最新中考数学解答题目专题目练习1
2023年中考数学专题练——1数与式
2023年中考数学专题练——1数与式一.选择题(共11小题)1.(2022•泉山区校级三模)下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(﹣a3)2=a6D.a2÷a3=a 2.(2022•鼓楼区校级二模)下列计算正确的是()A.a+a=a2B.(2a)2÷a=4a C.(﹣ab)2=ab2D.a2⋅a2=2a2 3.(2022•徐州一模)下列运算中,正确的是()A.a2•a3=a5B.(a2)3=a8C.a2+a3=a5D.a3÷a2=1 4.(2022•鼓楼区校级一模)2022的倒数是()A.2022B.﹣2022C.12022D.−120225.(2022•丰县二模)下列无理数中与3最接近的是()A.√5B.√6C.√10D.√12 6.(2021•徐州模拟)下列运算中,正确的是()A.3a+2a=5a2B.a2•a3=a6C.a2+a2=a4D.(﹣a3)2=a6 7.(2022•贾汪区二模)有理数﹣2022的相反数等于()A.2022B.﹣2022C.12022D.−120228.(2022•邳州市一模)下列运算中,正确的是()A.x6÷x2=x3B.(x2)3=x5C.x2+x3=x5D.2x2•x=2x3 9.(2022•徐州一模)数轴上在√3和√10之间的整数有()A.0个B.1个C.2个D.3个10.(2022•邳州市一模)周末小明与同学相约在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的菜单总共为10个汉堡,x杯饮料,y份沙拉,则他们点的B餐份数为()A.10﹣x B.10﹣y C.x﹣y D.10﹣x﹣y 11.(2022•睢宁县模拟)下列计算正确的是()A.2a2﹣a2=2B.(a﹣b)2=a2﹣b2C.(﹣a3b)2=a6b2D.(2a+3)(a﹣2)=2a2﹣6二.填空题(共10小题)12.(2022•鼓楼区校级三模)如图,每个图案均由相同大小的圆和正三角形按规律排列,依照此规律,第n个图形中三角形的个数比圆的个数多个.(由含n的代数式表示)13.(2022•泉山区校级三模)√4=.14.(2022•丰县二模)太阳距离银河系中心约为250000000000000000公里,其中数据250000000000000000用科学记数法表示为.15.(2022•丰县二模)计算:(x2)3•x﹣2=.16.(2022•丰县二模)数轴上的点A、B分别表示﹣2、3,则点离原点的距离较近(填“A”或“B”).17.(2022•徐州二模)2021“双十一”全网成交额约9650亿元.将数据“9650亿”用科学记数法表示.18.(2022•邳州市一模)因式分解:b2﹣4b+4=.19.(2022•徐州一模)新型冠状病毒呈球形或椭圆形有包膜,直径大约是80~160纳米,1纳米=10﹣9米.用科学记数法表示160纳米=米.20.(2021•徐州模拟)分解因式:m2+6m=.21.(2022•贾汪区二模)已知√a+2有意义,则a的取值范围为.三.解答题(共9小题)22.(2022•鼓楼区校级三模)计算:(1)20220﹣(−12)﹣1﹣|3−√8|;(2)(1+1x−2)÷x−1x−2.23.(2022•丰县二模)计算:(1)(﹣1)2022+|﹣4|+(12)﹣1−√273;(2)(1−1a)÷a2−2a+1a.24.(2022•徐州二模)(1)计算:(12)−2−tan45°−(π−3)0+√4; (2)化简:(1−1x+2)÷x 2−1x+2. 25.(2022•贾汪区二模)计算: (1)20220+(12)−1−|−3|+√−83; (2)(x −1x )÷x 2−2x+1x . 26.(2022•睢宁县模拟)计算: (1)(−2)3−(−3)−(13)−1+√8; (2)a a 2−4÷(1−2a+2). 27.(2022•邳州市一模)计算:(1)(﹣1)2022+|﹣5|﹣(13)﹣1+√12;(2)a−1a 2÷(1−1a 2). 28.(2022•徐州一模)计算:(1)|−√3|﹣(4﹣π)0+2sin60°+(12)﹣1;(2)(1x+1−1x−1)÷2x 2−1. 29.(2022•徐州一模)计算: (1)√12+4﹣1﹣(12)﹣1+|−√3|;(2)(1x+3−1)×x 2+6x+9x 2−4.30.(2022•鼓楼区校级二模)计算: (1)|−4|−20220+√273−(13)−1;(2)(a +2a+1a )÷a 2−1a.2023年江苏省徐州市中考数学专题练——1数与式参考答案与试题解析一.选择题(共11小题)1.(2022•泉山区校级三模)下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(﹣a3)2=a6D.a2÷a3=a 【解答】解:A、a2与a3不属于同类项,不能合并,故A不符合题意;B、a2•a3=a5,故B不符合题意;C、(﹣a3)2=a6,故C符合题意;D、a2÷a3=a﹣1,故D不符合题意;故选:C.2.(2022•鼓楼区校级二模)下列计算正确的是()A.a+a=a2B.(2a)2÷a=4a C.(﹣ab)2=ab2D.a2⋅a2=2a2【解答】解:a+a=2a,故A错误,不符合题意;(2a)2÷a=4a,故B正确,符合题意;(﹣ab)2=a2b2,故C错误,不符合题意;a2⋅a2=a4,故D错误,不符合题意;故选:B.3.(2022•徐州一模)下列运算中,正确的是()A.a2•a3=a5B.(a2)3=a8C.a2+a3=a5D.a3÷a2=1【解答】解:A、a2•a3=a5,故A符合题意;B、(a2)3=a6,故B不符合题意;C、a2与a3不属于同类项,不能合并,故C不符合题意;D、a3÷a2=a,故D不符合题意;故选:A.4.(2022•鼓楼区校级一模)2022的倒数是()A.2022B.﹣2022C.12022D.−12022【解答】解:2022的倒数是12022.故选:C.5.(2022•丰县二模)下列无理数中与3最接近的是()A.√5B.√6C.√10D.√12【解答】解:∵5<6<9<10<12<16,∴√5<√6<3<√10<√12<4,与3最接近的是√10,故选:C.6.(2021•徐州模拟)下列运算中,正确的是()A.3a+2a=5a2B.a2•a3=a6C.a2+a2=a4D.(﹣a3)2=a6【解答】解:A、3a+2a=5a,原计算错误,故此选项不符合题意;B、a2•a3=a5,原计算错误,故此选项不符合题意;C、a2+a2=2a2,原计算错误,故此选项不符合题意;D、(﹣a3)2=a6,原计算正确,故此选项符合题意.故选:D.7.(2022•贾汪区二模)有理数﹣2022的相反数等于()A.2022B.﹣2022C.12022D.−12022【解答】解:有理数﹣2022的相反数等于2022,故选:A.8.(2022•邳州市一模)下列运算中,正确的是()A.x6÷x2=x3B.(x2)3=x5C.x2+x3=x5D.2x2•x=2x3【解答】解:x6÷x2=x4≠x3,故选项A计算错误;(x2)3=x6≠x5,故选项B计算错误;x2与x3不是同类项,不能加减,故选项C计算错误;2x2•x=2x3,故选项D计算正确.故选:D.9.(2022•徐州一模)数轴上在√3和√10之间的整数有()A.0个B.1个C.2个D.3个【解答】解:∵1<3<4,9<10<16,∴1<√3<2,3<√10<4,∴在√3和√10之间的整数有2,3共2个,故选:C.10.(2022•邳州市一模)周末小明与同学相约在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的菜单总共为10个汉堡,x杯饮料,y份沙拉,则他们点的B餐份数为()A.10﹣x B.10﹣y C.x﹣y D.10﹣x﹣y【解答】解:∵x杯饮料则在B和C餐中点了x份汉堡,∴点A餐为10﹣x,∴y份沙拉,则点C餐有y份,∴点B餐的份数为:10﹣(10﹣x)﹣y=x﹣y,故选:C.11.(2022•睢宁县模拟)下列计算正确的是()A.2a2﹣a2=2B.(a﹣b)2=a2﹣b2C.(﹣a3b)2=a6b2D.(2a+3)(a﹣2)=2a2﹣6【解答】解:∵2a2﹣a2=a2≠2,∴选项A不符合题意;∵(a﹣b)2=a2﹣2abb+2≠a2﹣b2,∴选项B不符合题意;∵(﹣a3b)2=a6b2,∴选项C符合题意;∵(2a+3)(a﹣2)=2a2﹣a﹣6≠2a2﹣6,∴选项D不符合题意;故选:C.二.填空题(共10小题)12.(2022•鼓楼区校级三模)如图,每个图案均由相同大小的圆和正三角形按规律排列,依照此规律,第n个图形中三角形的个数比圆的个数多(2n+1)个.(由含n的代数式表示)【解答】解:根据题意有,第1个图形,圆的个数为:1;正三角形的个数为:1×3+1;第2个图形,圆的个数为:2;正三角形的个数为:2×3+1;第3个图形,圆的个数为:3;正三角形的个数为:3×3+1;……,第n个图形,圆的个数为:n;正三角形的个数为:n×3+1;n×3+1﹣n=3n﹣n+1=2n+1,∴第n个图形中三角形的个数比圆的个数多(2n+1)个.故答案为:(2n+1).13.(2022•泉山区校级三模)√4=2.【解答】解:∵22=4,∴4的算术平方根是2,即√4=2.故答案为:2.14.(2022•丰县二模)太阳距离银河系中心约为250000000000000000公里,其中数据250000000000000000用科学记数法表示为 2.5×1017.【解答】解:数据250000000000000000用科学记数法表示为2.5×1017.故答案为:2.5×1017.15.(2022•丰县二模)计算:(x2)3•x﹣2=x4.【解答】解:(x2)3•x﹣2=x6•1x2=x4,故答案为:x4.16.(2022•丰县二模)数轴上的点A、B分别表示﹣2、3,则点A离原点的距离较近(填“A”或“B”).【解答】解:∵|﹣2|=2,|3|=3,∴点A离原点的距离较近,故答案为:A.17.(2022•徐州二模)2021“双十一”全网成交额约9650亿元.将数据“9650亿”用科学记数法表示9.65×1011.【解答】解:9650亿=965000000000=9.65×1011.故答案为:9.65×1011.18.(2022•邳州市一模)因式分解:b2﹣4b+4=(b﹣2)2.【解答】解:b2﹣4b+4=(b﹣2)2.故答案为:(b﹣2)2.19.(2022•徐州一模)新型冠状病毒呈球形或椭圆形有包膜,直径大约是80~160纳米,1纳米=10﹣9米.用科学记数法表示160纳米= 1.6×10﹣7米.【解答】解:∵1纳米=10﹣9米,∴160纳米=160×10﹣9米=1.6×10﹣7米.故答案为:1.6×10﹣7.20.(2021•徐州模拟)分解因式:m2+6m=m(m+6).【解答】解:原式=m(m+6).故答案为:m(m+6).21.(2022•贾汪区二模)已知√a+2有意义,则a的取值范围为a≥﹣2.【解答】解:∵√a+2有意义,∴a+2≥0,解得a≥﹣2,即a的取值范围为a≥﹣2.故答案为:a≥﹣2.三.解答题(共9小题)22.(2022•鼓楼区校级三模)计算:(1)20220﹣(−12)﹣1﹣|3−√8|;(2)(1+1x−2)÷x−1x−2.【解答】解:(1)20220﹣(−12)﹣1﹣|3−√8|=1﹣(﹣2)﹣(3﹣2√2)=1+2﹣3+2√2=2√2;(2)(1+1x−2)÷x−1x−2=x−1 x−2⋅x−2 x−1=1.23.(2022•丰县二模)计算:(1)(﹣1)2022+|﹣4|+(12)﹣1−√273;(2)(1−1a)÷a2−2a+1a.【解答】解:(1)(﹣1)2022+|﹣4|+(12)﹣1−√273=1+4+2﹣3=4;(2)(1−1a)÷a2−2a+1a=a−1a⋅a(a−1)2 =1a−1.24.(2022•徐州二模)(1)计算:(12)−2−tan45°−(π−3)0+√4;(2)化简:(1−1x+2)÷x2−1x+2.【解答】解:(1)原式=4﹣1﹣1+2=4;(2)原式=x+2−1x+2•x+2(x+1)(x−1)=x+1 x+2•x+2 (x+1)(x−1)=1x−1.25.(2022•贾汪区二模)计算:(1)20220+(12)−1−|−3|+√−83;(2)(x−1x)÷x2−2x+1x.【解答】解:(1)20220+(12)−1−|−3|+√−83=1+2﹣3+(﹣2)=﹣2; (2)(x −1x)÷x 2−2x+1x=x 2−1x ⋅x (x−1)2=(x+1)(x−1)(x−1)2=x+1x−1. 26.(2022•睢宁县模拟)计算: (1)(−2)3−(−3)−(13)−1+√8; (2)a a 2−4÷(1−2a+2). 【解答】解:(1)原式=﹣8+3﹣3+2√2 =﹣8+2√2.(2)原式=a(a+2)(a−2)÷a+2−2a+2 =a(a+2)(a−2)•a+2a=1a−2. 27.(2022•邳州市一模)计算:(1)(﹣1)2022+|﹣5|﹣(13)﹣1+√12;(2)a−1a 2÷(1−1a 2). 【解答】解:(1)(﹣1)2022+|﹣5|﹣(13)﹣1+√12 =1+5﹣3+2√3 =3+2√3; (2)a−1a 2÷(1−1a 2) =a−1a2⋅a 2(a−1)(a+1)=1a+1.28.(2022•徐州一模)计算:(1)|−√3|﹣(4﹣π)0+2sin60°+(12)﹣1;(2)(1x+1−1x−1)÷2x 2−1. 【解答】解:(1)原式=√3−1+2×√32+2=√3−1+√3+2=2√3+1;(2)原式=[x−1(x+1)(x−1)−x+1(x+1)(x−1)]•(x+1)(x−1)2 =x−1−x−1(x+1)(x−1)•(x+1)(x−1)2=﹣1. 29.(2022•徐州一模)计算:(1)√12+4﹣1﹣(12)﹣1+|−√3|; (2)(1x+3−1)×x 2+6x+9x 2−4. 【解答】解:(1)√12+4﹣1﹣(12)﹣1+|−√3| =2√3+14−2+√3=3√3−74;(2)(1x+3−1)×x 2+6x+9x 2−4=1−x−3x+3•(x+3)2(x+2)(x−2)=−2−x x+3•(x+3)2(x+2)(x−2) =−x+3x−2.30.(2022•鼓楼区校级二模)计算:(1)|−4|−20220+√273−(13)−1;(2)(a +2a+1a )÷a 2−1a. 【解答】解:(1)|−4|−20220+√273−(13)−1=4﹣1+3﹣3=3;(2)(a +2a+1a )÷a 2−1a=a 2+2a+1a •a (a+1)(a−1) =(a+1)2a •a (a+1)(a−1) =a+1a−1.。
2023年九年级数学中考复习 圆综合压轴题 解答题专题训练(含解析)
2022-2023学年九年级数学中考复习《圆综合压轴题》解答题专题训练(附答案)1.如图.在Rt△ABC中,∠ACB=90°,D为AB边的中点,连接CD.以CD为直径作⊙O,分别与AC,BC相交于点M,N.过点N作⊙O的切线交AB于点E.(1)求证:∠BEN=90°.(2)若AB=10,请填空:①迮接OE,ON,当NE=时,四边形OEBN是平行四边形;②连接DM,DN,当AC=时,四边形CMDN为正方形.2.如图,以AB为直径的半圆中,点O为圆心,点C在圆上,过点C作CD∥AB,且CD =OB.连接AD,分别交OC,BC于点E,F,与⊙O交于点G,若∠ABC=45°.(1)求证:①△ABF∽△DCF;②CD是⊙O的切线.(2)求的值.3.如图,△ABC内接于⊙O,AB为直径,点D为半径OA上一点,过点D作AB的垂线交AC于点E,交BC的延长线于点P,点F在线段PE上,且PF=CF.(1)求证:CF是⊙O的切线;(2)连接AP与⊙O相交于点G,若∠ABC=2∠P AC,求证:AB=BP;(3)在(2)的条件下,若AC=4,BC=3,求CF的长.4.如图,△ABC内接于⊙O,AB是⊙O的直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于点E,交PC于点F,连接AF.(1)判断直线AF与⊙O的位置关系并说明理由;(2)若⊙O的半径为6,AF=2,求AC的长;(3)在(2)的条件下,求阴影部分的面积.5.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作EF⊥AC于点E,交AB的延长线于点F,连接AD.(1)求证:EF是⊙O的切线.(2)求证:△FBD∽△FDA.(3)若DF=4,BF=2,求⊙O的半径长.6.如图1,已知AB是⊙O的直径,AC是⊙O的弦,过O点作OF⊥AB交⊙O于点D,交AC于点E,交BC的延长线于点F,点G是EF的中点,连接CG.(1)判断CG与⊙O的位置关系,并说明理由;(2)求证:2OB2=BC•BF;(3)如图2,当∠DCE=2∠F,DG=2.5时,求DE的长.7.已知:△ABC内接于⊙O,连接AO并延长交BC于点D,且AD⊥BC于点D.(1)如图1,求证:∠B=∠C;(2)如图2,点E在上,连接AE,CE,∠ACE=∠ACB,求证:∠CAE=2∠ACE;(3)如图3,在(2)的条件下,过点A作AF⊥CE交CE的延长线于点F,若AE=5,AB=13,求AF的长.8.在Rt△ABC中,∠ACB=90°,AC=6,∠B=30°,点M是AB上的动点,以M为圆心,MB为半径作圆交BC于点D,(1)若圆M与AC相切,如图1,求圆的半径;(2)若AM=2MB,连接AD,如图2.①求证:AD与圆M相切;②求阴影部分的面积.9.如图,已知AB是⊙O的直径,C是⊙O上的一点,D是AB上的一点,DE⊥AB于D,DE交BC于F,且EF=EC.(1)求证:EC是⊙O的切线;(2)求证:△OAC∽△ECF;(3)若BD=4,BC=8,圆的半径OB=5,求EC的长.10.如图,已知以BC为斜边的Rt△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,过点D作DE∥BC交AB的延长线于点E,连接DB,DC.(1)求证:ED为⊙O的切线;(2)求证:BC2=2ED•FC;(3)若tan∠ABC=2,AD=,求BC的长.11.已知△ABC内接于⊙O,D是弧AC上一点,连接BD、AD,BD交AC于点M,∠BMC =∠BAD.(1)如图1,求证:BD平分∠ABC;(2)如图2,过点D作⊙O的切线,交BA的延长线于点F,求证:DF∥AC;(3)如图3,在(2)的条件下,BC是⊙O的直径,连接DC,AM=1,DC=,求四边形BFDC的面积.12.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,P为弧AD上一点.(1)如图1,连接AC、PC、P A,求证:∠APC=∠ACD;(2)如图2,连接PB,PB交CD于E,过点P作⊙O的切线交CD的延长线于点F,求证:FE=PF;(3)如图3,在(2)的条件下,连接AE,且∠P AE=∠F,过点A作AG⊥PF,垂足为G,若PG=6,,求BH的长.13.如图,⊙O的半径为1,点A是⊙O的直径BD延长线上的一点,C为⊙O上的一点,AD=CD,∠A=30°.(1)求证:直线AC是⊙O的切线;(2)求△ABC的面积;(3)点E在上运动(不与B、D重合),过点C作CE的垂线,与EB的延长线交于点F.①当点E运动到与点C关于直径BD对称时,求CF的长;②当点E运动到什么位置时,CF取到最大值,并求出此时CF的长.14.如图所示,AB是⊙O的直径,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,作AF ⊥PC于点F,连接CB.(1)求证:AC平分∠F AB.(2)求证:BC2=CE•CP.(3)当AB=4时,求劣弧BC长度(结果保留π).15.已知:如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,连接CE,BD是⊙O的切线与OE的延长线相交于点D.(1)求证:∠D=∠AEC;(2)求证:CE2=EH•EA;(3)若⊙O的半径为5,,求FH的长.16.如图,在平面直角坐标系xOy中,已知点A(0,8),点B是x轴正半轴上一点,连接AB,过点A作AC⊥AB,交x轴于点C,点D是点C关于点A的对称点,连接BD,以AD为直径作⊙Q交BD于点E,连接并延长AE交x轴于点F,连接DF.(1)求线段AE的长;(2)若∠ABE=∠FDE,求EF的值.(3)若AB﹣BO=4,求tan∠AFC的值.17.如图,在Rt△ABC中,∠B=90°,AE平分∠BAC,交BC于点E,点D在AC上,以AD为直径的⊙O经过点E,点F在⊙O上,且EF平分∠AED,交AC于点G,连接DF.(1)求证:△DEF∽GDF;(2)求证:BC是⊙O的切线;(3)若cos∠CAE=,DF=10,求线段GF的长.18.如图,⊙O是△ABC的外接圆,AC是⊙O的直径,过圆心O的直线PF⊥AB于D,交⊙O于E,F,PB是⊙O的切线,B为切点,连接AP,AF.(1)求证:直线P A为⊙O的切线;(2)求证:AC2=4OD•OP;(3)若BC=6,,求AC的长.19.如图,AB是半圆O的直径,AB=10.C是弧AB上一点,连接AC,BC,∠ACB的平分线交AB于点P,过点P分别作PE⊥AC,PF⊥BC,垂足分别为E、F.(1)求证:四边形CEPF是正方形;(2)当sin A=时,求CP的长;(3)设AP的长为x,图中阴影部分的面积为y,求y与x之间的函数关系式,并写出y 的最大值.20.问题提出(1)如图①,△ABC为等边三角形,若AB=2,则△ABC的面积为.问题探究(2)如图②,在Rt△ABC中,∠ABC=90°,AC=3,BD是△ABC的角平分线,过点D作DE⊥BD交BC边于点E.若AD=1,求图中阴影部分的面积.问题解决(3)如图③,是某公园的一个圆形施工区示意图,其中⊙O的半径是4米,公园开发部门计划在该施工区内设计一个四边形绿化区域ABCD,连接AC、BD,现准备在△ADC 区域种植花卉供游人欣赏.按设计要求,A、B、C、D四个点都在圆上,∠ADB=∠BDC =60°.设BD的长为x米,△ADC的面积为y平方米.①求y与x之间的函数关系式;②按照设计要求,为让游人有更好的观赏体验,△ADC花卉区域的面积越大越好,那么请求出花卉区域△ADC面积的最大值.参考答案1.(1)证明:如图,连接ON,DN,∵CD是⊙O的直径,∴∠CND=∠DNB=90°,∵NE是⊙O的切线,∴∠ONE=90°,∴∠BNE=∠OND,∵ON=OD,∴∠ODN=∠OND,∴∠ODN=∠BNE,∵D是斜边AB的中点,∴CD=AD=BD,∴∠B=∠BCD,∵∠BCD+∠ODN=90°,∴∠B+∠BNE=90°,∴∠NEB=90°;(2)解:①∵四边形OEBN是平行四边形,∴BE=ON=,∵E为BD的中点,∴N为BC的中点,∴NE为△BCD的中位线,∴NE∥CD,且NE=CD=.故答案为:;②∵四边形CMDN为正方形,∴∠MCD=∠MDC=45°,∠CMD=90°,∴MC=MD=CD,∵AD=DC,∴M是AC的中点,AC=2MC=CD,∴CD=AB=5,∴AC=5.故答案为:5.2.(1)证明:①∵CD∥AB,∴∠F AB=∠D,∵∠AFB=∠DFC,∴△ABF∽△DCF;②∵∠ABC=45°,∴∠AOC=2∠ABC=90°,∵CD∥AB,∴∠DCO=∠AOC=90°,∵OC是半圆的半径,∴CD是⊙O的切线;(2)解:过点F作FH∥AB交OC于H,设圆的半径为2a,∵CD=OB=OA,CD∥AB,∴CE=OE=a,AE=DE,由勾股定理得:AE==a,∴AD=2a,∵△ABF∽△DCF,∴==,∵FH∥AB,∴==,∵FH∥AB,∴==,∴EF=,∵CD是⊙O的切线,∴DC2=DG•DA,即(2a)2=DG•2a,解得:DG=,∴FG=a﹣﹣=,∴==.3.(1)证明:连接OC,∵PF=FC,OC=OB,∴∠PCF=∠CPF,∠OCB=∠OBC,∵PD⊥AB,∴∠PDB=90°,∴∠CPF+∠OBC=90°,∴∠PCF+∠OCB=90°,∴∠FCO=90°,∴OC⊥CF,∴CF是⊙O的切线.(2)证明:连接BG,∵,∴∠P AC=∠PBG,∵∠PBA=2∠P AC,∴∠PBA=2∠PBG,∵AB为⊙O的直径,∴∠AGB=∠PGB=90°,∴∠APB=∠P AB,∴AB=BP;(3)解:∵AB为⊙O的直径,∴∠ACB=90°,∵AC=4,BC=3,∴AB===5,∴AB=BP=5,∴PC=2,∵∠PDA=∠PCA=90°,P A=P A,∠APB=∠P AB,∴△APC≌△APD(AAS),∴AD=PC=2,PD=AC=4,∠P AC=∠APD,∴AE=PE,设DE=x,AE=PE=4﹣x,在Rt△AED中,AD2+DE2=AE2,即22+x2=(4﹣x)2,解得x=,∴EP=4﹣x=,∵∠PEC=90°﹣∠EPC,∠FCE=90°﹣∠PCF,即∠PEC=∠FCE,∴EF=CF=PF,∴CF=.4.