气体实验定律
气体三大定律公式

气体三大定律公式
气体是物质的一种形式,它有着独特的物理性质和化学性质,在物理和化学实验中经常拿来做实验以研究它们的性质。
气体的研究,最重要的就是气体三大定律,它们是:热力学第一定律、热力学第二定律和热力学第三定律。
接下来我们将从三大定律介绍它们的定律公式。
热力学第一定律,也叫开普勒第一定律或热守恒定律,定义了热能的守恒定律,即热能的总量是恒定的,它的定律公式如下:
Q_0=Q
其中,Q_0是初始热能,Q是最终热能。
热力学第二定律,也叫吉布斯定律,定义了热机的运行原则,即热能转换成工作的本质,它的定律公式如下:
Q = W +U
其中,Q表示热能,W表示系统做出的功,ΔU表示系统内部能量变化。
最后一个定律是热力学第三定律,也叫临界温度第三定律,它定义了温度变化是热力学反应的关键因素。
它的定律公式是:
T_0 S_0 = T S
其中,T_0表示初始温度,S_0表示初始熵,T表示最终温度,S 表示最终熵。
从气体实验的角度来看,上述的三大定律公式是不可缺少的,它们是研究气体的关键部分。
气体的变化受到上述三大定律的约束,只
有理解其三大定律公式,才能根据实验结果,对气体的变化现象正确解释。
气体的研究,除了研究气体的变化现象外,还有通过实验探索气体的基本特性,如温度、压力等等。
实验中,在运用上述三大定律公式的同时,既要探究系统内部的能量变化,又要研究气体的流动性。
气体的变化影响着它的性质,也会影响它的环境,因此理解气体的变化至关重要,而上述三大定律公式可以帮助我们正确地对气体的变化现象作出解释,并且可以为我们研究气体的本质特性提供更多有价值的信息。
理想气体遵循的三大实验定律

理想气体遵循的三大实验定律第一定律:博伊尔定律在研究理想气体性质时,博伊尔定律是一个重要的实验定律。
它表明,在一定温度下,理想气体的体积与压强成反比,即当温度不变时,气体的体积与压强呈现出明显的正相关关系。
当我们将理想气体装入一个可变体积的容器中,通过改变容器的体积,可以观察到气体压强的变化。
实验证明,当容器体积减小时,气体压强增加;反之,当容器体积增加时,气体压强减小。
这种反比关系可以用博伊尔定律来描述,即P与V成反比关系。
第二定律:查理定律理想气体的第二个重要特性是查理定律,它描述了理想气体在一定压强下的体积与温度的关系。
实验结果表明,当气体的压强不变时,气体的体积与温度成正比关系,即当温度升高时,气体的体积也会相应增加。
通过改变理想气体的温度,我们可以观察到气体体积的变化。
实验结果显示,当温度升高时,气体分子的平均动能增加,分子之间的碰撞频率和力度增加,导致气体体积膨胀。
这种正比关系可以用查理定律来描述,即V与T成正比。
第三定律:盖吕萨克定律盖吕萨克定律是理想气体的第三个重要特性。
它描述了理想气体在一定温度和压强下的体积与物质的量的关系。
实验结果表明,在相同的温度和压强下,理想气体的体积与物质的量成正比,即当物质的量增加时,气体的体积也会相应增加。
通过改变理想气体的物质的量,我们可以观察到气体体积的变化。
实验结果显示,当物质的量增加时,气体分子的数量增加,分子之间的碰撞频率和力度增加,导致气体体积膨胀。
这种正比关系可以用盖吕萨克定律来描述,即V与n成正比。
以上就是理想气体遵循的三大实验定律:博伊尔定律、查理定律和盖吕萨克定律。
这些定律为我们研究理想气体的性质提供了重要的实验基础,也为我们理解气体行为的规律提供了重要的理论依据。
通过这些实验定律,我们可以更好地理解理想气体的特性,探索气体的性质和行为规律。
在工程、化学、物理等领域,这些定律的应用也是非常广泛的。
例如,在工业生产中,通过控制温度、压强和物质的量,可以实现气体的压缩、膨胀、混合等过程,从而实现各种化学反应和工艺操作。
13.2-气体实验定律1

试在P-1/V 图上、 P-T图上、
V-T图上分别画出相应的状态变
p
