结构抗震试验方法概述

合集下载

结构抗震试验方法概述

结构抗震试验方法概述

结构抗震试验方法概述严健林业大学研究生院摘要:地震的多发性和破坏性,使得结构抗震试验研究越来越受到人类的广泛关注。

目前人类已经发明了很多结构抗震试验研究的方法,本文详细介绍了目前结构抗震试验常用的四种方法,分别是(1)拟静力试验方法;(2)多维拟静力试验方法;(3)地震模拟振动台试验方法;(4)拟动力试验方法,并对其各自特点及存在的问题进行了概述。

关键词:抗震试验;拟静力试验;振动台试验;拟动力试验;概述The Summary of the Dynamic Testing Method of Structures AbstractMore and more people pay more attention to the seismic research of structures which due to the multiple and devastating earthquake. Some dynamic test means were developed by human in the recent years. In this paper, four kinds of commonly used structure seismic test methods were describe, including The Pseudo Static experiment method, Dimensional Quasi-Static test methods, seismic simulation shaking table experiment method, Pseudo-dynamic test method.Key wordsdynamic testing; the pseudo-static experiment; shaking table experiment; pseudo-dynamic test;aseismatic design methods; summary0 前言地震是危害人类生命财产安全最严重的突发式自然灾害之一。

建筑结构抗震性能试验与仿真研究

建筑结构抗震性能试验与仿真研究

建筑结构抗震性能试验与仿真研究建筑结构的抗震性能是评价一座建筑安全性的重要指标。

为了提高建筑在地震中的稳定性,并为建筑设计提供科学依据,进行抗震性能试验与仿真研究势在必行。

一、抗震性能试验抗震性能试验是利用模型建筑进行地震模拟实验,通过加载恒定荷载或模拟地震波来评估建筑结构的抗震性能。

这种试验可以定量地评价建筑结构在地震作用下的滞回曲线、刚度退化、耗能能力等关键参数,并对建筑材料、结构形式和抗震设计方法进行验证。

抗震性能试验通常包括静力试验和动力试验两种方法。

静力试验以加载恒定荷载的方式,通过观测建筑结构的变形、位移、应变等参数,得到结构的力学性能。

动力试验则是利用振动台或地震模拟器,通过加载模拟地震波,模拟真实地震情况下建筑结构的响应。

这两种试验方法相辅相成,可以全面、深入地研究建筑结构在地震中的性能。

二、仿真研究与抗震性能试验相比,仿真研究通过数值模拟的方式,模拟建筑结构在地震中的动态响应,以获得建筑结构的抗震性能。

仿真研究基于计算机模型,采用数值分析方法,能够对建筑结构进行全局及局部的研究和分析,为结构的抗震性能提供定量的评价和预测。

仿真研究通常采用有限元法或离散元法进行,通过建立结构的几何模型和力学模型,对结构进行数值求解。

仿真研究可以模拟不同的地震波、不同的结构参数和加载条件,并对结构的力学响应进行分析和评价。

此外,仿真研究还可以通过参数敏感性分析和优化设计,寻求最佳的结构形式和设计方案。

三、试验与仿真的互补性抗震性能试验和仿真研究的方法和手段不同,但它们是相互补充的。

抗震性能试验能够通过实验结果直接观测到结构的力学性能,克服了模型假设和近似计算的不确定性。

同时,抗震性能试验还可以验证数值模型的准确性和可靠性,提供仿真研究的实验数据。

仿真研究则具有灵活性和经济性的优势,能够模拟各种加载条件和结构参数的组合,快速评估各种设计方案的性能。

同时,仿真研究还可以通过数值分析获取结构的内部应力、变形等详细信息,深入研究结构的破坏机理和力学行为。

建筑抗震试验方法规程

建筑抗震试验方法规程

建筑抗震试验方法规程结构物抗震试验是衡量建筑物地震作用下其受力性能和健康状态,评价其耐震性能及抗震设防能力的重要手段。

《结构物抗震试验方法规程》确定了建筑物试验动力要求、振动原理、动力中枢、试验步骤、试验现场布置要求等。

一、试验动力要求(一)动力形式。

试验应采用正弦波动力,动静比应满足:沿大楼垂直方向f0 ?dyn·R·l?,其中,f 0 为基本频率;dyn为试验设计时所采用的元动力系数;R为结构物地震烈度响应修正系数(高层大多数地震烈度取1.3);l为相关振型的配置系数(大多数案例取1,但水平方向结构在大跨度及多层下可适当减小)。

(二)动力膨胀。

试验时动力膨胀逐步增大,直至达到规定的试验动力值时稳定下来,动力增幅与增win时间应符合设计细节并符合下列要求:(1)频率应低于基本频率,可适当调整其大小;(2)增幅应以0.3~0.8增幅,其最大增幅不得超过:–无超屈曲现象时,能够保持严格平衡,动力不得超过动态元动力系数的150%;–有超屈曲现象时,较小,低于动态元动力系数的95%,以防止被试结构受到毁坏性的拉力作用;(3)增win时间应,结构物受力谱分析频率要素区间应为10~20s。