解:(1)直线AF与⊙O相切.理由如下:连接OC,∵PC为圆O切线,∴CP⊥OC,∴∠OCP=90°,∵OF∥BC,∴∠AOF=∠B,∠COF=∠OCB,∵OC=OB,∴∠OCB=∠B,∴∠AOF=∠COF,∵在△AOF和△COF中,,∴△AOF≌△COF(SAS),∴∠OAF=∠OCF=90°,∴AF⊥OA,又∵OA为圆O的半径,∴AF为圆O的切线;(2)∵∠AOF=∠COF,OA=OC,∴E为AC中点,即AE=CE=AC,OE⊥AC,∵∠OAF=90°,OA=6,AF=2,∴tan∠AOF=,∴∠AOF=30°,∴AE=OA=3,∴AC=2AE=6;(3)∵AC=OA=6,OC=OA,∴△AOC是等边三角形,∴∠AOC=60°,OC=6,∵∠OCP=90°,∴CP=OC=6,∴S△OCP=OC•CP==18,S扇形AOC==6π,∴阴影部分的面积为S△OCP﹣S扇形AOC=18﹣6π.5.(1)证明:连接OD,如图所示:∵AB为⊙O的直径,∴∠ADB=90°.∴AD⊥BC.∵AB=AC,∴CD=BD=BC.∵OA=OB,∴OD是△ABC的中位线,∴OD∥AC.∵EF⊥AC,∴EF⊥OD.∵OD是半径,∴EF与⊙O相切.(2)证明:∵AB为直径,∴∠ADB=90°,∴∠BAD+∠ABD=90°,∵OD⊥DE,∴∠FDB+∠ODB=90°,∵OB=OD,∴∠OBD=∠ODB,∴∠BAD=∠FDB,∵∠F=∠F,∴△FBD∽△FDA;(3)解:设⊙O的半径为r,则AB=2r,∵△FBD∽△FDA,∴,∵DF=4,BF=2,∴,∴r=3.6.解:(1)CG与⊙O相切,理由如下:如图1,连接CO,∵AB是⊙O的直径,∴∠ACB=∠ACF=90°,∵点G是EF的中点,∴GF=GE=GC,∴∠AEO=∠GEC=∠GCE,∵OA=OC,∴∠OCA=∠OAC,∵OF⊥AB,∴∠OAC+∠AEO=90°,∴∠OCA+∠GCE=90°,即OC⊥GC,∵OC是圆的半径,∴CG与⊙O相切;(2)证明:∵∠AOE=∠FCE=90°,∠AEO=∠FEC,∴∠OAE=∠F,又∵∠B=∠B,∴△ABC∽△FBO,∴,即BO•AB=BC•BF,∵AB=2BO,∴2OB2=BC•BF;(3)由(1)知GC=GE=GF,∴∠F=∠GCF,∴∠EGC=2∠F,又∵∠DCE=2∠F,∴∠EGC=∠DCE,∵∠DCE=∠AOD=45°,∴∠EGC=45°,又∵∠OCG=90°,∴△OCG为等腰直角三角形,∴GC=OC,OG=OC,∴OD+DG=OC,即OC+2.5=OC,解得OC=,∵GF=GE=GC=OC,∴DE=GE﹣DG=OC﹣DG=.7.(1)证明:∵AD⊥BC,AD过圆心O,∴BD=CD,且AD⊥BC,∴AB=AC,∴∠B=∠C;(2)证明:连接BE,设∠ACE=α,则∠ACB=3α,∴∠ABC=∠ACB=3α,∵∠ABE=∠ACE=α,∴∠CBE=∠ABC﹣∠ABE=3α﹣α=2α,∴∠CAE=∠CBE=2α=2∠ACE;(3)解:过点E作EG⊥AC于点G,在CG上截取GH=AG,连接EH,∴EH=AE=5,∴∠AHE=∠EAH=2α,∴∠CEH=∠AHE﹣∠ECH=2α﹣α=α=∠ECH,∴CH=EH=5,∵AC=AB=13,∴AH=AC﹣CH=13﹣5=8,∴AG=GH=4,∴CG=4+5=9,在Rt△AEG中,EG===3,在Rt△CEG中,CE===3,∵,∴,∴.8.解:(1)过点M作MN⊥AC于点N,∵圆M与AC相切,∴MN=MB,∵∠ACB=90°,AC=6,∠B=30°,∴AB=12,设MN=MB=R.∴AM=12﹣R,∵∠ACB=90°,MN⊥AC,∴MN∥BC,∴∠B=∠AMB=30°,∴,∴,解得R=24﹣36.(2)①连接DM,由题意可知MB=MD,∴∠B=∠MDB=30°,∴∠AMD=60°,∵AM=2MB,∴AM=2MD,∵∠ACB=90°,∠B=30°,∴AB=2AC,∠BAC=60°,∴△AMD∽△ABC,∴∠ADM=∠ACB=90°,∴AD与圆M相切;②∵AB=12,AM=2MB,∴BM=4,AM=8,∵∠ADM=90°,∴AD==4,∴S阴影部分=4.9.(1)证明:∵OC=OB,∴∠OBC=∠OCB,∵DE⊥AB,∴∠OBC+∠DFB=90°,∵EF=EC,∴∠ECF=∠EFC=∠DFB,∴∠OCB+∠ECF=90°,∴OC⊥CE,∴EC是⊙O的切线;(2)证明:∵AB是⊙O的直径,∴∠ACB=90°,∴∠ABC+∠A=90°,∠ABC+∠BFD=90°,∴∠BFD=∠A,∴∠A=∠BFD=∠ECF=∠EFC,∵OA=OC,∴∠OCA=∠A=∠BFD=∠ECF=∠EFC,∴△OAC∽△ECF;(3)解:∵AB是⊙O的直径,∴∠ACB=90°,∵OB=5,∴AB=10,∴AC===6,∵cos∠ABC=,∴,∴BF=5,∴CF=BC﹣BF=3,∵△OAC∽△ECF,∴,∴EC==.10.(1)证明:如图1,连接OD.∵BC为⊙O的直径,∴∠BAC=90°.∵AD平分∠BAC,∴.∴OD⊥BC,∵DE∥BC,∴OD⊥ED,又∵OD为半径,∴ED为⊙O的切线;(2)证明:由(1)可得△BCD为等腰直角三角形.∵DE∥BC,∴∠E=∠ABC=∠ADC,∠BDE=∠DBC=∠DCB=45°.∴△BED∽△FDC,∴,即BD2=DE•FC,又,∴BC2=2ED•FC;(3)解:如图2,过点D作DG⊥AD,交AC的延长线于点G.∴∠CDG+∠ADC=90°,∠DGC=∠DAG=45°.又∵∠ADB+∠ADC=90°,∴∠ADB=∠GDC,∵DB=DC,∠BAD=∠DGC=45°,∴△ABD≌△GCD(AAS),∴AB=CG.∵∠DAG=45°,∠ADG=90°,∴△ADG为等腰直角三角形,∴AB+AC=AG=AD==3,∵tan∠ABC=2,∴设AB=x,则AC=2x.∴3x=3,∴x=1.即AB=1,AC=2.∴BC===.11.(1)证明:∵∠BMC=∠BAD,又∵∠BMC=∠BAC+∠ABD,∠BAD=∠BAC+∠DAM,∴∠ABD=∠DAC,又∵弧DC=弧DC,∴∠DAC=∠DBC,∴∠ABD=∠CBD,∴BD平分∠ABC;(2)证明:连接OA、OB、OD,OD交AC于点N,∵FD是⊙O的切线,D为切点,OD是⊙O的半径,∴OD⊥FD,∴∠FDO=90°,又∵∠AOD=2∠ABD,∠DOC=2∠DBC,∠ABD=∠CBD,∴∠AOD=∠COD,又∵AO=CO,∴ON⊥AC,∴∠ANO=90°,∴∠ANO=∠FDO,∴AC∥FD;(3)解:连接OD,交AC于N,∵BC是⊙O的直径,∴∠BAC=∠BDC=90°,∴∠F AC=180°﹣∠BAC=90°,又∵∠ANO=∠FDN=90°,∴四边形ANDF是矩形,∴AF=DN,∠F=90°,又∵ON⊥AC,∴AN=CN,∴设MN=a,则AN=CN=MN+AM=a+1,∴CM=MN+CN=2a+1,在Rt△MDC中,cos∠ACD=,在Rt△NDC中,cos∠ACD=,∴,解得a1=﹣(舍去),a2=1,∴MN=1,CN=a+1=2,∴DN=AF==,又∵MN=AM=1,∠AMB=∠NMD,∠BAM=∠MND=90°,∴△BAM≌△DNM(AAS),∴BA=ND=,∴BF=AB+AF=2,∴AN=FD=a+1=2,∴BD==2,∴S△BFD=,S△DBC=BD•CD==3,∴S四边形BFDC=S△BFD+S△BDC=2.12.(1)证明:连接AD,∵AB是⊙O的直径,弦CD⊥AB,∴,∴∠ACD=∠DC,∵,∴∠APC=∠ADC,∴∠APC=∠ACD;(2)证明:连接OP,∵PF是⊙O的切线,∴OP⊥PF,即∠EPF+∠OPE=90°,∵OP=OB,∴∠OPB=∠OBP,∵CD⊥AB,∴∠HEB+∠HBE=90°,∵∠PEF=∠HEB,∴∠PEF=∠FPE,∴FE=PF;(3)解:过E作EM⊥PF,垂足为M,∵AG⊥PF,∴∠GAP+∠GP A=90°,∵∠APE=90°,∴∠GP A+∠EPM=90°,∵∠AGP=∠EMP=90°,∴△GP A∽△MEP,∴,∵∠P AE=∠F,∴tan∠P AE=tan∠F,则,∵,∴,∴MF=PG=6,设PM=x,∵PE2﹣PM2=EF2﹣FM2,∴,解得:x1=﹣10,x2=4,即PM=4,∴EM==8,∵,即,∴P A=3,∵CD⊥AB,AB是直径,∴∠BHE=∠APB=90°,∴∠HEB=∠BAP,∵∠MPE=∠HEB,∴tan∠P AB=,即,∴PB=6,∴BE=PB﹣PE=2,∵sin∠HEB=,即,∴BH=4.13.(1)证明:连接OC,如图1,∵AD=CD,∠A=30°,∴∠ACD=30°,∴∠CDB=60°,∵OD=OC,∴∠OCD=60°,∴∠ACO=∠ACD+∠OCD=90°,∵OC是半径,∴直线AC是⊙O的切线;(2)解:∵∠OCD=60°,OC=OD,∴△DCO是等边三角形,∴CD=AD=OD=1,作CH⊥BD于点H,则DH=,如图2,∴CH===,∵AB=AD+BD=3,∴S△ABC==.(3)①当点E运动到与点C关于直径AB对称时,CE⊥AB于点K,如图3,∵BD为⊙O的直径,CK=,∴CE=2CK=,∵CF⊥CE,∴∠ECF=90°,∵∠CDB=∠CEB=60°,∴CF=CE•tan60°==3,②∵点E在上运动过程中,∠CDB=∠CEB=60°,在Rt△ECF中,tan60°=,∴CF=CE,∴当CE最大时,CF取得最大值,∴当CE为直径,即CE=2时,CF最大,最大值为2.14.(1)证明:连接AC,BC,∵OC=OA,∴∠OCA=∠OAC,∵PF是⊙O的切线,CE⊥AB,∴∠OCP=∠F=90°,∴AF∥OC,∴∠F AC=∠OCA,∴∠F AC=∠OAC,∴CA平分∠F AB.(2)证明:∵CD是直径,∴∠CBD=90°,∴∠CBP=90°,∵CE⊥OB,∴∠CEB=∠CBP=90°,∵PC切⊙O于点C,∴∠PCB=∠CAB,∵AB是直径,∴∠ACB=90°,∴∠ABC+∠CAB=90°,∠BCE+∠ABC=90°,∵∠CAB=∠BCE,∴∠PCB=∠BCE,∴△BCE∽△PCB,∴,∴BC2=CE•CP;(3)解:,设CF=3a,CP=4a,∵BC2=CE•CP=3a•4a=12a2,∴BC=2a,在Rt△BCE中,sin∠CBE=,∴∠CBE=60°,∴∠BCE=30°,∴△COB是等边三角形,∵AB=4,∴OB=BC=2,∴劣弧BC的长==π.15.(1)证明:∵BD是⊙O的切线,∴∠OBD=90°,∠ABC+∠DBC=90°,∵BC⊥OD,∴∠D+∠DBC=90°,∴∠ABC=∠D,∵∠AEC=∠ABC,∴∠D=∠AEC;(2)证明:连接AC,如图所示:∵OF⊥BC,∴,∴∠CAE=∠ECB,∵∠CEA=∠HEC,∴△CEH∽△AEC,∴,∴CE2=EH•EA;(3)解:连接BE,过O作OG⊥BE于G,如图所示:∵AB是⊙O的直径,∴∠AEB=90°,∵⊙O的半径为5,∴AB=10,∵cos∠BCE=,∴cos∠BAE==,∴AE=8,∴BE===6,∵,∴BE=CE=6,∵CE2=EH•EA,∴EH=,在Rt△BEH中,BH=.∵OG⊥BE,OB=OE,∴BG=3,∴OG===4,∴BF•OE,∴BF=,∴HF=BH﹣BF=.16.解:(1)∵点A(0,8),∴AO=8,∵AD是⊙Q的直径,∴∠AEB=∠AED=90°,∴∠AEB=∠AOB=90°,∵BA垂直平分CD,∴BC=BD,∴∠ABO=∠ABE在△ABE和△ABO中,,∴△ABE≌△ABO(AAS),∴AE=AO=8;(2)∵∠ABE=∠FDE,∴AB∥DF,∴△CAB∽△CDF,∴,又∵∠ABE=∠FDE,∠AEB=∠FED∴△DEF∽△BEA,∴,∴EF=2AE=16;(3)设BO=x,则AB=x+4,在Rt△ABO中,由AO2+OB2=AB2得:82+x2=(x+4)2,解得:x=6,∴OB=BE=6,AB=10,∵∠EAB+∠ABE=90°,∠ACB+∠ABC=90°,∴∠EAB=∠ACB,∵∠BF A=∠AFC,∴△BF A∽△AFC,∴;设EF=m,则AF=8+m,BF=(8+m),∵在Rt△BEF中,BE2+EF2=BF2,∴62+m2=[(8+m)]2,解得:m=,即EF=,∴tan∠AFC=.17.(1)证明:如图1,∵EF平分∠AED,∴∠AEF=∠FED,∵∠AEF=∠ADF,∴∠FED=∠ADF,∵∠GFD=∠DFE,∴△GFD∽△DFE;(2)证明:如图2,∵AE平分∠BAC,∴∠BAE=∠EAO,∵OA=OE,∴∠EAO=∠OEA,∴∠BAE=∠OEA,∴AB∥OE,∴∠OEC=∠B,∵∠B=90°,∴∠OEC=90°,∵OE为半径,∴BC是⊙O的切线;(3)解:如图3,连接OF、AF,∵AD为直径,∴∠AFD=∠AED=90°,∵EF平分∠AED,∴∠AEF=∠FED=45°,∴∠AFD=∠AEF=45°,∴△AFD为等腰直角三角形,∵DF=10,OA=OD∴AD=DF=×10=20,OF⊥AD,OA=OD=OF=10,∵cos∠CAE=,∴AE=AD•cos∠CAE=20×=10,∵∠AEF=∠ADF,∠AGE=∠FGD,∴△AGE∽△FGD,∴,∴AG=GF,∵AG=AO+OG=10+OG,∴10+OG=GF,∴OG=GF﹣10,在Rt△FOG中,GF2=OF2+OG2,∴GF2=102+(GF﹣10)2,解得:GF=或(不符合题意,舍去),∴线段GF的长为.18.(1)证明:连接OB,∵PB是⊙O的切线,∴∠PBO=90°,∵OA=OB,BA⊥PO于D,∴AD=BD,∠POA=∠POB,又∵PO=PO,∴△P AO≌△PBO(SAS),∴∠P AO=∠PBO=90°,∵OA为圆的半径,∴直线P A为⊙O的切线;(2)证明:∵∠P AO=∠PDA=90°,∴∠OAD+∠AOD=90°,∠OP A+∠AOP=90°,∴∠OAD=∠OP A,∴△OAD∽△OP A,∴,∴OA2=OD•OP,又∵AC=2OA,∴AC2=4OD•OP;(3)解:∵OA=OC,AD=BD,BC=6,∴OD=BC=3,设AD=x,∵tan∠F=,∴FD=2x,OA=OF=2x﹣3,在Rt△AOD中,由勾股定理,得,(2x﹣3)2=x2+32,解之得,x1=4,x2=0(不合题意,舍去),∴AD=4,OA=2x﹣3=5,∵AC是⊙O的直径,∴AC=2OA=10.∴AC的长为10.19.(1)证明:∵∠ACB=90°,PE⊥AC,PF⊥BC,∴四边形PECF是矩形,∵CP平分∠ACB,PE⊥AC,PF⊥BC,∴PE=PF,∴四边形CEPF是正方形;(2)解:∵sin A=,AB=10,∴,∴BC=8,∴AC===6,∴tan A=,设PE=CE=m,则AE=6﹣m,∴tan A=,∴m=,∴PC=PE=;(3)解:∵四边形CEPF是正方形,∴PE=PF,∠APE+∠BPF=90°,∠PEA=∠PFB=90°,∴将△APE绕点P顺时针旋转90°,得到△A′PF,P A′=P A,如图所示:则A′、F、B三点共线,∠APE=∠A′PF,∴∠A′PF+∠BPF=90°,即∠A′PB=90°,∴S△P AE+S△PBF=S△P A′B=P A′•PB=x(10﹣x),∴y与x之间的函数关系式为y=﹣+5x,∵y=﹣+5x=﹣,∴x=5时,y有最大值为.20.解:(1)如图①,AD⊥BC,∵△ABC为等边三角形,AB=2,∴∠B=60°,BC=AB=2,∵AD⊥BC,∴∠ADB=90°,在Rt△ABD中,=sin B=sin60°,∴=,∴AD=,∴△ABC的面积=AB•AD=×2×=,故答案为:;(2)如图②,过点D作DH⊥BC于点H,∵∠ABC=90°,BD是△ABC的角平分线,∴∠DBC=∠ABD=45°,∵DE⊥BD,∴∠BDE=90°,∴∠DEB+∠DBE=90°,∴∠DEB=90°﹣∠DBE=90°﹣45°=45°,∴BD=ED,∵DH⊥BC,∴BH=EH,∴DH=BE=BH=EH,设DH=BH=EH=a,∵∠ABC=90°,∴AB⊥BC,∵DH⊥BC,∴AB∥DH,∴△CDH∽△CAB,∴==,∵AD=1,AC=3,∴CD=3﹣1=2,∴==,∴AB=a,CE=a,∴BC=CE+BE=a+2a=3a,∵AB2+BC2=AC2,∴a2+9a2=9,∴a2=1,∴S阴影=S△ABC﹣S△BDE=AB•BC﹣BE•DH=×a•3a﹣×2a•a=a2﹣a2=a2=1;(3)①设AC与BD相交于点E,连接OB,OA,OC,过点O作OH⊥AB于点H,∵∠ADB=∠BDC=60°,∴AB=BC,∠BAC=∠BDC=60°,∴△ABC是等边三角形,∴∠ACB=60°,AB=AC=BC,在△ABO和△ACO中,,∴△ABO≌△ACO(SSS),同理△ABO≌△CBO(SSS),∴S△ABO=S△ACO=S△CBO,∴S△ABC=3S△ABO,∵∠AOB=2∠ACB,∴∠AOB=120°,在Rt△OAH和Rt△OBH中,,∴Rt△OAH≌Rt△OBH(HL),∴∠AOH=∠BOH,AH=BH,在Rt△OAH中,OA=4,∠AOH=∠AOB=60°,∴cos∠AOH=cos60°==,sin∠AOH=sin60°==,∴OH=OA=2,AH=OA=2,∴AB=2AH=4,∴S△ABC=3S△ABO=3××4×2=12,∵∠ABE=∠DBA,∠BAE=∠BDA=60°,∴△ABE∽△DBA,∴===,即S△DBA=S△ABE,∵∠CBE=∠DBC,∠BCE=∠BDC=60°,∴△CBE∽△DBC,∴===,即S△DBC=S△CBE,∴S四边形ABCD=S△DBA+S△DBC=S△ABE+S△CBE,=(S△ABE+S△CBE)=S△ABC=×12=x2,∴S△ADC=S四边形ABCD﹣S△ABC=x2﹣12,即y=x2﹣12;∵BD的长度大于AB,小于等于直径,∴4<x≤8,∴y与x之间的函数关系式为y=x2﹣12(4<x≤8);②由①知,y与x之间的函数关系式为y=x2﹣12,则对称轴为y轴,∵>0,∴x>0时,y随x的增大而增大,∵4<x<8,∴当x=8时,y有最大值,即当BD为⊙O的直径时,y取最大值,即y=×82﹣12=4,∴花卉区域△ADC面积的最大值是4.。
满分突破中考数学压轴题之专题练习(一)—解答压轴题方法与技巧
满分突破中考压轴题之专题练习(一)1.等腰△ ABC中,CA=CB点D为边AB上一点,沿CD折叠△ CAD得到△ CFD边CF交边(2)连接AF交CD的延长线于点M,连接ME交线段DF于点N,若EF=4EC AB=22,求MN的长.【考点】翻折变换(折叠问题);等腰三角形的性质.菁优网版权所有【解答】(1) 证明:如图1,•/ CA=CB •••/ A=Z ABC,•/ CD=CE CDE=/ CED,'Z A=Z ABC在厶ACE与厶BCD 中,,ZAEC二ZBDC t AC=C&•△ACE^A BCD (AAS)•AE=BD, AD=EB•/ AD=DF, • DF=EBI F二EB在厶DCF与厶ECB中 , “ CF二CBLCD=CE•••△DCF^A ECB ( SSS ,/ DCE=/ ECB / DFE=/ EBC,•/ FDE=Z BCE•••/ DEC=ZFEB•/ DCE=/ EBF,•△DEF^A CEBAB 于点E, CD=CE 连接BF.• FD=FB•△DE3A FEB, •/ FDB=/ FBD,(2) 解:•••沿CD 折叠△ CAD 得到△ CFD,••• CA=CF / CAD=Z CFD,•••/ CAD=Z CBE•••/ DEF=Z CEB又•••/ CED=/ BEF•••/ CFD=/ CBE, • △ DEF ^A CEB • △ CED^A BEF,•/ CD=CE• BE=BF , △ EBF 为等腰三角形,•/ CF=CBBCF 为等腰三角形, 则/ BCF=Z EBF,• / DCE=/ BCF, CEBCD 和/ BCD 的平分线,由角平分线定理,可得 CB _ EB CE+EF CD^ED ? CE =ED ?•/ EF=4EC•「_5・・ =5 ,ED•/ AB=AD+ED+EB=22,• 5ED+ED+5ED=22 ,解得ED=2,• •匸■ W TT•- 4CW=5ED 2 , EC=",由余弦定理,可得 ED 2=C D 2+C E ?- 2CD X CEcos / DCE cos / DCE=;.5如图2,过点M 作AE 的平行线分别交 FD EF 于点G 、H ,• M 为AF 边的中点,•••点G 、H 是FD EF 的中点,•/ EF=4EC• EH=2EC• MD=2CD , MH=3ED , •/ GH=- ED, 2• / DCE=/ EBF郢2•/△MNG s^ END,,讥=,MN= ME,ED EN EN 2 7在厶MCE中,由余弦定理,可得ME2=MC2+EC? - 2MC X EC X cos/ DCEME2=10EC - 3.6EC=6.4E(C ,• ME=4 二MN」2 .如图,Rt A ABC中,M为斜边AB上一点,且MB=MC=AC=8cm,平行于BC的直线l从BC的位置出发以每秒1cm的速度向上平移,运动到经过点MB、MC、AC于点D、E、P,以DE为边向下作等边厶DEF,设厶DEF与厶MBC重叠部分的面积为S( cm2),直线I的运动时间为t (秒).(1) 求边BC的长度;(2) 求S与t的函数关系式;(3) 在整个运动过程中,是否存在这样的时刻t,使得以P、C、F为顶点的三角形为等腰三角形?若存在,请求出t的值;若不存在,请说明理由.(4) 在整个运动过程中,是否存在这样的时刻t,使得以点D为圆心、BD为半径的圆与直线EF相切?若存在,请求出t的值;若不存在,请说明理由.【考点】几何变换综合题.菁优网版权所有【解答】解:(1)设/ B=a,•/ MB=MC,M时停止•直线I分别交线段A•/ MC=MA,•••/ A=Z AMC=a ,•••/ B+Z A=90 ,•- a+2 a =90;•a =30°•Z B=30°;■/ cotB= I -;AC•BC=AC X cotB=8 ;厂;;(2)由题意,若点F恰好落在BC上,• MF=4 ( 4 - t) =4;--1=3.当0v t w3时,如图,• BD=2t;DM=8 - 2t ;•/ l // BC,•時」,•L1 :J-•: :,•DE= : (8 - 2t).•点D到EF的距离为FJ= DE=3 (4 - t),2•/ l // BC,•:V i;l】• ---DE"FJ•/ FN=FJ- JN=3 (4 - t)- t=12 - 4t,• "= 一( 3-t)S=S弟形DHG (HG+DE)X FN=-当3 v t w 4时,重叠部分就是厶DEF,S=S年匚詔=3二t2- 24和48 =.即:S= 3 2 砺t+4 结血(3<t<4)(3) 当 O v t w 3 时,/ FC 禺 90°••• Fd CP,•••△ PCF 不可能为等腰三角形当3 v t w 4时,若△ PCF 为等腰三角形,•只能FC=FP•-=3( 4 - t ), 2• t (7)•••存在这样的时刻t=— 时,使得以P 、C 、F 为顶点的三角形为等腰三角形,7 (4 )若相切,理由:•••/ B=30° ,• BD=2t , DM=8 - 2t ,•/ l // BC,…時」,•li :: ■'•-,• DE=二(8 - 2t ).• 2t=3 (4 - t ),解得t=—. 5•••存在这样的时刻t=l —时,使得以点D 为圆心、BD 为半径的圆与直线 EF 相切.^t Z +8V3t(O<t<3) DE=3 (4 - t )3.在Rt A ABC 中,/ ACB=90°, AC=BC=2点P 为BC 边上的一个动点 (不与B 、C 重合).点 第7页(共25页)• AP=AM=AN ,Z 1 = / 2,7 3=/4,•••/ CAB=/ 2+/ 3=45°,MAN=90(1) 当点P 为线段BC 的中点时,求/ M 的正切值;(2) 当点P 在线段BC 上运动时(不与 B 、C 重合),连接AM 、AN ,求证:① 厶AMN 为等腰直角三角形;② 厶 AEF ^A BAM .【考点】相似形综合题.菁优网版权所有【解答】(1 )解:连接NB ,如图1 ,•••在 Rt A ABC 中,/ ACB=90 , AC=BC•••△ ACB 为等腰直角三角形,•••/ A=Z CBA=45 ,•••点P 关于直线AB 的对称点为N ,关于直线AC 的对称点为M ,• AB 垂直 PN, BN=BP,•••/ NBA=Z PBA=45 ,•••/ PBN=90 ,•••点P 为BC 的中点,BC=2,• MC=CP=PB=NB=1• tan / M= m =X 1厂二(2)证明:①连接AP,如图2,•••点P 关于直线AC AB 的对称点分别为M 、N , P 关于直线AC 、AB 的对称点分别为 M 、N ,连接MN 交AC 于点E,交AB 于点F .