化曲线。
1、P-1/V图 P
1 0
2 V
0
1/V
2、P-T图 P
1 2
0
T
3、V-T图
V 2
1
0
T
练习1、如图所示,水平放置的玻管被h=5cm的水银柱封闭的 空气柱长L1=16cm,当开口向上竖直放置时,空气柱L2多长?( 已知大气压为75cmHg)
L1
h
(1)
h
L2
(2)
练习2、内壁光滑的水平放置的气缸被质量为m的活塞封闭 了体积为V1的空气,当气缸按如图所示放置时,被封空气体 积为V2 。求大气压强(已知活塞的横截面积为S)。
甲
乙
5、图象 P-V图 p
1 O
2 V
(1)在p-V图上,等温线的特征:双曲线;
(2)曲线上的每一点表示一个状态;
p T1 T2<T3
o
v
(3)一定质量的某种气体在不同温度下的等温线 是不同的,温度越高,双曲线顶点离坐标原点越远。
例1、在温度不变的情况下,把一根100cm的上端封闭的 粗细均匀的玻璃管竖直插入水银槽中,管口跟槽内水银面的距 离为管长的一半,如图所示。水银进入管中的深度为25cm,求: 大气压强是多少?
13.2 气体实验定律
(一)玻意耳定律
1、内容:一定质量的某种气体在温度不变的情况下压 强P与体积V成反比
2、公式:p 1/V 写成等式为 PV=C(恒量)
或 P1V1=P2V2 或P1/P2=V2/V1
3、条件:1)质量一定。2)温度不变。
4、等温过程(变化)——气体在温度不变的情况下,发 生的状态变化。
理想气体遵循的三大实验定律

理想气体遵循的三大实验定律1. 定律一:波义尔定律(Boyle's Law)波义尔定律是理想气体的第一个基本定律,描述了在恒温条件下,理想气体的压力与体积之间的关系。
根据波义尔定律,当温度不变时,气体的压力与其体积成反比关系。
换句话说,当气体的体积增加时,其压力会减小,反之亦然。
这个定律可以用以下公式表示:P₁V₁= P₂V₂,其中P₁和V₁表示初始状态下的压力和体积,P₂和V₂表示变化后的压力和体积。
2. 定律二:查理定律(Charles's Law)查理定律是理想气体的第二个基本定律,描述了在恒压条件下,理想气体的体积与温度之间的关系。
根据查理定律,当压力保持不变时,理想气体的体积与其温度成正比关系。
简而言之,当气体的温度增加时,其体积也会增加,反之亦然。
这个定律可以用以下公式表示:V₁/T₁= V₂/T₂,其中V₁和T₁表示初始状态下的体积和温度,V₂和T₂表示变化后的体积和温度。
3. 定律三:盖-吕萨克定律(Gay-Lussac's Law)盖-吕萨克定律是理想气体的第三个基本定律,描述了在恒体积条件下,理想气体的压力与温度之间的关系。
根据盖-吕萨克定律,当体积保持不变时,理想气体的压力与其温度成正比关系。
简单来说,当气体的温度增加时,其压力也会增加,反之亦然。
这个定律可以用以下公式表示:P₁/T₁= P₂/T₂,其中P₁和T₁表示初始状态下的压力和温度,P₂和T₂表示变化后的压力和温度。
这三大实验定律为理想气体提供了基本的物理规律。
它们的发现和理解对于理解和预测气体行为以及工程和科学应用非常重要。
然而,需要注意的是,这些定律只适用于理想气体的近似模型,而在实际情况中,气体的行为可能会受到其他因素的影响,例如压力过高或温度过低等。
因此,在特定的条件下,这些定律可能需要结合其他因素进行修正。
气体实验定律

)A D
A . 两次管中气体压强相等
B . T1时管中气体压强小于T2时管中气体压强
C . T1<T2 D . T1>T2
MN A
4.对于一定质量的理想气体,可能发生的过程是 ( C)
A.压强和温度不变,体积变大 B.温度不变,压强减少,体积减少 C.体积不变,温度升高,压强增大, D.压强增大,体积增大,温度降低
• (1)等容线:一定质量的某种气体在等容变化过
程中,压强p跟热力学温度T的正比关系p-T在直
角坐标系中的图象叫做等容线.
