陶瓷基复合材料论文精编WORD版

合集下载

陶瓷基复合材料的性能及应用发展

陶瓷基复合材料的性能及应用发展

陶瓷基复合材料的性能及应用发展摘要:由于生产生活的需求,陶瓷基复合材料得到了广泛的关注,为了更好的了解这种新型材料,本文综述了陶瓷基复合材料的主要性能、应用及未来发展。

关键词:陶瓷基复合材料;性能;应用;研究发展;1. 前言陶瓷基体可以作为氮化硅、碳化硅等多种高温耐热结构陶瓷。

耐热陶瓷材料具有良好的热膨胀、热传导性能和氧化抗力,同时具有热冲击抗力、机械冲击抗力等性能。

这些优异性能主要是因为作为基体的陶瓷的化学结合更多地趋于离子键,其化学结合离子键的性能很强[1-3]。

但其致命的缺点就是脆性大,材料易断裂。

随着我国电子工业的快速稳步发展和电子宇宙线的开发,原子能合成工业的迅速兴起,电子激光合成技术、传感合成技术、光电融合技术等新一代技术的不断出现。

传统陶瓷无论在结构性能、品种和生产质量等方面都不能完全满足市场需求,因此对传统陶瓷进行了一系列的结构改变与技术创新,这便逐渐形成了陶瓷基复合材料。

为更好的将陶瓷基复合材料应用到生产生活领域,本文将对陶瓷基复合材料的性能进行总结,并对其应用和发展进行展望。

2. 陶瓷基复合材料的性能2.1 陶瓷基复合材料的物理和化学性能2.1.1热膨胀热膨胀的相容性对于复合材料性能的影响十分重要。

由于难以实现线膨胀系数的理想状态,因此通常用线膨胀系数对材料的热膨胀进行表征。

晶体具有各向异性,所以热应力极易导致多晶材料开裂。

在陶瓷基复合材料中,可以使弱界面也不发生界面脱粘的方法是增强体承压缩的残余应力。

2.1.2热传导裂纹、空洞和界面结合情况会对陶瓷基复合材料的热传导性能产生影响。

为使高速飞行器在运行过程中快速放热,避免因散热问题对飞行安全造成威胁,曾涛[4]等人设计了C/SiC陶瓷基梯度点阵热防护结构,这种结构为飞行器合理化散热提供了理论依据。

2.1.3氧化抗力导热率是高温陶瓷基复合材料氧化抗力的重要性能指标。

卢国峰[5]通过研究表明,Si–O–C界面层较高的氧化抗力可以使Si–C–N复合材料抗氧化性能得以提高。

陶瓷基复合材料[精选合集]

陶瓷基复合材料[精选合集]

陶瓷基复合材料[精选合集]第一篇:陶瓷基复合材料碳/碳化硅陶瓷基复合材料一、简介陶瓷基复合材料(Ceramic matr ix composite ,CMC)是在陶瓷基体中引入第二相材料, 使之增强、增韧的多相材料, 又称为多相复合陶瓷(Multiphase composite ceramic)或复相陶瓷(Diphase ceramic)。

陶瓷基复合材料是20 世纪80 年代逐渐发展起来的新型陶瓷材料, 包括纤维(或晶须)增韧(或增强)陶瓷基复合材料、异相颗粒弥散强化复相陶瓷、原位生长陶瓷复合材料、梯度功能复合陶瓷及纳米陶瓷复合材料。

其因具有耐高温、耐磨、抗高温蠕变、热导率低、热膨胀系数低、耐化学腐蚀、强度高、硬度大及介电、透波等特点,在有机材料基和金属材料基不能满足性能要求的工况下可以得到广泛应用, 成为理想的高温结构材料。

报道,陶瓷基复合材料正是人们预计在21 世纪中可替代金属及其合金的发动机热端结构的首选材料。

鉴于此, 许多国家都在积极开展陶瓷基复合材料的研究, 大大拓宽了其应用领域, 并相继研究出各种制备新技术。

其中,C/SiC 陶瓷基复合材料是其中一个非常重要的体系。

C/SiC 陶瓷基复合材料主要有两种类型, 即碳纤维/碳化硅(Cf /SiC)和碳颗粒/碳化硅(Cp/SiC)陶瓷基复合材料。

Cf /SiC 陶瓷基复合材料是利用Cf 来增强增韧SiC 陶瓷, 从而改善陶瓷的脆性, 实现高温结构材料所必需的性能, 如抗氧化、耐高温、耐腐蚀等;Cp/SiC 陶瓷基复合材料是利用Cp 来降低SiC 陶瓷的硬度, 实现结构陶瓷的可加工性能,同时具有良好的抗氧化性、耐腐蚀、自润滑等。

本文主要综述了Cf /SiC 陶瓷基复合材料的制备及应用研究现状,并且从结构和功能一体化的角度, 提出了采用软机械力化学法制备Cp 与SiC 复合粉体, 通过无压烧结得到强度、抗氧化性、耐腐蚀等性能以满足普通民用工业用的Cp/SiC 陶瓷基复合材料的制备技术及应用前景。

氧化铝陶瓷复合材料论文

氧化铝陶瓷复合材料论文

氧化铝陶瓷复合材料摘要:氧化铝陶瓷复合材料的发展、性能、应用、以及成型技术关键词:氧化铝陶瓷复合材料的发展性能应用成型技术引言:氧化铝陶瓷的性能简介,发展,应用,以及成型技术1.氧化铝陶瓷的发展氧化铝陶瓷复合材料是氧化物陶瓷中应用最广、用途最宽、产量最大的陶瓷复合材料[1]。

据研究报道,Al203有12种同质多晶变体,但应用较多的主要有3种,即α—A1203、β—AI203和γ—A1203。

这3种晶体的结构不同,它们的性质具有很大的差异(1)α—A12O3是三方晶系,单位晶胞是一个尖的菱面体,其结构最紧密、化学活性低、高温稳定性好、电学性能优良并且机械性能也最佳,在一定条件下可以由其它的两种晶体转换而来。

(2)β—A1203是一种A12O3。

含量很高的多铝酸盐矿物,它的化学组成中含有一定量的碱土金属氧化物和碱金属氧化物。

并且还可以呈现离子型导电。

(3)Y—Al203是尖晶石型立方结构,它的氧原子呈立方紧密堆积。

铝原子填充在间隙中,这就决定了它在高温下不稳定、力学和电学性能差的缺陷,在科学应用中很少单独制成材料使用。

但它有较高的比表面积和较强的化学活性,经过技术改进可以作为吸附材料使用。

2.氧化铝陶瓷复合材料的性能2.1机械方面陶瓷烧结产品的抗弯强度可达250MPa,热压产品可达500MPa。

A12O3陶瓷具有优良的抗磨损性能,所以广泛地用于制造刀具、球阀、磨轮、陶瓷钉、轴承等,其中以陶瓷刀具中应用最广[2]。

2.1.1陶瓷刀具陶瓷刀具在金属切削过程中,刀具起着主导作用。

由于刀具材料的性能不同,其切削性能相差很大。

A1203陶瓷刀具由于具有硬度高、高温力学性能强、耐磨性能好、化学稳定性好、不易与金属发生粘结等特点,大量应用于硬切割、高速干切割、超高速切割等一些难加工材料的切割。