•••△AMN为等腰直角三角形;②•••△ AMN为等腰直角三角形,•••/ 5=/ 6=45°,•••/ AEF=/ 5+/ 仁45° + / 1 ,•// EAF=45•/ BAM=/ EAF+/ 仁45° + / 1,•/ AEF=/ BAM,又•••/ B=/ EAF=45•△AEF^A BAM.d4. 已知:在梯形ABCD中,AD// BC, AC=BC=10cos/ ACB=:,点E在对角线AC上,且CE=AD,5BE的延长线与射线AD、射线CD分别相交于点F、G,设AD=x,A AEF的面积为y.(1 )求证:/ DCA=/ EBC;(2) 如图,当点G在线段CD上时,求y关于x的函数解析式,并写出它的定义域;(3) 如果△ DFG是直角三角形,求△ AEF的面积.【考点】相似形综合题.菁优网版权所有【解答】(1)证明:T AD / BC,•/ DAC=/ ECB 在厶DCA和厶ECB中,r AD=CE,ZDAC^ZECB ,M 二BC•△DCA^A ECB( SAS,• / DCA=/ EBC(2)T AD// BC,•••△ AEF^A CEB,• .': T !\ : 即I J…茁—:T.,: ,,解得:AF=』'',X作EH丄AF于H ,如图1所示,• EH=;AE=;(10 -x),5 51 3--y=S^ AEF= x —25(10- x)10(10-x) =3(10P)2•- 0v x w 5訂.:-5 ,• y关于x的函数解析式为: y_ " ' ||:, ' 11y=(0v x< 5 , I - 5); (3)分两种情况考虑:①当/ FDG_90时,如图2所示:A在Rt A ADC 中,AD_AC X—_8 ,即x_8 ,5• S L :…AAEF_y_ —②当/ DGF_90时,过E作EM丄BC于点M,如图3所示,由(1)得:CE_AF_x3 4在Rt A EMC 中,EM_ x , MC_ x ,5 5•BM_BC- MC_10-二x,5•••/ GCE_/ GBC, / EGC_/ CGB,•△CGE^A BGC,.CE_CG 即工_CG•g_ j ' : _ ,•••点G在线段CD上,• AF> AD ,即 _ > x,(1) (2)(3) 求厶BCQ 的面积S 与t 的函数关系式.t 为何值时,QP// AC ?t 为何值时,直线 QR 经过点P ?当点P 在AB 上运动时,以PQ 为边在AB 上方所作的正方形 PQMN 在 Rt A ABC 内部,求此时t 的取值范围.【考点】相似形综合题.菁优网版权所有【解答】解:(1 )过C 作CD 丄AB 于D 点,如图所示:•/ AB=10, AQ=2+2t ,• QB=AB- AQ=10-( 2+2t ) =8 - 2t ,在 Rt A ABC 中,AB=10, AC=8,根据勾股定理得:BC=6,•••/ EBM=Z CBG, / BME=Z BGC=90 ,•••△ BMEs^ BGC,-■<?1!=匸''丽硕io4/53• 1 =,即 x=5, 10碍 5此时 y= ;「’=15,综上,此时△ AEF 的面积为「或15.5. 在 Rt A ABC 中,/ C=90° AB=10, AC=8,点 Q 在 AB 上,且 AQ=2,过 Q 做 QR 丄 AB,垂 足为Q , QR 交折线AC- CB 于R (如图1),当点Q 以每秒2个单位向终点B 移动时,点P 同时从A 出发,以每秒6个单位的速度沿 AB - BC- CA 移动,设移动时间为t 秒(如图2).•••丄AC?BC= AB?CD,即卩-X 6X X 10X CD,2 2 2 2••• CD二,5则S^BCQ F QB?CD= (8- 2t) =- 〔t+ ( 0 < t w 4);2 5 5 5(2)当PQ// AC 时,可得/ BPQ=Z C,Z BQP=Z A,• △ BPQ^A BCA, 又BQ=8- 2t, BP=6t- 10,•讥=[F 即-'■ J" -一…, i _ -,整理得:6 (8 - 2t) =10 (6t - 10),解得:t=',18则t= 1时,QP/ AC;18(3)①当Q、P 均在AB 上时,AP=6t , AQ=2+2t ,可得:AP=AQ,即6t=2+2t,解得:t=0.5s ;②当P在BC上时,P与R重合,如图所示:•••/ PQB=Z ACB=90 , / B=Z B ,•△BP2A BAC,•—,又BP=6t- 10 , AB=10 , BQ=8- 2t ,BC=6 AB BC'1= :,即6 (6t - 10) =10 (8 - 2t),10 6解得:t=2.5s;③当P在AC上不存在QR经过点P ,综上,当t=0.5s或2.5s时直线QR经过点P;(4) 当点P在点Q的左侧时,若点N落在AC上,如图所示:•/ AP=6t , AQ=2+2t ,•PQ=AQ- AP=2+2t - 6t=2 - 4t ,•••四边形PQMN是正方形,•PN=PQ=2- 4t,•••/ APN=Z ACB=90 , / A=Z A ,第10页(共25页)。
2023年中考数学重难点专题练习-一次函数最大利润问题
2023年中考数学重难点专题练习-一次函数最大利润问题一、解答题1.某商户购进一批童装,40天销售完毕.根据所记录的数据发现,日销售量y (件)与销售时间x (天)之间的关系式是203062403040x x y x x <≤⎧=⎨-+<≤⎩,,,销售单价p (元/件)与销售时间x (天)之间的函数关系如图所示.(1)第15天的日销售量为_________件;(2)当030x <≤时,求日销售额的最大值;(3)在销售过程中,若日销售量不低于48件的时间段为“火热销售期”,则“火热销售期”共有多少天?2.2022年北京承办了第24届冬季奥林匹克运动会,某商店为了抓住冬奥会的商机,决定购买A ,B 两种冬奥会纪念品,若购进A 种纪念品20件,B 种纪念品10件,需要2000元.若购进A 种纪念品10件,B 种纪念品8件,需要1150元.(1)求购进A ,B 两种纪念品每件各需多少元?(2)若该商店购进这两种纪念品共1000件,总费用不超过60000元,销售每件A 种纪念品可获利润30元,每件B 种纪念品可获利润20元.设购进A 种纪念品a 件,请求出总利润最高时的进货方案.3.2022年翻开序章,冬奥集结号已吹响,冬奥会吉祥物“冰墩墩”和冬残奥会吉祥物“雪容融”深受人民喜爱.2021年十一月初,奥林匹克官方旗舰店上架了“冰墩墩”和“雪容融”两款毛绒玩具,当月售出了“冰墩墩”200个和“雪容融”100个,销售总额为32000元.十二月售出了“冰墩墩”300个和“雪容融”200个,销售总额为52000元.(1)求“冰墩墩”和“雪容融”的销售单价;(2)已知“冰墩墩”和“雪容融”的成本分别为90元/个和60元/个.进入2022年一月后,这两款毛绒玩具持续热销,于是旗舰店再购进了这两款毛绒玩具共600个,其中“雪容融”的数量不超过“冰墩墩”数量的2倍,且购进总价不超过43200元.为回馈新老客户,旗舰店决定对“冰墩墩”降价10%后再销售,若一月份购进的这两款毛绒玩具全部售出,则“冰墩墩”购进多少个时该旗舰店当月销售利润最大,并求出最大利润.4.某商场销售成本为每件40 元的商品.据市场调查分析,如果按每件50元销售,一周能卖出500件;若销售单价每涨1元,每周销量就减少10 件.设销售单价为x (50x ≥)元.(1)写出一周销售量y (件)与x (元)的函数关系式.(2)设一周销售获得毛利润w 元,写出w 与x 的函数关系式,并确定当x 在什么取值范围内变化时,毛利润w 随x 的增大而增大.(3)超市扣除销售额的20%作为该商品的经营费用,为使得一周内净利润(净利润=毛利润经营费用)最大,超市对该商品定价为______元,最大毛利润为______元.5.一大型商场经营某种品牌商品,该商品的进价为每件30元,根据市场调查发现,该商品每周的销售量y (件)与售价x (元件)(x 为正整数)之间满足一次函数关系,下表记录的是某三周的有关数据:(1)求y 与x 的函数关系式(不求自变量的取值范围);(2)在销售过程中要求销售单价不低于成本价,且不高于150元/件.若某一周该商品的销售量不少于6000件,求这一周该商场销售这种商品获得的最大利润和售价分别为多少元?(3)抗疫期间,该商场这种商品售价不大于150元/件时,每销售一件商品便向某慈善机构捐赠m 元()1060m ≤≤,捐赠后发现,该商场每周销售这种商品的利润仍随售价的增大而增大.请求出m 的取值范围.6.服装店经销甲种品牌的服装,受市场影响,现在每件降价50元销售,如果卖相同件数的服装,原价的销售额为9000元,现价销售额为8000元.(1)销售甲种品牌服装现价每件为多少元?服装店用不多于6600元且不少于6400元的资金购进这两种品牌的服装共20件.①问有几种进货方案?①乙种品牌的服装每件售价为370元,服装店决定每售出1件乙种品牌服装,返还顾客a元,要使①所有方案获利相同,求a的值.7.某厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销量y(万件)与销售单价x(元)之间的关系可以近似看成一次函数y=-2x+100.(1)写出每月的利润z(万元)与销售单价x(元)之间的函数解析式.(2)当销售单价为多少元时,厂商每月能够获得最大利润?最大利润是多少?(3)根据相关部门的规定,这种电子产品的销售单价不得高于32元,如果厂商要获得每月不低于350万元的利润,那么制造这种产品每月的最低制造成本是多少万元?8.某商场分两次购进A,B两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示购进数量/件购进所需费用/元次数A B第一次30403800第二次40303200(1)求A,B两种商品每件的进价分别是多少元;(2)商场决定A种商品以每件30元出售,B种商品以每件100元出售.为满足市场需求,需购进A,B两种商品共1000件,且A种商品的数量不少于B种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.9.某商店欲购进甲、乙两种商品,已知甲的进价是乙的进价的一半,进3件甲商品和1件乙商品恰好用200元.甲、乙两种商品的售价每件分别为80元、130元,该商店决定用不少于6710且不超过6810元购进这两种商品共100件.(1)甲、乙两种商品的进价各是多少?(2)设其中甲商品的进货件数为x件,商店有几种进货方案?得最大利润,并求出最大利润是多少?10.二十大报告中指出,要深入推进能源革命,加强煤炭清洁高效利用,加快规划建设新型能源体系,积极参与应对气候变化全球治理.为保护环境,某市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车2辆,B型公交车3辆,共需750万元;若购买A型公交车3辆,B型公交车4辆,共需1040万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1550万元,且确保这10辆公交车在该线路的年均载客总和不少于720万人次,则该公司有几种购车方案?哪种购车方案总费用最少?最少总费用是多少万元?11.为了做好防疫工作,学校准备购进一批消毒液.已知2瓶A型消毒液和3瓶B型消毒液共需41元,5瓶A型消毒液和4瓶B型消毒液共需71元.(1)这两种消毒液的单价各是多少元?(2)学校准备购进这两种消毒液共90瓶,且A型消毒液的数量不超过67瓶,请设计出最省钱的购买方案,并求出最少费用.12.疫情当前,口罩非常紧俏,某药店进货N95口罩和普通医疗口罩两种口罩共8000个惠民销售,已知15个普通医疗口罩与4个N95口罩的价格相同,3个N95口罩比5个普通医疗口罩贵2.5元.(1)求普通医疗口罩和N95口罩的单价分别是多少?(2)设进货N95口罩a个,两种型号口罩的销售总价为m元.①若两种型号口罩的销售总价不低于5400元,则至少进货N95口罩多少个?①请写出m与a之间的函数关系式;若根据实际需求,进货的普通医疗口罩不少于5000个,则该药店这一批口罩的销售总价最多是多少元?13.某体育用品店计划花7000元购进篮球和足球,已知足球比篮球进价贵20元.若花3000元购买篮球,4000元购买足球,则可以够买到相同数量的篮球和足球.(1)求篮球和足球的进价;(2)篮球的销售单价为100元,足球的销售单价为120元,求该商店将购进的篮球和足球全部售出后能获取的利润w14.“冰墩墩”和“雪容融”分别是北京2022年冬季奥运会和冬残奥运会的吉祥物.该吉祥物深受全世界人民的喜爱,某生产厂家经授权每天生产两种吉祥物挂件共600件,且当天全部售出,原料成本、销售单价及工人生产提成如下表所示:原料成本(元/件)生产提成(元/件)销售单价(元/件)“冰墩墩”36650“雪容融”28741设该厂每天制作“冰墩墩”挂件x件,每天获得的利润为y元.(1)求出y与x之间的函数关系式;(2)若该厂每天投入总成本不超过23800元,应怎样安排“冰墩墩”和“雪容融”制作量,可使该厂一天所获得的利润最大,请求出最大利润和此时两个挂件的制作量.15.某商店出售普通练习本和精装练习本,150本普通练习本和100本精装练习本销售总额为1450元;200本普通练习本和50本精装练习本销售总额为1100元.(1)求普通练习本和精装练习本的销售单价分别是多少?(2)该商店计划再次购进500本练习本,普通练习本的数量不低于精装练习本数量的3倍,已知普通练习本的进价为2元/个,精装练习本的进价为7元/个,设购买普通练习本x个,获得的利润为W元;①求W关于x的函数关系式①该商店应如何进货才能使销售总利润最大?并求出最大利润.16.大学生小李和同学一起自主创业开办了一家公司,公司对经营的盈亏情况在每月的最后一天结算一次,在1~12月份中,该公司前x个月累计获得的总利闻y(万元)与销售时间x(月)之间满足二次函数关系.(1)求y与x函数关系式;(2)求9月份一个月内所获得的利润;(3)在前12个月中,哪个月该公司所获得利润最大?最大利润为多少?参考答案:1.(1)30(2)2100元(3)9天2.(1)购进A 种纪念品每件需要75元,B 种纪念品每件需要50元(2)当购进A 种纪念品400件,B 种纪念品600件时,获得的利润最大,最大利润是24000元3.(1)“冰墩墩”销售单价为120元,“雪容融”的销售单价为80元;(2)“冰墩墩”购进200个时该旗舰店当月销售利润最大,最大利润为11600元.4.(1)100010(50100)y x x -≤≤=(2)()210709000W x =--+,当5070≤≤x 时,毛利润w 随x 的增大而增大(3)75,50005.(1)5012000y x =-+;(2)这一周该商场的最大利润为540000元,售价为120元;(3)2960m <≤6.(1)400元(2)①5种;①207.(1)221361800z x x =-+-;(2)当销售单价为34元时,厂商每月能够获得最大利润,最大利润是512万元;(3)制造这种产品每月的最低制造成本是648万元.8.(1)A 种商品每件的进价为20元,B 种商品每件的进价为80元;(2)当购进A 种商品800件、B 种商品200件时,销售利润最大,最大利润为12000元.9.(1)进价为40元,乙商品的进价为80元(2)有三种进货方案:方案1,甲种商品30件,乙商品70件;方案2,甲种商品31件,乙商品69件;方案3,甲种商品32件,乙商品68件(3)30m =时,W 最大,此时4700W =10.(1)购买A 型公交车每辆需120万元,购买B 型公交车每辆需170万元(2)该公司有五种购车方案,当采购A 型7辆,采购B 型3辆时,费用最低,最低费用为1350万元11.(1)A 型消毒液的单价为7元,B 型消毒液的单价为9元(2)最省钱的购买方案是购买A 型消毒液67瓶,购买B 型消毒液23瓶,最低费用为676元12.(1)普通医疗口罩每个0.4元,N95口罩每个1.5元(2)①2000个;①6500元13.(1)篮球进价为60元/只,足球的进价为80元/只(2)当114m =时,利润w 最大,对应的方案是购买篮球114只,足球2只14.(1)()36000600y x x =+<<(2)当每天生产“冰墩墩”400件,“雪容融”200件时,可使该厂一天所获得的利润最大,最大为4400元15.(1)普通练习本:3元;精装练习本:10元(2)21500w x =-+①;①普通练习本进375本,精装练习本进125本,利润最大,最大为750元16.(1)26y x x =-(2)11万元(3)该公司12月所获得利润最大,最大利润为17万元。
中考数学专题复习分类练习 一元二次方程组综合解答题含答案解析
中考数学专题复习分类练习一元二次方程组综合解答题含答案解析一、一元二次方程1.解方程:(x+1)(x﹣3)=﹣1.【答案】x1=1+3,x2=1﹣3【解析】试题分析:根据方程的特点,先化为一般式,然后利用配方法求解即可.试题解析:整理得:x2﹣2x=2,配方得:x2﹣2x+1=3,即(x﹣1)2=3,解得:x1=1+3,x2=1﹣3.2.计算题(1)先化简,再求值:21xx-÷(1+211x-),其中x=2017.(2)已知方程x2﹣2x+m﹣3=0有两个相等的实数根,求m的值.【答案】(1)2018;(2)m=4【解析】分析:(1)根据分式的运算法则和运算顺序,先算括号里面的,再算除法,注意因式分解的作用;(2)根据一元二次方程的根的判别式求解即可.详解:(1)21xx-÷(1+211x-)=22211 11 x xx x-+÷--=()() 2211 1x xxx x+-⋅-=x+1,当x=2017时,原式=2017+1=2018(2)解:∵方程x2﹣2x+m﹣3=0有两个相等的实数根,∴△=(﹣2)2﹣4×1×(m﹣3)=0,解得,m=4点睛:此题主要考查了分式的混合运算和一元二次方程的根的判别式,关键是熟记分式方程的运算顺序和法则,注意通分约分的作用.3. y与x的函数关系式为:y=1.7x(x≤m);或( x≥m) ;4.从图象来看,该函数是一个分段函数,当0≤x≤m时,是正比例函数,当x>m时是一次函数.【小题1】只需把x 代入函数表达式,计算出y 的值,若与表格中的水费相等,则知收取方案.5.有一个人患了流感,经过两轮传染后共有36人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?【答案】(1)5;(2)180【解析】【分析】(1)设平均一人传染了x 人,根据有一人患了流感,经过两轮传染后共有36人患了流感,列方程求解即可;(2)根据每轮传染中平均一个人传染的人数和经过两轮传染后的人数,列出算式求解即可.【详解】(1)设每轮传染中平均一个人传染了x 个人,根据题意得:x+1+(x+1)x =36,解得:x =5或x =﹣7(舍去).答:每轮传染中平均一个人传染了5个人;(2)根据题意得:5×36=180(个),答:第三轮将又有180人被传染.【点睛】本题考查一元二次方程的应用,解题的关键是能根据题意找到等量关系并列方程.6.解方程:(x +1)(x -1)=x.【答案】x 1,x 2【解析】试题分析:根据方程的特点,根据平方差公式化为一般式,然后可根据公式法求解即可.试题解析:(x +1)(x -1)=x 2-2x-1=0∵a=1,b=-c=-1∴△=b 2-4ac=8+4=12>0∴∴x1x 2.7.已知1x 、2x 是关于x 的方程222(1)50x m x m -+++=的两个不相等的实数根.(1)求实数m 的取值范围;(2)已知等腰ABC ∆的一边长为7,若1x 、2x 恰好是ABC ∆另外两边长,求这个三角形的周长.【答案】(1)m>2; (2)17【解析】试题分析:(1)由根的判别式即可得;(2)由题意得出方程的另一根为7,将x =7代入求出x 的值,再根据三角形三边之间的关系判断即可得.试题解析:解:(1)由题意得△=4(m +1)2﹣4(m 2+5)=8m -16>0,解得:m >2; (2)由题意,∵x 1≠x 2时,∴只能取x 1=7或x 2=7,即7是方程的一个根,将x =7代入得:49﹣14(m +1)+m 2+5=0,解得:m =4或m =10.当m =4时,方程的另一个根为3,此时三角形三边分别为7、7、3,周长为17; 当m =10时,方程的另一个根为15,此时不能构成三角形;故三角形的周长为17.点睛:本题主要考查判别式、三角形三边之间的关系,熟练掌握韦达定理是解题的关键.8.若关于x 的一元二次方程x 2﹣3x +a ﹣2=0有实数根.(1)求a 的取值范围;(2)当a 为符合条件的最大整数,求此时方程的解.【答案】(1)a ≤174;(2)x =1或x =2 【解析】【分析】(1)由一元二次方程有实数根,则根的判别式△=b 2﹣4ac≥0,建立关于a 的不等式,即可求出a 的取值范围;(2)根据(1)确定出a 的最大整数值,代入原方程后解方程即可得.【详解】(1)∵关于x 的一元二次方程x 2﹣3x +a ﹣2=0有实数根,∴△≥0,即(﹣3)2﹣4(a ﹣2)≥0,解得a ≤174; (2)由(1)可知a ≤174, ∴a 的最大整数值为4,此时方程为x 2﹣3x +2=0,解得x =1或x =2. 【点睛】本题考查了一元二次方程根的判别式以及解一元二次方程,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.9.某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?【答案】(1)2000;(2)2米【解析】【分析】(1)设未知数,根据题目中的的量关系列出方程;(2)可以通过平移,也可以通过面积法,列出方程【详解】解:(1)设该项绿化工程原计划每天完成x 米2, 根据题意得:4600022000x -﹣46000220001.5x-= 4 解得:x=2000,经检验,x=2000是原方程的解;答:该绿化项目原计划每天完成2000平方米;(2)设人行道的宽度为x 米,根据题意得,(20﹣3x )(8﹣2x )=56 解得:x=2或x=263(不合题意,舍去). 答:人行道的宽为2米.10.已知关于x 的方程(x-3)(x-2)-p 2=0.(1)求证:无论p 取何值时,方程总有两个不相等的实数根;(2)设方程两实数根分别为x 1、x 2,且满足x 12+x 22=3 x 1x 2,求实数p 的值.【答案】(1)详见解析;(2)p=±1.【解析】【分析】(1)先把方程化成一般形式,再计算根的判别式,判定△>0,即可得到总有两个不相等的实数根;(2)根据一元二次方程根与系数的关系可得两根和与两根积,再把2212123x x x x +=变形,化成和与乘积的形式,代入计算,得到一个关于p 的一元二次方程,解方程即可求解.【详解】证明:(1)(x ﹣3)(x ﹣2)﹣p 2=0,x 2﹣5x+6﹣p 2=0,△=(﹣5)2﹣4×1×(6﹣p 2)=25﹣24+4p 2=1+4p 2,∵无论p 取何值时,总有4p 2≥0,∴1+4p 2>0,∴无论p 取何值时,方程总有两个不相等的实数根;(2)x 1+x 2=5,x 1x 2=6﹣p 2,∵2212123x x x x +=, ∴(x 1+x 2)2﹣2x 1x 2=3x 1x 2,∴52=5(6﹣p 2),∴p=±1.考点:根的判别式;根与系数的关系.11.“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法. 例如:图1有6个点,图2有12个点,图3有18个点,……,按此规律,求图10、图n 有多少个点?我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个:图3中黑点个数是6×3=18个;所以容易求出图10、图n 中黑点的个数分别是 、 .请你参考以上“分块计数法”,先将下面的点阵进行分块(画在答题卡上),再完成以下问题:(1)第5个点阵中有 个圆圈;第n 个点阵中有 个圆圈.(2)小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.【答案】60个,6n 个;(1)61;3n 2﹣3n+1,(2)小圆圈的个数会等于271,它是第10个点阵.