• (2)一定质量气体的等容线p-T图象,其延长线
经过坐标原点,斜率反映体积大小,如图所示.
• (3)一定质量气体的等容线的物理意义.
• ①图线上每一个点表示气体一个确定的状 态,同一根等容线上各状态的体积相
一、等容过程
• 1.等容过程:气体在体积不变 的情况下发生的状态变化过程叫 做等容过程.
• 2.一定质量气体的等容变化
演示:
• 如图所示,研究瓶中一 定质量的气体,先使U 型管中两侧水银液面等 高,在左侧液面处标上 标记P,然后改变瓶内 气体温度(可分别放入 热水和冰水中),上下 移动A管,使左侧水银 面保持在P处(即使瓶 中气体体积不变).
• 3.盖·吕萨克定律:一定质量的某种气 体, 在压强不变的情况下,体积V与热力学温度成 正比( V T ).
可写成 V1 V2 或 V C
T1 T2
T
(1)盖·吕萨克定律是实验定律,由法国科学家 盖·吕萨克通过实验发现的.
(2)成立条件:气体质量一定,压强不变.
• (3)在 V/t=C 中的C与气体的种类、质量、压 强有关.
• (2)一定质量气体的等压线的V-T图象,其
气体实验定律-PPT课件

C.气体分子平均速率变大
D.单位时间单位面积器壁上受到气体分子撞击的次 数减少
小结:
• 一定质量的气体在等容变化时,遵守查理定 律. 一定质量的气体在等压变化时,遵守盖 · 吕萨 克定律.
•
气体实验定律(Ⅱ)
一、等容过程
1.等容过程:气体在体积不变的情况下发 生的状态变化过程叫做等容过程. 2.一定质量气体的等容变化
演示:
• 如图所示,研究瓶中一 定质量的气体,先使U 型管中两侧水银液面等 高,在左侧液面处标上 标记P,然后改变瓶内 气体温度(可分别放入 热水和冰水中),上下 移动A管,使左侧水银 面保持在P处(即使瓶 中气体体积不变).
4.等容线 ( l )等容线:一定质量的某种气体在等容变化 过程中,压强p跟热力学温度 T的正比关系 p- T在直角坐标系中的图象叫做等容线. (2)一定质量气体的等容线 p- T图象,其延长 线经过坐标原点,斜率反映体积大小,如图所 示.
(3)一定质量气体的等容线的物理意义. ①图线上每一个点表示气体一个确定的状态 ,同一根等容线上各状态的体积相 ②不同体积下的等容线,斜率越大,体积越 小(同一温度下,压强大的体积小)如图所 示,V2<V1.
查理定律的微观解释:
一定质量(m)的气体的总分子数(N) 是一定的,体积(V)保持不变时,其单 位体积内的分子数(n)也保持不变,当 温度(T)升高时,其分子运动的平均速 率(v)也增大,则气体压强(p)也增大; 反之当温度(T)降低时,气体压强(p) 也减小。
二、等压过程
1 .等压过程:气体在压强不变的情况下发 生的状态变化过程叫做等压过程. 2.一定质量气体的等压变化.
可得到,气体温度升 高,压强增大;气体 温度降低,压强减小.