陶瓷刀具的最佳切削速度比一般的硬质合金刀具高,可大幅提高对不同材料的切削效率。

随着科学工作者的大量研究,在制备陶瓷刀具中实现了对原料纯度和晶粒尺寸的有效控制,以及添加其它成分构成两相或以固溶体形式存在于基体之中的Al 2O。

陶瓷基复合材料标准论文

陶瓷基复合材料标准论文

张峰Z09016133陶瓷基复合材料陶瓷基复合材料概述:陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。

陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。

这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。

而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。

纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。

陶瓷基复合材料具有优异的耐高温性能,主要用作高温及耐磨制品。

其最高使用温度主要取决于基体特征。

陶瓷基复合材料已实用化或即将实用化的领域有刀具、滑动构件、发动机制件、能源构件等。

法国已将长纤维增强碳化硅复合材料应用于制造高速列车的制动件,显示出优异的摩擦磨损特性,取得满意的使用效果。

陶瓷基复合材料制造工艺1 粉末冶金法工艺流程:原料(陶瓷粉末、增强剂、粘结剂和助烧剂) 均匀混合(球磨、超声等) 冷压成形 (热压)烧结适用于颗粒、晶须和短纤维增韧陶瓷基复合材料2浆体法(湿态法)为了克服粉末冶金法中各组元混合不均的问题,可采用浆体(湿态)法制备颗粒、晶须和短纤维增韧陶瓷基复合材料。

其混合体为浆体形式。

混合体中各组元保持散凝状。

即在浆体中呈弥散分散采用浆体浸渍法也可制备连续纤维增韧陶瓷基复合材料3反应烧结法用此方法制备陶瓷基复合材料,除基体材料几乎无收缩外,还具有以下优(1)增强剂的体积比可以相当大;(2)可用多种连续纤维预制体;(3)大多数陶瓷基复合材料的反应烧结温度低于陶瓷的烧结温度,因此可避免纤维的损伤。

此方法最大的缺点是高气孔率难以避免。

4、液态浸渍法用此方法制备陶瓷基复合材料,化学反应熔体粘度、熔体对增强材料的浸润性是首要考虑的问题,这些因素直接影响着材料的性能。

陶瓷熔体可通过毛细作用渗入增强剂预制体的孔隙。

施加压力或抽真空将有利于浸渍过程。

假如预制体中的孔隙呈一束束有规则间隔的平行通道,则可用Poisseuiue方程计算出浸渍高度h:h = √(γr t cosθ)/ 2η式中r 是圆柱型孔隙管道半径;t 是时间;γ是浸渍剂的表面能;θ是接触角;η是粘度。

高性能陶瓷基复合材料的研究与开发

高性能陶瓷基复合材料的研究与开发

高性能陶瓷基复合材料的研究与开发1. 引言在现代科技的推动下,高性能材料的需求日益增加。

陶瓷材料因其优异的性能特点和广泛的应用领域受到了广泛关注。

然而,传统的陶瓷材料在强度、韧性和耐磨性等方面存在一定的局限性。

为了克服这些问题,高性能陶瓷基复合材料应运而生。

2. 高性能陶瓷基复合材料的定义和分类高性能陶瓷基复合材料指的是将陶瓷基体与其他材料(如金属、高聚物等)进行复合形成的材料。

根据复合方式的不同,可以将其分为层状复合材料、颗粒增强复合材料和纤维增强复合材料等几个类别。

这些复合材料能够充分发挥各自材料的优点,同时弥补各自的缺陷,从而取得了出色的性能。

3. 高性能陶瓷基复合材料的研究与开发现状目前,高性能陶瓷基复合材料的研究与开发取得了一系列重要突破。

以颗粒增强复合材料为例,研究人员通过控制颗粒尺寸和分布、优化界面结合等方法,成功提高了复合材料的强度和韧性。

此外,纤维增强复合材料在航空航天、汽车等领域的应用也取得了不俗的成绩。

不仅如此,还有研究者通过引入碳纳米管、高分子单体等新材料,进一步提升了复合材料的性能。

4. 高性能陶瓷基复合材料的应用前景由于高性能陶瓷基复合材料具有高强度、高硬度、耐高温、耐磨损等诸多优点,其应用前景广阔。

在航空航天领域,可以应用于飞机发动机、导弹外壳等高强度、高温环境下的部件。

在汽车制造行业,可以用于制造车身、引擎零部件等,提高汽车的安全性和燃油效率。

同时,高性能陶瓷基复合材料还广泛应用于新能源、生物医学、电子器件等领域。

5. 高性能陶瓷基复合材料的挑战与改进尽管高性能陶瓷基复合材料在性能和应用领域上取得了重要进展,但仍面临一些挑战。

首先,复合材料的制备过程较为复杂,需要控制好各种工艺参数才能得到理想的材料。

其次,复合材料的界面结合也是一个关键问题,界面的结合强度会影响整个材料的性能。

因此,进一步提高复合材料的制备工艺和界面结合技术是未来的重点研究方向。

6. 结论高性能陶瓷基复合材料是材料科学领域的研究热点,也是未来材料发展的重要方向之一。

陶瓷基复合材料

陶瓷基复合材料

陶瓷基复合材料
陶瓷基复合材料是一种由陶瓷基体和其他增强材料组成的复合材料。

陶瓷基体
通常具有优异的耐高温、耐腐蚀和硬度等特性,而增强材料则可以进一步提升复合材料的力学性能。

由于其独特的性能和广泛的应用领域,陶瓷基复合材料受到了广泛的关注和研究。

首先,陶瓷基复合材料具有优异的耐高温性能。

由于陶瓷基体本身具有高熔点
和良好的热稳定性,因此陶瓷基复合材料可以在高温环境下保持稳定的性能,这使得它在航空航天、能源和化工等领域有着重要的应用。

例如,碳纤维增强碳化硅复合材料可以在高温高压下保持优异的力学性能,因此被广泛应用于航空发动机零部件的制造。

其次,陶瓷基复合材料具有良好的耐腐蚀性能。

陶瓷基体通常具有优异的化学
稳定性,能够抵抗酸碱腐蚀和氧化腐蚀,而增强材料的加入可以进一步提升复合材料的抗腐蚀性能。

因此,陶瓷基复合材料在化工、海洋工程和环保设备等领域有着广泛的应用前景。

例如,氧化锆纤维增强氧化锆复合材料具有优异的耐腐蚀性能,被广泛应用于化工设备的制造。

此外,陶瓷基复合材料还具有优异的硬度和耐磨损性能。

陶瓷基体通常具有高
硬度和良好的耐磨损性,而增强材料的加入可以进一步提升复合材料的耐磨损性能。

因此,陶瓷基复合材料在汽车制造、机械加工和精密仪器等领域有着重要的应用。

例如,碳化硅纤维增强碳化硅复合材料具有优异的硬度和耐磨损性能,被广泛应用于机械零部件的制造。

综上所述,陶瓷基复合材料具有优异的耐高温、耐腐蚀和硬度等特性,具有广
泛的应用前景。

随着材料科学和工程技术的不断发展,相信陶瓷基复合材料将会在更多领域得到应用,并为人类社会的发展做出更大的贡献。

陶瓷基复合材料

陶瓷基复合材料

陶瓷基复合材料论文2015年5月5日摘要:陶瓷基复合材料主要以高性能陶瓷为基体.通过加入颗粒、晶须、连续纤维和层状材料等增强体而形成的复合材料。

如碳化硅、氮化硅、氧化铝等,具有耐高温、耐腐蚀、高强度、重量轻和价格低等优点。

陶瓷基复合材料的研究还处于较初级阶段,我国对陶瓷基复合材料的研究则刚刚起步不久。

关键词:陶瓷基复合材料基体增强体强韧化机理制备技术前言:陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。

陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。

这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。

而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。

纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。

陶瓷基复合材料具有优异的耐高温性能,主要用作高温及耐磨制品。

其最高使用温度主要取决于基体特征。

正文一、陶瓷基复合材料基本概述陶瓷基复合材料的基体为陶瓷。

如碳化硅、氮化硅、氧化铝等,具有耐高温、耐腐蚀、高强度、重量轻和价格低等优点。

化学键往往是介于离子键与共价键之间的混合键。

陶瓷基复合材料中的增强体通常也称为增韧体。

从几何尺寸上可分为纤维(长、短纤维)、晶须和颗粒三类。

碳纤维主要用在把强度、刚度、重量和抗化学性作为设计参数的构件;其它常用纤维是玻璃纤维和硼纤维。

纤维增强陶瓷基复合材料是改善陶瓷材料韧性的重要手段。

目前常用的晶须是S iC和A12O3,常用的基体则为Ai2O3,ZrO2,Si02,Si3N4以及莫来石等。

晶须具有长径比,含量较高时,桥架效应使致密化困难,引起了密度的下降导致性能下降。

颗粒代替晶须在原料的混合均匀化及烧结致密化方而均比晶须增强陶瓷基复合材料要容易。

常用的颗粒也是SiC、SisN’和A H O S等。

陶瓷基复合材料发展迟滞,发展过程中也遇到了比其它复合材料更大的困难。

陶瓷基复合材料论文资料

陶瓷基复合材料论文资料

陶瓷基复合材料在航天领域的应用概念:陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。

陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。

这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。

而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。

纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。

陶瓷基复合材料具有优异的耐高温性能,主要用作高温及耐磨制品。

其最高使用温度主要取决于基体特征。

一、陶瓷基复合材料增强体用于复合材料的增强体品种很多,根据复合材料的性能要求,主要分为以下几种1.1纤维类增强体纤维类增强体有连续长纤维和短纤维。

连续长纤维的连续长度均超过数百。

纤维性能有方向性,一般沿轴向均有很高的强度和弹性模量。

1.2颗粒类增强体颗粒类增强体主要是一些具有高强度、高模量。

耐热、耐磨。

耐高温的陶瓷等无机非金属颗粒,主要有碳化硅、氧化铝、碳化钛、石墨。

细金刚石、高岭土、滑石、碳酸钙等。

主要还有一些金属和聚合物颗粒类增强体,后者主要有热塑性树脂粉末1.3晶须类增强体晶须是在人工条件下制造出的细小单晶,一般呈棒状,其直径为0.2~1微米,长度为几十微米,由于其具有细小组织结构,缺陷少,具有很高的强度和模量。

1.4金属丝用于复合材料的高强福、高模量金属丝增强物主要有铍丝、钢丝、不锈钢丝和钨丝等,金属丝一般用于金属基复合材料和水泥基复合材料的增强,但前者比较多见。

1.5片状物增强体用于复合材料的片状增强物主要是陶瓷薄片。

将陶瓷薄片叠压起来形成的陶瓷复合材料具有很高的韧性。

二、陶瓷基的界面及强韧化理论陶瓷基复合材料(CMC)具有高强度、高硬度、高弹性模量、热化学稳定性等优异性能,被认为是推重比10以上航空发动机的理想耐高温结构材料。

界面作为陶瓷基复合材料重要的组成相,其细观结构、力学性能和失效规律直接影响到复合材料的整体力学性能,因此研究界面特性对陶瓷基复合材料力学性能的影响具有重要的意义。

陶瓷基复合材料

陶瓷基复合材料

陶瓷基复合材料1.摘要:近年来随着人口的逐渐增多,餐具的使用也越来越多。

使得木材的使用非常可观。

而现今的塑料餐具在温度稍高的情况下会释放出一些危害身体的物质。

所以我们想到用一种材料做出既具有韧性又轻便耐用且不会对身体造成危害的餐具。

那就是:陶瓷基复合材料。

2.关键字:陶瓷基复合材料韧性3.内容:3.1引言:连续纤维增强的陶瓷基复合材料不仅比单体陶瓷断裂韧性高,而且表现出非弹性形变行为。

这些力学性能在表观上类似于金属材料。

20世纪70年代末到80年代初,Sī-C-O系纤维的商品化促进了连续纤维增强的陶瓷基复合材料的发展。

近20年来,从复合材料的制备工艺,力学性能及韧性理论,到实际应用部件的开发。

美国、日本和法国等欧洲发达国家都投入了大量的人力和财力,取得了突破性的进展。

3.2制造方法:3.2.1化学气相渗透法 CVI法是制造连续纤维陶瓷基复合材料的最主要方法。

此方法是将气象的前驱体沿纤维预置块的孔洞浸入并沉积在纤维上。

这种方法的最大优点是加工温度较低,一般在900-1100℃。

这样的温度不会造成陶瓷纤维的分解,因此CVI法制备的陶瓷基复合材料具有较好的力学性能。

但CVI 法制造成本非常高。

其原因之一是,气体反应组元的扩散需要长时间,并且如果在恒温条件下,表面暴露的口很容易先封上,为此气体的压力梯度或温度梯度常常是需要的,以便气体扩散到内部。

3.2.2聚合物渗透与分解法与CVI法相同,聚合物渗透与分解法的成本十分高,不适于大量生产。

3.2.3 直接熔体氧化氮化法熔体金属的直接氧化氮化法是由美国杜邦郎克塞德复合材料公司发明的。

其原理是在铝溶液中通过氧化反应生成氧化物或通过氮化反应生成氮化物。

如果将纤维预制块放在熔体上,氧化物将沿着预制块的孔生长,制备出密实的复合材料。

此方法是潜在的低成本加工方法,制备的材料具有好的强度和韧性,所以是我们所需要的。

3.3力学性能:1.3.1 拉伸与剪切力学行为单体陶瓷的拉伸曲线只是一条直线,而连续纤维增强的陶瓷基复合材料在直线后,经过曲线上升到最大应力后断裂,如下图a所示。

金属间化合物增强陶瓷基体复合材料论文(完成)