二、振动原理试验振动原理是以弹性叠加共振波的形式,让结构物抗震设计做静载、空载、双载实验方式,采用振动台荷载激励。

激励时应以建筑物侧面为激励面及激励点,特别是边缘支撑条件建筑物,特殊结构应采用横向内部激励。

三、试验时应注意的问题(一)原始试验参数的确定。

对于全量模件试验,除根据规范和设计图纸确定初始参数外,还应根据结构物结构非线性性质和振动模态迁移特性确定初始参数,确保其可靠性。

(二)振动台试验激励力级。

在实际试验中,应小心控制振动台激励力级,以确保结构物不受损坏,同时又能了解结构物真正抗震性能。

(三)动力灵活性分析。

采用动力响应分析技术分析结构物受力状态或运动特性及受力情况的能力,可以从动态灵活性的角度准确预测结构物受震效果和耐震稳定性。

建筑结构抗震试验方案

建筑结构抗震试验方案

建筑结构抗震试验方案1. 背景近年来,地震频发,建筑结构的抗震性能成为人们关注的焦点。

为了确保建筑的安全性,有必要进行抗震试验来评估建筑结构的耐震能力和性能。

2. 试验目的本次建筑结构抗震试验的目的在于:- 评估建筑结构在地震条件下的抗震能力和性能;- 验证设计方案的有效性;- 提供科学依据和建议,以改善建筑结构的抗震性能。

3. 试验范围本次试验将选取一栋具有代表性的建筑作为试验对象,考虑以下因素:- 建筑类型:高层住宅楼;- 结构类型:钢筋混凝土框架结构;- 地理位置:地震多发地区。

4. 试验方案本次试验方案将采用以下步骤:4.1 前期准备工作4.1.1 试验设计与相关专家一起,详细制定试验设计,包括试验对象选择、试验条件设定等。

4.1.2 设备准备确保试验所需设备和仪器的准备工作,如地震模拟装置、加速度计、位移计等。

4.2 试验准备4.2.1 建筑结构检查对试验对象进行全面检查,确保建筑结构的完整性和符合试验要求。

4.2.2 试验参数设定根据试验设计,设定地震模拟装置的参数,包括地震波形、频率、位移等。

4.3 试验执行4.3.1 数据采集在试验开始前,确保数据采集系统正常运行,并进行校准。

4.3.2 地震模拟按照试验参数设定,进行地震模拟,记录并分析建筑结构的响应。

4.4 试验结果评估针对试验数据,进行系统分析和评估,包括结构位移、加速度等数据的分析,并与设计要求进行对比。

4.5 报告撰写根据试验结果评估,编写试验报告,提供相关建议和改进方向。

5. 试验安全措施在进行试验过程中,我们将严格遵守安全管理规定,采取以下措施:- 确保参与人员了解和遵守安全操作规程;- 安全人员全程监控试验过程,及时应对突发情况;- 确保试验设备和仪器的安全性和可靠性。