气体实验定律和理想气体的定义

气体实验定律气体实验定律,即关于气体热学行为的5个基本实验定律,也是建立理想气体概念的实验依据。
这5个定理分别是:①玻意耳定理、②盖·吕萨克定律、③查理定律、④阿伏伽德罗定律、⑤道耳顿定律。
①玻意耳定律一定质量的气体,当温度保持不变时,它的压强p和体积V的乘积等于常量,即pV=常量式中常量由气体的性质、质量和温度确定。
②盖·吕萨克定律一定质量的气体,当压强保持不变时,它的体积V随温度t线性地变化,即V=V0(1+avt)式中V0,V分别是0℃和t℃时气体的体积;av是压力不变时气体的体膨胀系数。
实验测定,各种气体的av≈1/273°。
③查理定律一定质量的气体,当体积保持不变时,它的压力p随温度t线性地变化,即p=p0(1+apt)式中p0,p分别是0℃和t℃时气体的压强,ap是体积不变的气体的压力温度系数。
实验测定,各种气体的ap≈1/273°。
实验表明,对空气来说,在室温和大气压下,以上三条定律近似正确,温度越高,压力越低,准确度越高;反之,温度越低,压力越高,偏离越大。
(以空气为例,在0℃,若压强为1大气压时体积为1升,即pV等于1大气压·升,则当压力增为500和1000大气压时,pV乘积增为1.34和1.99大气压·升,有明显差别。
)另外,同种气体的av、ap都随温度变化,且稍有差别;不同气体的av、ap也略有不同。
温度越高,压力越低,这些差别就小,常温下在压力趋于零的极限情形,对于一切气体,av=ap=1/273.15°。
④阿伏伽德罗定律在相同的温度和压力下,1摩尔任何气体都占有同样的体积。
在T0=273.15K和p0=1大气压的标准状态下,1摩尔任何气体所占体积为V0=22.41410×10-3米3/摩尔(m3·mol-1)。
它也可表述为:在相同的温度和压力下,相同体积的任何气体的分子数(或摩尔数)相等。
气体实验定律

气体实验定律气体是我们日常生活中不可或缺的物质,在物理学中,气体的行为可由一系列实验定律来描述和解释。
这些实验定律包括查理定律、波义尔-马里亚定律和亨利定律,它们各自揭示了气体的特性、性质和行为。
本文将逐一介绍这些实验定律,并解释其背后的物理原理。
1. 查理定律查理定律,也称作巴斯-盖-路易斯定律,提出了气体在常压下的体积与温度之间的关系。
根据查理定律,当气体的压强保持不变时,气体的体积与其温度成正比。
数学上,查理定律可以用以下公式来表示:V1 / T1 = V2 / T2其中,V1和T1分别代表气体的初始体积和温度,V2和T2分别代表气体的最终体积和温度。
查理定律的实验结果表明,随着气体温度的升高,气体的体积也会增加。
这是因为高温会导致气体分子的动能增加,从而使气体分子在容器中运动的幅度增大,使整个气体膨胀。
2. 波义尔-马里亚定律波义尔-马里亚定律是描述气体压强与体积之间关系的实验定律。
根据该定律,在一定温度下,气体的体积与其压强成反比。
数学上,波义尔-马里亚定律可以用以下公式来表示:P1 * V1 = P2 * V2其中,P1和V1分别代表气体的初始压强和体积,P2和V2分别代表气体的最终压强和体积。
实验结果表明,当气体的体积减小时,气体分子与容器壁碰撞的频率增加,从而导致气体分子对容器壁施加的压强增加。
因此,在一定温度下,当气体体积减小时,其压强会增加。
3. 亨利定律亨利定律描述了气体与液体之间的溶解关系。
根据亨利定律,气体在液体中的溶解度与气体的分压成正比。
数学上,亨利定律可以用以下公式来表示:C = k * P其中,C代表气体在液体中的溶解度,P表示气体的分压,k称为Henry常数。
亨利定律的实验发现表明,当气体分压增加时,气体分子会更多地溶解到液体中。
这是因为气体分子与液体分子的相互作用增强,导致气体分子更易溶解进入液体。
总结:气体实验定律,包括查理定律、波义尔-马里亚定律和亨利定律,揭示了气体的特性和行为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