金属间化合物增强陶瓷基体复合材料论文(完成)

金属间化合物增强陶瓷基复合材料研究现状及发展前景摘要:陶瓷材料由于具有强度高、抗氧化、耐高温、热膨胀系数低和密度小等优良性能,因而在许多方面的应用是一般金属材料和高分子材料无法替代的。

但是它的致命弱点——大脆性却大大限制了其更广泛的应用。

因此,改善陶瓷的韧性已成为陶瓷材料获得进一步应用的核心问题。

由于金属间化合物原子的长程有序排列和原子间金属键与共价键共存的特性,其使用温度介于金属超硬合金和陶瓷之间。

金属间化合物相对于金属是脆性材料,而相对于陶瓷又具有一定的塑性,其性能介于金属和陶瓷之间,制备金属间化合物/陶瓷基复合材料可使金属和陶瓷各自的缺点通过彼此的优点所弥补。

关键字:金属间化合物陶瓷基复合材料性能应用0.引言金属间化合物的性能介于金属和陶瓷之间,其结构与性能不同于其金属组元,而是一种长程有序的超点阵结构,因而具有许多特殊的物理化学性能和力学性能。

与金属材料相比,金属间化合物密度小、抗氧化性能好、熔点高、硬度高、抗蠕变和抗疲劳性能好,并具有许多特殊的物理化学性能和力学性能,特别是一些金属间化合物的强度在特定温度范围内随温度升高而升高。

金属间化合物的种类非常多,近年来国内外主要集中于对 Ti-Al、Ni-Al、Fe-Al 等含铝金属间化合物的研究[1]。

Fe-Al金属间化合物中最受关注是Fe3Al与FeAl合金[2]。

Fe-Al 金属间化合物室温脆性大、塑性差,改善其室温脆性,提高其强度是重要的研究方向。

目前研究最多的是Ni3-Al金属间化合物,尤其是对于其在中间温度时的反常流变应力做了较深入的探索。

许多Ni3-Al基合金已应用于铸造、锻压和高温熔炼。

NiAl合金比目前的Ni基高温合金质量轻,且具有高熔点、优良的抗氧化性能以及高的热导率,但是由于其低温下的断裂韧性差以及高温强度低、抗蠕变能力差,使其在结构材料方面的应用受到限制。

许多文献报道,由于NiAl合金熔点高、密度低、热导率大,抗氧化和抗腐蚀性能优异,多年来一直用作高温合金零件的表面防护涂层。

陶瓷基复合材料

陶瓷基复合材料

陶瓷基复合材料陶瓷基复合材料是一种由陶瓷基体和其他添加剂组成的复合材料。

其综合性能优异,因此在航空航天、电子器件、能源领域等多个领域得到广泛应用。

本文将介绍陶瓷基复合材料的制备方法、性能及应用,并对其未来发展进行展望。

一、制备方法陶瓷基复合材料的制备方法多种多样,主要包括烧结法、溶胶-凝胶法、机械合金化法等。

首先,烧结法是最常用的制备陶瓷基复合材料的方法之一。

该方法将陶瓷粉末与其他添加剂混合,并通过高温下的烧结过程将其烧结成坚固的材料。

这种方法制备的复合材料具有较高的结晶度和致密性。

其次,溶胶-凝胶法是一种制备陶瓷基复合材料的新方法。

该方法通过将金属盐、有机物等混合,形成胶体溶胶,然后通过热处理使其成为凝胶,并进一步高温热处理得到致密材料。

这种方法制备的复合材料具有较高的纯度和均匀性。

最后,机械合金化法是一种通过粉末冶金技术制备陶瓷基复合材料的方法。

该方法将陶瓷颗粒与添加剂一起经过球磨、混合等机械处理,使其均匀分散,并通过热处理得到复合材料。

这种方法制备的复合材料具有较高的强度和断裂韧性。

二、性能陶瓷基复合材料具有一系列优异的性能,主要包括高温稳定性、硬度高、抗腐蚀性好等。

首先,陶瓷基复合材料具有较好的高温稳定性。

由于陶瓷基复合材料的陶瓷基体具有较高的熔点和热稳定性,因此能够在高温环境下保持较好的性能,不易发生烧结变形等问题。

其次,陶瓷基复合材料具有较高的硬度。

陶瓷基体的硬度往往比金属基体或聚合物基体要高,因此陶瓷基复合材料在硬度方面具有优势。

这使得该材料在需要高硬度的应用中表现出色,如切割工具、磨料等领域。

再次,陶瓷基复合材料具有良好的抗腐蚀性。

由于陶瓷基体的本身特性,该材料在酸碱等腐蚀性环境中有很好的稳定性,不易受到腐蚀侵蚀。

这使得陶瓷基复合材料在化工、生物医药等领域得到广泛应用。

三、应用陶瓷基复合材料在很多领域都有广泛的应用。

下面将介绍几个典型的应用领域。

首先,陶瓷基复合材料在航空航天领域具有重要应用。

陶瓷基复合材料

陶瓷基复合材料

陶瓷基复合材料的复合机理、制备、生产、应用及发展前景摘要:材料是科学技术发展的基础,材料的发展可以推动科学技术的发展,材料主要有金属材料、聚合物材料、无机非金属材料和复合材料四大类。

其中复合材料是是最新发展地来的一大类,发展非常迅速。

最早出现的是宏观复合材料,它复合的组元是肉眼可以看见的,比如混凝土。

随后发展起来的是微观复合材料,它的组元肉眼看不见。

由于复合材料各方面优异的性能,因此得到了广泛的应用。

复合材料对航空、航天事业的影响尤为显著,可以说如果没有复合材料的诞生,就没有今天的飞机、火箭和宇宙飞船等高科技产品。

本文从纤维增强陶瓷基复合材料C f/SiC入手,综述了陶瓷基复合材料(ceramic matrix composite,CMC)的特殊使用性能、界面增韧机理、制备工艺作了较全面的介绍,并对CMC的的研究现状、未来发展进行了展望。

正文1、陶瓷基复合材料的定义与特性陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。

陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。

这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。

而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。

纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。

陶瓷基复合材料(CMC)由于具有高强度、高硬度、高弹性模量、热化学稳定性等优异性能,是制造推重比10 以上航空发动机的理想耐高温结构材料。

一方面,它克服了单一陶瓷材料脆性断裂的缺点,提高了材料的断裂韧性;另一方面,它保持了陶瓷基体耐高温、低膨胀、低密度、热稳定性好的优点。

陶瓷基复合材料的最高使用温度可达1650℃,而密度只有高温合金的70%。

因此,近几十年来,陶瓷基复合材料的研究有了较快发展。

目前CMC 正在航空发动机的高温段的少数零件上作评定性试用。

陶瓷基复合材料综述

陶瓷基复合材料综述

陶瓷基复合材料综述陶瓷基复合材料是指以陶瓷材料为基体,通过添加其他材料或者通过热处理等方式形成的一种具有复合结构的新型材料。

陶瓷基复合材料具有许多优异的性能,包括高温稳定性、高硬度、高抗磨损性和良好的化学稳定性等。

本文将对陶瓷基复合材料的制备方法、性能以及应用方面进行综述。

一、陶瓷基复合材料的制备方法陶瓷基复合材料的制备方法可以分为两大类:一种是在陶瓷基体中添加其他材料,如纳米颗粒、纤维、碳纳米管等;另一种是通过热处理等方式改变陶瓷基体的结构和性能。