【解析】分析:根据规律求得图10中黑点个数是6×10=60个;图n中黑点个数是6n个;(1)第2个图中2为一块,分为3块,余1,第2个图中3为一块,分为6块,余1;按此规律得:第5个点阵中5为一块,分为12块,余1,得第n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1,(2)代入271,列方程,方程有解则存在这样的点阵.详解:图10中黑点个数是6×10=60个;图n中黑点个数是6n个,故答案为:60个,6n个;(1)如图所示:第1个点阵中有:1个,第2个点阵中有:2×3+1=7个,第3个点阵中有:3×6+1=17个,第4个点阵中有:4×9+1=37个,第5个点阵中有:5×12+1=60个,…第n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1,故答案为:60,3n2﹣3n+1;(2)3n2﹣3n+1=271,n2﹣n﹣90=0,(n﹣10)(n+9)=0,n1=10,n2=﹣9(舍),∴小圆圈的个数会等于271,它是第10个点阵.点睛:本题是图形类的规律题,采用“分块计数”的方法解决问题,仔细观察图形,根据图形中圆圈的个数恰当地分块是关键.12.重庆市旅游文化商店自制了一款文化衫,每件成本价为20元,每天销售150件:(1)若要每天的利润不低于2250元,则销售单价至少为多少元?(2)为了回馈广大游客,同时也为了提高这种文化衫的认知度,商店决定在“五一”节当天开展促销活动,若销售单价在(1)中的最低销售价的基础上再降低m%,则日销售量可以在150件基础上增加m件,结果当天的销售额达到5670元;要使销售量尽可能大,求出m的值.【答案】(1)销售单价至少为35元;(2)m=16.【解析】试题分析:(1)根据利润的公式列出方程,再求解即可;(2)销售价为原销售价×(1﹣m%),销售量为(150+m),列出方程求解即可.试题解析:(1)设销售单价至少为x元,根据题意列方程得,150(x﹣20)=2250,解得x=35,答:销售单价至少为35元;(2)由题意得:35×(1﹣m%)(150+m)=5670,150+m﹣150×m%﹣m%×m=162,m﹣m2=12,60m﹣3m2=192,m2﹣20m+64=0,m1=4,m2=16,∵要使销售量尽可能大,∴m=16.【考点】一元二次方程的应用;一元一次不等式的应用.13.已知关于x的方程x2﹣(2k+1)x+4(k﹣12)=0.(1)求证:无论k取何值,此方程总有实数根;(2)若等腰△ABC的一边长a=3,另两边b、c恰好是这个方程的两个根,求k值多少?【答案】(1)详见解析;(2)k=32或2.【解析】【分析】(1)计算判别式的值,利用完全平方公式得到△=(2k﹣3)2≥0,然后根据判别式的意义得到结论;(2)利用求根公式解方程得到x1=2k﹣1,x2=2,再根据等腰三角形的性质得到2k﹣1=2或2k﹣1=3,然后分别解关于k的方程即可.【详解】(1)∵△=(2k+1)2﹣4×4(k﹣12)=4k2﹣12k+9=(2k﹣3)2≥0,∴该方程总有实数根;(2)() 2k12k3 x=2±+﹣∴x1=2k﹣1,x2=2,∵a 、b 、c 为等腰三角形的三边,∴2k ﹣1=2或2k ﹣1=3,∴k =32或2. 【点睛】 本题考查了根的判别式以及等腰三角形的性质,分a 是等腰三角形的底和腰两种情况是解题的关键.14.自2018年1月10日零时起,高铁开通,某旅行社为吸引广大市民组团去仙都旅游,推出了如下收费标准:如果人数不超过10人,人均旅游费用为200元,如果人数超过10人,每增加1人,人均旅游费用降低5元,但人均旅游费用不得低于150元.()1如果某单位组织12人参加仙都旅游,那么需支付旅行社旅游费用________元; () 2现某单位组织员工去仙都旅游,共支付给该旅行社旅游费用2625元,那么该单位有多少名员工参加旅游?【答案】(1)2280;(2)15【解析】【分析】对于(1)根据人数超过10人,每增加1人,人均旅游费用降低5元,但人均旅游费用不得低于150来求解;对于(2)设这次旅游可以安排x 人参加,而由10×200=2000<2625,可以得出人数大于10人,则根据x 列出方程:(10+x )(200-5x )=2625,求出x ,然后根据人均旅游费用降低5元,但人均旅游费用不得低于150来求出x 的范围,最后得出x 的值.【详解】(1)2280()2因为1020020002625⨯=<.因此参加人比10人多,设在10人基础上再增加x 人,由题意得:()()1020052625x x +-=.解得 15x = 225x =,∵2005150x -≥,∴010x <≤,经检验 15x =是方程的解且符合题意,225x =(舍去).1010515x +=+=答:该单位共有15名员工参加旅游.【点睛】本题主要考查一元二次方程的应用和一元一次不等式的应用,根据题意作出判断,列出一元二次方程,求解方程,舍去不符合题意的解,从而得出结果.15.利民商店经销甲、乙两种商品.现有如下信息信息1:甲乙两种商品的进货单价和为11;信息2:甲商品的零售单价比其进货单价多2元,乙商品的零售单价比其进货单价的2倍少4元:信息3:按零售单价购买甲商品3件和乙商品2件共付37元.()1甲、乙两种商品的进货单价各是多少?()2据统计该商店平均每天卖出甲商品500件,经调查发现,甲商品零售单价每降0.1元,这样甲商品每天可多销售100件,为了使每天获取更大的利润,商店决定把甲种商品的零售单价下降a 元,在不考虑其他因素的条件下,当a 定为多少时,才能使商店每天销售甲种商品获取利润为1500元?【答案】(1)甲种商品的进货单价是5元/件,乙种商品的进货单价是6元/件(2)当a 定为0.5或1时,才能使商店每天销售甲种商品获取利润为1500元【解析】【分析】()1设甲种商品的进货单价是x 元/件,乙种商品的进货单价是y 元/件,根据给定的三个信息,可得出关于x ,y 的二元一次方程组,解之即可得出结论;()2当零售单价下降a 元/件时,每天可售出()5001000a +件,根据总利润=单件利润⨯销售数量,即可得出关于a 的一元二次方程,解之即可得出结论.【详解】()1设甲种商品的进货单价是x 元/件,乙种商品的进货单价是y 元/件,根据题意得:()()113x 222y 437x y +=⎧++-=⎨⎩, 解得:{56x y ==.答:甲种商品的进货单价是5元/件,乙种商品的进货单价是6元/件. ()2当零售单价下降a 元/件时,每天可售出()5001000a +件,根据题意得:()()250010001500a a -+=,整理得:22310a a -+=,解得:10.5a =,21a =.答:当a 定为0.5或1时,才能使商店每天销售甲种商品获取利润为1500元.【点睛】本题考查了二元一次方程组的应用以及一元二次方程的应用,解题的关键是:()1找准等量关系,正确列出二元一次方程组;()2找准等量关系,正确列出一元二次方程.。
【精选试卷】【解析版】徐州市中考数学解答题专项练习经典习题(专题培优)(1)
一、解答题1.先化简,再求值: 233212-),322x x x x x x (其中+-+÷=++2.计算:()()()21a b a 2b (2a b)-+--;()221m 4m 421m 1m m -+⎛⎫-÷ ⎪--⎝⎭. 3.直线AB 交⊙O 于C 、D 两点,CE 是⊙O 的直径,CF 平分∠ACE 交⊙O 于点F ,连接EF ,过点F 作FG∥ED 交AB 于点G .(1)求证:直线FG 是⊙O 的切线;(2)若FG =4,⊙O 的半径为5,求四边形FGDE 的面积.4.某市某中学积极响应创建全国文明城市活动,举办了以“校园文明”为主题的手抄报比赛.所有参赛作品均获奖,奖项分为一等奖、二等奖、三等奖和优秀奖,将获奖结果绘制成如右两幅统计图.请你根据图中所给信息解答意)(1)等奖所占的百分比是________;三等奖的人数是________人;(2)据统计,在获得一等奖的学生中,男生与女生的人数比为11:,学校计划选派1名男生和1名女生参加市手抄报比赛,请求出所选2位同学恰是1名男生和1名女生的概率; (3)学校计划从获得二等奖的同学中选取一部分人进行集训使其提升为一等奖,要使获得一等奖的人数不少于二等奖人数的2倍,那么至少选取多少人进行集训? 5.如图1,在直角坐标系中,一次函数的图象l 1与y 轴交于点A (0 , 2),与一次函数y =x ﹣3的图象l2交于点E (m ,﹣5).(1)m=__________;(2)直线l1与x轴交于点B,直线l2与y轴交于点C,求四边形OBEC的面积;(3)如图2,已知矩形MNPQ,PQ=2,NP=1,M(a,1),矩形MNPQ的边PQ在x 轴上平移,若矩形MNPQ与直线l1或l2有交点,直接写出a的取值范围_____________________________6.小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚:?1322x x+=--.(1)她把这个数“?”猜成5,请你帮小华解这个分式方程;(2)小华的妈妈说:“我看到标准答案是:方程的增根是2x=,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?7.已知:如图,点E,A,C在同一条直线上,AB∥CD,AB=CE,AC=CD.求证:BC=ED.8.如图1,已知二次函数y=ax2+32x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+32x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.9.如图,AB 为⊙O 的直径,C 为⊙O 上一点,∠ABC 的平分线交⊙O 于点D ,DE ⊥BC 于点E .(1)试判断DE 与⊙O 的位置关系,并说明理由;(2)过点D 作DF ⊥AB 于点F ,若BE=33,DF=3,求图中阴影部分的面积.10.解方程组:226,320.x y x xy y +=⎧⎨-+=⎩11.已知:如图,△ABC 为等腰直角三角形∠ACB =90°,过点C 作直线CM ,D 为直线CM 上一点,如果CE =CD 且EC ⊥CD . (1)求证:△ADC ≌△BEC ; (2)如果EC ⊥BE ,证明:AD ∥EC .12.(12分)“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场,顺风车行经营的A 型车2015年6月份销售总额为3.2万元,今年经过改造升级后A 型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A 型车数量相同,则今年6月份A 型车销售总额将比去年6月份销售总额增加25%.(1)求今年6月份A 型车每辆销售价多少元?(用列方程的方法解答)(2)该车行计划7月份新进一批A 型车和B 型车共50辆,且B 型车的进货数量不超过A 型车数量的两倍,应如何进货才能使这批车获利最多? A 、B 两种型号车的进货和销售价格如下表:A 型车B 型车进货价格(元/辆)11001400销售价格(元/辆)今年的销售价格240013.为调查广西北部湾四市市民上班时最常用的交通工具的情况,随机抽取了四市部分市民进行调查,要求被调查者从“A:自行车,B:电动车,C:公交车,D:家庭汽车,E:其他”五个选项中选择最常用的一项,将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题:(1)在这次调查中,一共调查了名市民,扇形统计图中,C组对应的扇形圆心角是 °;(2)请补全条形统计图;(3)若甲、乙两人上班时从A、B、C、D四种交通工具中随机选择一种,则甲、乙两人恰好选择同一种交通工具上班的概率是多少?请用画树状图或列表法求解.14.垃圾分类有利于对垃圾进行分流处理,能有效提高垃圾的资源价值和经济价值,力争物尽其用,为了了解同学们对垃圾分类相关知识的掌握情况,增强同学们的环保意识,某校对本校甲、乙两班各60名学生进行了垃极分类相关知识的测试,并分别随机抽取了15份成绩,整理分析过程如下,请补充完整(收集数据)甲班15名学生测试成绩统计如下:(满分100分)68,72,89,85,82,85,74,92,80,85,78,85,69,76,80乙班15名学生测试成绩统计如下:(满分100分)86,89,83,76,73,78,67,80,80,79,80,84,82,80,83(整理数据)按如下分数段整理、描述这两组样本数据组别班级65.6~70.570.5~75.575.5~80.580.5~85.585.5~90.590.5~95.5甲班224511乙班11a b20在表中,a=,b=.(分析数据)(1)两组样本数据的平均数、众数、中位数、方差如下表所示:班级平均数众数中位数方差甲班80x8047.6乙班8080y26.2在表中:x=,y=.(2)若规定得分在80分及以上(含80分)为合格,请估计乙班60名学生中垃圾分类相关知识合格的学生有人(3)你认为哪个班的学生掌握垃圾分类相关知识的情况较好,说明理由.15.某数学小组到人民英雄纪念碑站岗执勤,并在活动后实地测量了纪念碑的高度,方法如下:如图,首先在测量点A处用高为1.5m的测角仪AC测得人民英雄纪念碑MN项部M的仰角为37°,然后在测量点B处用同样的测角仪BD测得人民英雄纪念碑MN顶部M 的仰角为45°,最后测量出A,B两点间的距离为15m,并且N,B,A三点在一条直线上,连接CD并延长交MN于点E.请你利用他们的测量结果,计算人民英雄纪念碑MN 的高度.(参考数据:sin37°≈0.60,cos37°≈0.80,tan35°≈0.75)16.2018年“妇女节”前夕,扬州某花店用4000元购进若干束花,很快售完,接着又用4500元购进第二批花,已知第二批所购花的束数是第一批所购花束数的1.5倍,且每束花的进价比第一批的进价少5元,求第一批花每束的进价是多少?17.光明中学全体学生900人参加社会实践活动,从中随机抽取50人的社会实践活动成绩制成如图所示的条形统计图,结合图中所给信息解答下列问题:()1填写下表:中位数众数随机抽取的50人的社会实践活动成绩(单位:分)()2估计光明中学全体学生社会实践活动成绩的总分.18.在一个不透明的盒子中装有三张卡片,分别标有数字1,2,3,这些卡片除数字不同外其余均相同.小吉从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为奇数的概率.19.国家自2016年1月1日起实行全面放开二胎政策,某计生组织为了解该市家庭对待这项政策的态度,准备采用以下调查方式中的一种进行调查:A.从一个社区随机选取1 000户家庭调查;B.从一个城镇的不同住宅楼中随机选取1 000户家庭调查;C.从该市公安局户籍管理处随机抽取1 000户城乡家庭调查.(1)在上述调查方式中,你认为比较合理的一个是.(填“A”、“B”或“C”)(2)将一种比较合理的调查方式调查得到的结果分为四类:(A)已有两个孩子;(B)决定生二胎;(C)考虑之中;(D)决定不生二胎.将调查结果绘制成如下两幅不完整的统计图.请根据以上不完整的统计图提供的信息,解答下列问题:①补全条形统计图.②估计该市100万户家庭中决定不生二胎的家庭数.20.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)图1中a的值为;(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;(Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.21.某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?22.矩形ABCD的对角线相交于点O.DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若∠ACB=30°,菱形OCED的而积为83,求AC的长.23.现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?24.电器专营店的经营利润受地理位置、顾客消费能力等因素的影响,某品牌电脑专营店设有甲、乙两家分店,均销售A、B、C、D四种款式的电脑,每种款式电脑的利润如表1所示.现从甲、乙两店每月售出的电脑中各随机抽取所记录的50台电脑的款式,统计各种款式电脑的销售数量,如表2所示.表1:四种款式电脑的利润电脑款式A B C D利润(元/台)160200240320表2:甲、乙两店电脑销售情况电脑款式A B C D甲店销售数量(台)2015105乙店销售数量(台)88101418试运用统计与概率知识,解决下列问题:(1)从甲店每月售出的电脑中随机抽取一台,其利润不少于240元的概率为;(2)经市场调查发现,甲、乙两店每月电脑的总销量相当.现由于资金限制,需对其中一家分店作出暂停营业的决定,若从每台电脑的平均利润的角度考虑,你认为应对哪家分店作出暂停营业的决定?并说明理由. 25.解方程:x 21x 1x-=-. 26.如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,O 为AB 上一点,经过点A ,D 的⊙O 分别交AB ,AC 于点E ,F ,连接OF 交AD 于点G . (1)求证:BC 是⊙O 的切线;(2)设AB =x ,AF =y ,试用含x ,y 的代数式表示线段AD 的长; (3)若BE =8,sinB =513,求DG 的长,27.先化简(31a +-a +1)÷2441a a a -++,并从0,-1,2中选一个合适的数作为a 的值代入求值.28.某校在宣传“民族团结”活动中,采用四种宣传形式:A .器乐,B .舞蹈,C .朗诵,D .唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图.请结合图中所给信息,解答下列问题: (1)本次调查的学生共有 人; (2)补全条形统计图;(3)该校共有1200名学生,请估计选择“唱歌”的学生有多少人?(4)七年一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率. 29.计算:(1)2(m ﹣1)2﹣(2m+1)(m ﹣1) (2)(1﹣1x+2)÷x 2−1x+230.对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A,B,C,D四个小区进行检查,并且每个小区不重复检查.(1)甲组抽到A小区的概率是多少;(2)请用列表或画树状图的方法求甲组抽到A小区,同时乙组抽到C小区的概率.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、解答题1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、解答题 1.11;12x -- 【解析】 【分析】根据分式的运算顺序及运算法则化简所给的分式,化为最简后再代入求值即可.原式=()23x 3x 22-)x 2x 1++⨯+-( ,()()22433221x x x x x +--+=⨯+-, ()()21221x x x x -+=⨯+-,11x =-, 当x=3时,原式=113-=12- 【点睛】 本题主要考查了分式的化简求值,利用分式的运算顺序及运算法则把分式化为最简是解题的关键.2.(1)223a 5ab 3b -+-;(2)m m 2-. 【解析】【分析】 ()1根据多项式乘多项式、完全平方公式展开,然后再合并同类项即可;()2括号内先通分进行分式的减法运算,然后再进行分式的除法运算即可.【详解】()()()21a b a 2b (2a b)-+--=2222a 2ab ab 2b 4a 4ab b +---+-223a 5ab 3b =-+-; (2)221m 4m 41m 1m m -+⎛⎫-÷ ⎪--⎝⎭=()2m m 1m 2m 1(m 2)--⋅-- m m 2=-. 【点睛】 本题考查了整式的混合运算、分式的混合运算,熟练掌握它们的运算法则是解题的关键. 3.(1)证明见解析(2)48【分析】(1)利用角平分线的性质以及等腰三角形的性质得出∠OFC=∠FCG,继而得出∠GFC+∠OFC=90°,即可得出答案;(2)首先得出四边形FGDH是矩形,进而利用勾股定理得出HO的长,进而得出答案.【详解】(1)连接FO,∵ OF=OC,∴∠OFC=∠OCF.∵CF平分∠ACE,∴∠FCG=∠FCE.∴∠OFC=∠FCG.∵ CE是⊙O的直径,∴∠EDG=90°,又∵FG//ED,∴∠FGC=180°-∠EDG=90°,∴∠GFC+∠FCG=90°∴∠GFC+∠OFC=90°,即∠GFO=90°,∴OF⊥GF,又∵OF是⊙O半径,∴FG与⊙O相切.(2)延长FO,与ED交于点H,由(1)可知∠HFG=∠FGD=∠GDH=90°,∴四边形FGDH是矩形.∴FH⊥ED,∴HE=HD.又∵四边形FGDH是矩形,FG=HD,∴HE=FG=4.∴ED=8.∵在Rt△OHE中,∠OHE=90°,∴OH3.∴FH=FO+OH=5+3=8.S四边形FGDH=12(FG+ED)•FH=12×(4+8)×8=48.4.(1)8%,16;(2)P (1名男生和1名女生)23=;(3)至少需要选取6人进行集训. 【解析】【分析】 (1)一等奖所占的百分比=1减去其它奖项的百分比即可求解;根据优秀奖比例和人数可计算总数,进而计算出三等奖人数.(2)求出一等奖男女各有多少人,然后列表或画树形图即可解;(3)设需要选取x 人进行集训,依据使获得一等奖的人数不少于二等奖人数的2倍,列不等式解答即可.【详解】(1)一等奖所占的百分比=1-40%-30%-32=8%; 总人数=20÷40%=50(人), 三等奖的人数是=50×32%=16(人); (2)一等奖的人数=508%4⨯=,男女都有的人数14211⨯=+, 列表得:∴一等奖有两位男生两位女生,一共有12种等可能结果,其中恰是一男一女的结果数是8,∴P (1名男生和1名女生)82123==. (3)设需要选取x 人进行集训,根据题意得:()4210x x +≥-,解得 163x ≥, 因为x 是整数,所以x 取6.答:至少需要选取6人进行集训.【点睛】本题主要考查了条形统计图及扇形统计图以及求随机事件的概率,不等式的应用,解题的关键是能从条形统计图及扇形统计图得出相关数据.列表或画出树形图解答.5.(1)-2;(2)317;(3)−47≤a≤127或3≤a≤6. 【解析】【分析】(1)根据点E 在一次函数图象上,可求出m 的值;(2)利用待定系数法即可求出直线l 1的函数解析式,得出点B 、C 的坐标,利用S 四边形OBEC =S △OBE +S △OCE 即可得解;(3)分别求出矩形MNPQ 在平移过程中,当点Q 在l 1上、点N 在l 1上、点Q 在l 2上、点N 在l 2上时a 的值,即可得解.【详解】解:(1)∵点E (m ,−5)在一次函数y =x−3图象上,∴m−3=−5,∴m =−2;(2)设直线l 1的表达式为y =kx +b (k≠0),∵直线l 1过点A (0,2)和E (−2,−5),∴{b =2−2k +b =−5 ,解得{b =2k =72, ∴直线l 1的表达式为y =72x +2, 当y =72x +2=0时,x=−47 ∴B 点坐标为(−47,0),C 点坐标为(0,−3),∴S 四边形OBEC =S △OBE +S △OCE =12×47×5+12×2×3=317; (3)当矩形MNPQ 的顶点Q 在l 1上时,a 的值为−47;矩形MNPQ 向右平移,当点N 在l 1上时,72x +2=1,解得x =−27,即点N (−27,1), ∴a 的值为−27+2=127;矩形MNPQ 继续向右平移,当点Q 在l 2上时,a 的值为3,矩形MNPQ 继续向右平移,当点N 在l 2上时,x−3=1,解得x =4,即点N (4,1), ∴a 的值为4+2=6,综上所述,当−47≤a≤127或3≤a≤6时,矩形MNPQ 与直线l 1或l 2有交点. 【点睛】本题主要考查求一次函数解析式,两条直线相交、图形的平移等知识的综合应用,在解决第(3)小题时,只要求出各临界点时a 的值,就可以得到a 的取值范围.6.x=;(2)原分式方程中“?”代表的数是-1.(1)0【解析】【分析】(1)“?”当成5,解分式方程即可,(2)方程有增根是去分母时产生的,故先去分母,再将x=2代入即可解答.【详解】x-得(1)方程两边同时乘以()2()+-=-5321xx=解得0x=是原分式方程的解.经检验,0(2)设?