6. 时间计划以下是试验的时间计划:- 前期准备工作:1个月;- 建筑结构检查和试验参数设定:1周;- 试验执行:2天;- 试验结果评估和报告撰写:2周。

建筑物抗震检测怎么测试的

建筑物抗震检测怎么测试的

建筑物抗震检测怎么测试的
建筑物抗震检测是评估建筑物在地震发生时的抗震性能,以便保障建筑物结构
的稳定和安全。

抗震检测通常包括建筑物结构的强度和刚度测试,以及地基土壤的抗震性能评估。

下面将介绍建筑物抗震检测的主要测试方法。

1. 静力测试
静力测试是抗震检测的基础,通过施加静态荷载来评估建筑物结构的受力性能。

测试中常用的设备包括静载试验仪和应变片等。

2. 动力测试
动力测试是评估建筑物在地震作用下的响应情况。

常见的动力测试方法包括地
震模拟试验、振动台试验和动力响应分析。

3. 检测技术
建筑物抗震检测还涉及到多种检测技术,包括超声波检测、电阻应变片测量、
振动传感器等。

这些技术可以用来监测结构的变形、裂缝和应力。

4. 地基土壤测试
地基土壤的性质对建筑物的抗震性能有重要影响。

地基土壤测试包括土壤采样、密度测试、压缩试验、地基承载力测试等。

5. 数据分析
通过对测试数据的分析,可以评估建筑物结构和地基土壤的抗震性能,为制定
加固和改进方案提供依据。

建筑物抗震检测是保障建筑物安全的重要环节,只有经过严格的测试和评估,
才能确保建筑物在地震发生时能够稳定、安全地运行。

希望以上内容能为您解答关于建筑物抗震检测测试方法的疑问。

建筑抗震试验方法

建筑抗震试验方法

建筑抗震试验方法
建筑抗震试验的方法主要包括以下几种:
拟静力试验:这是一种在静力作用下研究结构或构件地震反应性能的试验方法。

通过对试件施加反复循环的静力荷载,模拟地震时结构所受的反复地震作用,从而观察和研究结构或构件在地震作用下的受力性能、变形和破坏过程。

拟动力试验:这是一种将静力试验和动力试验相结合的方法。

在拟动力试验中,采用计算机和伺服控制系统,通过预先编制好的程序对试件施加反复循环的静力荷载,模拟地震时结构所受的反复地震作用。

拟动力试验既保留了静力试验的直观性,又能够模拟动力加载的过程,因此在一些大型结构或构件的抗震试验中得到应用。

振动台试验:这是一种在动力作用下研究结构或构件地震反应性能的试验方法。

通过模拟地震时地面运动的加速度波形,对结构或构件进行动力加载,从而观察和研究结构或构件在地震作用下的受力性能、变形和破坏过程。

振动台试验能够更真实地模拟地震时结构所受的动力作用,因此在研究结构或构件的抗震性能时具有重要意义。

以上三种方法各有优缺点,应根据试验目的、试验条件、试
— — 1 —1 —
件特点等因素选择合适的试验方法。

抗震试验的主要试验方法有

抗震试验的主要试验方法有

抗震试验的主要试验方法有
地震是一种常见的自然灾害,为了提高建筑物的抗震能力,需要进行抗震试验。

抗震试验的主要方法包括静力试验和动力试验。

静力试验
静力试验主要是通过在地震力作用下对建筑结构施加静力荷载,模拟地震时的
情况,从而评估建筑结构的抗震性能。

静力试验可以分为以下几种类型:
1.强度试验:对建筑结构进行静荷载试验,评估其承载能力和破坏模
式。

2.位移试验:施加位移荷载,评估结构的变形能力和变形性能。

3.刚度试验:通过施加位移或弯矩荷载,评估结构的刚度和变形能力。

4.耗能试验:评估结构在地震作用下的耗能能力,包括材料损伤、变
形耗能等。

动力试验
动力试验是通过施加动态荷载,模拟地震的动态性能,对建筑结构的抗震性能
进行评估。

动力试验可以分为以下几种类型:
1.模态试验:对建筑结构进行自由振动或受迫振动试验,获得结构的
固有频率和振型。

2.频率响应试验:施加频率变化的动态荷载,评估结构的频率响应特
性。

3.时程分析试验:根据实际地震波进行动态加载试验,评估结构的动
态响应和破坏模式。

4.振动台试验:将建筑结构放置在振动台上,施加模拟地震波动荷载,
评估结构的抗震性能。

通过以上主要试验方法,可以全面评估建筑结构的抗震性能,为设计和改进建
筑结构提供重要的参考和依据。

抗震试验是提高建筑抗震安全性的重要手段,对于减少地震造成的人员伤亡和财产损失具有重要意义。

钢筋混凝土板梁结构的抗震性能试验研究

钢筋混凝土板梁结构的抗震性能试验研究

钢筋混凝土板梁结构的抗震性能试验研究
一、研究背景
地震是一种非常毁灭性的自然灾害,地震对建筑物的破坏是非常严重的,因此在建筑物的设计和建造中,抗震性能是非常重要的。

钢筋混凝土板梁结构是一种常见的建筑结构,因此对其抗震性能进行研究,对于提高建筑物的抗震能力具有非常重要的意义。

二、试验研究目的
本次试验的目的是为了探究钢筋混凝土板梁结构在地震作用下的受力情况,并且分析其抗震性能,以及在实际工程中的应用价值。

三、试验研究方法
本次试验采用模拟地震的方式,通过对样品进行往复加载,观察其变形和破坏情况,从而分析其受力情况和抗震性能。

四、试验研究步骤
1. 样品制备:制备钢筋混凝土板梁结构的样品,按照设计要求进行制
作。

2. 试验设备准备:准备地震模拟试验设备,包括地震模拟器、测量仪器等。

3. 试验前准备:对试验设备进行检查和校准,确保其正常运行;对样品进行检查和测量,确保其符合设计要求。

4. 试验过程:将样品放置在地震模拟器上,进行往复加载,记录其变形和破坏情况。

5. 数据处理:对试验数据进行处理和分析,得出结论和建议。

五、试验研究结果
通过本次试验,我们得出了以下结论:
1. 钢筋混凝土板梁结构在地震作用下的受力情况较为复杂,主要受到剪力和弯矩的作用。

2. 钢筋混凝土板梁结构的抗震性能较好,能够承受一定程度的地震作用。

3. 在实际工程中,应根据具体情况进行结构设计和加固,以提高其抗震能力。

六、研究结论
本次试验表明,钢筋混凝土板梁结构的抗震性能较好,能够承受一定程度的地震作用。

在实际工程中,应根据具体情况进行结构设计和加固,以提高其抗震能力。

工程结构抗震试验

工程结构抗震试验
[ 感谢观看 ]
地震观测站是专门用于观测和记录地震活动的设施,通常由地震台和地震监测网 组成。地震台通常由地震仪、数据采集系统、传输系统等组成,用于实时监测地 震活动并记录地震数据。
地震监测网则是由多个地震台组成,通过协同工作实现对一定区域内的地震活动 进行全面监测。
地震观测和记录方法
01
地震观测和记录的方法主要有测震学方法、地震学方法和强震观测方法等。测 震学方法是通过测量地震波的传播和震源机制来分析地震活动,包括地震台网 监测、地震定位和震源深度测定等。
01
结果评估
根据采集的数据和观察到的现象,评 估试件的抗震性能和破坏模式,为工 程设计和优化提供依据。
05
03
施加振动激励
根据试验要求,选择合适的振动激励 方式和幅值、频率等参数,对试件进 行振动加载。
04
数据采集与分析
实时监测试件的响应,采集相关数据, 如位移、加速度、应变等,进行分析 和处理。
振动台试验结果分析
了解结构的动态性能。
性பைடு நூலகம்评价
根据评估目标,对结构的抗震 性能进行评价,判断其是否满 足预期的抗震要求。
薄弱环节识别
通过分析数据,识别结构中的 薄弱环节和易损部位,为加固 和优化设计提供依据。
改进建议
根据分析结果,提出针对性的 改进建议,包括加固、优化设 计方案等,以提高结构的抗震
性能。
THANKS
VS
数据采集阶段则是通过仪器实时采集 地震数据,并进行初步处理和存储。 数据传输阶段是将采集到的数据传输 到数据处理中心进行分析。最后,通 过数据分析阶段对采集到的数据进行 处理和分析,提取有关地震活动和工 程结构抗震性能的信息。
地震观测和记录结果分析