其中,添加其他材料的方法主要包括浸渍法、溶胶凝胶法、等离子熔融法等;热处理方法主要包括烧结、热压、热等静压等。

二、陶瓷基复合材料的性能陶瓷基复合材料具有许多独特的性能,其主要包括高温稳定性、高硬度、高抗磨损性和良好的化学稳定性。

其中,高温稳定性是指材料在高温下仍然能够保持物理和化学性能的稳定性。

高硬度则是指材料的硬度较高,能够抵抗外界的划痕和磨损。

高抗磨损性则是指材料能够在摩擦和磨损等条件下保持其表面的完整性和光洁度。

化学稳定性则是指材料对酸、碱、盐等化学介质的稳定性较好,不易发生腐蚀和溶解。

三、陶瓷基复合材料的应用方面由于陶瓷基复合材料具有优异的性能,因此在许多领域都得到了广泛的应用。

其中,陶瓷基复合材料在航空航天领域中被广泛应用于火箭发动机喷管、刹车盘等高温部件中。

此外,在能源领域,陶瓷基复合材料可以用于制备高效的催化剂、光催化剂和固态电解质等。

在汽车制造领域,陶瓷基复合材料可以应用于汽车刹车系统、传动系统和发动机部件等。

此外,陶瓷基复合材料还可以用于制备耐磨、耐蚀和高温结构件,如轴承、密封件和切割工具等。

综上所述,陶瓷基复合材料具有许多优异的性能,包括高温稳定性、高硬度、高抗磨损性和良好的化学稳定性等。

通过添加其他材料或者通过热处理等方式改变陶瓷基体的结构和性能,可以制备出具有不同功能和应用的陶瓷基复合材料。

由于其广泛的应用前景,陶瓷基复合材料在材料科学领域中受到了广泛的研究和开发。

陶瓷材料论文陶瓷基复合材料论文

陶瓷材料论文陶瓷基复合材料论文

陶瓷材料论文陶瓷基复合材料论文:密集烤烟房用氧化铝-堇青石换热陶瓷材料的制备摘要:本文以矿物原料制备了氧化铝-堇青石换热陶瓷材料,研究了其密度、抗热震性能和热导率等性能,并将其用于烤烟生产工艺中。

研究结果表明,随着温度的提高,样品的热导率也有所提高,烧结收缩率也增大;随着堇青石含量的增加,铝矾土含量的降低,样品热导率先增加后降低,并在堇青石含量为20%,1300℃温度下烧结时达到最大值4.69W/(m·K)。

此时样品的密度为2.78g/cm3,抗热震性能良好。

关键词:天然矿物;热导率;抗热震;氧化铝;堇青石1 引言目前密集烤房供热系统中绝大部分使用钢制金属换热器,而且大部分使用耐硫酸露点腐蚀性能较差的普通低碳钢。

使用高温下耐酸的合金钢材,可提高耐腐蚀性、延长换热器使用寿命,但由于耐酸高温合金钢价格比较高,耐腐蚀性也不是很理想。

因此,研究开发耐腐蚀性好、性价比高的新型换热器材料将成为一个重要的发展方向。

氧化铝晶体在常温下热导率为30W/m·℃,小于氧化铍、氮化铝、金刚石和碳化硅等材料的热导率值,而其原料来源广、成本低廉、制造工艺简单的优势却是上述材料远远不能相比的。

但氧化铝陶瓷的热膨胀系数较大,抗热震能力较差,这些缺点在很大程度上限制了其应用范围,也未见以氧化铝陶瓷作为换热器材料使用的报道。

向氧化铝陶瓷中掺杂堇青石,制备氧化铝-堇青石复合陶瓷,则可以大大改善其高温热物理性能,从而可能将氧化铝陶瓷的应用拓展至热工行业。

湖北省烟叶公司和武汉理工大学绿色建筑材料及制造教育部工程研究中心的研究人员以矿物原料制备了氧化铝-堇青石换热陶瓷材料,并研究了其密度、热导率和抗热震等性能,提出了较好的配方和热处理制度,希望能为这种新型陶瓷换热器材料进一步工业化生产与推广提供有益参考。

2 实验2.1实验原料及方案实验主要原料为山西孝义产铝矾土、河南登封产堇青石、广西三环产钾长石、陕西铜川上店土,白云石和碳酸钡作为添加剂少量使用,所用原料的主要化学组成见表1。

陶瓷基复合材料论文

陶瓷基复合材料论文

新型复合材料及其应用-----陶瓷基复合材料摘要:陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。

陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。

这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。

而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。

纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。

陶瓷基复合材料具有优异的耐高温性能,主要用作高温及耐磨制品。

其最高使用温度主要取决于基体特征。

一、陶瓷基复合材料增强体用于复合材料的增强体品种很多,根据复合材料的性能要求,主要分为以下几种1.1纤维类增强体纤维类增强体有连续长纤维和短纤维。

连续长纤维的连续长度均超过数百。

纤维性能有方向性,一般沿轴向均有很高的强度和弹性模量。

1.2颗粒类增强体颗粒类增强体主要是一些具有高强度、高模量。

耐热、耐磨。

耐高温的陶瓷等无机非金属颗粒,主要有碳化硅、氧化铝、碳化钛、石墨。

细金刚石、高岭土、滑石、碳酸钙等。

主要还有一些金属和聚合物颗粒类增强体,后者主要有热塑性树脂粉末1.3晶须类增强体晶须是在人工条件下制造出的细小单晶,一般呈棒状,其直径为0.2~1微米,长度为几十微米,由于其具有细小组织结构,缺陷少,具有很高的强度和模量。

1.4金属丝用于复合材料的高强福、高模量金属丝增强物主要有铍丝、钢丝、不锈钢丝和钨丝等,金属丝一般用于金属基复合材料和水泥基复合材料的增强,但前者比较多见。

1.5片状物增强体用于复合材料的片状增强物主要是陶瓷薄片。

将陶瓷薄片叠压起来形成的陶瓷复合材料具有很高的韧性。

二、陶瓷基的界面及强韧化理论陶瓷基复合材料(CMC)具有高强度、高硬度、高弹性模量、热化学稳定性等优异性能,被认为是推重比10以上航空发动机的理想耐高温结构材料。

界面作为陶瓷基复合材料重要的组成相,其细观结构、力学性能和失效规律直接影响到复合材料的整体力学性能,因此研究界面特性对陶瓷基复合材料力学性能的影响具有重要的意义。

