(完整版)流变学复习

合集下载

流变学复习提纲

流变学复习提纲

复习大纲第一章绪论基本内容:流变学基本概念、流变学研究的重要性重点:流变学的概念;流变学与分子结构、加工、形态、应用等的关系,如分子量、分子量分布及支化程度对聚合物流变性的影响难点:流变学的概念(包轴现象、出口压力降、假塑性流体、粘流活化能、表观剪切粘度、熔融指数、维森堡效应、挤出胀大、可回复形变、触变性流体)第二章聚合物熔体的流动性2.1 聚合物的非牛顿型流动基本内容:高聚物粘流态的特点流动曲线的分类(牛顿流体和非牛顿流体,非牛顿流体分为宾汉流体、假塑性流体和胀塑性流体)幂律方程及影响非牛顿指数的因素掌握影响聚合物剪切粘度的分子链结构因素、加工条件及配方因素重点:流动曲线的分类机每种流动曲线特征难点:非牛顿指数的物理意义流动曲线的分类,每种流动曲线特点并举例:如:非牛顿指数、假塑性流体的流动曲线、表观粘度、剪切粘度和拉伸粘度、熔体破碎现象、聚合物弹性效应2.2影响聚合物剪切粘度的因素2.3关于剪切变稀行为的说明基本内容:从链结构出发,学习链结构、分子量及分布、支化、交联对黏度的影响从温度、剪切速率、压力等方面,学习加工条件对黏度的影响从配方方面,学习碳黑、碳酸钙、增塑剂对黏度的影响重点:影响黏度的各种因素难点:剪切变稀行为2.4高聚物熔体的弹性基本内容:高聚物弹性的几个物理量的表征松弛时间的概念挤出胀大现象,原因,影响因素熔体破裂现象、种类、原因及措施重点:挤出胀大现象,原因,影响因素熔体破裂现象、种类、原因及措施难点:松弛时间的概念熔体破裂原因2.5拉伸流动基本内容:拉伸粘度概念,与剪切粘度的比较,应用重点:与剪切粘度的比较难点:拉伸粘度的概念第三章流变性能测定3.1 引言3.2 毛细管流变仪基本内容:毛细管流变仪设备基本结构及测量原理入口校正原理及方法应用重点:毛细管流变仪测试原理难点:毛细管流变仪测试原理3.3 转矩流变仪基本内容:转矩流变仪基本结构测试原理校正原理及方法应用重点:转矩流变仪测试原理难点:转矩流变仪测试原理3.4 熔融指数测量仪3.5 其它流变仪(haake流变仪的原理与应用)3.6 拉伸粘度测试基本内容:拉伸粘度测试原理及应用重点:拉伸粘度测试原理难点:拉伸粘度测试原理第四章基本物理量、流变基础方程及本构方程4.1 基本物理量4.2 连续性方程4.3 动量方程基本内容:基本物理量直角坐标系中的连续性方程直角坐标系中的动量方程重点:直角坐标系中的连续性和动量方程难点:应力张量的概念第五章流变学基础方程的初步应用5.1 拖曳流流场分析5.2 压力流流场分析基本内容:推导两平板间牛顿流体拖曳流温度计速度分布计算公式推导牛顿与幂律流体压力流温度及速度分布计算公式重点:拖曳流与压力流速度及温度分布计算公式难点:拖曳流与压力流速度及温度分布计算公式第六章开炼机的加工过程6.2 流变分析6.3 生胶在辊筒上的行为基本内容:推导两辊筒间压力及速度分布计算公式,生胶在辊筒上的加工行为重点:两辊筒间压力及速度分布计算公式难点:两辊筒间压力及速度分布计算公式第七章挤出过程7.1 概述7.2 在计量段螺槽中的流动7.3 在机头口型中的流动7.4 稳定挤出基本内容:挤出过程、计量段螺槽中的流动、在机头口型中的流动和稳定挤出。

