 因式分解法:一般步骤如下:①将方程右边得各项移到方程左边, 使方程右边为0:②将方程左边分解为两个一次因式相乘的形式;③令每个因式分别为零, 得到两个一元一次方程;④解这两个一元一次方程, 他们的解就是原方程的解。

(3) 配方法:用配方法解一元二次方程 ax²+bx+c=0(a≠0) 的一般步骤①二次项系数化为1:方程两边都除以二次项系数;④用直接开平方法解变形后的方程。

注意: 当n<0时, 方程无解(4) 公式法:一元二次方程 ax²+bx+c=0(a≠0) 根的判别式: △=b²-4ac△>0⇔方程有两个不相等的实根: x =−b±√b 2−4ac 2a (b 2−4ac ≥0)f (x )的图像与x 轴有两个交点 (2) 一元二次方程的一般形式:ax²+bx+c=0(a≠0)。

其中a 为二次项系数,b 为一次项系数,c 为常数项。

注意:三个要点,①只含有一个未知数;②所含未知数的最高次数是2;③是整式方程。

②移项:使方程左边为二次项与一次项,右边为常数项;③配方:方程两边都加上一次项系数一般的平方,把方程化为(x+m)²=n(n≥0)的形式;。

一元二次方程的解法规律总结

一元二次方程的解法规律总结

一元二次方程的解法规律总结1.一元二次方程的解法1直接开平方法:根据平方根的意义,用此法可解出形如a x 2=a ≥0,b )a x (2=-b ≥0类的一元二次方程.a x 2=,则a x ±=;b )a x (2=-,b a x ±=-,b a x +=.对有些一元二次方程,本身不是上述两种形式,但可以化为a x 2=或b )a x (2=-的形式,也可以用此法解.2因式分解法:当一元二次方程的一边为零,而另一边易分解成两个一次因式的积时,就可用此法来解.要清楚使乘积ab =0的条件是a =0或b =0,使方程xx -3=0的条件是x =0或x -3=0.x 的两个值都可以使方程成立,所以方程xx -3=0有两个根,而不是一个根. 3配方法:任何一个形如bx x 2+的二次式,都可以通过加一次项系数一半的平方的方法配成一个二项式的完全平方,把方程归结为能用直接开平方法来解的方程.如解07x 6x 2=++时,可把方程化为7x 6x 2-=+,22226726x 6x ⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛++,即2)3x (2=+,从而得解. 注意:1“方程两边各加上一次项系数一半平方”的前提是方程的二次项系数是1.2解一元二次方程时,一般不用此法,掌握这种配方法是重点.3公式法:一元二次方程0c bx ax 2=++a ≠0的根是由方程的系数a 、b 、c 确定的.在0ac 4b 2≥-的前提下,a 2ac 4b b x 2-±-=.用公式法解一元二次方程的一般步骤:①先把方程化为一般形式,即0c bx ax 2=++a ≠0的形式;②正确地确定方程各项的系数a 、b 、c 的值要注意它们的符号;③计算0ac 4b 2<-时,方程没有实数根,就不必解了因负数开平方无意义;④将a 、b 、c 的值代入求根公式,求出方程的两个根.说明:象直接开平方法、因式分解法只是适宜于特殊形式的方程,而公式法则是最普遍,最适用的方法.解题时要根据方程的特征灵活选用方法.2.一元二次方程根的判别式一元二次方程的根有三种情况:①有两个不相等的实数根;②有两个相等的实数根;③没有实数根.而根的情况,由ac 4b 2-的值来确定.因此ac 4b 2-=∆叫做一元二次方程0c bx ax 2=++的根的判别式.△>0⇔方程有两个不相等的实数根.△=0⇔方程有两个相等的实数根. △<0⇔方程没有实数根.判别式的应用1不解方程判定方程根的情况;2根据参数系数的性质确定根的范围;3解与根有关的证明题.3.韦达定理及其应用定理:如果方程0c bx ax 2=++a ≠0的两个根是21x x ,,那么a c x x ab x x 2121=⋅-=+,. 当a =1时,c x x b x x 2121=⋅-=+,.应用:1已知方程的一根,不解方程求另一根及参数系数;2已知方程,求含有两根对称式的代数式的值及有关未知系数;3已知方程两根,求作以方程两根或其代数式为根的一元二次方程;4已知两数和与积求两数.4.一元二次方程的应用1面积问题;2数字问题;3平均增长率问题.步骤:①分析题意,找到题中未知数和题给条件的相等关系包括隐含的;②设未知数,并用所设的未知数的代数式表示其余的未知数;③找出相等关系,并用它列出方程;④解方程求出题中未知数的值;⑤检验所求的答数是否符合题意,并做答.这里关键性的步骤是②和③.注意:列一元二次方程应用题是一元一次方程解应用题的拓展,解题的方法是相同的,但因一元二次方程有两解,要检验方程的解是否符合题意及实际问题的意义.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程十个注意点
一元二次方程是初中代数的一个重要内容,也是中考的热点之一。

为了帮助同学们学好这部分内容,现谈谈应注意的十个问题。

一.要善于选择简捷的方法解一元二次方程
1.解方程:
2 .解关于x的一元二次方程
二解关于m .t的方程时结果写成x1.x2
1 t 2+t-2=0
2 m2-4m-5=0
三.含字母系数的一元二次方程注意二次项系数不为0
3 关于X的一元二次方程kx2-2x-1=0有两个不相等实数根,求K 的取值范围?
4 关于x一元二次方程(m-1)x2-mx+1=0有两个不相等的实数根,则m的取值范围?
四..在应用根与系数关系时,要注意,a不为0
5.已知关于x的方程两实数根为x1、x2是
否存在常数k使成立?若存在,求出k的值,若不存在,请说明理由。

五.要认真审题,在未点明方程次数(或根的个数)时要考虑(与)的两种情况
6 .解关于x的方程
7. 若关于X的方程ax2+2(x+2)+a=0
有实数根,那么实数a的取值范围是------------
[ a>-1]
六.注意一元二次方程对称根的解法
8 .如果m、n是两个不相等的实数,且满足,
求:代数式2m2+4n2-4n+2015的值。

七.解一元二次方程时对字母取值范围进行验证
9 当m取什么整数时,关于x的一元二次方程mx2-4x+4=0与x2-4mx+4m2-4m-5=0的根都是整数。

八注意一元二次方程题目中的隐含条件
10 已知关于X的一元二次方程(a2-1)x2+2(a+2)+1=0有实数根,求a的取值范围?
九注意用韦达定理求K值时,△≥0
11 .若关于x的一元二次方程x2+kx=k2-3=0的两个实数根分
别是x1,x2,且满足x1+x2=x1x2则K的值为()
A -1或0.75
B -1
C 0.75
D 不存在
十.注意应用题双重检测(验根,是否符合题意)
12 甲乙两艘旅客客轮同时从台湾省某港出发去夏门,甲沿直线航行180海里到达厦门,乙沿原来航线绕道香港后到达厦门,共航行了720海里,结果乙比甲晚20h到达厦门。

已知乙航速比甲航速每小时快6海里,求甲客轮的速度(其中两客轮速度都大于16海里。

相关文档
最新文档