(完整word版)陶瓷基复合材料的机理、制备、生产应用及发展前景

(完整word版)陶瓷基复合材料的机理、制备、生产应用及发展前景

陶瓷基复合材料的机理、制备、生产应用及发展前景姓名:王珍学号:Z09016203科学技术的发展对材料提出了越来越高的要求,陶瓷基复合材料由于在破坏过程中表现出非脆性断裂特性,具有高可靠性,在新能源、国防军工、航空航天、交通运输等领域具有广阔的应用前景.陶瓷基复合材料是在陶瓷基体中引入第二相材料,使之增强、增韧的多相材料,又称为多相复合陶瓷或复相陶瓷。

陶瓷基复合材料是2O世纪8O年代逐渐发展起来的新型陶瓷材料,包括纤维(或晶须)增韧(或增强)陶瓷基复合材料、异相颗粒弥散强化复相陶瓷、原位生长陶瓷复合材料、梯度功能复合陶瓷及纳米陶瓷复合材料。

其因具有耐高温、耐磨、抗高温蠕变、热导率低、热膨胀系数低、耐化学腐蚀、强度高、硬度大及介电、透波等特点,在有机材料基和金属材料基不能满足性能要求的工况下可以得到广泛应用,成为理想的高温结构材料。

连续纤维增强复合材料是以连续长纤维为增强材料,金属、陶瓷等为基体材料制备而成。

金属基复合材料是以陶瓷等为增强材料,金属、轻合金等为基体材料而制备的。

从20世纪60年代起各国都相继对金属基复合材料开展了大量的研究,因其具有高比强度、高比模量和低热膨胀系数等特点而被应用于航天航空及汽车工业。

陶瓷材料具有熔点高、密度低、耐腐蚀、抗氧化和抗烧蚀等优异性能,被广泛用于航天航空、军事工业等特殊领域.但是陶瓷材料的脆性大、塑韧性差导致了其在使用过程中可靠性差,制约了它的应用范围。

而纤维增强陶瓷基复合材料方面克服了陶瓷材料脆性断裂的缺点,另一方面保持了陶瓷本身的优点.一、陶瓷基复合材料的基本介绍和种类1、陶瓷基复合材料的基本介绍陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。

陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷.这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。

而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。

陶瓷基复合材料的制备与性能研究

陶瓷基复合材料的制备与性能研究

陶瓷基复合材料的制备与性能研究陶瓷基复合材料是一种由陶瓷基体和增强相组成的复合材料,具有优异的物理、化学和力学性能。

本文将探讨陶瓷基复合材料的制备方法及其性能研究。

一、制备方法陶瓷基复合材料的制备方法多样,其中常见的方法包括熔融法、粉末冶金法、溶胶-凝胶法和化学气相沉积法等。

熔融法是制备陶瓷基复合材料的传统方法之一。

通过将陶瓷和增强相的原料混合后加热熔融,再经过凝固和固化,最终得到所需的复合材料。

粉末冶金法是常用的制备方法之一。

首先将陶瓷和增强相的粉末混合均匀,然后通过压制、烧结和热处理等工艺步骤,使粉末颗粒结合成致密的块状材料。

溶胶-凝胶法是一种制备高性能陶瓷基复合材料的新方法。

该方法首先通过溶胶制备得到陶瓷基体的前驱体,然后通过凝胶处理和热处理等步骤得到所需的复合材料。

化学气相沉积法是一种制备陶瓷基复合材料的高温气相法。

该方法通过将气相中的金属有机化合物和气相中的陶瓷前驱体反应,使陶瓷基体得到沉积,再通过后续处理使其形成复合材料。

二、性能研究陶瓷基复合材料的性能研究主要包括物理性能、力学性能和化学性能等方面。

物理性能是指材料的密度、热膨胀系数、导热性能等方面的性能。

研究表明,陶瓷基复合材料具有较低的密度和较高的硬度,同时具有较好的热膨胀系数和导热性能。

力学性能是指材料的强度、韧性、硬度、断裂韧性等方面的性能。

由于陶瓷本身具有脆性,在复合材料中往往需要添加增强相来改善其力学性能。

增强相的加入可以提高材料的强度和韧性,从而增加材料的使用寿命。

化学性能是指材料在不同化学环境下的稳定性和耐腐蚀性。

陶瓷基复合材料具有优异的化学稳定性和耐腐蚀性,可应用于一些特殊的化学环境中。

此外,陶瓷基复合材料的电学性能和磁学性能也是研究的重点之一。

陶瓷基复合材料在电子器件、电磁材料等领域具有广泛的应用前景。

总结陶瓷基复合材料的制备与性能研究是材料科学领域的热点研究方向。

通过不同的制备方法,可得到具有优异性能的陶瓷基复合材料。

毕业论文石墨烯及其氧化铝陶瓷基复合材料研究

毕业论文石墨烯及其氧化铝陶瓷基复合材料研究

毕业论文题目石墨烯的制备及应用研究二级学院材料科学与工程学院专业材料科学与工程专业班级 111090301学生姓名樊朋博学号 11109030105指导教师孟范成时间 2015.5.20目录摘要 (2)Abstract (3)1 绪论 (4)1.1 石墨烯的简介 (4)1.2 石墨烯的制备方法 (6)1.3 石墨烯的应用 (7)1.4 Al2O3陶瓷基复合材料及其应用 (7)1.5 石墨烯氧化铝复合陶瓷简介 (7)1.6常用的烧结方法 (10)1.7纳米勃姆石复合吸附材料的制备方法 (12)1.8本论文研究目的和内容 (13)2 实验过程 (14)2.1制备氧化石墨烯 (14)2.2球磨混料 (15)2.3压片烧结 (16)2.4分级结构勃姆石/石墨烯复合纳米材料实验 (16)2.5 材料测试方法 (18)3 结果与分析 (22)3.1 氧化石墨烯分析 (22)3.2 石墨烯氧化铝复合陶瓷分析 (26)3.3 石墨烯的应用分析 (29)4 总结 (35)致谢 (36)参考文献 (37)摘要石墨烯自2004年被发现至今受到了科学家们尤其是材料界的极大关注,由于其在力学、光学、电学等方面都表现出极大优异性,被认为在用于材料基体补强剂方面具有非常广泛的应用前景。

本文将研究石墨烯溶液与氧化铝混合,然后再利用真空热压烧结技术所得到的新型陶瓷基复合材料。

石墨稀由于其自身高模量和高强度等良好性能,被认为是一种非常理想的陶瓷基体补强体。

比如在氧化铝陶瓷基体中添加石墨稀,极大地提高了氧化铝陶瓷的导电性能、提高了陶瓷的烧结致密度。

本文中我们对含1wt%的氧化石墨烯的氧化铝复合陶瓷进行了烧结和分析,通过改变其烧结工艺发现复合陶瓷在不同温度下烧结时在磨损量、致密度、硬度等方面表现出明显变化,我们对这些变化进行了对比分析和总结。

我们分析了石墨烯对材料吸附性的影响,将石墨烯与勃姆石复合制备出一种新型复合吸附材料,再以重金属离子Cr以及有机染料刚果红为例,分析了石墨烯勃姆石复合材料的吸附性能。