药剂学流变学基础复习指南

药剂学流变学基础复习指南

第七章流变学基础学习要点一、概述(一)流变学1、定义:流变学(rheology)就是研究物质变形与流动的科学。

变形就是固体的固有性质,流动就是液体的固有性质。

2、研究对象:(1) 具有固体与液体两方面性质的物质。

(2) 乳剂、混悬剂、软膏、硬膏、粉体等。

(二)变形与流动1、变形就是指对某一物体施加外力时,其内部各部分的形状与体积发生变化的过程。

2、应力就是指对固体施加外力,则固体内部存在一种与外力相对抗而使固体保持原状的单位面积上的力。

3、流动:对液体施加外力,液体发生变形,即流动。

(三)弹性与黏性1、弹性就是指物体在外力的作用下发生变形,当解除外力后恢复原来状态的性质。

可逆性变形----弹性变形。

不可逆变形----塑性变形2、黏性就是流体在外力的作用下质点间相对运动而产生的阻力。

3、剪切应力(S):单位液层面积上所施加的使各液层发生相对运动的外力,FSA=。

4、剪切速度(D):液体流动时各层之间形成的速度梯度,dvDdx=。

5、黏度:η,面积为1cm2时两液层间的内摩擦力,单位Pa·s,SDη=。

(四)黏弹性1、黏弹性就是指物体具有黏性与弹性的双重特征,具有这样性质的物体称为黏弹体。

2、 应力松弛就是指试样瞬时变形后,在不变形的情况下,试样内部的应力随时间而减小的过程,即,外形不变,内应力发生变化。

3、 蠕变就是指把一定大小的应力施加于黏弹体时,物体的形变随时间而逐渐增加的现象,即,应力不变,外形发生变化。

二、流体的基本性质图7-1 各种类型的液体流动曲线 (一)牛顿流体: 1、 特征 (1) 剪切速度与剪切应力成正比,S=F/A=ηD 或1S D η=。

(2) 黏度η:在一定温度下为常数,不随剪切速度的变化而变化。

2、 应用纯液体、低分子溶液或高分子稀溶液。

(二)非牛顿流体 1、 特征:(1) 剪切应力与剪切速度的关系不符合牛顿定律。

(2) 黏度不就是一个常数,随剪切速率的变化而变化。

流变学复习重点

流变学复习重点

• 典型高分子液体的流动曲线如上图,当流动很慢时, 剪切粘度保持为常数,随剪切速率的增大,剪切粘 度反而减少。图中曲线大致可分为三个区域,


OA段,剪切速率γ→0,η→ γ呈线性关系,流动 性质与牛顿型流体相仿,粘度趋于常数,称零剪切 粘度η0.这一区域称第一牛顿区。
AB段,当剪切速率超过某一临界值γ后,材料 流动性质出现非牛顿性,剪切粘度(实际上是表现 剪切粘度η,即η与γ曲线上一点与原点连线的斜率, 后面将详细介绍)随剪切速率γ增大而逐渐下降, 出现“剪切变稀”行为,这一区域是高分子材料加 工的典型流动区。 BC段,剪切速率非常高时, γ →∞时,剪切粘 度又趋于另一个定值η ∞,称无穷剪切粘度,这一区 域称第二牛顿区,通常实验达不到该区域,因为在 此之前,流动已变得极不稳定,甚至被破坏。 绝大多数高聚物熔体的η 0, η a, η ∞有如下大小 顺序η 0> η a> η ∞
• 二、高聚物粘流特点
• 高聚物分子链细而长,流动过程中其分子受力 形式与小分子不同,因而导致高聚物的粘性流动有 如下特点: 1. 流动机理是链段相继跃迁 小分子液体的流动可以用简单的孔穴模型说明, 该模型假设,液体中存在许多孔穴,小分子液体的 孔穴与分子尺寸相等,当受外力时,分子热运动无 规则跃迁,和孔穴不断变换位置,发生分子扩散应 力,在存在外力的情况下,分子沿外力方向从优跃 迁,即通过分子间的孔穴相继向某一方向移动,形 成宏观流动。温度升高,分子热运动能量增加,孔 穴增加和膨胀,流动阻力减小,粘度和温度关系服 从Arrhenius定律

此外,从上图可见,牛顿流体的粘度不随γ而 变化,但假塑性体粘度随γ而变化。正由于假塑性 体的粘度随γ和η而变化,为了方便起见,对非牛顿 流体可用“表观粘度”描述其流动时的粘稠性,表 观粘度η a定义流动曲线上某一点η与γ的比值,即

流变学复习仅供参考

流变学复习仅供参考

聚合物加工流变学复习:流变学:研究材料流动及变形规律的科学。

熔融指数:在一定的温度和负荷下,聚合物熔体每10min通过规定的标准口模的质量,单位g/10min。

假塑性流体:指无屈服应力,并具有粘度随剪切速率增加而减小的流动特性的流体。

可回复形变:先对流变仪中的液体施以一定的外力,使其形变,然后在一定时间内维持该形变保持恒定,而后撤去外力,使形变自然恢复。

韦森堡效应&爬杆现象&包轴现象:当圆棒插入容器中的高分子液体中旋转时,没有因惯性作用而甩向容器壁附近,反而环绕在旋转棒附近,出现沿棒向上爬的“爬杆”现象。

巴拉斯效应&挤出胀大&弹性记忆效应:指高分子被强迫挤出口模时,挤出物尺寸要大于口模尺寸,截面形状也发生变化的现象。

冷冻皮层:熔体进入冷模后,贴近模壁的熔体很快凝固,速度锐减,形成冷冻皮层法向应力效应:聚合物材料在口模流动中,由于自身的黏弹特性,大分子链的剪切或拉伸取向导致其力学性能的各向异性,产生法向应力效应。

松弛时间:是指物体受力变形,外力解除后材料恢复正常状态所需的时间。

Deborah数:松弛时间与实验观察时间之比。

残余应力:构件在制造过程中,将受到来自各种工艺等因素的作用与影响;当这些因素消失之后,若构件所受到的上述作用于影响不能随之而完全消失,仍有部分作用与影响残留在构件内,则这种残留的作用与影响称为残余应力。

表观粘度:非牛顿型流体流动时剪切应力和剪切速率的比值。

表观剪切黏度:表观粘度定义流动曲线上某一点τ与γ的比值。

入口校正:对于粘弹性流体,当从料筒进入毛细管时,由于存在一个很大的入口压力损失,因此需要通过测压力差来计算压力梯度时所进行的校正。

驻点:两辊筒间物料的速度分布中,在x’*处,物料流速分布中,中心处的速度=0,称驻点。

本构方程:描述应力分量与形变分量或形变速率分量之间关系的方程,是描述一大类材料所遵循的与材料结构属性相关的力学响应规律的方程. 反映流变过程中材料本身的结构特性。

湖北工业大学流变学复习资料

湖北工业大学流变学复习资料

湖北工业大学流变学复习资料湖北工业大学流变学复习参考题型挑选填空题直观综合仅供参考第一章:绪论1.何谓流变学(rheology)?流变学就是研究和阐明物质或材料流动和变形规律的科学。

就是化学、力学和工程学交叉的交叉学科。

2.流变学分支和方法论地位流变学分支:高分子流变学、石油工程流变学、食品流变学、悬浮液流变学、地质流变学、泥石流流变学、固体流变学(金属加工流变学、岩石流变学)、非牛顿流体流变学、分形体流变学、生物流变学和血液流变学,光、电、磁流变学、日用化工流变学、表面活性剂流变学、界面流变学(至少记住5个p1)方法论地位:流变学本身即为彰显出来朴素的实事求是观点,具备方法论促进作用,可以与多种学科交叉,构成代莱学科分支。