气体实验定律教学目标1.使学生明确理想气体的状态应由三个参量来决定,其中一个发生变化,至少还要有一个随之变化,所以控制变量的方法是物理学研究问题的重要方法之一.2.要求学生通过讨论、分析,总结出决定气体压强的因素,重点掌握压强的计算方法,使学生能够灵活运用力学知识来解决热学问题,使学生的知识得到迁移,为更好的解决力热综合题打下良好的基础.3.了解气体实验定律的实验条件、过程,学会研究物理问题的重要方法——控制变量(单因素)法,明确气体实验定律表达式中各个字母的含义,引导学生抓住三个实验定律的共性,使复习能够事半功倍.教学重点、难点分析1.一定质量的某种理想气体的状态参量p、V、T确定后,气体的状态便确定了,在这里主要是气体压强的分析和计算是重点问题,在气体实验定律及运用气态方程的解题过程中,多数的难点问题也是压强的确定.所以要求学生结合本专题的例题和同步练习,分析总结出一般性的解题方法和思路,使学生明确:压强的分析和计算,其实质仍是力学问题,还是需要运用隔离法,进行受力分析,利用力学规律(如平衡)列方程求解.2.三个气体实验定律从实验思想、内容到解题的方法、步骤上均有很多相似之处,复习时不要全面铺开,没有重点.应以玻-马定律为重点内容,通过典型例题的分析,使学生学会抓共性,掌握一般的解题思路及方法,提高他们的科学素养.教学过程设计教师活动一、气体的状态参量一定质量m的某种(摩尔质量M一定)理想气体可以用力学参量压强(p)、几何参量体积(V)和热学参量温度(T)来描述它所处的状态,当p、V、T一定时,气体的状态是确定的,当气体状态发生变化时,至少有两个参量要发生变化.1.压强(p)我们学过计算固体压强的公式p=F/S,计算液体由于自重产生的压强用p=ρgh,那么(1)对密闭在容器中的一定质量的气体的压强能否用上述公式计算呢?(2)密闭气体的压强是如何产生的呢?和什么因素有关?(3)密闭气体的压强如何计算呢?通过下面的几个例题来分析总结规律.学生活动回答问题:(1)不能.(2)是由于大量的气体分子频繁的碰撞器壁而形成的,和单位时间内、单位面积上的分子的碰撞次数有关,次数越多,产生的压强越大,而碰撞次数多,需单位体积内的分子数多,所以和单位体积内的分子数有关;还和碰撞的强弱有关,气体的温度越高,分子热运动越剧烈,对器壁的撞击越强.[例1]在一端封闭粗细均匀的竖直放置的U形管内,有密度为ρ的液体封闭着两段气柱A、B,大气压强为p0,各部分尺寸如图2-1-1所示,求A、B气体的压强.学生讨论例题1.让学生在黑板上列出不同的解法,典型解法如下:解法1:取液柱h1为研究对象.设管的横截面积为S,h1受到向下的重力ρgSh1,A 气体向下的压力p A S,大气向上的压力p0S,因为h1静止,所以p A S+ρgSh1=p0Sp A=p0-ρgh1再取液柱h2为研究对象,由帕斯卡定律,h2上端受到A气体通过液体传递过来的向下的压力p A S,B气体向上的压力p B S,液柱自身重力ρgSh2,由于液柱静止,则p A S+ρgSh2=p B Sp B=p0-ρgh1+ρgh2解法2:求p B时,由连通器的知识可知,同种液体在同一水平面上的压强处处相等,取同一水平面CD,则p A=p B S-ρgh2p B=p0-ρgh1+ρgh2在教师的引导下同学们总结:(1)气体自重产生的压强很小,一般忽略不计;(2)对密闭气体,帕斯卡定律仍适用;(3)当整个系统处于静止或匀速运动中时,气体的压强可以用力的平衡的方法求解,也可以运用连通器的原理,找等压面的方法求解.[例2]如图2-1-2所示,一圆形气缸静置于水平地面上,气缸质量为M,活塞质量为m,活塞面积为S,大气压强是p0.现将活塞缓慢上提,求气缸刚离开地面时,气缸内气体的压强(不计摩擦).此题涉及到活塞、气缸、密闭气体,以谁为研究对象呢?活塞缓慢移动的含义是什么?气缸刚离开地面是什么意思?对例题2学生讨论大致有两种观点:1.