陶瓷基复合材料的进展及应用论文

陶瓷基复合材料的进展及应用论文
1
陶瓷基复合材料的研究与应用
第一章 陶瓷基复合料料的研制进展
1.1 陶瓷基复合材料简单介绍
陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。陶瓷基体 可为氮化硅、碳化硅等高温结构陶瓷。这些先进陶瓷具有耐高温、高强度和刚度、 相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态 时,会产生裂纹,甚至断裂导致材料失效。而采用高强度、高弹性的纤维与基体 复合,则是提高陶瓷韧性和可靠性的一个有效的方法。纤维能阻止裂纹的扩展, 从而得到有优良韧性的纤维增强陶瓷基复合材料[3]。
关键词:陶瓷基;复合材料;增韧
陶瓷基复合材料的研究与应用
目录
绪 论.................................................................................................................... 1 第一章 陶瓷基复合料料的研制进展............................2
陶瓷基复合材料的研究与应用
院系: 班级: 姓名: 学号: 教师:
陶瓷基复合材料的研究与应用
摘要
陶瓷材料具有熔点和硬度高、密度低、耐磨损和腐蚀以及高温稳定性好等优 点,但作为高温结构材料,低韧性使其致命的弱点。其断裂过程在瞬间完成,断 裂前没有任何征兆,即不像塑形的金属材料存在着明显的屈服和流变。鉴于此, 单相陶瓷材料的应用受到了很大的限制,因此,改善陶瓷材料的韧性成为了提高 陶瓷材料使用可靠性的关键。通常使用的韧性方法有相变增韧、颗粒增韧、晶须 增韧以及连续纤维增韧等,众多陶瓷增韧方式中,连续纤维增韧效果最为明显[1]。 上世纪八十年代中后期以来,连续纤维增强陶瓷基复合材料的研究与开发已经成 为高技术现代陶瓷研究与开发的一个前沿,并运用到航空、航天、军事等重要领 域中。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

陶瓷基复合材料论文精编W O R D版IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】陶瓷基复合材料在航天领域的应用概念:陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。

陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。

这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。

而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。

纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。

陶瓷基复合材料具有优异的耐高温性能,主要用作高温及耐磨制品。

其最高使用温度主要取决于基体特征。

一、陶瓷基复合材料增强体用于复合材料的增强体品种很多,根据复合材料的性能要求,主要分为以下几种1.1纤维类增强体纤维类增强体有连续长纤维和短纤维。

连续长纤维的连续长度均超过数百。

纤维性能有方向性,一般沿轴向均有很高的强度和弹性模量。

1.2颗粒类增强体颗粒类增强体主要是一些具有高强度、高模量。

耐热、耐磨。

耐高温的陶瓷等无机非金属颗粒,主要有碳化硅、氧化铝、碳化钛、石墨。

细金刚石、高岭土、滑石、碳酸钙等。

主要还有一些金属和聚合物颗粒类增强体,后者主要有热塑性树脂粉末1.3晶须类增强体晶须是在人工条件下制造出的细小单晶,一般呈棒状,其直径为0.2~1微米,长度为几十微米,由于其具有细小组织结构,缺陷少,具有很高的强度和模量。

1.4金属丝用于复合材料的高强福、高模量金属丝增强物主要有铍丝、钢丝、不锈钢丝和钨丝等,金属丝一般用于金属基复合材料和水泥基复合材料的增强,但前者比较多见。

1.5片状物增强体用于复合材料的片状增强物主要是陶瓷薄片。

将陶瓷薄片叠压起来形成的陶瓷复合材料具有很高的韧性。

二、陶瓷基的界面及强韧化理论陶瓷基复合材料(CMC)具有高强度、高硬度、高弹性模量、热化学稳定性等优异性能,被认为是推重比10以上航空发动机的理想耐高温结构材料。

界面作为陶瓷基复合材料重要的组成相,其细观结构、力学性能和失效规律直接影响到复合材料的整体力学性能,因此研究界面特性对陶瓷基复合材料力学性能的影响具有重要的意义。

2.1界面的粘结形式(1)机械结合(2)化学结合陶瓷基复合材料往往在高温下制备,由于增强体与基体的原子扩散,在界面上更易形成固溶体和化合物。

此时其界面是具有一定厚度的反应区,它与基体和增强体都能较好的结合,但通常是脆性的。

2.2界面的作用陶瓷基复合材料的界面一方面应强到足以传递轴向载荷并具有高的横向强度;另一方面要弱到足以沿界面发生横向裂纹及裂纹偏转直到纤维的拔出。

2.3强韧化技术2.1.1 纤维增韧为了提高复合材料的韧性,必须尽可能提高材料断裂时消耗的能量。

任何固体材料在载荷作用下(静态或冲击),吸收能量的方式无非是两种:材料变形和形成新的表面。

对于脆性基体和纤维来说,允许的变形很小,因此变形吸收的断裂能也很少。

为了提高这类材料的吸能,只能是增加断裂表面,即增加裂纹的扩展路径。

2.1.2 晶须增韧陶瓷晶须是具有一定长径比且缺陷很少的陶瓷小单晶,因而具有很高的强度,是一种非常理想的陶瓷基复合材料的增韧增强体。

2.1.3 相变增韧相变增韧ZrO2陶瓷是一种极有发展前途的新型结构陶瓷,其主要是利用ZrO2相变特性来提高陶瓷材料的断裂韧性和抗弯强度,使其具有优良的力学性能,低的导热系数和良好的抗热震性。

它还可以用来显着提高脆性材料的韧性和强度,是复合材料和复合陶瓷中重要的增韧剂2.1.4 颗粒增韧用颗粒作为增韧剂,制备颗粒增韧陶瓷基复合材料,其原料的均匀分散及烧结致密化都比短纤维及晶须复合材料简便易行。

因此,尽管颗粒的增韧效果不如晶须与纤维,但如颗粒种类、粒径、含量及基体材料选择得当,仍有一定的韧化效果,同时会带来高温强度、高温蠕变性能的改善。

所以,颗粒增韧陶瓷基复合材料同样受到重视,并开展了有效的研究工作。

2.1.5纳米复合陶瓷增韧纳米技术一出现,便在改善传统材料性能方面显示出极大的优势,该方面的研究有可能使陶瓷增韧技术获得革命性突破。

纳米陶瓷由于晶粒的细化,晶界数量会极大增加,同时纳米陶瓷的气孔和缺陷尺寸减小到一定尺寸就不会影响到材料的宏观强度,结果可使材料的强度、韧性显着增加。

2.1.5 自增韧陶瓷如果在陶瓷基体中引入第二相材料,该相不是事先单独制备的,而是在原料中加入可以生成第二相的原料,控制生成条件和反应过程,直接通过高温化学反应或者相变过程,在主晶相基体中生长出均匀分布的晶须、高长径比的晶粒或晶片的增强体,形成陶瓷复合材料,则称为自增韧。