?3.流变学主要研究对象:非牛顿流体的流变特性、粘弹性材料的流变特性、流变测量技术、流变状态方程,即本构方程(揭示物质受力和变形的本质规律。

例:牛顿粘性定律、胡克定律)。

4.流变学与化学工程的关系/流变学与日用化工(重化工?)的关系化学工程:单体聚合反应、高分子加工、乳化过程与流体的流变行为密切相关。

必须研究其传达和反应过程、设计反应器、工程压缩,必须对演变过程特性存有明晰重新认识。

流变学提供材料的流变状态方程,用于解决非牛顿流体的动量传递问题,并进一步为非牛顿流体的热质传递和反应工程提供基础。

流变学是非牛顿流体化学工程的重要理论基础之一。

日用化工:日用化学品(膏霜、乳液)为多组分、多相态的非牛顿流体。

日用化工过程为非牛顿流体的制造过程。

1)乳液、泡沫的稳定性:包含热稳定性、耐剪切稳定性、储存稳定性等(表面粘度、表面弹性)2)产品的涂敷性:光滑性和涂敷深浅性能3)抽走能力,屈服应力4)增稠性:各种流变性调节剂(粘多糖、聚丙烯酸等)5)流平性指甲油等6)触变性膏霜、牙膏7)流动控制能力在洗衣粉料浆中加入适量甲苯磺酸钠,调节降低粘度,使之易于喷粉成型。

5.非牛顿流体的特殊性质:剪切变稀、剪切减仁和、屈服应力、触变性、粘弹性、爬竿效应、湍流减阻效应(toms效应)、无管虹吸现象、挤出胀大6.非牛顿流体的触变性:若流体的应力或粘度随剪切时间的增大而减小,并最终达到平衡粘度,该特性称为正触变性,简称触变性。

(完整word版)流变学复习重点(word文档良心出品)

(完整word版)流变学复习重点(word文档良心出品)

流变学复习重点一.名词解释:1.震凝性:在等温条件下,液体流动粘度随外力作用时间变大称震凝性,或称反触变形。

发生触变效应时,可以认为液体内部有某种结构遭到破坏,或者认为在外力作用下体系内某种结构的破坏率大于其恢复速率。

2.零剪切粘度:当剪切速率r →0时,σ-r 呈线性关系,流体流动性质与牛顿流体相仿,粘度趋于常数0η,成为零剪切粘度0η。

3.挤出胀大比:聚合物熔体完全松弛的挤出物直径与口型直径比。

4.WFL 方程:12()()lg lg ()()S T S C T T T a T C T T ηη∙-==-∙-时温等效原理中计算平移因子的方程,其适用温度范围为材料的Tg~Tgg100℃(Tg 为材料玻璃化转变温度)。

5.本构方程:又称状态方程,是描述一大类材料所遵循的与材料结构属性相关的力学响应规律的方程。

二.简答:1.四种无时间依赖性的流体的流动曲线以及基本特征。

①Bingham 塑性体:主要流动特征是存在屈服应力σy ,因此具有塑性体的可塑性质。

只有当外界施加的应力超过屈服应力时,物体才能流动。

②假塑性流体 主要流动特征是当流动很慢时,剪切粘度保持为常数,而随着剪切速率的增大,剪切粘度反常地减少。

③胀流行流体:主要特征是剪切速率很慢时,流动行为基本上同牛顿流体;剪切速率超过某一个临界值后,剪切粘度不是随剪切速率的增大而减小,恰恰相反,剪切速率越大,粘度越大,呈剪切变稠效应。

④牛顿流体:粘度随剪切速率呈正比关系。

2.Bagley 修正 重心思想是保持压力梯度P Z∂∂不变,将毛细管(其实是完全发展流动区)虚拟地延长,并将入口的压力降等价为在虚拟延长长度上的压力降。

3.熔体破裂定义:当外力作用速率很大时,外界赋予液体的形变能远远超出了液体的承受的极限时,多余的能量将以其他形式表现出来,其中产生小表面,消耗表面能是一种形式,而发生熔体破裂。

分类:LDPE 型和HDPE 型。

机理:与熔体的非线性粘弹性,与分子链在剪切流场找那个的取向和解取向,缠结和解缠结及外部工艺条件有关。

流变学专题培训

流变学专题培训
变性伴随水旳加入而增大。
➢ 温度对软膏基质稠度 旳影响,能够利用经过 改善旳旋转粘度计进行 测定,并对其现象加以 解释。
➢ 右图中能够看出,温 度对两种基质旳塑性流 动影响是一样旳,而且 降伏点旳温度变化曲线 也体现为一样旳性质。
➢ 而对其触变性而言,
右图中能够看出温度对两 种基质旳变化特征完全不 同.
➢ 流动主要表达液体和气体旳性质。流动旳难易与物质本 身具有旳性质有关,把这种现象称为粘性(Viscosity)。 流动也视为一种非可逆性变形过程。
➢ 实际上,某一种物质对外力体现为弹性和粘性双重特征 (粘弹性)。这种性质称为流变学性质,对这种现象进行 定量解析旳学问称为流变学。
切变应力与切变速率
➢ 其原因主要是伴随温度 旳升高凡士林旳蜡状骨架 基质产生崩解,另一方面, 液体石蜡聚乙烯复合型软 膏基质,一般在温度发生 变化旳条件下能够维持树 脂状构造。
剂型设计和制备工艺过程中流变学旳主要应用领域
旳基质。
(二)流变学在乳剂中旳应用
➢ 乳剂在制备和使用过程中往往会受到多种切变力旳影响 。在使用和制备条件下乳剂旳特征是否合适,主要由制剂 旳流动性而定。例如,为了使皮肤科用旳制剂或化装品到 达其质量原则,必须调整和控制好制剂旳伸展性。另外, 为了使皮肤注射用乳剂轻易经过注射用针头,且轻易从容 器中倒出以及使乳剂旳特征适合于工业化生产工艺旳需要 ,掌握制剂处方对乳剂流动性旳影响非常主要。
(一)麦克斯韦尔(Maxwell)模型 (二)福格特(Voigt)模型 (三)双重粘弹性模型 (四)多重粘弹性模型
流变学在药剂学中旳应用
➢ 流变学在药学研究中旳主要意义在于能够应用流变学理 论对乳剂、混悬剂、半固体制剂等旳剂型设计、处方构成 以及制备、质量控制等进行评价。 ➢ 如制备医疗和化装品用旳雪花膏、糊剂、洗涤剂时必须 调整合适旳稠度和润滑性,才干使其制剂到达良好旳重现 性。制备制剂时选择旳装置不同,流变学旳性质也不同。 而且,假如在制备过程中制备装置选择不当,制剂旳流变 学性能得不到满意旳效果。 ➢ 一种物质旳流变性和变形按其类别能够分两类:一种为 牛顿流变学,另一种为非牛顿流变学。