以活塞为研究对象,活塞受向上的外力F、自身的重力mg、大气向下的压力p0S、封闭气体向上的压力pS,因为活塞缓慢移动,所以可以认为活塞的每个态均为平衡态,则F+pS=mg+p0S(1)F、p均是未知数,还需另立方程.再以整体为研究对象,受向上的外力F、自身的重力(M+m)g、地面的支持力N.系统是否受大气的压力呢?讨论结果:受,但是因为整个系统上下左右均受到大气的作用,所以分析受力时可不考虑.系统静止,所以F+N=(M+m)g当气缸刚离开地面时,N=0,F=(M+m)g (2)将(2)代入(1)得p=p0-Mg/S2.以气缸为研究对象,气缸受自身向下的重力Mg、封闭气体向上的压力pS、地面的支持力N、大气对气缸底部向上的压力p0S.(学生对气缸上面是否受大气压力产生疑问.经过讨论学生认识到气缸上方和它作用的是封闭气体,大气是作用在活塞上的.)气缸静止,则Mg+pS=N+p0S当气缸刚离开地面时,N=0,得p=p0-Mg/S[例3]如图2-1-3所示,粗细均匀开口向上的直玻璃管内有一段长为h、密度为ρ的水银柱,封闭了一段气体,当整个装置处于向下加速(加速度为a)的电梯中时,气体的压强是多少?若电梯向上加速呢?通过上面的三个例题,请同学们归纳总结计算气体压强的一般思路和方法.学生解答例题3:以水银柱为研究对象,受重力ρgSh、大气向下的压力p0S、气体向上的压力pS,因为系统向下加速,由牛顿第二定律,ρgSh+p0S-pS=ρShap=p0+ρ(g-a)h讨论:若a=g,即系统做自由落体运动时(完全失重),p=p0同理,向下加速时,p=p0+ρ(g+a)h学生归纳一般解题思路:1.确定研究对象:活塞、气缸、液柱等.2.进行正确的受力分析.3.根据规律列方程,例如平衡条件、牛顿定律等.4.解方程并对结果进行必要的讨论.2.体积(V):气体分子所能充满的空间,若被装入容器则气体的体积=容器的容积.3.温度(T):温标:一般有摄氏温标和热力学温标,它们的关系是什么?T=t+273,-273℃=OK,△T=△t二、气体的实验定律提问:(1)气体的三个实验定律成立的条件是什么?(2)主要的实验思想是什么?很好,我们要会用文字、公式、图线三种方式表述出气体实验定律,更要注意定律成立的条件.(1)一定质量的气体,压强不太大,温度不太高时.(2)控制变量的方法.对一定质量的某种气体,其状态由p、V、T三个参量来决定,如果控制T不变,研究p-V间的关系,即得到玻-马定律;如果控制V不变,研究p-T间的关系,即得到查理定律;如果控制p不变,研究V-T间的关系,即得到盖·吕萨克定律.1.等温过程——玻-马定律(1)内容:(2)表达式: p1V1=p2V2(3)图像玻-马定律的内容是:一定质量的某种气体,在温度不变时,压强和体积的乘积是恒量.讨论:上面的p-V图中,A、B表示一定质量的某种气体的两条等温线,则T AT B(填>、=、<),试说明理由.T A T B说明原因的过程中,学生讨论后渐趋明朗.有学生回答:从分子动理论的角度来说,气体的压强是大量气体分子频繁碰撞器壁的结果,单位体积内的分子数越多、分子运动的平均速率越大,压强就越大.在p-V图像的两条等温线上,取体积相同的两点C、D,因为是一定质量的气体,所以单位体积内的分子数相同;又从图像上可知,p C<P D,所以T D>T C,则T B>T A.小结:一定质量的某种气体的p-V图像上的等温线越向右上方,温度越高,即pV的乘积越大.[例4]1m长的粗细均匀的直玻璃管一端封闭,把它开口向下竖直插入水中,管的一半露在水面外,大气压为76cmHg,求水进入管中的高度.引导学生讨论:(1)此过程可视为等温过程,应用玻-马定律,那么如何确定一定质量的气体呢?(2)研究对象的初末态如何确定?(3)管插入水中一半时,管内水面的高度应是图2-1-5中a、b、c的哪个位置?为什么.解答:设玻璃管的横截面积为S.初态:玻璃管口和水面接触但还没有插入之时,此后管内气体为一定质量的气体.p1=p0,V1=1S.末态:管插入水中一半时,如图2-1-5所示,位置c是合理的.