结构抗震试验

结构抗震试验

结构抗震试验:守护生命与财产的关键防线一、引言地震是一种极具破坏性的自然灾害,不仅威胁人类生命安全,还可能造成无法估量的财产损失。

为了减轻地震带来的损失,结构抗震试验成为了建筑工程中不可或缺的一环。

本文将深入探讨结构抗震试验的重要性、方法以及未来发展趋势,以期提高人们对结构抗震性能的认识和关注。

二、结构抗震试验的重要性结构抗震试验是针对建筑物或其他工程结构进行的地震模拟测试,旨在评估结构在地震作用下的性能和安全性。

通过结构抗震试验,我们可以了解结构在地震中的受力状况、变形特征以及破坏机理,从而为结构设计和优化提供重要依据。

具体来说,结构抗震试验的重要性体现在以下几个方面:1. 保障生命安全:地震中,建筑物倒塌是造成人员伤亡的主要原因之一。

通过结构抗震试验,我们可以确保建筑物在地震中具有足够的承载力和稳定性,从而最大限度地保障人们的生命安全。

2. 减少财产损失:地震可能导致建筑物、道路、桥梁等基础设施严重受损,造成巨大的经济损失。

结构抗震试验有助于优化工程结构设计,提高结构的抗震性能,从而减轻地震对财产的破坏。

3. 推动科技进步:结构抗震试验是地震工程研究的重要手段之一。

通过对试验结果的分析和总结,我们可以不断完善抗震设计规范、研究新的抗震技术和材料,推动地震工程领域的科技进步。

三、结构抗震试验的方法结构抗震试验的方法主要分为两类:拟静力试验和动力试验。

1. 拟静力试验:拟静力试验是通过施加静态荷载来模拟地震作用下的结构响应。

这种方法可以较为准确地反映结构的弹塑性性能和变形能力,但无法考虑地震动的随机性和持时效应。

因此,拟静力试验主要用于对结构的抗震性能进行初步评估和设计优化。

2. 动力试验:动力试验是通过输入真实地震动或人工合成的地震动来模拟地震作用下的结构响应。

这种方法可以更真实地反映结构在地震中的受力状况和变形特征,因此被广泛应用于结构的抗震性能评估和验证。

动力试验通常包括振动台试验、离心机试验和现场动力试验等。

建筑结构抗震性能评估方法

建筑结构抗震性能评估方法

建筑结构抗震性能评估方法地震对建筑结构的影响是巨大的,因此在建筑设计和施工中,抗震性能评估是非常重要的。

抗震性能评估是指评估建筑结构在地震中的抵抗能力,以判断其是否能在地震中保持安全。

本文介绍了不同的抗震性能评估方法。

1. 基于规范的抗震性能评估方法规范是对建筑抗震性能要求的基本标准,因此基于规范的抗震性能评估是一种常用的方法。

基于规范的抗震性能评估方法主要分为两类:建筑结构静态分析和建筑结构动态分析。

建筑结构静态分析是通过静态力学原理,根据规范计算建筑结构在地震作用下的应力、应变等参数,判断建筑抗震能力是否达到规范要求。

建筑结构动态分析是通过数学模型,在地震作用下计算结构的振动响应,评估结构在地震作用下的响应特性,得出建筑结构的抗震性能指标。

2. 基于试验的抗震性能评估方法基于试验的抗震性能评估方法是通过实验室或现场试验,对建筑结构在地震作用下的响应进行测试和分析。

实验通常包括静力试验和动态试验。

静力试验是通过施加静态荷载,直接测量结构的变形、应力等参数。

动态试验利用震动台或者振动器,施加动态荷载,测量结构的振动特性,如阻尼比、刚度等。

通过试验获取的数据,可以得出结构的抗震性能指标,与规范计算结果进行比较,进一步评估结构的抗震性能。

3. 基于数值模拟的抗震性能评估方法基于数值模拟的抗震性能评估方法是一种通过数学模型对结构的性能进行模拟计算和分析的方法。

数值模拟方法主要分为有限元法和离散元法两类。

有限元法是一种数学方法,将结构分解为有限个小单元,在每个小单元内计算结构的应力、应变、位移等参数。

通过有限元法模拟结构的响应,可以得出结构的抗震性能指标。

离散元法是一种计算方法,通过将结构划分为多个单元来模拟结构的响应,可以得出结构的力学性能,如刚度、强度等。

4. 基于综合评价的抗震性能评估方法综合评价是一个将多种评价方法结合起来,进行评估的方法。

这种方法可以消除单一评价方法的局限性,更全面地评估建筑的抗震性能。

6工程结构抗震试验

6工程结构抗震试验
结构抗震试验的特点
结构承受地震作用,实质上是承受多 次反复水平荷载作用。结构是依靠本身的 变形来消耗地震作用输给的能量,所以结 构抗震试验的特点是荷载作用反复,结构 变形很大,试验要求做到结构构件屈服以 后,进入非线性工作阶段,直至完全破坏。 同时观测结构的强度、变形、非线性性能 和结构的实际破坏状态。
例:梁柱节点的伪静力试验
位移控制的变幅加载
位移控制的等幅加载
位移控制的等幅、变幅混合加载
力控制的变幅加载
拟动力试验
指计算机与试验机联机对试件进行加载 试验。计算机系统的目的是采集结构反 应的各种参数,并根据这些参数进行非 线性地震反应分析计算,并通过D/A 转 换,向加载器发出下一步加载指令。当 试件受到加载器作用后,发出反应,计 算机再次采集试件反应的各种参数,并 进行计算,向加载器发出指令,……直 至试验结束。
结构抗震试验的分类
静力试验和动力试验
按试验方法分类: 伪静力试验 拟动力试验 模拟地震振动台试验 人1)通过伪静力试验,能获得结构构件 超过弹性极限后的荷载变形工作性能 (恢复力特性)和破坏特征
(2)可以用来比较或验证抗震构造措施 的有效性和确定结构的抗震极限承载能 力,进而为建立数学模型通过计算机进 行结构抗震非线性分析服务,为改进现 行抗震设计方法和修订设计规范提供依 据。
伪静力试验的特点(2)
(3)设备比较简单,甚至可用普通静力 试验用的加载设备,加载历程可人为控 制,并可按需要加以改变或修正,试验 过程中,可停下来观察结构的开裂和破 坏状态,便于检验校核试验数据和仪器 设备工作情况。由于对称的、有规律的 低周反复加载与某一次确定性的非线性 地震相差甚远,不能反映应变速率对结 构的影响,无法再现真实地震的要求。