聚合物流变学复习题含参考答案

聚合物流变学复习题含参考答案

聚合物流变学复习题含参考答案绝⼤数⾼分⼦成型加⼯都是粘流态下加⼯的,如挤出,注射,吹塑等。

弹性形变及其后的松驰影响制品的外观,尺⼨稳定性。

之所以出现以上的特点,主要原因有:⾼分⼦的流动是通过链段的协同运动来完成的;⾼分⼦的流动不符合⽜顿流体的流动规律。

5、试述温度和剪切速率对聚合物剪切粘度的影响。

并讨论不同柔性的聚合物的剪切粘度对温度和剪切速率的依赖性差异。

答:(⼀)随着温度的升⾼,聚合物分⼦键的相互作⽤⼒减弱,粘度下降。

但是各种聚合物熔体对温度的敏感性不同。

聚合物熔体的⼀个显著特征是具有⾮⽜顿⾏为,其粘度随剪切速率的增加⽽下降。

(⼆)柔性⾼分⼦如PE、POM等,它们的流动活化能较⼩,表观粘度随温度变化不⼤,温度升⾼100℃,表观粘度也下降不了⼀个数量级,故在加⼯中调节流动性时,单靠改变温度是不⾏的,需要改变剪切速率。

否则,温度提得过⾼会造成聚合物降解,从⽽降低制品的质量。

6、试述影响聚合物粘流温度的结构因素。

分⼦链越柔顺,粘流温度越低;⽽分⼦链越刚性,粘流温度越⾼。

⾼分⼦的极性⼤,则粘流温度⾼,分⼦间作⽤越⼤,则粘流温度⾼。

分⼦量分布越宽,粘流温度越低。

.相对分⼦质量愈⼤,位移运动愈不易进⾏,粘流温度就要提⾼。

外⼒增⼤提⾼链段沿外⼒⽅向向前跃迁的⼏率,使分⼦链的重⼼有效地发⽣位移,因此有外⼒对粘流温度的影响,对于选择成型压⼒是很有意义的。

延长外⼒作⽤的时间也有助于⾼分⼦链产⽣粘性流动,增加外⼒作⽤的时间就相当于降低粘流温度。

7、按常识,温度越⾼,橡⽪越软;⽽平衡⾼弹性的特点之⼀却是温度愈⾼,⾼弹平衡模量越⾼。

这两个事实有⽭盾吗?为什么?不⽭盾。

原因:1.温度升⾼,⾼分⼦热运动加剧,分⼦链趋于卷曲构象的倾向更⼤,回缩⼒更⼤,故⾼弹平衡模量越⾼;2.实际形变为⾮理想弹性形变,形变的发展需要⼀定是松弛时间,这个松弛过程在⾼温时⽐较快,⽽低温时较慢,松弛时间较长,如图。

按常识观察到的温度越⾼,橡⽪越软就发⽣在⾮平衡态,即t8、对聚合物熔体的粘性流动曲线划分区域,并说明区域名称及对应的粘度名称,解释区域内现象的产⽣原因。

流变学总复习

流变学总复习

张量的特性 ① 如果在一个坐标系中,笛卡儿张量的所有分量都 等于零,那么它们在所有其他笛卡儿坐标系中也等 于零。 ② 两个同阶笛卡儿张量的和或差仍是同阶张量,于 是同阶张量的任何线性组合仍是同阶张量。 ③ 张量方程的意义。如果某个张量方程在一个坐标 系中能够成立,那么对于用允许变换所能得到的所 有坐标系,它也成立。
聚合物流变行为的特性
多样性: 聚合物的种类和结构,固体高聚物有线性弹性、 橡胶弹性及黏弹性;溶液和熔体有线性黏性、非线性 黏性、触变性等不同的流变行为。 高弹性: 聚合物所特有的流变行为,轻度交联的高聚物(橡 胶)。 时间依赖性: 松弛现象与聚合物长链分子的结构以及分子链之 间互相缠结有关。
第二部分


高分子材料流变学可分高分子结构流变学 和高分子加工流变学两大块。
高分子流体是一个泛意上的概念。 包括: 高分子的均相熔体;多相体系熔体;复合体系熔体; 乳液;悬浮液;高分子浓溶液、稀溶液等。 高分子流体流动行为常常取决于下面多种因素:
分子量的大小和分子量的分布; 分子的结构、形状和分子之间的相互作用; 相间的相互作用; 温度和流场的形状; 物理缠结和化学交联等。
本构方程

反映流体的力学本质特征的方程; 联系应力张量和应变张量或应变速率张量的所有 分量的方程; 又称为流变状态方程。 建立本构方程是流变学的中心任务。
线性弹性
虎克定律与弹性常数
虎克定律: 应力与应变之间存在线性关系。
=c
弹性常数 线性弹性也称为虎克弹性 。
拉伸实验中,材料在受拉应力作用下产生长度方向的应 变,根据虎克定律:
Q=R4(△P)/8l
Hagen-Poiseuille(哈根- 泊肃叶)方程 流量与单位长度上的压力降 并与管径的四次方成正比。