因为管插入水中,温度一定,气体体积减小,压强增大,只有p c>p0,所以c位置合理.设进入管内的水柱的高度是x,则p2=p0+ρg(0.5-x),V2=(1-x)S,根据玻-马定律:p1V1=p2V2,所以p0×1S=[p0+ρg(0.5-x)]×(1-x)S,得x=0.05m[例5]一根长度为1m,一端封闭的内径均匀的细直玻璃管,管内用20cm长的水银柱封住一部分空气.当管口向上竖直放置时,被封住的空气柱长49cm.问缓慢将玻璃旋转,当管口向下倒置时,被封住的空气柱长度是多少?假设p0=76cmHg,气体温度不变.对例题5大多数学生做出如下解答:p1=p0+h=76+20=96(cmHg)V1=49Sp2=p0-h=76-20=56(cmHg)V2=HSp1V1=p2V2所以H=84(cm)解答到此,有部分同学意识到此时空气柱加水银柱的长度H+h=84+20=104(cm)已大于玻璃管的长度1m了,说明水银早已经溢出!所以,管倒置后,p2=p0-h′V2=HS,H+h′=L所以h=18.5(cm),H=81.5(cm)[例6]内径均匀的U形管中装入水银,两管中水银面与管口的距离均为l=10cm,大气压强p0=75.8cmHg时,将右管口密封,如图2-1-6所示,然后从左侧管口处将一活塞缓慢向下推入管中,直到左右两侧水银面高度差h=6cm时为止.求活塞在管内移动的距离.提问:(1)缓慢向下推是什么意思?(2)本题中有左右两部分定质量的气体,能分别写出它们初、末态的状态参量吗?(3)两部分气体间有什么联系?画出示意图.解答:缓慢压缩的含义是整个过程中系统保持温度不变,且水银柱处于平衡态.设管的横截面积为S,则:左管气体:初态:p A0=p0,V A0=lS=10S末态:pA=?,VA=?右管气体:初态;p B0=p0,V B0=lS=10S末态:p B=?,V B=?画出变化前后的示意图,如图2-1-7所示:一般认为液体不易压缩,U形管中,左管液面下降△l,右管液面必上升△l,则两管液面的高度差为2△l,在本题中2△l=h.从上面的示意图中可知:p A=p B+h,V A=(l-x+h/2)SV B=(l-h/2)分别对左右管内的气体应用玻马定律,代入数据,得:x=6.4cm2.等容过程——查理定律(1)内容:提问:法国科学家查理通过实验研究,发现的定律的表述内容是什么?把查理定律“外推”到零压强而引入热力学温标后,查理定律的表述内容又是什么?内容:一定质量的气体,在体积不变的情况下,温度每升高(或降低) 1℃,增加(或减少)的压强等于它0℃时压强的1/273.一定质量的气体,在体积不变的情况下,它的压强和热力学温标成正比.3.等压变化——盖·吕萨克定律(1)内容:(2)表达式:内容:一定质量的气体,在压强不变的情况下,它的体积和热力学温标成正比.[例7]一个质量不计的活塞将一定量的理想气体封闭在上端开口的直立筒形气缸内,活塞上堆放着铁砂,如图2-1-8所示.最初活塞搁置在气缸内壁的卡环上,气柱的高度H0,压强等于大气压强p0.现对气体缓慢加热,当气体温度升高了△T=60K时,活塞(及铁砂)开始离开卡环而上升.继续加热,直到气柱高度H1=1.5H0.此后在维持温度不变的条件下逐渐取走铁砂,直到铁砂被全部取走时,气柱高度变为H2=1.8H0.求此时气体的温度(不计气缸和活塞间的摩擦).分析:以封闭在气缸内的一定质量的理想气体为研究对象,(1)从最初活塞搁置在气缸内壁的卡环上,到当气体温度升高了△T=60K时,活塞(及铁砂)开始离开卡环这一过程气体的哪个状态参量没有发生变化?(2)从当气体温度升高了△T=60K时,活塞(及铁砂)开始离开卡环而上升,直到气柱高度H1=1.5H0.这一过程气体的哪个状态参量没有发生变化?(3)此后的过程气体的哪个状态参量没有发生变化?回答完上面的三个问题后,相信同学们能够自己解答出此题了.学生回答提问:(1)体积不变,所以此过程为等容变化.(2)压强不变,所以此过程为等压变化.(3)温度不变,所以此过程为等温变化.