为m,x-得方程两边同时乘以()2()321+-=-m xx=是原分式方程的增根,由于2x=代入上面的等式得所以把2()m+-=-3221m=-1所以,原分式方程中“?”代表的数是-1.【点睛】本题考查了分式方程解法和增根的定义及应用.增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.7.见解析【解析】【分析】首先由AB∥CD,根据平行线的性质可得∠BAC=∠ECD,再由条件AB=CE,AC=CD可证出△BAC和△ECD全等,再根据全等三角形对应边相等证出CB=ED.【详解】证明:∵AB∥CD,∴∠BAC=∠ECD,∵在△BAC和△ECD中,AB=EC,∠BAC=∠ECD ,AC=CD,∴△BAC≌△ECD(SAS).∴CB=ED.【点睛】本题考查了平行线的性质,全等三角形的判定和性质.8.(1)y=﹣14x2+32x+4;(2)△ABC是直角三角形.理由见解析;(3)点N的坐标分别为(﹣8,0)、(8﹣45,0)、(3,0)、(8+45,0).(4)当△AMN面积最大时,N点坐标为(3,0).【解析】【分析】(1)由点A、C的坐标利用待定系数法即可求出二次函数的解析式;(2)令二次函数解析式中y=0,求出点B的坐标,再由两点间的距离公式求出线段AB、AC、BC的长度,由三者满足AB2+AC2=BC2即可得出△ABC为直角三角形;(3)分别以A、C两点为圆心,AC长为半径画弧,与x轴交于三个点,由AC的垂直平分线与x轴交于一点,即可求得点N的坐标;(4)设点N的坐标为(n,0)(-2<n<8),通过分割图形法求面积,再根据相似三角形面积间的关系以及三角形的面积公式即可得出S△AMN关于n的二次函数关系式,根据二次函数的性质即可解决最值问题.【详解】(1)∵二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),∴,解得.∴抛物线表达式:y=﹣x2+x+4;(2)△ABC是直角三角形.令y=0,则﹣x2+x+4=0,解得x1=8,x2=﹣2,∴点B的坐标为(﹣2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形.(3)∵A(0,4),C(8,0),∴AC==4,①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(﹣8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8﹣4,0)或(8+4,0)③作AC的垂直平分线,交x轴于N,此时N的坐标为(3,0),综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).(4)如图,设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,∴MD∥OA,∴△BMD∽△BAO,∴=,∵MN∥AC∴=,∴=,∵OA=4,BC=10,BN=n+2∴MD=(n+2),∵S△AMN=S△ABN﹣S△BMN=BN•OA﹣BN•MD=(n+2)×4﹣×(n+2)2=﹣(n﹣3)2+5,当n=3时,△AMN面积最大是5,∴N点坐标为(3,0).∴当△AMN面积最大时,N点坐标为(3,0).【点睛】本题考查了二次函数的综合问题,熟练掌握二次函数的知识点是本题解题的关键.9.(1)DE与⊙O相切,理由见解析;(2)阴影部分的面积为2π33.【解析】【分析】(1)直接利用角平分线的定义结合平行线的判定与性质得出∠DEB=∠EDO=90°,进而得出答案;(2)利用勾股定理结合扇形面积求法分别分析得出答案.【详解】(1)DE 与⊙O 相切,理由:连接DO ,∵DO=BO,∴∠ODB=∠OBD,∵∠ABC 的平分线交⊙O 于点D ,∴∠EBD=∠DBO,∴∠EBD=∠BDO,∴DO∥BE,∵DE⊥BC,∴∠DEB=∠EDO=90°,∴DE 与⊙O 相切;(2)∵∠ABC 的平分线交⊙O 于点D ,DE⊥BE,DF⊥AB,∴DE=DF=3, 3 223+33()=6, ∵sin∠DBF=31=62, ∴∠DBA=30°,∴∠DOF=60°, ∴sin60°=332DF DO DO ==, 3则3 260(23)1333322ππ⨯-= 【点睛】此题主要考查了切线的判定方法以及扇形面积求法等知识,正确得出DO 的长是解题关键. 10.114,2;x y =⎧⎨=⎩223,3.x y =⎧⎨=⎩ 【解析】【分析】先对x 2-3xy+2y 2=0分解因式转化为两个一元一次方程,然后联立①,组成两个二元一次方程组,解之即可.【详解】将方程22320x xy y -+= 的左边因式分解,得20x y -=或0x y -=.原方程组可以化为6,20x y x y +=⎧⎨-=⎩或6,0.x y x y +=⎧⎨-=⎩解这两个方程组得114,2;x y =⎧⎨=⎩ 223,3.x y =⎧⎨=⎩ 所以原方程组的解是114,2;x y =⎧⎨=⎩ 223,3.x y =⎧⎨=⎩ 【点睛】本题考查了高次方程组,将高次方程化为一次方程是解题的关键.11.(1)详见解析;(2)详见解析.【解析】【分析】(1)根据两锐角互余的关系可得∠ACD =∠BCE ,利用SAS 即可证明△ADC ≌△BEC ;(2)由△ADC ≌△BEC 可得∠ADC =∠E =90°,根据平行线判定定理即可证明AD//EC.【详解】(1)∵EC ⊥DM ,∴∠ECD =90°,∴∠ACB =∠DCE=90°,∴∠ACD+∠ACE=90°,∠BCE+∠ACE=90°,∴∠ACD =∠BCE ,∵CD =CE ,CA =CB ,∴△ADC ≌△BEC (SAS ).(2)由(1)得△ADC ≌△BEC ,∵EC ⊥BE ,∴∠ADC =∠E =90°,∴AD ⊥DM ,∵EC ⊥DM ,∴AD∥EC.【点睛】本题考查全等三角形的判定和性质,等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.12.(1)2000;(2)A型车17辆,B型车33辆【解析】试题分析:(1)设去年A型车每辆x元,那么今年每辆(x+400)元,列出方程即可解决问题.(2)设今年7月份进A型车m辆,则B型车(50﹣m)辆,获得的总利润为y元,先求出m的范围,构建一次函数,利用函数性质解决问题.试题解析:(1)设去年A型车每辆x元,那么今年每辆(x+400)元,根据题意得,解之得x=1600,经检验,x=1600是方程的解.答:今年A型车每辆2000元.(2)设今年7月份进A型车m辆,则B型车(50﹣m)辆,获得的总利润为y元,根据题意得50﹣m≤2m解之得m≥,∵y=(2000﹣1100)m+(2400﹣1400)(50﹣m)=﹣100m+50000,∴y随m 的增大而减小,∴当m=17时,可以获得最大利润.答:进货方案是A型车17辆,B型车33辆.考点:(1)一次函数的应用;(2)分式方程13.(1)2000,108;(2)作图见解析;(3).【解析】试题分析:(1)根据B组的人数以及百分比,即可得到被调查的人数,进而得出C组的人数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;(2)根据C组的人数,补全条形统计图;(3)根据甲、乙两人上班时从A、B、C、D四种交通工具中随机选择一种画树状图或列表,即可运用概率公式得到甲、乙两人恰好选择同一种交通工具上班的概率.试题解析:(1)被调查的人数为:800÷40%=2000(人),C组的人数为:2000﹣100﹣800﹣200﹣300=600(人),∴C组对应的扇形圆心角度数为:×360°=108°,故答案为:2000,108;(2)条形统计图如下:(3)画树状图得:∵共有16种等可能的结果,甲、乙两人选择同一种交通工具的有4种情况,∴甲、乙两人选择同一种交通工具上班的概率为:=.考点:列表法与树状图法;扇形统计图;条形统计图.14.【整理数据】:7,4;【分析数据】(1)85,80;(2)40;(3)乙班的学生掌握垃圾分类相关知识的整体水平较好,见解析.【解析】【分析】由收集的数据即可得;(1)根据众数和中位数的定义求解可得;(2)用总人数乘以乙班样本中合格人数所占比例可得;(3)甲、乙两班的方差判定即可.【详解】解:乙班75.5~80.5分数段的学生数为7,80.5~85.5分数段的学生数为4,故a=7,b=4,故答案为:7,4;(1)68,72,89,85,82,85,74,92,80,85,78,85,69,76,80,众数是x=85,67,73,76,78,79,80,80,80,80,82,83,83,84,86,89,中位数是y=80,故答案为:85,80;(2)60×1015=40(人),即合格的学生有40人,故答案为:40;(3)乙班的学生掌握垃圾分类相关知识的整体水平较好,∵甲班的方差>乙班的方差,∴乙班的学生掌握垃圾分类相关知识的整体水平较好.【点睛】本题考查了频数分布直方图,众数,中位数,正确的理解题意是解题的关键.15.人民英雄纪念碑MN的高度约为36.5米.【解析】【分析】在Rt△MED中,由∠MDE=45°知ME=DE,据此设ME=DE=x,则EC=x+15,在Rt△MEC 中,由ME=EC•tan∠MCE知x≈0.7(x+15),解之求得x的值,根据MN=ME+EN可得答案.【详解】由题意得四边形ABDC、ACEN是矩形,∴EN=AC=1.5,AB=CD=15,在Rt△MED中,∠MED=90°,∠MDE=45°,∴ME=DE,设ME=DE=x,则EC=x+15,在Rt△MEC中,∠MEC=90°,∠MCE=35°,∵ME=EC•tan∠MCE,∴x≈0.7(x+15),解得:x≈35,∴ME≈35,∴MN=ME+EN≈36.5,答:人民英雄纪念碑MN的高度约为36.5米.【点睛】本题考查了解直角三角形中的仰俯角问题,解题的关键是从实际问题中整理出直角三角形并利用解直角三角形的知识解题.16.20元/束.【解析】【分析】设第一批花每束的进价是x元/束,则第一批进的数量是:4000x,再根据等量关系:第二批进的数量=第一批进的数量×1.5可得方程.【详解】设第一批花每束的进价是x元/束,依题意得:4000x×1.5=45005x,解得x=20.经检验x =20是原方程的解,且符合题意.答:第一批花每束的进价是20元/束.【点睛】本题考查了分式方程的应用.关键是根据等量关系:第二批进的数量=第一批进的数量×1.5列方程.17.()14,4;()2 3150分.【解析】【分析】()1根据抽取的人数可以确定中位数的位置,从而确定中位数,小长方形最高的小组的分数为该组数据的众数;()2算出抽取的50名学生的平均分乘以全校的总人数即可得到光明中学全体学生社会实践活动成绩的总分.【详解】解:()1由题意,将50人的成绩从小到大排序后,第25和第26个的平均数就是中位数,∵2+9+13=24∴第25和第26个成绩都是4,故本组数据的中位数为4∵成绩在4分的同学人数最多∴本组数据的众数是4故填表如下:2随机抽取的50人的社会实践活动成绩的平均数是:1229313414512x 3.5(50⨯+⨯+⨯+⨯+⨯==分). 估计光明中学全体学生社会实践活动成绩的总分是:3.59003150(⨯=分). 【点睛】考查了条形统计图的知识,题目相对比较简单,解题的关键是正确的识图,并从图形中整理出有关的解题的信息.18.49. 【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次抽取的卡片上数字之和是奇数的情况,再利用概率公式即可求得答案即可.【详解】解:画树状图得:∵共有9种等可能的结果,两次抽取的卡片上数字之和是奇数的有4种情况,∴两次两次抽取的卡片上数字之和是奇数的概率为49.【点睛】本题考查列表法与树状图法.19.(1)C;(2)①作图见解析;②35万户.【解析】【分析】(1)C项涉及的范围更广;(2)①求出B,D的户数补全统计图即可;①100万乘以不生二胎的百分比即可.【详解】解:(1)A、B两种调查方式具有片面性,故C比较合理;故答案为:C;(2)①B:100030%300⨯=户1000-100-300-250=350户补全统计图如图所示:(3)因为350100351000⨯=(万户),所以该市100万户家庭中决定不生二胎的家庭数约为35万户.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.。
2023年中考数学一轮专题练习 代数式与整式(含解析)
2023年中考数学一轮专题练习 ——代数式与整式1一、单选题(本大题共12小题)1. (湖南省永州市2022年)下列各式正确的是( )A =B .020=C .321a a -=D .()224--=2. (湖南省湘西州2022年)下列运算正确的是( )A .3a ﹣2a =aB .(a 3)2=a 5C .2 2D .(a ﹣1)2=a 2﹣1 3. (湖南省益阳市2022年)下列各式中,运算结果等于a 2的是( )A .a 3﹣aB .a +aC .a •aD .a 6÷a 34. (2022年西藏)按一定规律排列的一组数据:12,35,12,717-,926,1137-,….则按此规律排列的第10个数是( ) A .19101-B .21101C .1982-D .21825. (2022年西藏)下列计算正确的是( ) A .2ab ﹣ab =ab B .2ab +ab =2a 2b 2 C .4a 3b 2﹣2a =2a 2b D .﹣2ab 2﹣a 2b =﹣3a 2b 26. (江西省2022年)下列计算正确的是( )A .236m m m ⋅=B .()m n m n --=-+C .2()m m n m n +=+D .222()m n m n +=+7. (辽宁省盘锦市2022年)下列运算正确的是( ) A .236a a a ⋅=B .22(2)4x x -=C .22m mnn-= D .2ab ab b -=8. (湖南省长沙市2022年)下列计算正确的是( ) A .752a a a ÷=B .541a a -=C .236326a a a ⋅=D .222()a b a b -=-9. (辽宁省抚顺本溪辽阳市2022年)下列运算正确的是( ) A .()426a a =B .246a a a ⋅=C .246+=a a aD .246a a a ÷=10. (湖南省株洲市2022年)下列运算正确的是( ) A .235a a a ⋅= B .()235a a =C .22()ab ab =D .632(0)a a a a=≠11. (湖南省长沙市2022年)为落实“双减”政策,某校利用课后服务开展了主题为“书香满校园”的读书活动.现需购买甲,乙两种读本共100本供学生阅读,其中甲种读本的单价为10元/本,乙种读本的单价为8元/本,设购买甲种读本x 本,则购买乙种读本的费用为( )A .8x 元B .10(100)x -元C .8(100)x -元D .(1008)x -元12. (江西省2022年)将字母“C ”,“H ”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H ”的个数是( )A .9B .10C .11D .12二、填空题(本大题共6小题)13. (湖南省永州市2022年)若单项式3m x y 的与62x y -是同类项,则m =______. 14. (江苏省常州市2022年)计算:42÷=m m .15. (江苏省扬州市2022年)掌握地震知识,提升防震意识.根据里氏震级的定义,地震所释放出的能量E 与震级n 的关系为 1.510n E k =⨯(其中k 为大于0的常数),那么震级为8级的地震所释放的能量是震级为6级的地震所释放能量的 倍. 16. (黑龙江省大庆市2022年)观察下列“蜂窝图”,按照这样的规律,则第16个图案中的“”的个数是 .17. (湖北省天门市八校联考2021-2022学年九年级上学期)如图,四边形ABCD 是正方形,曲线11112DA B C D A 是由一段段90度的弧组成的.其中:1DA 的圆心为点A ,半径为AD ;11A B 的圆心为点B ,半径为1BA ;11B C 的圆心为点C ,半径为1CB ; 11C D 的圆心为点D ,半径为1DC ;…1111111,,,,DA A B B C C D ⋅⋅⋅的圆心依次按点A ,B ,C ,D 循环.若正方形ABCD 的边长为1,则20202020A B 的长是 .18. (湖南省长沙市2022年)当今大数据时代,“二维码”具有存储量大.保密性强、追踪性高等特点,它已被广泛应用于我们的日常生活中,尤其在全球“新冠”疫情防控期间,区区“二维码”已经展现出无穷威力.看似“码码相同”,实则“码码不同”.通常,一个“二维码”由1000个大大小小的黑白小方格组成,其中小方格专门用做纠错码和其他用途的编码,这相当于1000个方格只有200个方格作为数据码.根据相关数学知识,这200个方格可以生成2002个不同的数据二维码,现有四名网友对2002的理解如下: YYDS (永远的神):2002就是200个2相乘,它是一个非常非常大的数; DDDD (懂的都懂):2002等于2200; JXND (觉醒年代):2002的个位数字是6;QGYW (强国有我):我知道10321024,101000==,所以我估计2002比6010大. 其中对2002的理解错误的网友是 (填写网名字母代号). 三、解答题(本大题共6小题)19. (吉林省长春市2022年)先化简,再求值:()()()221a a a a +-++,其中4a =. 20. (湖南省岳阳市2022年)已知2210a a -+=,求代数式()()()4111a a a a -++-+的值. 21. (湖南省衡阳市2022年)先化简,再求值:()()()2a b a b b a b +-++,其中1a =,2b =-.22. (四川省南充市2022年)先化简,再求值:(2)(32)2(2)x x x x +--+,其中1x =. 23. (湖北省黄冈市、孝感市、咸宁市2022年)先化简,再求值:4xy -2xy -(-3xy ),其中x =2,y =-1.24. (吉林省2022年)下面是一道例题及其解答过程的一部分,其中A 是关于m 的多项式.请写出多项式A ,并将该例题的解答过程补充完整.参考答案1. 【答案】D【分析】利用二次根式性质化简、零指数幂、合并同类项、有理数减法运算即可判断。
专题01 应用大全压轴真题训练(解析版)-2023年中考数学解答题压轴真题汇编
挑战2023年中考数学解答题压轴真题汇编专题01应用大全压轴真题训练一.一元一次方程的应用1.(2022•南充)南充市被誉为中国绸都,本地某电商销售真丝衬衣和真丝围巾两种产品,它们的进价和售价如下表.用15000元可购进真丝衬衣50件和真丝围巾25件.(利润=售价﹣进价)种类真丝衬衣真丝围巾进价(元/件)a80售价(元/件)300100(1)求真丝衬衣进价a的值.(2)若该电商计划购进真丝衬衣和真丝围巾两种商品共300件,据市场销售分析,真丝围巾进货件数不低于真丝衬衣件数的2倍.如何进货才能使本次销售获得的利润最大?最大利润是多少元?(3)按(2)中最大利润方案进货与销售,在实际销售过程中,当真丝围巾销量达到一半时,为促销并保证销售利润不低于原来最大利润的90%,衬衣售价不变,余下围巾降价销售,每件最多降价多少元?【解答】解:(1)依题意得:50a+80×25=15000,解得:a=260.答:a的值为260.(2)设购进真丝衬衣x件,则购进真丝围巾(300﹣x)件,依题意得:300﹣x≥2x,解得:x≤100.设两种商品全部售出后获得的总利润为w元,则w=(300﹣260)x+(100﹣80)(300﹣x)=20x+6000.∵20>0,∴w随x的增大而增大,∴当x=100时,w取得最大值,最大值=20×100+6000=8000,此时300﹣x =300﹣100=200.答:当购进真丝衬衣100件,真丝围巾200件时,才能使本次销售获得的利润最大,最大利润是8000元.(3)设每件真丝围巾降价y元,依题意得:(300﹣260)×100+(100﹣80)××200+(100﹣y﹣80)××200≥8000×90%,解得:y≤8.答:每件真丝围巾最多降价8元.二.二元一次方程组的应用(共1小题)2.(2022•广元)为推进“书香社区”建设,某社区计划购进一批图书.已知购买2本科技类图书和3本文学类图书需154元,购买4本科技类图书和5本文学类图书需282元.(1)科技类图书与文学类图书的单价分别为多少元?(2)为了支持“书香社区”建设,助推科技发展,商家对科技类图书推出销售优惠活动(文学类图书售价不变):购买科技类图书超过40本但不超过50本时,每增加1本,单价降低1元;超过50本时,均按购买50本时的单价销售.社区计划购进两种图书共计100本,其中科技类图书不少于30本,但不超过60本.按此优惠,社区至少要准备多少购书款?【解答】解:(1)设科技类图书的单价为x元,文学类图书的单价为y元,依题意得:,解得:.答:科技类图书的单价为38元,文学类图书的单价为26元.(2)设科技类图书的购买数量为m本,购买这两种图书的总金额为w元,则文学类图书的购买数量为(100﹣m)本.①当30≤m≤40时,w=38m+26(100﹣m)=12m+2600,∵12>0,∴w随m的增大而增大,∴2960≤w≤3080;②当40<m≤50时,w=[38﹣(m﹣40)]m+26(100﹣m)=﹣(m﹣26)2+3276,∵﹣1<0,∴当m>26时,w随m的增大而减小,∴2700≤w<3080;③当50<m≤60时,w=[38﹣(50﹣40)]m+26(100﹣m)=2m+2600,∵2>0,∴w随m的增大而增大,∴2700<w≤2720.综上,当30≤m≤60时,w的最小值为2700.答:社区至少要准备2700元购书款.三.分式方程的应用(共1小题)3.(2022•锦州)2022年3月23日“天宫课堂”第二课在中国空间站开讲了,精彩的直播激发了学生探索科学奥秘的兴趣.某中学为满足学生的需求,充实物理兴趣小组的实验项目,决定购入A、B两款物理实验套装,其中A款套装单价是B款套装单价的1.2倍,用9900元购买的A款套装数量比用7500元购买的B款套装数量多5套.求A、B两款套装的单价分别是多少元.【解答】解:设B款套装的单价是x元,则A款套装的单价是1.2x元,依题意得:﹣=5,解得:x=150,经检验,x=150是原方程的解,且符合题意,∴1.2x=1.2×150=180.答:A款套装的单价是180元,B款套装的单价是150元.4.(2022•益阳)在某市组织的农机推广活动中,甲、乙两人分别操控A、B两种型号的收割机参加水稻收割比赛.已知乙每小时收割的亩数比甲少40%,两人各收割6亩水稻,乙则比甲多用0.4小时完成任务;甲、乙在收割过程中对应收稻谷有一定的遗落或破损,损失率分别为3%,2%.(1)甲、乙两人操控A、B型号收割机每小时各能收割多少亩水稻?(2)某水稻种植大户有与比赛中规格相同的100亩待收水稻,邀请甲、乙两人操控原收割机一同前去完成收割任务,要求平均损失率不超过2.4%,则最多安排甲收割多少小时?【解答】解:(1)设甲操控A型号收割机每小时收割x亩水稻,则乙操控B 型号收割机每小时收割(1﹣40%)x亩水稻,依题意得:﹣=0.4,解得:x=10,经检验,x=10是原方程的解,且符合题意,∴(1﹣40%)x=(1﹣40%)×10=6.答:甲操控A型号收割机每小时收割10亩水稻,乙操控B型号收割机每小时收割6亩水稻.(2)设安排甲收割y小时,则安排乙收割小时,依题意得:3%×10y+2%×6×≤2.4%×100,解得:y≤4.答:最多安排甲收割4小时.5.(2022•河南)近日,教育部印发《义务教育课程方案》和课程标准(2022年版),将劳动从原来的综合实践活动课程中独立出来.某中学为了让学生体验农耕劳动,开辟了一处耕种园,需要采购一批菜苗开展种植活动.据了解,市场上每捆A种菜苗的价格是菜苗基地的倍,用300元在市场上购买的A种菜苗比在菜苗基地购买的少3捆.(1)求菜苗基地每捆A种菜苗的价格.(2)菜苗基地每捆B种菜苗的价格是30元.学校决定在菜苗基地购买A,B 两种菜苗共100捆,且A种菜苗的捆数不超过B种菜苗的捆数.菜苗基地为支持该校活动,对A,B两种菜苗均提供九折优惠.求本次购买最少花费多少钱.【解答】解:(1)设菜苗基地每捆A种菜苗的价格是x元,根据题意得:=+3,解得x=20,经检验,x=20是原方程的解,答:菜苗基地每捆A种菜苗的价格是20元;(2)设购买A种菜苗m捆,则购买B种菜苗(100﹣m)捆,∵A种菜苗的捆数不超过B种菜苗的捆数,∴m≤100﹣m,解得m≤50,设本次购买花费w元,∴w=20×0.9m+30×0.9(100﹣m)=﹣9m+2700,∵﹣9<0,∴w随m的增大而减小,∴m=50时,w取最小值,最小值为﹣9×50+2700=2250(元),答:本次购买最少花费2250元.