聚合物流变学基础复习课【优质最全版】

聚合物流变学基础复习课【优质最全版】

1 n=1 n=3 n= ② Hagen-Poiseuille Law
0
在Poiseuille流动中:
(Hagen-Poiseuille Law)
从下图中的已知条件回答问题:该高聚物
零切变速率下的粘度η0=( )10-1 Pa·s, 极 在Couette流动中:
0
-R
R
聚合物熔体加工中切变速率范围
零切变速率下的粘度η0=( )10-1 Pa·s, 极
Bagley(入口) 和Weissenberg(管壁)
(3) Cone and plate flow
r
v
外筒
注意: 外筒旋转
(3) Cone and plate flow
① 速度分布
0
2
2
(4) Torsional flow
① 速度分布
Байду номын сангаас Poiseuille 流动中的流速分布
n=0 n=0.1 n=1 n=3 n=
用毛细管粘度计测定非牛顿流体的粘度,需 进行两项校正:
Bagley(入口) 和Weissenberg(管壁)
幂律定律 触变性和流凝性
聚合物熔体加工中切变速率范围
成型加工方法
切变速率 (s-1)
成型加工方法
切变速率 (s-1 )
3. 线性粘性流动 剪切流动
ddv, 单位:(S1)
dt dy
牛顿流体
=
粘度的单位:泊(P),1秒•牛顿/米2 换算关系:牛顿/米2 • 1秒=10泊
线性粘性变形的特点
● 变形的时间依赖性 ● 流体变形的不可回复性 ● 能量损失 ● 正比性
流动方式 (1) Poiseuille Flow

油气储运工程流变学复习资料

油气储运工程流变学复习资料

第一章1:流体流动时流层间存在速度差和运动的传递是由于流体具有粘性2:粘性:相邻流层存在速度差时,快速流层力图加快慢速流层,慢速流层力图减慢快速流层,这种相互作用随层间速度差的增加而加剧的特性。

3:内摩擦力/粘性力:流层间的这种力图减小速度差的作用力称为内摩擦力或粘性力4:牛顿粘性定律:粘度和内摩擦力的关系。

F=μA(dν) / dy 符合牛顿内定律的流体称为牛顿流体,反之称为非牛顿流体,牛顿流体的剪切应力与剪切速率之间呈比例关系,剪切应力与剪切速率的比值为常数,即动力粘度,非牛顿流体的剪切应力与剪切速率之间无正比关系,剪切应力与剪切速率的比值不是常数。

5:动力粘度:稳态层流流动中的剪切应力与剪切速率的比值,动力年度是流体对形变的抵抗随形变速率的增加而增加的性质。

(公式P3)6:运动粘度:是动力粘度与同温度下的流体密度的比值,又称比密年度。

运动粘度对比动力粘度:运动粘度方便,1许多条件粘度与运动年度之间比较容易建立经验换算公式,2利用重力型玻璃毛细管粘度计可以很方便地测得运动粘度。

3但不能用运动粘度衡量流动阻力的大小7:粘度与温度,压力的关系:粘度与温度不成线性关系,它与温度范围有关,温度越低,粘温关系越密切,即随温度降低,粘度随温度的变化越大。

低压下的气体与液体的粘度随温度变化的规律完全相反,气体的粘度随温度的升高而增大,因为气体的粘性是由动量传递导致的,温度升高时,分子热运动加剧,动量增大,流层间的内摩擦加剧,所以粘度增大。

液体的粘性来自分子间引力,随温度的升高,分子间的距离加大,分子间引力减小,内摩擦减弱,所以粘度减小。

液体和气体的粘度随着压力的增大而增大,因为气体的压缩性很强,所以压力的变化对气体粘度的影响更大。

8:流变学:是一门研究材料或物质在外力作用下变形与流动的科学,流变学研究对象是纯弹性固体和牛顿流体状态之间所有物质的变形和流动问题。

流变学中物质所受到的力用应力或应力张量表示。

流变学中用应变或应变速率表示物质的运动状态即变形或流动。

流变学(石油大学蒋老师部分复习资)

流变学(石油大学蒋老师部分复习资)

第一章1.流变学是一门研究材料或物质在外力作用下变形与流动的科学。

2.流变学研究的是纯弹性固体和牛顿流体状态之间所有物质的变形与流动问题。

3.流变学更注重不同物质的力学性质与其内部结构之间的关系。

4.流变学中物质所受到的力用应力或应力张量表示。

5.流变学中用应变或应变速率表示物质的运动状态即变形或流动。

6.流体质点就是流体中宏观尺寸非常小而微观尺寸又足够大的任意一个物理实体。

7.物质状态的变化称为变形,而物质连续无限地变形就是流动。

8.流变学中有三种基本变形:简单拉伸、简单剪切和体积压缩与膨胀9.反映材料宏观性质的数字模型称为本构方程,亦称为流变状态方程和流变方程。

10.对一些简单的流变性制的描述也可以用曲线形式表示,如剪切应力与剪切速率关系曲线,粘度随剪切速率变化曲线等,并称之为流变曲线。

第二章1.散体系是指将物质(固态、液态或气态)分裂成或大或小的粒子,并将其分布在某种介质(固态、液态或气态)之中所形成的体系。

2.分散体系可以是均匀的也可以是非均匀的系统。

均匀分散体系是由一相所组成的单相体系,而非均匀分散体系是指由两相或两相以上所组成的多相体系。

3.非均匀分散体系必须具备2个条件:①在体系内各单位空间所含物质的性质不同;②存在着分界的物理界面。

4. 对非均匀分散体系,被分散的一相称为分散相或内相,把分散相分散于其中的一相称为分散介质,亦称外相或连续相。

5.尽管非牛顿流体在微观上往往是非均匀的多相分散体系,或非均匀的多相混合流体,但在用连续介质理论或宏观方法研究其流变性问题时,一般可以忽略这种微观的非均匀性,而认为体系为一种均匀或假均匀分散体系。