常用的结构抗震试验方法有哪些

常用的结构抗震试验方法有哪些

常用的结构抗震试验方法有哪些在建筑结构设计和工程实践中,结构抗震试验是评估和验证结构抗震性能的关键步骤。

通过试验可以模拟地震加载条件,评估结构在地震中的响应,从而指导设计、改进和加固结构。

下面将介绍几种常用的结构抗震试验方法。

静力试验静力试验是最基础的结构试验方法之一。

它通过在结构上施加静力荷载来模拟地震荷载,评估结构在不同荷载水平下的受力性能和变形能力。

静力试验通常包括单向荷载、双向荷载和多向荷载等不同加载方式。

动力试验动力试验是通过在结构上施加动力加载来模拟地震过程,评估结构的动态响应和抗震性能。

动力试验可以分为周期性加载试验、恒定加速度试验和脉冲加载试验等不同类型,旨在研究结构在地震中的变形、损伤和塑性行为。

模态试验模态试验是通过测量结构在不同振动模态下的响应特性,分析结构的固有频率、阻尼比和模态形态,从而评估结构的动态稳定性和抗震性能。

模态试验在结构设计和加固中具有重要作用,可以帮助设计师了解结构的振动特性和脆性区域。

比例模型试验比例模型试验是将实际结构按照一定比例缩减制作成模型,进行地震模拟试验,以评估结构在地震中的响应和破坏形态。

比例模型试验能够在较小的空间和预算范围内研究结构的动态行为和结构抗震性能,为实际工程提供参考和指导。

多尺度试验多尺度试验是将不同尺度的试验设备结合在一起,综合考虑结构各个尺度的动态特性,从而全面评估结构在不同尺度下的抗震性能。

多尺度试验能够更准确地模拟实际工程中结构的响应,为结构设计和加固提供更为精准的数据支持。

综上所述,常用的结构抗震试验方法包括静力试验、动力试验、模态试验、比例模型试验和多尺度试验等。

不同试验方法在评估结构抗震性能和指导工程实践中各有优劣,根据具体需要选择合适的试验方法进行研究和实施,以提高结构的抗震性能和安全性。

混凝土抗震性能测试方法及标准

混凝土抗震性能测试方法及标准

混凝土抗震性能测试方法及标准一、前言混凝土结构在地震中的抗震性能是评价建筑物抗震性能的重要指标之一。

因此,混凝土抗震性能的测试方法及标准也越来越受到重视。

本文将从混凝土抗震性能的定义、测试方法、测试标准等方面进行详细介绍。

二、混凝土抗震性能的定义混凝土结构在地震中承受地震力时,其抗震性能包括抗震强度、抗震韧性、抗震稳定性等方面。

其中,抗震强度是指混凝土结构在地震作用下所承受的最大地震力;抗震韧性是指混凝土结构在地震作用下所承受的地震力与形变的关系;抗震稳定性是指混凝土结构在地震作用下能否保持稳定,避免倒塌。

三、混凝土抗震性能测试方法1. 静力试验法静力试验法是指在不考虑地震波的作用下,通过施加一定的荷载,来测试混凝土结构的抗震性能。

该方法主要包括受弯试验、剪切试验、压缩试验等。

2. 动力试验法动力试验法是指在考虑地震波的作用下,通过模拟地震波的振动来测试混凝土结构的抗震性能。

该方法主要包括地震模拟试验、振动台试验等。

3. 最大位移试验法最大位移试验法是指在考虑地震波的作用下,通过施加一定的荷载,使混凝土结构发生一定的位移,来测试混凝土结构的抗震韧性。

四、混凝土抗震性能测试标准1. GB 50011-2010《建筑抗震设计规范》该标准是中国建筑抗震设计的规范,其中包括了混凝土结构的抗震设计、抗震验算、抗震性能等方面的内容。

2. GB/T 15228-2017《建筑物地震动态响应分析规范》该标准是中国建筑物地震动态响应分析的规范,其中包括了地震波、建筑物结构、地基、土层等方面的内容。

3. JGJ/T 101-2015《混凝土结构抗震试验规程》该标准是中国混凝土结构抗震试验的规程,其中包括了试验方法、试验设备、试验过程、试验结果等方面的内容。

4. ASTM E2126-11《Standard Test Methods for Cyclic (Reversed) Load Test for Shear Resistance of Walls for Buildings》该标准是美国ASTM组织制定的针对建筑物墙体剪切抗力的试验标准,其中包括了试验设备、试验方法、试验结果等方面的内容。

建筑结构抗震试验方法ppt课件

建筑结构抗震试验方法ppt课件
在上述三种位移控制加载制度中。以变幅等幅
混合加载方案使用得最多。
18
Lab of Prof. Tian Shizhu
(2) 力控制加载
力控制加载是在加载过程中,以力作为控制值, 按一定的力幅值进行循环加载。因为试件屈服后难 以控制加载的力,所以这种加载制度较少单独使用。
19
Lab of Prof. Tian Shizhu
结构实验技术
教授 土木工程学院
1
Lab of Prof. Tian Shizhu
§2.7 建筑结构抗震试验方法
地震造成的灾害是极其严重的: 1976年唐山地震;1985年墨西哥城地震 1995年阪神地震;1999年台湾地震 2008年汶川地震等
为了减少人员伤亡和经济损失,提高建筑物 的抗震能力,确保人民生命和财产不受损失,需 要进行抗震理论的研究。
36
Lab of Prof. Tian Shizhu
(6) 耗能
目前对构件的耗能能力没有统一的评定标准。 常用等效粘滞阻尼系数与功比指数来表示。 等效粘滞阻尼系数(如图):
he