四.一次函数的应用(共1小题)6.(2022•湖州)某校组织学生从学校出发,乘坐大巴前往基地进行研学活动.大巴出发1小时后,学校因事派人乘坐轿车沿相同路线追赶.已知大巴行驶的速度是40千米/小时,轿车行驶的速度是60千米/小时.(1)求轿车出发后多少小时追上大巴?此时,两车与学校相距多少千米?(2)如图,图中OB,AB分别表示大巴、轿车离开学校的路程s(千米)与大巴行驶的时间t(小时)的函数关系的图象.试求点B的坐标和AB所在直线的解析式;(3)假设大巴出发a小时后轿车出发追赶,轿车行驶了1.5小时追上大巴,求a的值.【解答】解:(1)设轿车出发后x小时追上大巴,依题意得:40(x+1)=60x,解得x=2.∴轿车出发后2小时追上大巴,此时,两车与学校相距60×2=120(千米),答:轿车出发后2小时追上大巴,此时,两车与学校相距120千米;(2)∵轿车出发后2小时追上大巴,此时,两车与学校相距120千米,∴大巴行驶了3小时,∴B(3,120),由图象得A(1,0),设AB所在直线的解析式为s=kt+b,∴,解得,∴AB所在直线的解析式为s=60t﹣60;(3)依题意得:40(a+1.5)=60×1.5,解得a=.∴a的值为.7.(2022•内蒙古)某商店决定购进A、B两种北京冬奥会纪念品.若购进A种纪念品10件,B种纪念品5件,需要1000元;若购进A种纪念品5件,B 种纪念品3件,需要550元.(1)求购进A、B两种纪念品的单价;(2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑市场需求,要求购进A种纪念品的数量不少于B种纪念品数量的6倍,且购进B种纪念品数量不少于20件,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?求出最大利润.【解答】解:(1)设该商店购进A种纪念品每件需a元,购进B种纪念品每件需b元,由题意,得,解得,∴该商店购进A种纪念品每件需50元,购进B种纪念品每件需100元;(2)设该商店购进A种纪念品x个,购进B种纪念品y个,根据题意,得50x+100y=10000,由50x+100y=10000得x=200﹣2y,把x=200﹣2y代入x≥6y,解得y≤25,∵y≥20,∴20≤y≤25且为正整数,∴y可取得的正整数值是20,21,22,23,24,25,与y相对应的x可取得的正整数值是160,158,156,154,152,150,∴共有6种进货方案;(3)设总利润为W元,则W=20x+30y=﹣10y+4000,∵﹣10<0,∴W随y的增大而减小,∴当y=20时,W有最大值,W最大=﹣10×20+4000=3800(元),∴当购进A种纪念品160件,B种纪念品20件时,可获得最大利润,最大利润是3800元.8.(2022•东营)为满足顾客的购物需求,某水果店计划购进甲、乙两种水果进行销售.经了解,甲水果的进价比乙水果的进价低20%,水果店用1000元购进甲种水果比用1200元购进乙种水果的重量多10千克,已知甲,乙两种水果的售价分别为6元/千克和8元/千克.(1)求甲、乙两种水果的进价分别是多少?(2)若水果店购进这两种水果共150千克,其中甲种水果的重量不低于乙种水果重量的2倍,则水果店应如何进货才能获得最大利润,最大利润是多少?【解答】解:(1)设乙种水果的进价为x元,则甲种水果的进价为(1﹣20%)x元,由题意得:,解得:x=5,经检验:x=5是原方程的解,且符合题意,则5×(1﹣20%)=4,答:甲种水果的进价为4元,则乙种水果的进价为5元;(2)设购进甲种水果m千克,则乙种水果(150﹣m)千克,利润为w元,由题意得:w=(6﹣4)m+(8﹣5)(150﹣m)=﹣m+450,∵甲种水果的重量不低于乙种水果重量的2倍,∴m≥2(150﹣m),解得:m≥100,∵﹣1<0,则w随m的增大而减小,∴当m=100时,w最大,最大值=﹣100+450=350,则150﹣m=50,答:购进甲种水果100千克,乙种水果50千克才能获得最大利润,最大利润为350元.9.(2022•襄阳)为了振兴乡村经济,我市某镇鼓励广大农户种植山药,并精加工成甲、乙两种产品、某经销商购进甲、乙两种产品,甲种产品进价为8元/kg;乙种产品的进货总金额y(单位:元)与乙种产品进货量x(单位:kg)之间的关系如图所示.已知甲、乙两种产品的售价分别为12元/kg和18元/kg.(1)求出0≤x≤2000和x>2000时,y与x之间的函数关系式;(2)若该经销商购进甲、乙两种产品共6000kg,并能全部售出.其中乙种产品的进货量不低于1600kg,且不高于4000kg,设销售完甲、乙两种产品所获总利润为w元(利润=销售额﹣成本),请求出w(单位:元)与乙种产品进货量x(单位:kg)之间的函数关系式,并为该经销商设计出获得最大利润的进货方案;(3)为回馈广大客户,该经销商决定对两种产品进行让利销售.在(2)中获得最大利润的进货方案下,甲、乙两种产品售价分别降低a元/kg和2a元/kg,全部售出后所获总利润不低于15000元,求a的最大值.【解答】解:(1)当0≤x≤2000时,设y=k′x,根据题意可得,2000k′=30000,解得k′=15,∴y=15x;当x>2000时,设y=kx+b,根据题意可得,,解得,∴y=13x+4000.∴y=.(2)根据题意可知,购进甲种产品(6000﹣x)千克,∵1600≤x≤4000,当1600≤x≤2000时,w=(12﹣8)×(6000﹣x)+(18﹣15)•x=﹣x+24000,∵﹣1<0,∴当x=1600时,w的最大值为﹣1×1600+24000=22400(元);当2000<x≤4000时,w=(12﹣8)×(6000﹣x)+18x﹣(13x+4000)=x+20000,∵1>0,∴当x=4000时,w的最大值为4000+20000=24000(元),综上,w=;当购进甲产品2000千克,乙产品4000千克时,利润最大为24000元.(3)根据题意可知,降价后,w=(12﹣8﹣a)×(6000﹣x)+(18﹣2a)x ﹣(13x+4000)=(1﹣a)x+20000﹣6000a,当x=4000时,w取得最大值,∴(1﹣a)×4000+20000﹣6000a≥15000,解得a≤0.9.∴a的最大值为0.9.五.二次函数的应用(共2小题)10.(2022•淮安)端午节前夕,某超市从厂家分两次购进A、B两种品牌的粽子,两次进货时,两种品牌粽子的进价不变.第一次购进A品牌粽子100袋和B品牌粽子150袋,总费用为7000元;第二次购进A品牌粽子180袋和B 品牌粽子120袋,总费用为8100元.(1)求A、B两种品牌粽子每袋的进价各是多少元;(2)当B品牌粽子销售价为每袋54元时,每天可售出20袋,为了促销,该超市决定对B品牌粽子进行降价销售.经市场调研,若每袋的销售价每降低1元,则每天的销售量将增加5袋.当B品牌粽子每袋的销售价降低多少元时,每天售出B品牌粽子所获得的利润最大?最大利润是多少元?【解答】解:(1)A种品牌粽子每袋的进价是x元,B种品牌粽子每袋的进价是y元,根据题意得,,解得,答:A种品牌粽子每袋的进价是25元,B种品牌粽子每袋的进价是30元;(2)设B品牌粽子每袋的销售价降低a元时,每天售出B品牌粽子所获得的利润最大,利润为w元,根据题意得,w=(54﹣a﹣30)(20+5a)=﹣5a2+100a+480=﹣5(a﹣10)2+980,∵﹣5<0,∴当B品牌粽子每袋的销售价降低10元时,每天售出B品牌粽子所获得的利润最大,最大利润是980元.11.(2022•湖北)为增强民众生活幸福感,市政府大力推进老旧小区改造工程.和谐小区新建一小型活动广场,计划在360m2的绿化带上种植甲乙两种花卉.市场调查发现:甲种花卉种植费用y(元/m2)与种植面积x(m2)之间的函数关系如图所示,乙种花卉种植费用为15元/m2.(1)当x≤100时,求y与x的函数关系式,并写出x的取值范围;(2)当甲种花卉种植面积不少于30m2,且乙种花卉种植面积不低于甲种花卉种植面积的3倍时.①如何分配甲乙两种花卉的种植面积才能使种植的总费用w(元)最少?最少是多少元?②受投入资金的限制,种植总费用不超过6000元,请直接写出甲种花卉种植面积x的取值范围.【解答】解:(1)当0<x≤40时,y=30;当40<x≤100时,设函数关系式为y=kx+b,∵线段过点(40,30),(100,15),∴,∴,∴y=﹣x+40,即y=;(2)∵甲种花卉种植面积不少于30m2,∴x≥30,∵乙种花卉种植面积不低于甲种花卉种植面积的3倍,∴360﹣x≥3x,∴x≤90,即30≤x≤90;①当30≤x≤40时,由(1)知,y=30,∵乙种花卉种植费用为15元/m2.∴w=yx+15(360﹣x)=30x+15(360﹣x)=15x+5400,当x=30时,w min=5850;当40<x≤90时,由(1)知,y=﹣x+40,∴w=yx+15(360﹣x)=﹣(x﹣50)2+6025,∴当x=90时,w min=﹣(90﹣50)2+6025=5625,∵5850>5625,∴种植甲种花卉90m2,乙种花卉270m2时,种植的总费用最少,最少为5625元;②当30≤x≤40时,由①知,w=15x+5400,∵种植总费用不超过6000元,∴15x+5400≤6000,∴x≤40,即满足条件的x的范围为30≤x≤40,当40<x≤90时,由①知,w=﹣(x﹣50)2+6025,∵种植总费用不超过6000元,∴﹣(x﹣50)2+6025≤6000,∴x≤40(不符合题意,舍去)或x≥60,即满足条件的x的范围为60≤x≤90,综上,满足条件的x的范围为30≤x≤40或60≤x≤90.12.(2022•攀枝花)第24届冬奥会(也称2022年北京冬奥会)于2022年2月4日至2月20日在中国北京举行,北京成为了历史上第一座既举办过夏奥会又举办过冬奥会的城市.冬奥会上跳台滑雪是一项极为壮观的运动.运动员经过助滑、起跳、空中飞行和着陆,整个动作连贯一致,一气呵成,如图,某运动员穿着滑雪板,经过助滑后,从倾斜角θ=37°的跳台A点以速度v0沿水平方向跳出,若忽略空气阻力影响,水平方向速度将保持不变.同时,由于受重力作用,运动员沿竖直方向会加速下落,因此,运动员在空中飞行的路线是抛物线的一部分,已知该运动员在B点着陆,AB =150m.且sin37°=0.6.忽略空气阻力,请回答下列问题:(1)求该运动员从跳出到着陆垂直下降了多少m?(2)以A为坐标原点建立直角坐标系,求该抛物线表达式;(3)若该运动员在空中共飞行了4s,求他飞行2s后,垂直下降了多少m?【解答】解:(1)如图,以A为原点,建立平面直角坐标系.过点B作BD⊥y轴于点D.在Rt△OBD中,OD=AB•sin37°=150×0.6=90(m),答:该运动员从跳出到着陆垂直下降了90m;(2)在Rt△OBD中,BD===120(m),∴B(﹣120,﹣90),由题意抛物线顶点为(0,0),经过(﹣120,﹣90).设抛物线的解析式为y=ax2,则有﹣90=a×(﹣120)2,∴a=﹣,∴抛物线的解析式为y =﹣x2.(3)当x=﹣60时,y=﹣22.5,∴他飞行2s后,垂直下降了22.5m.13.(2022•黄石)某校为配合疫情防控需要,每星期组织学生进行核酸抽样检测;防疫部门为了解学生错峰进入操场进行核酸检测情况,调查了某天上午学生进入操场的累计人数y(单位:人)与时间x(单位:分钟)的变化情况,发现其变化规律符合函数关系式:y =,数据如表.时间x(分钟)0123…8x>8累计人数y(人)0150280390 (640640)(1)求a,b,c的值;(2)如果学生一进入操场就开始排队进行核酸检测,检测点有4个,每个检测点每分钟检测5人,求排队人数的最大值(排队人数=累计人数﹣已检测人数);(3)在(2)的条件下,全部学生都完成核酸检测需要多少时间?如果要在不超过20分钟让全部学生完成核酸检测,从一开始就应该至少增加几个检测点?【解答】解:(1)由题意,,解得,;(2)设第x分钟时的排队人数为W,根据题意得:W=y﹣20x,∴W=,当0≤x≤8时,W=﹣10x2+140x=﹣10(x﹣7)2+490,=490,∴当x=7时,W最大当x>8时,W=640﹣20x,∵k=﹣20<0,∴W随x的增大而减小,∴W<480,故排队人数最多时有490人;(3)要全部学生都完成核酸检测,根据题意得:640﹣20x=0,解得:x=32,所以全部学生都完成核酸检测要32分钟;开始就应该至少增加m个检测点,根据题意得:5×20(m+4)≥640,解得:m≥2.4,∵m为整数,∴m=3,答:从一开始就应该至少增加3个检测点.14.(2022•宁夏)2022北京冬奥会自由式滑雪空中技巧比赛中,某运动员比赛过程的空中剪影近似看作一条抛物线,跳台高度OA为4米,以起跳点正下方跳台底端O为原点,水平方向为横轴,竖直方向为纵轴,建立如图所示平面直角坐标系.已知抛物线最高点B的坐标为(4,12),着陆坡顶端C与落地点D的距离为2.5米,若斜坡CD的坡度i=3:4(即=).求:(1)点A的坐标;(2)该抛物线的函数表达式;(3)起跳点A与着陆坡顶端C之间的水平距离OC的长.(精确到0.1米)(参考数据:≈1.73)【解答】解:(1)∵OA=4,且点A在y轴正半轴,∴A(0,4).(2)∵抛物线最高点B的坐标为(4,12),∴设抛物线的解析式为:y=a(x﹣4)2+12,∵A(0,4),∴a(0﹣4)2+12=4,解得a=﹣.∴抛物线的解析式为:y=﹣(x﹣4)2+12.(3)在Rt△CDE中,=,CD=2.5,∴CE=1.5,DE=2.∴点D的纵坐标为﹣1.5,令﹣(x﹣4)2+12=﹣1.5,解得,x=4+3≈9.19或x=4﹣3≈﹣1.19(不合题意,舍去),∴D(9.19,﹣1.5).∴OC=9.19﹣2=7.19≈7.2(m).∴OC的长约为7.2米.15.(2022•衢州)如图1为北京冬奥会“雪飞天”滑雪大跳台赛道的横截面示意图.取水平线OE为x轴,铅垂线OD为y轴,建立平面直角坐标系.运动员以速度v(m/s)从D点滑出,运动轨迹近似抛物线y=﹣ax2+2x+20(a≠0).某运动员7次试跳的轨迹如图2.在着陆坡CE上设置点K(与DO相距32m)作为标准点,着陆点在K点或超过K点视为成绩达标.(1)求线段CE的函数表达式(写出x的取值范围).(2)当a=时,着陆点为P,求P的横坐标并判断成绩是否达标.(3)在试跳中发现运动轨迹与滑出速度v的大小有关,进一步探究,测算得7组a与v2的对应数据,在平面直角坐标系中描点如图3.①猜想a关于v2的函数类型,求函数表达式,并任选一对对应值验证.②当v为多少m/s时,运动员的成绩恰能达标(精确到1m/s)?(参考数据:≈1.73,≈2.24)【解答】解:(1)由图2可知:C(8,16),E(40,0),设CE:y=kx+b(k≠0),将C(8,16),E(40,0)代入得:,解得,∴线段CE的函数表达式为(8≤x≤40).(2)当时,,由题意得,解得x1=0(舍去),x2=22.5.∴P的横坐标为22.5.∵22.5<32,∴成绩未达标.(3)①猜想a与v2成反比例函数关系.∴设,将(100,0.250)代入得,解得m=25,∴.将(150,0.167)代入验证:,∴能相当精确地反映a与v2的关系,即为所求的函数表达式.②由K在线段上,得K(32,4),代入得y=﹣ax2+2x+20,得.由得v2=320,又∵v>0,∴.∴当v≈18m/s时,运动员的成绩恰能达标.16.(2022•朝阳)某商店购进了一种消毒用品,进价为每件8元,在销售过程中发现,每天的销售量y(件)与每件售价x(元)之间存在一次函数关系(其中8≤x≤15,且x为整数).当每件消毒用品售价为9元时,每天的销售量为105件;当每件消毒用品售价为11元时,每天的销售量为95件.(1)求y与x之间的函数关系式.(2)若该商店销售这种消毒用品每天获得425元的利润,则每件消毒用品的售价为多少元?(3)设该商店销售这种消毒用品每天获利w(元),当每件消毒用品的售价为多少元时,每天的销售利润最大?最大利润是多少元?【解答】解:(1)设每天的销售量y(件)与每件售价x(元)函数关系式为:y=kx+b,由题意可知:,解得:,∴y与x之间的函数关系式为:y=﹣5x+150;(2)(﹣5x+150)(x﹣8)=425,解得:x1=13,x2=25(舍去),∴若该商店销售这种消毒用品每天获得425元的利润,则每件消毒用品的售价为13元;(3)w=y(x﹣8),=(﹣5x+150)(x﹣8),w=﹣5x2+190x﹣1200,=﹣5(x﹣19)2+605,∵8≤x≤15,且x为整数,当x<19时,w随x的增大而增大,∴当x=15时,w有最大值,最大值为525.答:每件消毒用品的售价为15元时,每天的销售利润最大,最大利润是525元..(2022•温州)根据以下素材,探索完成任务.如何设计拱桥景观灯的悬挂方案?素材1图1中有一座拱桥,图2是其抛物线形桥拱的示意图,某时测得水面宽20m,拱顶离水面5m.据调查,该河段水位在此基础上再涨1.8m达到最高.素材2为迎佳节,拟在图1桥洞前面的桥拱上悬挂40cm 长的灯笼,如图3.为了安全,灯笼底部距离水面不小于1m;为了实效,相邻两盏灯笼悬挂点的水平间距均为1.6m ;为了美观,要求在符合条件处都挂上灯笼,且挂满后成轴对称分布.问题解决任务1确定桥拱形状在图2中建立合适的直角坐标系,求抛物线的函数表达式.任务2探究悬挂范围在你所建立的坐标系中,仅在安全的条件下,确定悬挂点的纵坐标的最小值和横坐标的取值范围.任务3拟定设计方案给出一种符合所有悬挂条件的灯笼数量,并根据你所建立的坐标系,求出最左边一盏灯笼悬挂点的横坐标.【解答】解:任务1:以拱顶为原点,建立如图1所示的直角坐标系,则顶点为(0,0),且过点B (10,﹣5),设抛物线的解析式为:y =ax 2,把点B (10,﹣5)代入得:100a =﹣5,∴a =﹣,∴抛物线的函数表达式为:y =﹣x 2;任务2:∵该河段水位再涨1.8m达到最高,灯笼底部距离水面不小于1m,灯笼长0.4m,∴当悬挂点的纵坐标y≥﹣5+1.8+1+0.4=﹣1.8,即悬挂点的纵坐标的最小值是﹣1.8m,当y=﹣1.8时,﹣x2=﹣1.8,∴x=±6,∴悬挂点的横坐标的取值范围是:﹣6≤x≤6;任务3:方案一:如图2(坐标轴的横轴),从顶点处开始悬挂灯笼,∵﹣6≤x≤6,相邻两盏灯笼悬挂点的水平间距均为1.6m,∴若顶点一侧悬挂4盏灯笼时,1.6×4>6,若顶点一侧悬挂3盏灯笼时,1.6×3<6,∴顶点一侧最多悬挂3盏灯笼,∵灯笼挂满后成轴对称分布,∴共可挂7盏灯笼,∴最左边一盏灯笼的横坐标为:﹣1.6×3=﹣4.8;方案二:如图3,∵若顶点一侧悬挂5盏灯笼时,0.8+1.6×(5﹣1)>6,若顶点一侧悬挂4盏灯笼时,0.8+1.6×(4﹣1)<6,∴顶点一侧最多悬挂4盏灯笼,∵灯笼挂满后成轴对称分布,∴共可挂8盏灯笼,∴最左边一盏灯笼的横坐标为:﹣0.8﹣1.6×3=﹣5.6.18.(2022•江西)跳台滑雪运动可分为助滑、起跳、飞行和落地四个阶段,运动员起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,着陆坡上的基准点K为飞行距离计分的参照点,落地点超过K点越远,飞行距离分越高.2022年北京冬奥会跳台滑雪标准台的起跳台的高度OA为66m,基准点K到起跳台的水平距离为75m,高度为hm(h为定值).设运动员从起跳点A起跳后的高度y(m)与水平距离x(m)之间的函数关系为y=ax2+bx+c(a≠0).(1)c的值为66;(2)①若运动员落地点恰好到达K点,且此时a=﹣,b=,求基准点K的高度h;②若a=﹣时,运动员落地点要超过K点,则b的取值范围为b>;(3)若运动员飞行的水平距离为25m时,恰好达到最大高度76m,试判断他的落地点能否超过K点,并说明理由.【解答】解:(1)∵起跳台的高度OA为66m,∴A(0,66),把A(0,66)代入y=ax2+bx+c得:c=66,故答案为:66;(2)①∵a=﹣,b=,∴y=﹣x2+x+66,∵基准点K到起跳台的水平距离为75m,∴y=﹣×752+×75+66=21,∴基准点K的高度h为21m;②∵a=﹣,∴y=﹣x2+bx+66,∵运动员落地点要超过K点,∴x=75时,y>21,即﹣×752+75b+66>21,解得b>,故答案为:b>;(3)他的落地点能超过K点,理由如下:∵运动员飞行的水平距离为25m时,恰好达到最大高度76m,∴抛物线的顶点为(25,76),设抛物线解析式为y=a(x﹣25)2+76,把(0,66)代入得:66=a(0﹣25)2+76,解得a=﹣,∴抛物线解析式为y=﹣(x﹣25)2+76,当x=75时,y=﹣×(75﹣25)2+76=36,∵36>21,∴他的落地点能超过K点.。
中考数学复习《多边形》专题练习(含答案)(1)
中考数学复习《多边形》专题练习(含答案)(1)中考数学专题练习多边形一、选择题1.(·云南)一个五边形的内角和为( )A. 540oB. 450oC. 360oD. 180o2. (2018·南通)若一个凸多边形的内角和为720o,则这个多边形的边数为( )A. 4B. 5C. 6D. 73. (2018·呼和浩特)已知一个多边形的内角和为1 080o,则这个多边形是( )A.九边形B.八边形C.七边形D.六边形4. ( 2018·台州)正十边形的每一个内角的度数为( )A. 120oB. 135oC. 140oD. 144o5. (2018·曲靖)若一个正多边形的内角和为720o,则这个正多边形的每一个内角是( )A. 60oB. 90oC. 108oD. 120o6. ( 2018·宁波)已知正多边形的一个外角等于40o,那么这个正多边形的边数为( )A. 6B. 7C. 8D.97. (2018·北京)若正多边形的一个外角是60o,则该正多边形的内角和为( )A. 360oB. 540oC. 720oD. 900o8. (2018·宿迁)如果一个多边形的内角和是外角和的3倍,那么这个多边形的边数是( )A. 8B. 9C. 10D. 119. (2018·济宁)如图,在五边形ABCDE 中,300A B E ∠+∠+∠=?,,DP CP 分别平分EDC ∠,BCD ∠,则P ∠的度数是( )A. 50oB. 55oC. 60oD. 65o10. (2018·双鸭山)如图,在四边形ABCD 中,AB AD =,5AC =,90DAB DCB ∠=∠=?,则四边形ABCD 的面积为( )A. 15B. 12.5C. 14.5D. 17二、填空题11. (2018·福建)一个n 边形的内角和为360o,则n 的值为 .12. (2018·广安)一个n 边形的每一个内角等于108o,那么n 的值为 .13. (2018·菏泽)若正多边形的每一个内角为135o,则这个正多边形的边数是 .14. (2018·上海)通过画出多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题.如果从某个多边形的一个顶点出发的对角线共有2条,那么该多边形的内角和是 .15. (2018·江汉油田)若一个多边形的每个外角都等于30o,则这个多边形的边数为 .16. (2018·怀化)一个多边形的每一个外角都是36o,则这个多边形的边数是 .17. (2018·山西)图①是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消融,形状无一定规则,代表一种自然和谐美.图②是从图①冰裂纹窗格图案中提取的由五条线段组成的图形,则12345∠+∠+∠+∠+∠= .18. (2018·邵阳)如图,在四边形ABCD 中,AD AB ⊥,110C ∠=?,它的一个外角60ADE ∠=?,则B ∠的大小是 .19. (2018·陕西)如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,则AFE ∠的度数为 .20. (2018·抚顺)将两张三角形纸片如图摆放,量得1234220∠+∠+∠+∠=?,则5∠的度数为 .21. (2018·南京)如图,五边形ABCDE 是正五边形.若12//l l ,,则12∠-∠= .22. (2018·贵阳)如图,,M N 分别是正五边形ABCDE 的两边,AB BC 上的点.若AM BN =,点O 是正五边形的中心,则MON ∠的度数是 .23. (2018·株洲)如图,正五边形ABCDE 和正三角形AMN 都是⊙O 的内接多边形,则BOM ∠的度数为 .24. (2018·宜宾)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积.设⊙O 的半径为1,若用⊙O 的外切正六边形的面积S 来近似估计⊙O 的面积,则S = . (结果保留根号) 25. (2018·呼和浩特)同一个圆的内接正方形和正三角形的边心距的比为 .26.(导学号78816049)(2018·聊城)如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是 .三、解答题27. (2018·河北)如图①,作BPC ∠的平分线的反向延长线PA ,现要分别以APB ∠,APC ∠,BPC ∠为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以BPC ∠为内角,可作出一个边长为1的正方形,此时90BPC ∠=?,而90452?=?是360o(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图②所示.(1)图②中的图案外轮廓周长是 ;(2)在所有符合要求的图案中选一个外轮廓周长最大的定为会标,求该会标的外轮廓周长.参考答案一、1. A 2. C 3. B 4. D 5. D 6. D 7. C 8. A 9. C10. B二、填空题11. 412. 513. 814. 540?15. 1216. 1017. 360?18. 40?19. 72?20. 40?21. 72?22. 72?23. 48?24. 25.26. 540?或360?或180?三、27. (1) 14(2) 会标的外轮廓周长为21。