6.对非牛顿流体,没有恒定的粘度概念,不同的剪切速率下有不同的表观粘度,这是非牛顿流体的一大特点。

7、一受力就有流动,但剪切应力与剪切速率的不成比例,随着剪切速率的增大,剪切应力的增加速率越来越大,即随着剪切速率的增大,流体的表观粘度增大,这种特性被称为剪切增稠性(shear thickening)。

聚合物流变学复习资料

聚合物流变学复习资料

1.流变学是研究材料流动和变形的科学2.流体黏度就是分子间的内摩擦力的宏观度量。

是流体体内部抵抗流动的阻力,用流体的剪切应力与剪切速率之比表示。

剪切变形:具有横向速度梯度场的流动。

拉伸变形:具有纵向速度梯度场的流动3.和应力历史无关的非牛顿流体称为广义牛顿流体,它包含三种:假塑性流体:(n<1)其黏度随剪切速率增加而减小(剪切变稀),大多数聚合物浓溶液都属于这一流体。

膨胀性流体:(n>1)在定常态剪切流动中,起黏度随剪切速率增加而增加(剪切增稠),再加入大量填充剂的体系和某些聚氯乙烯糊能见到这种流体。

宾汉流体:细砂的悬浮液,泥浆、牙膏,唇膏,棒状发蜡,无水油滑霜,粉底霜和胭脂等。

4.有时效的非牛顿流体:1).触变流体:在恒定的剪切速率下,其黏度随剪切作用时间的增加而降低。

涂料、印刷油墨、番茄酱2).震凝流体:在恒定的剪切速率下,其黏度随剪切作用时间的增加而增大。

如碱性的丁腈橡胶的乳液悬浮液3).黏弹性流体:兼具有黏性和弹性效应的流体,其力学行为可用黏性和弹性两种来组合表达。

5.幂律方程:n为流动指数 k为稠度 n=1牛顿流体 n<1,为假塑性流体 n>1,为膨胀流体。

7.剪切敏感小的聚合物:聚碳酸酯(PC)、聚砜、共聚甲醛(PA)、聚酰胺(POM)剪切敏感大的聚合物:聚丙烯(PP)、聚氯乙烯(PVC)、聚乙烯(PE)8. 对温度敏感: PS、PC、PMMA等。

对温度不太敏感: PE、PP、POM等;对高密度聚乙烯、聚丙烯、共聚甲醛,升高温度引起熔体黏度下降程度较小;对聚苯乙烯、聚甲基丙烯酸甲酯、聚碳酸酯,温度升高会使熔体黏度有较大的下降。

9、相对分子质量分布宽的聚合物熔体比窄的有更大的剪切敏感性,长支链越多,剪切敏感性越大。

1.聚氯乙烯的凝胶化:低温下,在热和剪切作用下颗粒崩解成初级粒子;随着温度的升高,初级粒子受到剪切作用而被粉碎,当温度更高时,初级粒子全部被粉碎,晶体熔化,边界消失,形成三维网络的过程。

(完整版)流变学复习

(完整版)流变学复习

名词解释•流变学:研究材料流动及变形规律的科学。

•假塑性流体:指无屈服应力,并具有粘度随剪切速率增加而减小的流动特性的流体。

•韦森堡效应&爬杆现象&包轴现象:当圆棒插入容器中的高分子液体中旋转时,没有因惯性作用而甩向容器壁附近,反而环绕在旋转棒附近,出现沿棒向上爬的“爬杆”现象。

•巴拉斯效应&挤出胀大&弹性记忆效应:指高分子被强迫挤出口模时,挤出物尺寸要大于口模尺寸,截面形状也发生变化的现象。

•法向应力效应:聚合物材料在口模流动中,由于自身的黏弹特性,大分子链的剪切或拉伸取向导致其力学性能的各向异性,产生法向应力效应。

•松弛时间:是指物体受力变形,外力解除后材料恢复正常状态所需的时间。

•表观粘度:非牛顿型流体流动时剪切应力和剪切速率的比值。

•*入口校正:对于粘弹性流体,当从料筒进入毛细管时,由于存在一个很大的入口压力损失,因此需要通过测压力差来计算压力梯度时所进行的校正。

•本构方程:描述应力分量与形变分量或形变速率分量之间关系的方程,是描述一大类材料所遵循的与材料结构属性相关的力学响应规律的方程. 反映流变过程中材料本身的结构特性。

•*粘流活化能:E定义为每摩尔运动单元所需要的能量,它表征粘度对温度的依赖性,E越大,粘度对温度的依赖性越强,温度升高,其粘度下降得越多。

•*第二光滑挤出区:当剪切速率继续增大时,熔体在模壁附近会出现“全滑动”,这时会得到表面光滑的挤出物,这一区域称为第二光滑挤出区。

•*第一法向应力差:沿流动(受力)向的应力与垂直于流向(法向)的应力之差。

•*触变性流体:在恒温和恒定的切变速率下,粘度随时间递减的流体。

•*震凝性流体:在恒温和恒定的切变速率下,粘度随时间递增的流体。

•*平衡转矩:胶料混炼时,转矩随物料的不断均化最终达到的平衡值。

•拉伸粘度:拉伸应力与拉伸应变速率之比,表示流体对拉伸流动的阻力。

•*宾汉流体: 与牛顿型流体的流动曲线均为直线,但它不通过原点,只有当剪切应力超过一定屈服应力值之后才开始塑性流动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