这样可以避免两相不相容、分布不均匀问题,强度和韧性都比外来第二相增韧的同种材料高。

三、陶瓷基复合材料的应用。

将长纤维增强碳化硅复合材料应用于制造高速列车的制动件,显示出优异的摩擦磨损特性,取得满意的使用效果。

连续纤维补强陶瓷基复合材料(Continuous FiberReinforced Ceramic Matrix Composites,简称CFCC)是将耐高温的纤维陶瓷基复合材料已实用化或即将实用化的领域有刀具、滑动构件、发动机制件、能源构件等。

法国已植入陶瓷基体中形成的一种高性能复合材料。

由于其具有高强度和高韧性,特别是具有与普通陶瓷不同的非失效性断裂方式,使其受到世界各国的极大关注。

连续纤维增强陶瓷基复合材料已经开始在航天航空、国防等领域得到广泛应用[1~3]。

20世纪70年代初,J Aveston[2]在连续纤维增强聚合物基复合材料和纤维增强金属基复合材料研究基础上,首次提出纤维增强陶瓷基复合材料的概念,为高性能陶瓷材料的研究与开发开辟了一个方向。

随着纤维制备技术和其它相关技术的进步,人们逐步开发出制备这类材料的有效方法,使得纤维增强陶瓷基复合材料的制备技术日渐成熟。

20多年来,世界各国特别是欧美以及日本等对纤维增强陶瓷基复合材料的制备工艺和增强理论进行了大量的研究,取得了许多重要的成果,有的已经达到实用化水平。

如法国生产的“Cerasep”可作为“Rafale”战斗机的喷气发动机和“Hermes”航天飞机的部件和内燃机的部件[4];SiO2纤维增强SiO2复合材料已用作“哥伦比亚号”和“挑战者号”航天飞机的隔热瓦[5]。

由于纤维增强陶瓷基复合材料有着优异的高温性能、高韧性、高比强、高比模以及热稳定性好等优点,能有效地克服对裂纹和热震的敏感性正对陶瓷基复合材料。

下面,我主要谈谈碳纤维复合材料在红空领域的应用:3.1碳纤维材料在航空领域的应用1.概述碳纤维是由有机纤维经碳化及石墨化处理而得到的微晶石墨材料。

碳纤维的微观结构类似人造石墨,是乱层石墨结构。

碳纤维由于具有高强度、高模量、耐高温、耐腐蚀、导电和导热等性能,因而使其成为一种兼具碳材料强抗拉力和纤维柔软可加工性两大特征的化工新材料,是新一代增强纤维。

目前,碳纤维不仅广泛应用军事工业,而且在汽车构件、风力发电叶片、核电、油田钻探、体育用品、碳纤维复合芯电缆以及建筑补强材料领域也存在巨大应用空间,而其在航空领域的光辉业绩尤为引人注目。

2.碳纤维的发展碳纤维应宇航工业对耐烧蚀和轻质高强材料的迫切需求发展起来,它主要是由碳元素组成的一种特种纤维,是继玻璃纤维之后出现的第二代纤维增强塑料。

碳纤维的含碳量在90%以上,具有优异的力学性能,与其它高性能纤维相比具有最高比强度和最高比模量。

在2000℃以上高温惰性环境中,碳纤维是唯一一种强度不下降的物质。

此外,它还兼具其它多种得天独厚的优良性能,更可贵的是,碳纤维与其它材料具有很高的相容性,兼备纺织纤维的柔软可加工性,并且容易复合,具有很大的设计自由度。

这就使得碳纤维成为纤维增强材料中发展最迅速、应用范围很广、适于不同领域要求的纤维材料。

研制大型飞机要突破许多关键技术,其中一项是“先进复合材料结构设计技术”,这项技术离不开碳纤维。

世界碳纤维的需求在各用途领域都不断增长,特别是急速增长的航空航天领域拉动了碳纤维全体的增长。

碳纤维的主要用途是与树脂、金属、陶瓷等基体复合,制成结构材料。

自玻璃纤维与有机树脂复合得到的玻璃钢问世以来,碳纤维、陶瓷纤维以及硼纤维增强的复合材料相继研制成功,而且性能不断得到改进,使复合材料领域呈现出一派勃勃生机。

碳纤维复合材料与铝合金、钛合金、合金钢一起成为飞机机体的四大先进结构材料。

3. 碳纤维复合材料在航空领域的具体应用碳纤维复合材料因其独特、卓越的性能,在航空领越特别是飞机制造业中应用广泛。

统计显示,目前,碳纤维复合材料在小型商务飞机和直升飞机上的使用量已占70%~80%,在军用飞机上占30%~40%,在大型客机上占15%~50%。

(1)碳纤维树脂基复合材料碳纤维增强树脂基复合材料(CFRP)具有质量轻等一系列突出的性能,在对重量、刚度、疲劳特性等有严格要求的领域以及要求高温、化学稳定性高的场合,碳纤维复合材料都具有很大优势。

碳纤维增强树脂基复合材料已成为生产武器装备的重要材料。

AV—8B 改型“鹞”式飞机是美国军用飞机中使用复合材料最多的机种,其机翼、前机身都用了石墨环氧大型部件,全机所用碳纤维的重量约占飞机结构总重量的26%,使整机减重9%,有效载荷比AV —8A飞机增加了一倍。

数据显示采用复合材料结构的前机身段,可比金属结构减轻质量32.24%。

用军机战术技术性能的重要指标——结构重量系数来衡量,国外第四代军机的结构重量系数已达到27~28%。

未来以F-22 为目标的背景机复合材料用量比例需求为35%左右,其中碳纤维复合材料将成为主体材料。

国外一些轻型飞机和无人驾驶飞机,已实现了结构的复合材料化。

直升飞机上碳纤维增强树脂基复合材料的用量更是与日俱增。

武装了驻港部队并参加了2007 年上海合作组织在俄罗斯反恐军演的直-9 型直升飞机,是我国先进的直升飞机。

该机复合材料用量已占到60%左右,主要是CFRP。

此外,日本生产的OH-1 “忍者”直升飞机,机身的40%是用CFRP,桨叶等也用CFRP 制造。

在民用领域,世界最大的飞机A380 由于CFRP 的大量使用,创造了飞行史上的奇迹。

这种飞机25%重量的部件由复合材料制造,其中22%为碳纤维增强塑料(CFRP)。

由于CFRP 的明显减重以及在使用中不会因疲劳或腐蚀受损,从而大大减少了油耗和排放。

燃油的经济性比其直接竞争机型要低13%左右,并降低了运营成本,座英里成本比目前效率最高飞机的低15%~20%成为第一个每乘客每百公里耗油少于三升的远程客机。

(2)碳/碳复合材料碳/碳复合材料是以碳纤维及其制品(碳毡或碳布)作为增强材料的复合材料。

因为它的组成元素只有一个(即碳元素),因而碳/碳复合材料具有许多碳和石墨材料的优点,如密度低(石墨的理论密度为2.3g/cm3)和优异的热性能,即高的热导率、低热膨胀系数,能承受极高的温度和极大的热加速率,有极强的抗热冲击,在高温和超高温环境下具有高强度、高模量和高化学惰性。

相关文档
最新文档