中考数学专题练习 一元二次方程(含解析)
一元二次方程一、选择题1.方程x2﹣2x﹣5=0,x3=x,y2﹣3x=2,x2=0,其中一元二次方程的个数是()A.1个B.2个C.3个D.4个2. x2﹣6x=1,左边配成一个完全平方式得()A.(x﹣3)2=10 B.(x﹣3)2=9 C.(x﹣6)2=8 D.(x﹣6)2=103.方程(x﹣1)(x+3)=5的根为()A.x1=﹣1,x2=﹣3 B.x1=1,x2=﹣3 C.x1=﹣2,x2=4 D.x1=2,x2=﹣44.若关于x的方程3x2﹣2x+m=0的一个根是﹣1,则m的值为()A.﹣5 B.﹣1 C.1 D.55.用公式法解﹣x2+3x=1时,先求出a、b、c的值,则a、b、c依次为()A.﹣1,3,﹣1 B.1,﹣3,﹣1 C.﹣1,﹣3,﹣1 D.1,﹣3,16.方程x2=0与3x2=3x的解为()A.都是x=0B.有一个相同,且这个相同的解为x=0C.都不相同D.以上答案都不对7.已知x2﹣8xy+15y2=0,那么x是y的()倍.A.3 B.5 C.3或5 D.2或48.已知x=1是方程x2﹣ax+1=0的根,化简﹣得()A.1 B.0 C.﹣1 D.29.方程x(x+1)=x+1的根为()A.﹣1 B.1C.﹣1或1 D.以上答案都不对10.某产品的成本两年降低了75%,平均每年递降()A.50% B.25%C.37.5% D.以上答案都不对二、填空题11.方程3x2﹣5x=0的二次项系数是.12.5x2+5=26x化成一元二次方程的一般形式为.13.一元二次方程ax2+bx+c=0,若有一个根为﹣1,则a﹣b+c= ;如果a+b+c=0,则有一根为.14.一元二次方程ax2+bx+c=0(a≠0)有一根为零的条件是.15.关于x的方程2x﹣3=0是一元二次方程,则m= .三、解答题16.用适当的方法解方程:(1)2x2﹣4x+1=0;(2)x2﹣5x﹣6=0;(3)(x﹣2)(x﹣3)=12;(4)9(x﹣3)2﹣4(x﹣2)2=0.17.用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式.18.已知下列n(n为正整数)个关于x的一元二次方程:x2﹣1=0,x2+x﹣2=0,x2+2x﹣3=0,…x2+(n﹣1)x﹣n=0.(1)请解上述一元二次方程;(2)请你指出这n个方程的根具有什么共同特点,写出一条即可.19.如图,有33米长的竹篱笆,要围成一边(墙长15米)面积为130平方米的长方形鸡场,求鸡场的长和宽各为多少?一元二次方程参考答案与试题解析一、选择题1.方程x2﹣2x﹣5=0,x3=x,y2﹣3x=2,x2=0,其中一元二次方程的个数是()A.1个B.2个C.3个D.4个【考点】一元二次方程的定义.【分析】直接根据一元二次方程的定义可得到在所给的方程中x2﹣2x﹣5=0,x2=0是一元二次方程.【解答】解:方程x2﹣2x﹣5=0,x3=x,y2﹣3x=2,x2=0,其中一元二次方程是x2﹣2x﹣5=0,x2=0.故选B.【点评】本题考查了一元二次方程的定义:只含有一个未知数,并且未知数的最高次数为2的整式方程叫一元二次方程.2.x2﹣6x=1,左边配成一个完全平方式得()A.(x﹣3)2=10 B.(x﹣3)2=9 C.(x﹣6)2=8 D.(x﹣6)2=10【考点】解一元二次方程﹣配方法.【专题】计算题.【分析】给方程左右两边都加上9,左边化为完全平方式,右边合并为一个常数,即可得到正确的选项.【解答】解:x2﹣6x=1,方程左右两边都加上9得:x2﹣6x+9=10,即(x﹣3)2=10.故选A【点评】此题考查了解一元二次方程﹣配方法,利用此方法解方程时,首先将方程的二次项系数化为1,同时将常数项移到方程右边,然后方程左右两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并为一个非负常数,开方转化为两个一元一次方程来求解.3.方程(x﹣1)(x+3)=5的根为()A.x1=﹣1,x2=﹣3 B.x1=1,x2=﹣3 C.x1=﹣2,x2=4 D.x1=2,x2=﹣4【考点】解一元二次方程﹣因式分解法.【分析】首先把方程转化为一般形式,再利用因式分解法即可求解.【解答】解:(x﹣1)(x+3)=5,x2+3x﹣x﹣3﹣5=0,x2+2x﹣8=0,(x﹣2)(x+4)=0,解得x1=2,x2=﹣4.故选D.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.4.若关于x的方程3x2﹣2x+m=0的一个根是﹣1,则m的值为()A.﹣5 B.﹣1 C.1 D.5【考点】一元二次方程的解.【专题】方程思想.【分析】根据一元二次方程解的定义,将x=1代入原方程,然后解关于m的一元一次方程即可.【解答】解:∵关于x的方程3x2﹣2x+m=0的一个根是﹣1,∴当x=﹣1时,由原方程,得3+2+m=0,解得m=﹣5;故选A.【点评】本题考查的是一元二次方程的根即方程的解的定义.本题逆用一元二次方程解的定义易得出m的值.5.用公式法解﹣x2+3x=1时,先求出a、b、c的值,则a、b、c依次为()A.﹣1,3,﹣1 B.1,﹣3,﹣1 C.﹣1,﹣3,﹣1 D.1,﹣3,1【考点】解一元二次方程﹣公式法.【分析】先移项,化成一般形式,再得出答案即可.【解答】解:∵﹣x2+3x=1,∴﹣x2+3x﹣1=0,∴x2﹣3x+1=0,∴a=﹣1,b=3,c=﹣1(或a=1,b=﹣3,c=1),【点评】本题考查了解一元二次方程和一元二次方程的一般形式的应用,解此题的关键是能把方程化成一般形式.6.方程x2=0与3x2=3x的解为()A.都是x=0B.有一个相同,且这个相同的解为x=0C.都不相同D.以上答案都不对【考点】解一元二次方程﹣因式分解法.【专题】计算题.【分析】解x2=0得x1=x2=0;变形3x2=3x得x2﹣x=0,左边分解得到x(x﹣1)=0,则x1=0,x2=1.【解答】解:∵x2=0∴x1=x2=0;∵x2﹣x=0,∴x(x﹣1)=0,∴x1=0,x2=1.故选B.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程右边变形为0,然后把方程左边进行因式分解,这样把一元二次方程转化为两个一元一次方程,再解一次方程可得到一元二次方程的解.7.已知x2﹣8xy+15y2=0,那么x是y的()倍.A.3 B.5 C.3或5 D.2或4【考点】解一元二次方程﹣因式分解法.【专题】计算题.【分析】先把等式左边分解因式得到(x﹣3y)(x﹣5y)=0,则x﹣3y=0或x﹣5y=0,即可得到x=3y 或x=5y.【解答】解:∵(x﹣3y)(x﹣5y)=0,∴x﹣3y=0或x﹣5y=0,∴x=3y或x=5y.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程右边变形为0,然后把方程左边进行因式分解,这样把一元二次方程转化为两个一元一次方程,再解一次方程可得到一元二次方程的解.8.已知x=1是方程x2﹣ax+1=0的根,化简﹣得()A.1 B.0 C.﹣1 D.2【考点】一元二次方程的解;二次根式的性质与化简.【分析】先将x=1代入方程x2﹣ax+1=0,可得关于a的方程,解方程求出a的值,再根据二次根式的性质化简即可.【解答】解:∵x=1是方程x2﹣ax+1=0的根,∴12﹣a×1+1=0,∴a=2,∴﹣=﹣=a﹣1﹣(3﹣a)=2a﹣4=2×2﹣4=0.故选B.【点评】本题主要考查了方程的解的定义,二次根式的性质与化简,解题关键是将已知的根代入方程,正确求出a的值.9.方程x(x+1)=x+1的根为()A.﹣1 B.1C.﹣1或1 D.以上答案都不对【考点】解一元二次方程﹣因式分解法.【分析】首先提取公因式,可得(x+1)(x﹣1)=0,继而可求得答案.【解答】解:∵x(x+1)=x+1,∴x(x+1)﹣(x+1)=0,∴(x+1)(x﹣1)=0,解得:x1=﹣1,x2=1.故选C.【点评】此题考查了因式分解法解一元二次方程.此题难度不大,注意因式分解法解一元二次方程的一般步骤:①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.10.某产品的成本两年降低了75%,平均每年递降()A.50% B.25%C.37.5% D.以上答案都不对【考点】一元二次方程的应用.【专题】增长率问题.【分析】设平均每年降低x,根据经过两年使成本降低75%,可列方程求解.【解答】解:设平均每年降低x,(1﹣x)2=1﹣75%解得x=0.5=50%或x=1.5(舍去).故平均每年降低50%.故选A.【点评】本题考查理解题意的能力,关键设出降低的百分率,然后根据现在的成本,可列方程求解.二、填空题11.方程3x2﹣5x=0的二次项系数是 3 .【考点】一元二次方程的一般形式.【分析】先找出方程的二次项,再找出项的系数即可.【解答】解:方程3x2﹣5x=0的二次项系数是3,故答案为:3.【点评】本题考查了一元二次方程的一般形式的应用,主要考查学生的理解能力.12.5x2+5=26x化成一元二次方程的一般形式为5x2﹣26x+5=0 .【考点】一元二次方程的一般形式.【专题】计算题.【分析】将方程右边的式子移项,并按照x的降幂排列,即可得到一元二次方程的一般形式.【解答】解:5x2+5=26x,移项得:5x2﹣26x+5=0.故答案为:5x2﹣26x+5=0【点评】此题考查了一元二次方程的一般形式,一元二次方程的一般形式为ax2+bx+c=0(a,b,c 为常数,且a≠0).13.一元二次方程ax2+bx+c=0,若有一个根为﹣1,则a﹣b+c= 0 ;如果a+b+c=0,则有一根为 1 .【考点】一元二次方程的解.【分析】由一元二次方程解的意义把方程的根x=﹣1代入方程,得到a﹣b+c=0;由a+b+c=0,可知a×12+b×1+c=0,故方程ax2+bx+c=0有一根为1.【解答】解:把x=﹣1代入一元二次方程ax2+bx+c=0得:a﹣b+c=0;如果a+b+c=0,那么a×12+b×1+c=0,所以方程ax2+bx+c=0有一根为1.故答案是:0;1.【点评】本题考查的是一元二次方程的解的定义,属于基础题型,比较简单.14.一元二次方程ax2+bx+c=0(a≠0)有一根为零的条件是c=0 .【考点】一元二次方程的解.【专题】计算题.【分析】根据一元二次方程的定义和根与系数的关系解答.【解答】解:∵一元二次方程ax2+bx+c=0(a≠0)的二次项系数是a,常数项是c,∴x1•x2=,又∵该方程有一根为零,∴x1•x2==0;∵a≠0,∴c=0.故答案为:0.【点评】本题主要考查了一元二次方程的解,在解答此题时,利用了根与系数的关系.15.关于x的方程2x﹣3=0是一元二次方程,则m= ±.【考点】一元二次方程的定义.【分析】根据一元二次方程的概念,可得出m2﹣1=2,解得m即可.【解答】解:∵关于x的方程2x﹣3=0是一元二次方程,∴m2﹣1=2,解得m=±.故答案为:.【点评】本题考查了一元二次方程的概念,二次项系数不为0,未知数的最高次数为2.三、解答题16.用适当的方法解方程:(1)2x2﹣4x+1=0;(2)x2﹣5x﹣6=0;(3)(x﹣2)(x﹣3)=12;(4)9(x﹣3)2﹣4(x﹣2)2=0.【考点】解一元二次方程﹣因式分解法;解一元二次方程﹣配方法.【分析】(1)找出a,b,c的值,计算出根的判别式的值大于0,代入求根公式即可求出解;(2)利用因式分解法求解即可;(3)先将方程整理为一般形式,再利用因式分解法求解;(4)利用因式分解法求解即可.【解答】解:(1)2x2﹣4x+1=0,这里a=2,b=﹣4,c=1,∵△=16﹣4×2×1=8,∴x==,∴x1=,x2=;(2)x2﹣5x﹣6=0,(x﹣6)(x+1)=0,∴x﹣6=0或x+1=0,解得x1=6,x2=﹣1;(3)(x﹣2)(x﹣3)=12,整理,得x2﹣5x﹣6=0,(x﹣6)(x+1)=0,∴x﹣6=0或x+1=0,解得x1=6,x2=﹣1;(4)9(x﹣3)2﹣4(x﹣2)2=0,[3(x﹣3)+2(x﹣2)][3(x﹣3)﹣2(x﹣2)]=0,(5x﹣13)(x﹣5)=0,解得x1=,x2=5.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.17.用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式.【考点】解一元二次方程﹣公式法;配方法的应用.【专题】计算题.【分析】由a不为0,在方程左右两边同时除以a,并将常数项移到方程右边,方程左右两边都加上一次项系数一半的平方,左边化为完全平方式,右边通分并利用同分母分式的减法法则计算,当b2﹣4ac≥0时,开方即可推导出求根公式.【解答】解:ax2+bx+c=0(a≠0),方程左右两边同时除以a得:x2+x+=0,移项得:x2+x=﹣,配方得:x2+x+=﹣=,即(x+)2=,当b2﹣4ac≥0时,x+=±=±,∴x=.【点评】此题考查了一元二次方程的求根公式,以及配方法的应用,学生在开方时注意b2﹣4ac≥0这个条件的运用.18.已知下列n(n为正整数)个关于x的一元二次方程:x2﹣1=0,x2+x﹣2=0,x2+2x﹣3=0,…x2+(n﹣1)x﹣n=0.(1)请解上述一元二次方程;(2)请你指出这n个方程的根具有什么共同特点,写出一条即可.【考点】解一元二次方程﹣因式分解法;一元二次方程的解.【专题】规律型.【分析】(1)分别利用因式分解法解各方程;(2)根据方程根的特征易得这n个方程都有一个根为1,另外一根等于常数项.【解答】解:(1)x2﹣1=0,解得x1=1,x2=﹣1,x2+x﹣2=0,解得x1=1,x2=﹣2,x2+2x﹣3=0,解得x1=1,x2=﹣3,…x2+(n﹣1)x﹣n=0,解得x1=1,x2=﹣n;(2)这n个方程都有一个根为1,另外一根等于常数项.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).19.如图,有33米长的竹篱笆,要围成一边(墙长15米)面积为130平方米的长方形鸡场,求鸡场的长和宽各为多少?【考点】一元二次方程的应用.【专题】几何图形问题.【分析】首先设鸡场的长为x米,则宽为米,根据题意可得等量关系:鸡场的长×宽=130平方米,列出方程,解出x的值.【解答】解:设鸡场的长为x米,则宽为米,由题意得:x×=130,解得:x1=25,x2=13,∵墙长15米,25>15,∴25不合题意舍去,∴x=13,则: =10(米).答:鸡场的长为13米,则宽为10米.【点评】此题主要考查了一元二次方程的应用,关键是弄懂题意,找出题目中的等量关系,此题根据鸡场的面积列出方程即可.。
专题01 规律探究压轴题真题训练汇总(解析版)-2023年中考数学解答题压轴真题汇编
挑战2023年中考数学选择、填空压轴真题汇编专题01规律探究压轴题真题训练一.尾数特征(共1小题)1.(2022•内蒙古)观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得70+71+72+…+72022的结果的个位数字是()A.0B.1C.7D.8【答案】C【解答】解:∵70=1,71=7,72=49,73=343,74=2401,75=16807,…∴7n的尾数1,7,9,3循环,∴70+71+72+73的个位数字是0,∵2023÷4=505…3,∴70+71+…+72022的结果的个位数字与70+71+72的个位数字相同,∴70+71+…+72022的结果的个位数字是7,故选:C.二.算术平方根(共1小题)2.(2022•烟台)如图,正方形ABCD边长为1,以AC为边作第2个正方形ACEF,再以CF为边作第3个正方形FCGH,…,按照这样的规律作下去,第6个正方形的边长为()A.(2)5B.(2)6C.()5D.()6【答案】C【解答】解:由题知,第1个正方形的边长AB=1,根据勾股定理得,第2个正方形的边长AC=,根据勾股定理得,第3个正方形的边长CF=()2,根据勾股定理得,第4个正方形的边长GF=()3,根据勾股定理得,第5个正方形的边长GN=()4,根据勾股定理得,第6个正方形的边长=()5.故选C.三.规律型:数字的变化类(共12小题)3.(2022•西藏)按一定规律排列的一组数据:,﹣,,﹣,,﹣,….则按此规律排列的第10个数是()A.﹣B.C.﹣D.【答案】A【解答】解:原数据可转化为:,﹣,,﹣,,﹣,…,∴=(﹣1)1+1×,﹣=(﹣1)2+1×,=(﹣1)3+1×,...∴第n个数为:(﹣1)n+1,∴第10个数为:(﹣1)10+1×=﹣.故选:A.4.(2022•新疆)将全体正偶数排成一个三角形数阵:按照以上排列的规律,第10行第5个数是()A.98B.100C.102D.104【答案】B【解答】解:由三角形的数阵知,第n行有n个偶数,则得出前9行有1+2+3+4+5+6+7+8+9=45个偶数,∴第9行最后一个数为90,∴第10行第5个数是90+2×5=100,故选:B.5.(2022•云南)按一定规律排列的单项式:x,3x2,5x3,7x4,9x5,……,第n个单项式是()A.(2n﹣1)x n B.(2n+1)x n C.(n﹣1)x n D.(n+1)x n【答案】A【解答】解:∵单项式:x,3x2,5x3,7x4,9x5,…,∴第n个单项式为(2n﹣1)x n,故选:A.6.(2021•十堰)将从1开始的连续奇数按如图所示的规律排列,例如,位于第4行第3列的数为27,则位于第32行第13列的数是()A.2025B.2023C.2021D.2019【答案】B【解答】解:由题意可知:行数为1的方阵内包含“1”,共1个数;行数为2的方阵内包含“1、3、5、7”,共22个数;行数为3的方阵内包含“1、3、5、7、9、11、13、15、17”,共32个数;∴行数为32的方阵内包含“1、3、5、7、......”共322个数,即共1024个数,∴位于第32行第13列的数是连续奇数的第(1024﹣12)=1012个数,∴位于第32行第13列的数是:2×1012﹣1=2023.故选:B.7.(2021•随州)根据图中数字的规律,若第n个图中的q=143,则p的值为()A.100B.121C.144D.169【答案】B【解答】解:通过观察可得规律:p=n2,q=(n+1)2﹣1,∵q=143,∴(n+1)2﹣1=143,解得:n=11,∴p=n2=112=121,故选:B.8.(2020•娄底)下列各正方形中的四个数具有相同的规律,根据规律,x的值为()A.135B.153C.170D.189【答案】C【解答】解:分析题目可得4=2×2,6=3×2,8=4×2;2=1+1,3=2+1,4=3+1;∴18=2b,b=a+1.∴a=8,b=9.又∵9=2×4+1,20=3×6+2,35=4×8+3,∴x=18b+a=18×9+8=170.故选:C.9.(2022•鄂尔多斯)按一定规律排列的数据依次为,,,……按此规律排列,则第30个数是.【答案】【解答】解:∵,,,……,∴第n个数是,当n=30时,==,故答案为:.10.(2022•泰安)将从1开始的连续自然数按以下规律排列:若有序数对(n,m)表示第n行,从左到右第m个数,如(3,2)表示6,则表示99的有序数对是.【答案】(10,18)【解答】解:∵第n行的最后一个数是n2,第n行有(2n﹣1)个数,∴99=102﹣1在第10行倒数第二个,第10行有:2×10﹣1=19个数,∴99的有序数对是(10,18).故答案为:(10,18).11.(2021•荆门)如图,将正整数按此规律排列成数表,则2021是表中第行第列.【答案】64,5.【解答】解:由图可知,第一行1个数字,第二行2个数字,第三行3个数字,…,则第n行n个数字,前n行一共有个数字,∵<2021<,2021﹣=2021﹣2016=5,∴2021是表中第64行第5列,故答案为:64,5.12.(2020•德阳)将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20),…,我们称4是第2组第1个数字,16是第4组第2个数字,若2020是第m组第n个数字,则m+n=.【答案】65【解答】解:∵将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,∴第m组有m个连续的偶数,∵2020=2×1010,∴2020是第1010个偶数,∵1+2+3+…+44==990,1+2+3+…+45==1035,∴2020是第45组第1010﹣990=20个数,∴m=45,n=20,∴m+n=65,故答案为:65.13.(2020•泰安)如图被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为a1,第二个数记为a2,第三个数记为a3,…,第n个数记为a n,则a4+a200=.【答案】20110【解答】解:观察“杨辉三角”可知第n个数记为a n=(1+2+…+n)=n(n+1),则a4+a200=×4×(4+1)+×200×(200+1)=20110.故答案为:20110.14.(2022•安徽)观察以下等式:第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,……按照以上规律,解决下列问题:(1)写出第5个等式:;(2)写出你猜想的第n个等式(用含n的式子表示),并证明.【答案】(2×5+1)2=(6×10+1)2﹣(6×10)2【解答】解:(1)因为第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,第5个等式:(2×5+1)2=(6×10+1)2﹣(6×10)2,故答案为:(2×5+1)2=(6×10+1)2﹣(6×10)2;(2)第n个等式:(2n+1)2=[(n+1)×2n+1]2﹣[(n+1)×2n]2,证明:左边=4n2+4n+1,右边=[(n+1)×2n]2+2×(n+1)×2n+12﹣[(n+1)×2n]2=4n2+4n+1,∴左边=右边.∴等式成立.四.规律型:图形的变化类(共10小题)15.(2022•济宁)如图,用相同的圆点按照一定的规律拼出图形.第一幅图4个圆点,第二幅图7个圆点,第三幅图10个圆点,第四幅图13个圆点……按照此规律,第一百幅图中圆点的个数是()A.297B.301C.303D.400【答案】B【解答】解:观察图形可知:摆第1个图案需要4个圆点,即4+3×0;摆第2个图案需要7个圆点,即4+3=4+3×1;摆第3个图案需要10个圆点,即4+3+3=4+3×2;摆第4个图案需要13个圆点,即4+3+3+3=4+3×3;…第n个图摆放圆点的个数为:4+3(n﹣1)=3n+1,∴第100个图放圆点的个数为:3×100+1=301.故选:B.16.(2022•江西)将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是()A.9B.10C.11D.12【答案】B【解答】解:第1个图中H的个数为4,第2个图中H的个数为4+2,第3个图中H的个数为4+2×2,第4个图中H的个数为4+2×3=10,故选:B.17.