名词解释?流变学:研究材料流动及变形规律的科学。

?假塑性流体:指无屈服应力,并具有粘度随剪切速率增加而减小的流动特性的流体。

?韦森堡效应&爬杆现象&包轴现象:当圆棒插入容器中的高分子液体中旋转时,没有因惯性作用而甩向容器壁附近,反而环绕在旋转棒附近,出现沿棒向上爬的“爬杆”现象。

?巴拉斯效应&挤出胀大&弹性记忆效应:指高分子被强迫挤出口模时,挤出物尺寸要大于口模尺寸,截面形状也发生变化的现象。

?法向应力效应:聚合物材料在口模流动中,由于自身的黏弹特性,大分子链的剪切或拉伸取向导致其力学性能的各向异性,产生法向应力效应。

?松弛时间:是指物体受力变形,外力解除后材料恢复正常状态所需的时间。

?表观粘度:非牛顿型流体流动时剪切应力和剪切速率的比值。

?*入口校正:对于粘弹性流体,当从料筒进入毛细管时,由于存在一个很大的入口压力损失,因此需要通过测压力差来计算压力梯度时所进行的校正。

?本构方程:描述应力分量与形变分量或形变速率分量之间关系的方程,是描述一大类材料所遵循的与材料结构属性相关的力学响应规律的方程. 反映流变过程中材料本身的结构特性。

?*粘流活化能:E定义为每摩尔运动单元所需要的能量,它表征粘度对温度的依赖性,E越大,粘度对温度的依赖性越强,温度升高,其粘度下降得越多。

?*第二光滑挤出区:当剪切速率继续增大时,熔体在模壁附近会出现“全滑动”,这时会得到表面光滑的挤出物,这一区域称为第二光滑挤出区。

?*第一法向应力差:沿流动(受力)向的应力与垂直于流向(法向)的应力之差。

?*触变性流体:在恒温和恒定的切变速率下,粘度随时间递减的流体。

?*震凝性流体:在恒温和恒定的切变速率下,粘度随时间递增的流体。

?*平衡转矩:胶料混炼时,转矩随物料的不断均化最终达到的平衡值。

?拉伸粘度:拉伸应力与拉伸应变速率之比,表示流体对拉伸流动的阻力。

?*宾汉流体: 与牛顿型流体的流动曲线均为直线,但它不通过原点,只有当剪切应力超过一定屈服应力值之后才开始塑性流动。

牙膏、油漆是典型的宾汉流体。

?*胀塑性流体:剪切速率很低时,流动行为与牛顿型流体基本相同,剪切速率超过某一临界后,随剪切速率增大,流动曲线弯向切应力坐标轴,剪切黏度增大,呈现“剪切变稠”的流体。

?*拉伸流动:指物料运动的速度方向在速度梯度方向平行。

?熔体破裂(破碎)现象:高分子熔体从口模挤出时,当挤出速度过高,超过某一临界剪切速率时,容易出现弹性湍流,导致流动不稳定,挤出物表面粗糙,随挤出速度的增大,可能分别出现波浪形,鲨鱼皮形,竹节形,螺旋形畸变,最后导致完全无规则的挤出物断裂,称为熔体破裂现象。

?*拖曳流:指对流体不加压力而靠边界运动产生力场,由粘性作用使流体随边界流动,称Couette(库爱特)流动。

?*压力流:指物料在管中流动,是由于管道两端存在压力差,而边界固定不动,称Poiseuille(泊肃叶)流动。

?*出口压力降:指粘弹性流体在毛细管入口区的弹性形变在经过毛细管后尚未全部松弛,至出口处仍残存部分内压力,则将表现为出口压力降。

?*临界切应力&临界切变速率:一般随剪切速率增大,至一临界值就产生破裂,而且越来越严重,这个开始产生破裂的速率或应力。

?零切粘度:就是当剪切速率趋于零时,粘度趋于常数,称零切粘度。

?切力变稀:流体的表观粘度随剪切速率的增大而减小。

?拉伸共振:拉伸共振是指在熔体纺丝或平膜挤出成型过程中,当拉伸比超过某一临界拉伸比时,熔体丝条直径发生准周期性变化。

?时温等效原理:外力的作用时间和温度这两个因素对形变有着等效的影响,即不同的时间温度组合可以达到同一形变量。

?极限粘度:在高剪切速率范围内,这种不依赖于剪切速率的粘度称为极限黏度。

?稳态拉伸流动:在拉伸应力的作用下,以恒定的拉伸速率,聚合物熔体和溶液所发生的流动。

问题(选择,填空):1.高分子流变学的分类?聚合物结构流变学、聚合物加工流变学、流变测量学。

2.应力张量的分解以及各个分力作用的结果?各项同性引力作用作用于各项同性材料单元后,只改变体积,不改变材料单元的形状。

各向异性法向应力作用于各项同性材料单元后,不改变体积和角度,只该改变形状。

各向异性剪切应力作用于各项同性材料单元后,不改变体积,只改变形状和角度。

3.与时间无依赖关系的非牛顿流体有哪些?宾汉体、假塑性流体、膨胀性流体。

4.影响聚合物熔体流变性的因素?聚合物的性质(聚合物的结构,分子量和分子量分布)、温度、剪切应力、剪切速率、压力、填料、增塑剂、溶剂。

5.聚合物熔体流动中,弹性表现的现象?挤出胀大现象,熔体破裂,出口压力降。

6.用毛细管流变仪测定流动曲线时,需要做哪些校正,什么目的?Rabinowich-Mooney修正(非牛顿修正)、Bagley修正(入口修正)非牛顿修正使聚合物可以根据R-M公式计算剪切速率。

入口修正使从测量的?P可以准确求出完全发展流动区的压力梯度。

7.AFE方程和WLF方程的使用有什么不同?对于牛顿流体和聚合物流体而言,当温度远高于玻璃化温度或熔点时,粘度与温度的关系服从AFE方程。

当温度的范围在Tg~Tg+100℃内,即在靠近Tg的区域内,聚合物的粘度可以用WLF方程表示。

8.影响可纺性的因素?物料的表观拉伸粘度、平均分子量、分子量分布、分子结构。

9.挤出机的均化段,流动有哪些流动组成?(略)10.两相聚合物包括哪两类?两相聚合物共混后流变行为?单相连续结构:即一相为连续相,又称海相;一相为分散相,又称岛相,两相形成海-岛结构;两相均为连续相:形成交错性网状结构,或称两相互锁。