1 2
.
ABC OBD
图形面积 三角形面积
功比指数:
I
s w

Qi i Qy y
37
Lab of Prof. Tian Shizhu
21
Lab of Prof. Tian Shizhu
如图为在梁一柱节点拟静力试验中被普遍采用的一 种力—位移混合加载制度。
22
Lab of Prof. Tian Shizhu
4.双向反复加载制度
为了研究地震对结构构件的空间组合效应,克 服采用在结构构件单方向(平面内)加载时不考虑另 一方向(平面外)地震力同时作用对结构影响的局限 性,可在x,y两个主轴方向(二维)同时施加低周反 复荷载。

结构抗震实验方法

结构抗震实验方法

结构抗震实验方法结构抗震实验是为了研究建筑结构的抗震性能,主要通过模拟地震过程,测量结构物的动力响应和变形特征来评估结构的抗震能力。

以下是几种常见的结构抗震实验方法。

1. 静力试验法:静力试验法是在地震波动力下,测量结构物在不同震级和不同频率下的动力响应和变形特征。

该方法通过在实验室搭建模型,施加静力荷载,如质量块、压力机等,模拟地震加速度对结构的作用。

实验过程中,可以通过测量结构物的变形及位移来评估结构的刚度和稳定性,进而评估抗震性能。

2. 动力试验法:动力试验法主要通过模拟地震波动力对结构物的作用,测量结构物的动力响应特性。

该方法通过在实验室搭建模型,利用振动台等设备进行地震模拟,施加各种频率和幅值的振动加速度,观测结构物在地震波动力下的动态行为。

实验过程中,可以测量结构物的振动加速度、位移、速度等参数,进一步评估结构的抗震性能。

3. 振动台试验法:振动台试验法是一种动力试验方法,可以更加真实地模拟结构物在地震中的动态响应。

这种方法是将结构模型置于振动台上,通过振动台施加地震波动力对结构进行横向、竖向和旋转等多维度的振动。

该方法的好处是可以提供更加真实的地震波动力和结构的动力响应,能够更加客观和准确地评估结构的抗震性能。

4. 大比例试验法:大比例试验法是将结构物的模型放大一定比例进行试验,可以更好地模拟真实结构的抗震性能。

该方法通常在实验室或试验场地搭建模型,对模型进行地震模拟,并测量结构物的动力响应和变形特征。

大比例试验法的优势是可以更准确地模拟结构物的力学特性,提供重复性好、精确度高的试验结果,对于研究结构抗震性能具有重要意义。

5. 数值模拟方法:数值模拟方法是通过计算机软件对结构的抗震性能进行模拟和评估。

该方法基于结构物的力学模型和地震波动模型,利用有限元分析、动力分析等数值计算方法,模拟地震波对结构的作用,并预测结构的动力响应和变形特征。

数值模拟方法能够提供较为准确的分析结果,对于研究结构的抗震性能和优化设计具有重要的指导作用。

结构抗震试验

结构抗震试验

结构抗震试验
结构抗震试验是为了评估和验证建筑结构的抗震性能而进行的实验。

通常包括以下几个步骤:
1. 设计试验方案:根据建筑结构的特点和要求,确定试验目标、试验装置和试验参数等。

2. 搭建试验装置:根据试验方案,搭建符合实际条件的试验装置,包括试验台、加载装置和测量仪器等。

3. 准备试验样品:选择具有代表性的结构样品,并进行必要的加固和预处理,以确保样品能够承受试验加载。

4. 进行前期试验:进行静力试验,测量并记录结构样品在不同加载条件下的变形和应力。

5. 进行动力试验:利用震动台或其他装置,对结构样品进行模拟地震加载。

根据试验方案的要求,可以进行不同方向、不同振动强度和不同频率的加载。

6. 监测数据记录:在试验过程中,实时对结构样品的变形、位移、应力、应变等参数进行监测和记录。

7. 数据分析和评估:通过对试验数据的分析和评估,评估结构的抗震性能,并验证结构设计的合理性和可靠性。

8. 结果总结和报告:根据试验结果,总结试验过程和结果,撰
写试验报告,并进行相关研究和应用。

结构抗震试验是评估建筑结构抗震性能的重要手段,可以为结构设计和抗震设计提供可靠的依据,以确保建筑结构在地震发生时的安全性和稳定性。

足尺结构抗震试验

足尺结构抗震试验

足尺结构抗震试验近年来,地震频发,给人们的生命财产安全带来了严重威胁。

为了提高建筑物的抗震能力,足尺结构抗震试验成为了一个重要的研究方向。

本文将介绍足尺结构抗震试验的意义、过程和结果,以及对建筑设计与抗震工程的启示。

一、足尺结构抗震试验的意义足尺结构抗震试验是指在实际尺寸条件下对建筑结构进行地震模拟试验,以评估其抗震性能。

通过此类试验,可以验证设计方案的合理性,改进结构的抗震性能,并为实际工程提供可靠的技术支持。

足尺结构抗震试验是建筑领域中一项重要的科研工作,对提高建筑物的抗震能力具有重要意义。

二、足尺结构抗震试验的过程足尺结构抗震试验通常分为准备阶段、试验阶段和分析阶段。

1. 准备阶段:包括确定试验对象、制定试验方案、选择试验设备、准备试验材料等。

试验对象通常选择具有代表性的建筑结构,如高层建筑、大跨度桥梁等。

试验方案应综合考虑结构的特点、试验的目的和可行性,制定合理的试验方案。

2. 试验阶段:首先需要进行模拟地震波的选择和输入。

模拟地震波应符合实际地震的特点,包括地震的频率、幅度和持续时间等。

然后,将地震波输入到试验结构中,记录结构的动态响应。

试验过程中还应考虑结构的荷载和变形情况,以评估结构的破坏程度。

3. 分析阶段:根据试验数据,进行抗震性能评估和分析。

通过对试验结果的分析,可以评估结构的破坏形态、抗震能力以及结构的破坏机理。

同时,还可以根据试验结果改进设计方案,提高结构的抗震能力。

三、足尺结构抗震试验的结果与启示足尺结构抗震试验的结果对于建筑设计与抗震工程具有重要的启示意义。

1. 结构破坏形态:足尺结构抗震试验可以观察到结构在地震作用下的破坏形态,了解结构的抗震性能。

不同结构在地震作用下的破坏形态可能存在差异,通过观察和分析这些形态,可以改进设计方案,提高结构的抗震能力。