学生的两种解法:解法一:以封闭在气缸内的一定质量的理想气体为研究对象,设最初活塞搁置在气缸内壁的卡环上时,气体的温度为T0,气体的压强为p0,体积为V0=H0S,则活塞(及铁砂)开始离开卡环时的温度T1=T0+△T,气体的压强为p1,体积为V1,因为等容变化,V1=V0,根据查理定律,设气柱高度为H1时,气体温度为T2,体积为V2=H1S,压强为p2,因为是等压变化,p2=p1,根据盖·吕萨克定律,设气柱高度为H2时,气体温度为T3,体积为V3=H2S,压强为p3,因为铁砂全部取走时p3=p0,又因为是等温变化,T3=T2,根据玻-马定律,p3V3=p2V2,p0H0=p1H1 (3)由(1)、(3)两式解得:由(2)、(4)两式解得:由(5)、(6)两式解得:解法二:以封闭在气缸内的一定质量的理想气体为研究对象,设最S初活塞搁置在气缸内壁的卡环上时,气体的温度为T0,则活塞(及铁砂)开始离开卡环时的温度为T0+△T,设气柱高度为H1时,气体温度为T1,气柱高度为H2时,气体温度为T2,由等压过程得由初态和末态的压强相等,得由(1)、(2)两式解得:说明:气缸内的封闭气体先后经历了四个状态、三个过程.可以建立如下图景:利用上述图景,可以使复杂的过程清晰展现,所以分析物理图景是解题非常关键的步骤.同步练习一、选择题1.对于一定质量的理想气体,下列说法中正确的是[] A.如果体积V减小,气体分子在单位时间内作用于器壁单位面积的总冲量一定增大B.如果压强p增大,气体分子在单位时间内作用于器壁单位面积的总冲量一定增大C.如果温度T不变,气体分子在单位时间内作用于器壁单位面积的总冲量一定不变D.如果密度不变,气体分子在单位时间内作用于器壁单位面积的总冲量一定不变2.如图2-1-9所示,U形管封闭端内有一部分气体被水银封住,已知大气压为p0,则被封闭的气体的压强p(以汞柱为单位)为[] A.p0+h2B.p0-h1C.p0-(h1+h2)D.p0+h2-h13.如图2-1-10所示,密封U形管内装有水银,左右两管都有空气,两水银面的高度差为h,把U形管竖直浸没在热水中,高度差h将[] A.增大 B.减小C.不变 D.两侧空气柱的长度未知,不能判断二、非选择题4.如图2-1-11所示,一根横截面积是S=1cm2的直管,两端开口,竖直插入水银槽中.有两个质量都是m=20g的活塞A、B,在管中封闭两段长都是L=10cm的理想气体.开始时A、B都处于静止状态.不计管壁对A、B的摩擦.现在用力F竖直向上缓慢拉动活塞A,当F=4.2N时,A、B再次静止.设整个过程中环境温度不变,g=10m/s,外界大气压p0=1.0×105Pa,合73.5cmHg,水银密度ρ=13.6×103kg/m3,求在此过程中:(1)活塞A上升的距离;(2)有多高的水银柱进入管内.5.用图2-1-12所示的容积计测量某种矿物的密度,测量数据和步骤如下:(1)打开阀门K,使管A、容器C、B和大气相通,上下移动D使水银面在n处;(2)关闭K,向上举D使水银面达到m处,这时B、D两管内水银面高度差h1=12.5cm;(3)打开K,把400g矿物投入C,使水银面对齐n,然后关闭K;(4)往上举D,使水银面重新到达m处,这时B、D两管内水银面高度差h2=23.7cm,m处以上容器C和管A(不包括B)的总体积是1000cm3.求矿物的密度.6.如图2-1-13所示的实验装置,研究体积不变时的气体压强与温度的关系,当时大气压为H(cm)汞柱.封有一定质量气体的烧瓶,浸在冰水混合物中,U形压强计可动管A和固定管B中的水银面刚好相平.将烧瓶浸入温度为t℃的热水中时B管的水银面将____,这时应将A管____,(以上两空填“上升”或“下降”)使B管中水银面____.记下此时A、B两管中水银面的高度差为h(cm),此状态下瓶中气体的压强为____.参考答案1.B 2.B 3.A 4.(1)44.6cm(2)30.8cm 5.846.5kg/m3 6.下降上升回到原来位置(H+h)cmHg。