一般具有海-岛形状结构的共混体系有粘度减小,弹性增大的性质变化,共混体系的粘度可能比任何一相组分粘度都低。

两相互锁结构的共混体有粘度增大,弹性减小的性质变化。

11.聚合物熔体中的分子缠结?分子缠结是相邻链间的暂时结合,是分子尺寸和数量的函数。

12.假塑性宽剪切速率范围内流体流动规律?流动可分为三个区域,第一牛顿区(低剪切速率)、非牛顿区(中度剪切速率)、第二牛顿区(高剪切速率)。

13.压力-温度对粘度影响的等效性?一种聚合物在正常加工温度范围内,增加压力对粘度的影响和降低温度对粘度的影响具有相似性,在加工过程中改变压力或温度,都能获得同样的粘度变化作用。

14.拉伸粘度与剪切粘度关系?对于牛顿流体,拉伸粘度是剪切粘度的三倍。

对于聚合物流体,两者之间不存在倍数关系,但是拉伸粘度总是比剪切粘度高。

15.聚合物流体不稳定流动的典型表现?熔体破裂现象、拉伸共振现象、加工过程中物料断裂。

简答题?1、试述温度和剪切速率对聚合物剪切粘度的影响。

并讨论不同柔性的聚合物的剪切粘度对温度和剪切速率的依赖性差异。

聚合物的剪切粘度随温度的升高而下降,在通常的剪切速率范围内,聚合物的剪切粘度也是随剪切速率的增大而降低的。

只有在极低(接近于零)及极高(趋于无穷大)的剪切速率下,聚合物的粘度才不随剪切速率的变化而变化。

不同柔性的聚合物的剪切粘度对温度和剪切速率的依赖性是不同的:柔性的高分子链在剪切力的作用下容易沿外力方向取向,使粘度明显下降。

而刚性高分子则下降得很不明显。

刚性高分子的粘流活化能大,其剪切粘度对温度极为敏感,随着温度的升高,剪切粘度明显下降,而柔性高分子的粘流活化能小,其剪切粘度随温度的变化较小。

?2、对聚合物熔体的粘性流动曲线划分区域,并说明区域名称及对应的粘度名称,解释区域内现象的产生原因。

第一流动区(第一牛顿区),是在低剪切速率范围内流动时表现为牛顿流动的区域。

对应的粘度为零剪切粘度,流体具有恒定的粘度,对此有两种解释。

一种看法认为:在低剪切速率下,聚合物流体的结构状态并未因流动而明显变化,流动过程中大分子的构象分布,各种长度不同的大分子的分布以及大分子束与静态时的体系形同,长链分子的缠结和存在于分子间的范德华力使流体中大分子间形成了相当稳定的结合,即次价键,从而使粘度保持为一常数。

另一种看法认为:在低剪切速率时,虽然大分子的构象和双重运动有足够的时间使应变适应应力的作用,但由于流体中大分子的热运动十分强烈,从而削弱了大分子应变对应力的依赖性,使粘度不变。

第二流动区(假塑性区),是假塑性流体表现为非牛顿型流动的区域。

对应粘度为结构粘度。

主要现象有“切力变稀”与“切力变稠”。

切力变稀:当剪切速率增大时,大分子逐渐从网络结构中解缠和滑移,流体结构出现了明显的改变,高弹性变相对减少,分子间作用力减弱,因而流动阻力减小,流体粘度随剪切速率的增加而逐渐降低。

切力变稠:当悬浮液处于静止状态时,流体中的固体粒子处于堆砌的很紧密的状态,粒子之间孔隙很小并充满了液体,在剪切作用不大时,固体粒子在液体的润滑作用下会产生相对滑移。

但是当剪切作用增大时,粒子处于较快的移动速度下,粒子之间的碰撞机会增多,流动阻力增大,悬浮液体系的总体积增加,原来能充满孔隙的液体已不在充满,粒子移动时的润滑作用减小。

第三流动区(第二牛顿区),也是牛顿流动区,对应的粘度为极限黏度,流体的粘度保持常数,对此也有两种解释。

一种看法认为:当剪切速率很高时,聚合物中网络结构的破坏和高弹性变已经达到极限,流体的粘度已经下降到最低值,当流动达到稳定状态时,粘度也下降到最低值。

另一种看法认为:当剪切速率很高时,流体中大分子构象和双重运动的应变来不及适应剪切应力和剪切速率的改变,致使流体的流动性为表现出牛顿型流动的特征。

?3、简述聚合物熔体和溶液的普适流动曲线,说明η0和η∞的含义并以分子链缠结的观点给以解释。

i.第一牛顿区:剪切速率低,曲线斜率n=1,lgK=lgη0,符合牛顿流动定律。

该区的粘度为零切粘度η0,可从这一段直线外推到与lgγ=0的直线相交处求得。

由于大分子处于高度缠结的拟网状结构,流动阻力很大。

当流速很小时,体系所受的剪切应力或剪切速率很小,分子链构象变化得也很慢,而且分子链运动有足够的时间进行松弛,使解缠结速度与缠结速度相等,故粘度保持恒定的最高值。

ii.假塑性区:流动曲线的斜率n<1,该区的粘度为表观粘度ηa =τ/γ。

从曲线上任一点引斜率为1的直线(前图中倾斜的虚线即是)与lgγ=0的直线相交点,得到的就是曲线上那一点对应的剪切速率下的表观粘度。

iii.第二牛顿区:流动曲线的斜率n=1,符合牛顿流动定律。

在高剪切速率区,由于强剪切,缠结全部破坏,来不及形成新的缠结,取向也达到极限状态,大分子的相对运动变得很容易,粘度达恒定的最低值,称极限剪切粘度η∞。

?4、分别画出牛顿流体、理想弹性体、线形聚合物的蠕变曲线及回复曲线。

?5、为什么高聚物的流动活化能与相对分子质量无关?根据自由体积理论,高分子的流动不是简单的整个分子的迁移,而是通过链段的相继跃迁来实现的。

形象地说,这种流动类似于蚯蚓的蠕动。

相关文档
最新文档