2. 抗震能力评估:通过足尺结构抗震试验,可以评估结构的抗震能力。

试验结果可以用于判断结构的破坏程度、确定结构的抗震等级,并为结构的设计和改进提供依据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

结构抗震试验方法概述严健XX林业大学研究生院摘要:地震的多发性和破坏性,使得结构抗震试验研究越来越受到人类的广泛关注。

目前人类已经发明了很多结构抗震试验研究的方法,本文详细介绍了目前结构抗震试验常用的四种方法,分别是(1)拟静力试验方法;(2)多维拟静力试验方法;(3)地震模拟振动台试验方法;(4)拟动力试验方法,并对其各自特点及存在的问题进行了概述。

关键词:抗震试验;拟静力试验;振动台试验;拟动力试验;概述The Summary of the Dynamic Testing Method of Structures AbstractMore and more people pay more attention to the seismic research of structures which due to the multipleand devastating earthquake.Some dynamic test means were developed by human in the recent years. In this paper, four kinds of monly used structure seismic test methods were describe, including ThePseudoStatic experimentmethod, Dimensional Quasi-Static test methods, seismic simulation shaking table experiment method, Pseudo-dynamic test method.Key wordsdynamic testing; the pseudo-static experiment;shaking table experiment;pseudo-dynamic test;aseismatic design methods;summary0前言地震是危害人类生命财产安全最严重的突发式自然灾害之一。

随着人类社会的发展和人们生活的高度城市化,地震必将对人们生命和生活设施及工业生产体系带来愈来愈严重的威胁。

近十多年来国内外连续发生的大地震,如1994年美国洛杉矶的北岭(Northridge)6.7级地震,造成62人死亡,9000多人受伤,直接经济损失达300亿美元;1995年日本阪神(Kobe)7.2级地震,造成5466人丧生,3万多人受伤,几十万人无家可归,直接经济损失高达960亿美元;1999年8月17日的土耳其伊兹米特(Izmet) 7.4级地震,造成约17000死亡,45000人受伤,20多万人无家可归,经济损失约120亿美元,如图0.1所示;1999年9月21日发生在我国XX的7.6级集集地震,造成约2470人死亡,11305人受伤,直接经济损失约118亿元;2010年1月12日发生在加勒比岛国海地的7.0级地震,造成约22.25万人遇难,19.6万人受伤。

[1]图0.1 土耳其伊兹米特(Izmet) 7.4级地震灾区震后图我国处在欧亚地震带和环太平洋地震带的包围之中,汶川地震震害教训非常深刻,2008年5月12日发生在我国XX的8.0级汶川地震,造成69227人遇难,374643人受伤,1792人失踪,直接经济损失达8451亿元人民币,图0.2为汶川地震的灾区震后图;2010年4月14日发生在我国XX省XX地区的7.1级地震,造成约2698人丧生,270人失踪。

图0.2 汶川地震的灾区震后图地震造成的人员伤亡,经济损失,在很大程度上都是由结构的破坏引起的,为了防御和减轻地震灾害,保护人民生命和财产安全,必须使建筑物具备足够的抗震能力及良好的抗震性能。

因此,为了避免、减少社会经济损失,有必要进行抗震理论分析和试验研究,为地震设防和抗震设计提供依据,提高各类建筑物的抗震能力。

但是由于地震机理和结构抗震性能的复杂性,仅以理论的手段还不能完全的把握结构在地震作用下的性能、反应过程和破坏机理,还需要通过结构试验模拟地震作用研究结构抗震性能,研究结构在弹性阶段的自振周期、振型、能量耗散和阻尼值亦即结构的线性动力特性;也可以研究非线性阶段的能量耗散、滞回特性、延性性能、破坏机理亦即结构的非线性性能。

1结构抗震试验方法目前,结构抗震试验方法大体上分为四类,即拟静力试验、多维拟静力试验、地震模拟振动台试验、拟动力试验。

拟静力试验是目前在结构工程应用最为广泛的试验方法,它可以最大限度的获得结试件的刚度、承载力、变形、和耗能能力和损伤特征等信息,但不能模拟结构的地震反应过程;地震模拟振动台试验是最能真实再现结构地震动和结构反应的试验方法,但由于台面尺寸和承载力的限制,只能进行小比例模型的试验,且往往配重不足,不能很好的满足相似条件,导致地震作用破坏形态的失真;拟动力试验吸取了拟静力试验和地震模拟振动台试验两种试验方法的优点,可模拟大型复杂结构的地震反应,在抗震试验方面得到广泛的应用。

振动台试验在评估结构体系抗震性能方面是最为客观实际真实有效的,然而由于其高额的费用成本使得常常采用小比例尺振动台试验; 拟动力试验是一种保留了振动台试验的一些特点的试验方式。

然而大多数的结构构件或组件的试验都是采用拟静力试验方式,亦即低周反复加载试验。

[2]2拟静力试验2.1拟静力试验的简介和作用原理20 世纪70年代初,美国学者将拟静力试验方法用于获取构件的数学模型,为结构的计算机分析提供构件模型,并通过地震模拟振动台试验对结构模型参数作进一步的修正。

拟静力试验( quasi-static testing) 又称低周反复加载试验或伪静力试验,它是采用一定的载荷控制或变形控制对试件进行低周反复加载,使试件从弹性阶段直至破坏的一种试验。

拟静力试验实质上是用静力加载方式模拟地震作用,其优点是在试验过程中可以随时停下来观测试件的开裂和破坏状态,并可根据试验需要改变加载历程。

但是加载历程与实际地震作用历程无关,不能反应时应变数率的影响,即拟静力试验只能得到构件或结构在反复荷载下的恢复力滞回特性,不能得到结构地震反应全过程。

拟静力试验的目的是对构件或结构在荷载作用下的基本表现进行深入的研究,进而建立一种可靠的理论分析上的力学或数学模型。

而在许多实际工程中,结构或构件的检验性试验也采用此法,目的在于检验现有方法的准确程度和存在不足。

拟静力试验包括单调加载和循环加载试验,加载方式有单点加载和多点加载。

从试件种类来看,钢结构、钢筋混凝土结构、砖石结构以及组合结构是研究最多的;从试件的类型来看,梁、板、柱、节点、墙、框架和整体结构等都是拟静力加载试验的主要对象。

过去在试验室中,拟静力试验主要采用机械式千斤顶或液压式千斤顶进行加载。

这类加载设备主要是手动加载,试验加载过程不容易控制,往往造成数据测量不稳定、不准确,试验结果分析困难。

2.2拟静力试验发展现状与振动台试验和拟动力试验相比,由于其相对较低的经济成本以及其显著的技术优势,拟静力试验方法已经成为并将继续成为结构工程抗震领域的最受欢迎的试验技术之一。

[3]通过该试验方法技术可以有效获得结构构件( 组件) 的强度、刚度、变形、耗能等重要可靠信息,从而为建立诸如恢复力模型、抗剪强度计算公式和研究破坏机制等,以及为发展和改进新型的抗震构造措施提供强有力的技术保障。

[4]目前许多结构试验室主要采用电液伺服加载系统进行结构的拟静力加载试验。

电液伺服作动器与试件和反力装置的连接与固定方式应符合结构物实际的受力条件,所以反力装置和传力装置以及连接与固定方式也都是在拟静力加载试验中必须重视的问题。

目前常用的反力装置主要有反力墙、反力台座、门式刚架、反力架和相应的各种组合类型。

国内外许多试验室都建有大型的、多维的反力墙和台座,最大的反力台座其长度达50m,反力墙高度达23m,可以进行七层原型房屋结构的抗震试验研究。

目前,常用的拟静力加载试验规则有三种,即位移控制、力控制和力-位移混合控制加载。

位移控制加载是以加载过程的位移作为控制量,按照一定的位移增幅进行循环加载。

有时是由小到大变幅值的,有时幅值是恒定的,有时幅值是大小混合的;力控制加载方式是以每次循环的力幅值作为控制量进行加载,因为试件屈服后难以控制加载的力,所以这种加载方式较少单独使用;力-位移混合控制加载方法,即先以力控制进行加载,当试件达到屈服状态时改用位移控制。

[5]拟静力试验进程中的问题,一是试验过程中如何确定开裂荷载,目前仍然是用人工方法检查,且逐级加载也难以准确地得到开裂荷载和屈服载荷并且目前还没有一个确定屈服点的统一标准;二是在试验过程中很难精确确定试件的屈服载荷,仍然是由人的经验判断,有些试件本身没有明显的屈服点,对于这样的试件,应当考虑全过程用位移控制完成试验。

另外,对于多维拟静力试验,加载规则也非常多,但是目前还没有这方面的规X或规程。

且控制模式的选择、特别是控制模式的转换条件很难确定多维拟静力试验不同于一维拟静力试验。

拟静力试验过程需要通过测量仪器对试件的变化进行量测,拟静力加载试验中最关心的有试件的应力、应变、力和变形,因此力传感器、位移传感器和应变计是常用的量测传感器。

将这些量测传感器合理地布置和组合,可以量测试件的力、位移、应变、矩和曲率等。

过去常用的机械式和电子式的量测仪器正在被自动化和智能化的量测仪器所取代。

2.3拟静力试验发展现状尽管拟静力试验具有很广阔的应用前景及领域,然而其独有的无法克服的技术劣势或缺陷也是显而易见的。

这些缺陷从某种程度上讲,也即是加载制度所存在的。

1) 当地震作用下应变速率的影响不可忽略时,如果处理不当,拟静力试验方法会给出不合适的甚至是错误的结果: ①当结构构件或结构体系的超强特性对于结构的反应相当重要和关键时; ②当结构的破坏模式主要由应变率显著控制时,诸如冲击荷载下的结构构件; 而加载制度自然无法考虑应变率的影响。

2) 当结构的总体反应对结构的内力分布模式敏感或结构构件性能对弯剪比或弯压比敏感时,拟静力试验技术就只能给出有限甚至是不足的信息,这是由于其试验装置的简单性、模型试件的理想简化所致。

这一点目前似乎并不能在加载制度中予以考虑。

3) 当结构的延性和耗能能力很重要时,根据拟静力试验所获得的试验数据是否可以作为一种保守的下限值不得而知。

尽管很多的试验数据表明是可以的,但是对这些退化材料性能的过高估计或过低估计究竟对结构整体的性能影响如何,并没有被有效研究过。

4) 尺寸效应的考虑。

由于实验室的试验能力及场地大小等诸多因素的限制,通常都是采用缩尺比例模型试件,这对于构件或组件的连接节点,可能具有不可忽略的重要影响。

相关文档
最新文档