(2022•重庆)把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为()A.15B.13C.11D.9【答案】C【解答】解:由图形知,第①个图案中有1个菱形,第②个图案中有3个菱形,即1+2=3,第③个图案中有5个菱形即1+2+2=5,……则第n个图案中菱形有1+2(n﹣1)=(2n﹣1)个,∴第⑥个图案中有2×6﹣1=11个菱形,故选:C.18.(2021•玉林)观察下列树枝分叉的规律图,若第n个图树枝数用Y n表示,则Y9﹣Y4=()A.15×24B.31×24C.33×24D.63×24【答案】B【解答】解:由题意得:第1个图:Y1=1,第2个图:Y2=3=1+2,第3个图:Y3=7=1+2+22,第4个图:Y4=15=1+2+22+23,•••第9个图:Y9=1+2+22+23+24+25+26+27+28,∴Y9﹣Y4=24+25+26+27+28=24(1+2+22+23+24)=24×(3+4+8+16)=24×31.故选:B.19.(2020•十堰)根据图中数字的规律,若第n个图中出现数字396,则n=()A.17B.18C.19D.20【答案】B【解答】解:根据图形规律可得:上三角形的数据的规律为:2n(1+n),若2n(1+n)=396,解得n不为正整数,舍去;下左三角形的数据的规律为:n2﹣1,若n2﹣1=396,解得n不为正整数,舍去;下中三角形的数据的规律为:2n﹣1,若2n﹣1=396,解得n不为正整数,舍去;下右三角形的数据的规律为:n(n+4),若n(n+4)=396,解得n=18,或n=﹣22,舍去故选:B.20.(2022•青海)木材加工厂将一批木料按如图所示的规律依次摆放,则第n个图中共有木料根.【答案】【解答】解:由图可知:第一个图形有木料1根,第二个图形有木料1+2=3(根),第三个图形有木料1+2+3=6(根),第四个图形有木料1+2+3+4=10(根),......第n个图有木料1+2+3+4+......+n=(根),故答案为:.21.(2022•聊城)如图,线段AB=2,以AB为直径画半圆,圆心为A1,以AA1为直径画半圆①;取A1B的中点A2,以A1A2为直径画半圆②;取A2B的中点A3,以A2A3为直径画半圆③…按照这样的规律画下去,大半圆内部依次画出的8个小半圆的弧长之和为.【答案】π【解答】解:∵AB=2,∴AA1=1,半圆①弧长为=π,同理A1A2=,半圆②弧长为=()2π,A2A3=,半圆③弧长为=()3π,......半圆⑧弧长为=()8π,∴8个小半圆的弧长之和为π+()2π+()3π+...+()8π=π.故答案为:π.22.(2022•绥化)如图,∠AOB=60°,点P1在射线OA上,且OP1=1,过点P1作P1K1⊥OA交射线OB于K1,在射线OA上截取P1P2,使P1P2=P1K1;过点P2作P2K2⊥OA交射线OB于K2,在射线OA上截取P2P3,使P2P3=P2K2…按照此规律,线段P2023K2023的长为.【答案】(1+)2022【解答】解:由题意可得,P 1K1=OP1•tan60°=1×=,P 2K2=OP2•tan60°=(1+)×=(1+),P3K3=OP3•tan60°=(1+++3)×=(1+)2,P 4K4=OP4•tan60°=[(1+++3)+(1+)2]×=(1+)3,…,P n K n=(1+)n﹣1,∴当n=2023时,P2023K2023=(1+)2022,故答案为:(1+)2022.23.(2022•黑龙江)如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有.【答案】485【解答】解:第一个图形正三角形的个数为5,第二个图形正三角形的个数为5×3+2=2×32﹣1=17,第三个图形正三角形的个数为17×3+2=2×33﹣1=53,第四个图形正三角形的个数为53×3+2=2×34﹣1=161,第五个图形正三角形的个数为161×3+2=2×35﹣1=485.如果是第n个图,则有2×3n﹣1个故答案为:485.24.(2021•黑龙江)如图,正方形A0B0C0A1的边长为1,正方形A1B1C1A2的边长为2,正方形A2B2C2A3的边长为4,正方形A3B3C3A4的边长为8…依次规律继续作正方形A n B n∁n A n+1,且点A0,A1,A2,A3,…,A n+1在同一条直线上,连接A0C1交,A1B1于点D1,连接A1C2,交A2B2于点D2,连接A2C3,交A3B3于点D3,…记四边形A0B0C0D1的面积为S1,四边形A1B1C1D2的面积为S2,四边形A2B2C2D3的面积为S3,…,四边形A n﹣1B n﹣1C n﹣1D n的面积为S n,则S2021=.【答案】【解答】解:∵四边形A0B0C0A1与四边形A1B1C1A2都是正方形,∴A1D1∥A2C1,∴,∴,∴,同理可得:,∴,,,…,,∴,故答案为:.五.完全平方公式(共2小题)25.(2020•贺州)我国宋代数学家杨辉发现了(a+b)n(n=0,1,2,3,…)展开式系数的规律:以上系数三角表称为“杨辉三角”,根据上述规律,(a+b)8展开式的系数和是()A.64B.128C.256D.612【答案】C【解答】解:由“杨辉三角”的规律可知,(a+b)8展开式中所有项的系数和为(1+1)8=28=256.故选:C.26.(2019•烟台)南宋数学家杨辉在其著作《详解九章算法》中揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律如下,后人也将右表称为“杨辉三角”(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…则(a+b)9展开式中所有项的系数和是()A.128B.256C.512D.1024【答案】C【解答】解:当n=0时,展开式中所有项的系数和为1=20,当n=1时,展开式中所有项的系数和为2=21,当n=2时,展开式中所有项的系数和为4=22,•••当n=9时,展开式的项系数和为=29=512,故选:C.六.点的坐标(共1小题)27.(2004•南宁)如图,一个机器人从O点出发,向正东方向走3米到达A1点,再向正北方向走6米到达A2点,再向正西方向走9米到达A3点,再向正南方向走12米到达A4点,再向正东方向走15米到达A5点、按如此规律走下去,当机器人走到A6点时,离O点的距离是米.【答案】15【解答】解:由题意可知:OA1=3;A1A2=3×2;A2A3=3×3;可得规律:A n﹣1A n=3n,当机器人走到A6点时,A5A6=18米,点A6的坐标是(9,12);所以当机器人走到A6点时,离O点的距离是=15米.故答案为:15.七.规律型:点的坐标(共9小题)28.(2019•日照)如图,在单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上,斜边长分别为2,4,6,…的等腰直角三角形,若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,1),A3(0,0),则依图中所示规律,A2019的坐标为()A.(﹣1008,0)B.(﹣1006,0)C.(2,﹣504)D.(1,505)【答案】A【解答】解:观察图形可以看出A1﹣﹣A4;A5﹣﹣﹣A8;...每4个为一组,∵2019÷4=504 (3)∴A2019在x轴负半轴上,纵坐标为0,∵A3、A7、A11的横坐标分别为0,﹣2,﹣4,∴A2019的横坐标为﹣(2019﹣3)×=﹣1008.∴A2019的坐标为(﹣1008,0).故选:A.29.(2014•威海)如图,在平面直角坐标系xOy中,Rt△OA1C1,Rt△OA2C2,Rt△OA3C3,Rt△OA4C4…的斜边都在坐标轴上,∠A1OC1=∠A2OC2=∠A3OC3=∠A4OC4=…=30°.若点A1的坐标为(3,0),OA1=OC2,OA2=OC3,OA3=OC4…,则依此规律,点A2014的纵坐标为()A.0B.﹣3×()2013C.(2)2014D.3×()2013【答案】D【解答】解:∵∠A2OC2=30°,OA1=OC2=3,∴OA2=OC2=3×;∵OA2=OC3=3×,∴OA3=OC3=3×()2;∵OA3=OC4=3×()2,∴OA4=OC4=3×()3,∴OA2014=3×()2013,而2014=4×503+2,∴点A2014在y轴的正半轴上,∴点A2014的纵坐标为:3×()2013.故选:D.30.(2022•黑龙江)如图,在平面直角坐标系中,点A1,A2,A3,A4 (x)上且OA1=1,OA2=2OA1,OA3=2OA2,OA4=2OA3…按此规律,过点A1,A 2,A3,A4…作x轴的垂线分别与直线y=x交于点B1,B2,B3,B4…记△OA1B1,△OA2B2,△OA3B3,△OA4B4…的面积分别为S1,S2,S3,S4…则S2022=.【答案】24041【解答】解:∵OA1=1,OA2=2OA1,∴OA2=2,∵OA3=2OA2,∴OA3=4,∵OA4=2OA3,∴OA4=8,把x=1代入直线y=x中可得:y=,∴A1B1=,把x=2代入直线y=x中可得:y=2,∴A2B2=2,把x=4代入直线y=x中可得:y=4,∴A3B3=4,把x=8代入直线y=x中可得:y=8,∴A4B4=8,∴S1=OA1•A1B1=×1×=×20×(20×),S 2=OA2•A2B2=×2×2=×21×(21×),S 3=OA3•A3B3=×4×4=×22×(22×),S 4=OA4•A4B4=×8×8=×23×(23×),...∴S2022=×22021×(22021×)=24041,故答案为:24041.31.(2022•齐齐哈尔)如图,直线l:y=x+与x轴相交于点A,与y轴相交于点B,过点B作BC1⊥l交x轴于点C1,过点C1作B1C1⊥x轴交l于点B1,过点B1作B1C2⊥l交x轴于点C2,过点C2作B2C2⊥x轴交l于点B2,…,按照如此规律操作下去,则点B2022的纵坐标是.【答案】()2022【解答】解:∵y=x+与x轴相交于点A,与y轴相交于点B,∴当x=0时,y=,当y=0时,x=﹣3,∴A(﹣3,0),B(0,),∴OA=3,OB=,∴tan∠BAO=,∴∠BAO=30°,∵BC1⊥l,∴∠C1BO=∠BAO=30°,∴BC1==2,∵B1C1⊥x轴,∴∠B1C1B=30°,∴B1C1==,同理可得,B2C2=C1=()2,依此规律,可得B n∁n=()n,当n=2022时,B2022C2022=()2022,故答案为:()2022.32.(2021•齐齐哈尔)如图,抛物线的解析式为y=x2,点A1的坐标为(1,1),连接OA1;过A1作A1B1⊥OA1,分别交y轴、抛物线于点P1、B1;过B1作B1A2⊥A1B1,分别交y轴、抛物线于点P2、A2;过A2作A2B2⊥B1A2,分别交y轴、抛物线于点P3、B2;…;按照如此规律进行下去,则点P n(n为正整数)的坐标是.【答案】(0,n2+n)【解答】解:∵点A1(1,1),∴OA1=,∠A1OP1=45°,∵A1B1⊥OA1,∴△A1OP1是等腰直角三角形,∴∠A1P1O=∠B1P1P2=45°,OP1=2,∴P1(0,2),∵B1A2⊥A1B1,∴△B1P1P2是等腰直角三角形,设P1P2=2a,则:点B1(﹣a,2+a),把点B1(﹣a,2+a)代入y=x2得:a2=2+a,解得:a=2或a=﹣1(舍),∴P1P2=4,∴P2(0,6),同理:△A2P3P2是等腰直角三角形,设P3P2=2b,则:点A2(b,b+6),把点A2(b,b+6)代入y=x2得:b2=b+6,解得:b=3或b=﹣2(舍),∴P3P2=6,∴P3(0,12),由P1(0,2),P2(0,6),P3(0,12)可推:点P n(0,n2+n).故答案为:(0,n2+n).33.(2020•齐齐哈尔)如图,在平面直角坐标系中,等腰直角三角形①沿x轴正半轴滚动并且按一定规律变换,每次变换后得到的图形仍是等腰直角三角形.第一次滚动后点A1(0,2)变换到点A2(6,0),得到等腰直角三角形②;第二次滚动后点A2变换到点A3(6,0),得到等腰直角三角形③;第三次滚动后点A3变换到点A4(10,4),得到等腰直角三角形④;第四次滚动后点A4变换到点A5(10+12,0),得到等腰直角三角形⑤;依此规律…,则第2020个等腰直角三角形的面积是.【答案】22020【解答】解:∵点A1(0,2),∴第1个等腰直角三角形的面积==2,∵A2(6,0),∴第2个等腰直角三角形的腰长为=2,∴第2个等腰直角三角形的面积==4=22,∵A4(10,4),∴第3个等腰直角三角形的腰长为10﹣6=4,∴第3个等腰直角三角形的面积==8=23,…则第2020个等腰直角三角形的面积是22020;故答案为:22020(形式可以不同,正确即得分).34.(2019•绥化)在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点P从原点O出发,以每秒1个单位长度的速度沿着等边三角形的边“OA1→A1A2→A2A3→A3A4→A4A5…”的路线运动,设第n秒运动到点P n(n为正整数),则点P2019的坐标是.【答案】(,)【解答】解:由题意知,A1(,)A2(1,0)A3(,)A4(2,0)A5(,﹣)A6(3,0)A7(,)…由上可知,每个点的横坐标为序号的一半,纵坐标每6个点依次为:,0,,0,﹣,0这样循环,∴A2019(,),故答案为:(,).35.(2019•广安)如图,在平面直角坐标系中,点A1的坐标为(1,0),以OA1为直角边作Rt△OA1A2,并使∠A1OA2=60°,再以OA2为直角边作Rt △OA2A3,并使∠A2OA3=60°,再以OA3为直角边作Rt△OA3A4,并使∠A3OA4=60°…按此规律进行下去,则点A2019的坐标为.【答案】(﹣22017,22017)【解答】解:由题意得,A1的坐标为(1,0),A 2的坐标为(1,),A 3的坐标为(﹣2,2),A4的坐标为(﹣8,0),A 5的坐标为(﹣8,﹣8),A 6的坐标为(16,﹣16),A7的坐标为(64,0),…由上可知,点A1,A2,A3,A4,…的方位是每6个循环,与第一点方位相同的点在x轴正半轴上,其横坐标为2n﹣1,其纵坐标为0,与第二点方位相同的点在第一象限内,其横坐标为2n﹣2,纵坐标为2n﹣2,与第三点方位相同的点在第二象限内,其横坐标为﹣2n﹣2,纵坐标为2n﹣2,与第四点方位相同的点在x轴负半轴上,其横坐标为﹣2n﹣1,纵坐标为0,与第五点方位相同的点在第三象限内,其横坐标为﹣2n﹣2,纵坐标为﹣2n﹣2,与第六点方位相同的点在第四象限内,其横坐标为2n﹣2,纵坐标为﹣2n﹣2,∵2019÷6=336…3,∴点A2019的方位与点A3的方位相同,在第二象限内,其横坐标为﹣2n﹣2=﹣22017,纵坐标为22017,故答案为:(﹣22017,22017).36.(2018•资阳)如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,OA1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2018的坐标是.【答案】(0,21009)【解答】解:由已知,点A每次旋转转动45°,则转动一周需转动8次,每次转动点A到原点的距离变为转动前的倍∵2018=252×8+2∴点A2018的在y轴正半轴上,OA2018==21009故答案为:(0,21009)八.坐标确定位置(共1小题)37.(2008•湛江)将正整数按如图所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示实数9,则表示实数17的有序实数对是.【答案】(6,5)【解答】解:观察图表可知:每排的数字个数就是排数;且奇数排从左到右,从小到大,而偶数排从左到右,从大到小.实数15=1+2+3+4+5,则17在第6排,第5个位置,即其坐标为(6,5).故答案为:(6,5).九.一次函数图象上点的坐标特征(共5小题)38.(2021•兴安盟)如图,点B1在直线l:y=x上,点B1的横坐标为1,过点B1作B1A1⊥x轴,垂足为A1,以A1B1为边向右作正方形A1B1C1A2,延长A2C1交直线l于点B2;以A2B2为边向右作正方形A2B2C2A3,延长A3C2交直线l于点B3;…;按照这个规律进行下去,点B2021的坐标为.【答案】(,)【解答】解:∵点B1在直线l:y=x上,点B1的横坐标为1,过点B1作B1A1⊥x轴,垂足为A1,∴A1(1,0),B1(1,),∵四边形A1B1C1A2是正方形,∴A2(,0),B2(,),A3(,0),B3(,),A4(,0),B4(,),……A n(,0),B n(,),∴点B2021的坐标为(,),故答案为:(,).39.(2021•泰安)如图,点B1在直线l:y=x上,点B1的横坐标为2,过点B1作B1A1⊥l,交x轴于点A1,以A1B1为边,向右作正方形A1B1B2C1,延长B2C1交x轴于点A2;以A2B2为边,向右作正方形A2B2B3C2,延长B3C2交x轴于点A3;以A3B3为边,向右作正方形A3B3B4C3,延长B4C3交x轴于点A4;…;照这个规律进行下去,则第n个正方形A n B n B n+1∁n的边长为(结果用含正整数n的代数式表示).【答案】×()n﹣1.【解答】解:设直线y=x与x轴夹角为α,过B1作B1H⊥x轴于H,如图:∵点B1的横坐标为2,点B1在直线l:y=x上,令x=2得y=1,∴OH=2,B1H=1,OB1==,∴tanα==,Rt△A1B1O中,A1B1=OB1•tanα=,即第1个正方形边长是,∴OB2=OB1+B1B2=+=×3,Rt△A2B2O中,A2B2=OB2•tanα=×3×=×,即第2个正方形边长是×,∴OB3=OB2+B2B3=×3+×=×,Rt△A3B3O中,A3B3=OB3•tanα=××=×,即第3个正方形边长是×=×()2,∴OB4=OB3+B3B4=×+×=×,Rt△A4B4O中,A4B4=OB4•tanα==××=×,即第4个正方形边长是×=×()3,......观察规律可知:第n个正方形边长是×()n﹣1,故答案为:×()n﹣1.40.(2019•朝阳)如图,直线y=x+1与x轴交于点M,与y轴交于点A,过点A作AB⊥AM,交x轴于点B,以AB为边在AB的右侧作正方形ABCA1,延长A1C交x轴于点B1,以A1B1为边在A1B1的右侧作正方形A1B1C1A2…按照此规律继续作下去,再将每个正方形分割成四个全等的直角三角形和一个小正方形,每个小正方形的每条边都与其中的一条坐标轴平行,正方形ABCA1,A1B1C1A2,…,A n﹣1B n﹣1C n﹣1A n中的阴影部分的面积分别为S1,S2,…,S n,则S n可表示为.【答案】【解答】解:在直线y=x+1中,当x=0时,y=1;当y=0时,x=﹣3;∴OA=1,OM=3,∴tan∠AMO=,∵∠OAB+∠OAM=90°,∠AMO+∠OAM=90°,∴∠OAB=∠AMO,∴tan∠OAB=,∴OB=.∵,∴,易得tan,∴,∴,∴,同理可得,,…,===.故答案为:.41.(2019•齐齐哈尔)如图,直线l:y=x+1分别交x轴、y轴于点A和点A1,过点A1作A1B1⊥l,交x轴于点B1,过点B1作B1A2⊥x轴,交直线l于点A2;过点A2作A2B2⊥l,交x轴于点B2,过点B2作B2A3⊥x轴,交直线l于点A3,依此规律…,若图中阴影△A1OB1的面积为S1,阴影△A2B1B2的面积为S2,阴影△A3B2B3的面积为S3…,则S n=.【答案】【解答】解:直线l:y=x+1,当x=0时,y=1;当y=0时,x=﹣∴A(﹣,0)A1(0,1)∴∠OAA1=30°又∵A1B1⊥l,∴∠OA1B1=30°,在Rt△OA1B1中,OB1=•OA1=,∴S1=;同理可求出:A2B1=,B1B2=,∴S2===;依次可求出:S3=;S4=;S5=……因此:S n==,故答案为:.42.(2018•湖北)如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角顶点P1(3,3),P2,P3,…均在直线y=﹣x+4上.设△P1OA1,△P2A1A2,△P3A2A3,…的面积分别为S1,S2,S3,…,依.据图形所反映的规律,S2018=【答案】【解答】解:如图,分别过点P1、P2、P3作x轴的垂线段,垂足分别为点C、D、E,∵P1(3,3),且△P1OA1是等腰直角三角形,∴OC=CA1=P1C=3,设A1D=a,则P2D=a,∴OD=6+a,∴点P2坐标为(6+a,a),将点P2坐标代入y=﹣x+4,得:﹣(6+a)+4=a,解得:a=,∴A1A2=2a=3,P2D=,同理求得P3E=、A2A3=,∵S1=×6×3=9、S2=×3×=、S3=××=、……∴S2018=,故答案为:.十.两条直线相交或平行问题(共1小题)43.(2019•雅安)如图,在平面直角坐标系中,直线l1:y=x+1与直线l2:y=x交于点A 1,过A1作x轴的垂线,垂足为B1,过B1作l2的平行线交l1于A2,过A2作x轴的垂线,垂足为B2,过B2作l2的平行线交l1于A3,过A3作x轴的垂线,垂足为B3…按此规律,则点A n的纵坐标为()A.()n B.()n+1C.()n﹣1+D.【答案】A【解答】解:联立直线l1与直线l2的表达式并解得:x=,y=,故A1(,);则点B1(,0),则直线B1A2的表达式为:y=x+b,将点B1坐标代入上式并解得:直线B1A2的表达式为:y3=x﹣,将表达式y3与直线l1的表达式联立并解得:x=,y=,即点A2的纵坐标为;同理可得A3的纵坐标为,…按此规律,则点A n的纵坐标为()n,故选:A.十一.三角形的面积(共3小题)44.(2021•黑龙江)如图,菱形ABCD中,∠ABC=120°,AB=1,延长CD 至A1,使DA1=CD,以A1C为一边,在BC的延长线上作菱形A1CC1D1,连接AA1,得到△ADA1;再延长C1D1至A2,使D1A2=C1D1,以A2C1为一边,在CC1的延长线上作菱形A2C1C2D2,连接A1A2,得到△A1D1A2…按此规律,得到△A2020D2020A2021,记△ADA1的面积为S1,△A1D1A2的面积为S2…,△A2020D2020A2021的面积为S2021,则S2021=.【答案】24038【解答】解:∵菱形ABCD中,∠ABC=120°,AB=1,∴∠ADC=120°,AD=CD=1,∴∠ADA1=60°,∵DA1=CD,∴AD=DA1,∴△ADA1为等边三角形且边长为1,同理:△A1D1A2为等边三角形且边长为2,△A2D2A3为等边三角形且边长为4,△A3D3A4为等边三角形且边长为8,…,△A2021D2021A2022为等边三角形且边长为22021,∴S1=×12,S2=×22,S3=×42,…,S n=×22n﹣2,∴S2021=×24040=24038,故答案为24038.45.(2020•辽宁)如图,∠MON=45°,正方形ABB1C,正方形A1B1B2C1,正方形A2B2B3C2,正方形A3B3B4C3,…,的顶点A,A1,A2,A3,…,在射线OM上,顶点B,B1,B2,B3,B4,…,在射线ON上,连接AB2交A1B1于点D,连接A1B3交A2B2于点D1,连接A2B4交A3B3于点D2,…,连接B1D1交AB2于点E,连接B2D2交A1B3于点E1,…,按照这个规律进行下去,设△ACD 与△B1DE的面积之和为S1,△A1C1D1与△B2D1E1的面积之和为S2,△A2C2D2与△B3D2E2的面积之和为S3,…,若AB=2,则S n等于.(用含有正整数n的式子表示)【答案】×4n﹣1【解答】解:设△ADC的面积为S,由题意,AC∥B1B2,AC=AB=2,B1B2=4,∴△ACD∽△B2B1D,∴=()2=,∴=4S,∵==,CB1=2,∴DB1=,同法D1B2=,∵DB1∥D1B2,∴==,∴=,∴S1=S+=,∵△A1C1D1∽△ACD,∴=()2=,∴=4S,同法可得,=,∴S2=4S+==×4,…S n=×4n﹣1,∵S=×2×=,∴S n=×4n﹣1.故答案为:.46.(2020•丹东)如图,在矩形OAA1B中,OA=3,AA1=2,连接OA1,以OA1为边,作矩形OA1A2B1使A1A2=OA1,连接OA2交A1B于点C;以OA2为边,作矩形OA2A3B2,使A2A3=OA2,连接OA3交A2B1于点C1;以OA3为边,作矩形OA3A4B3,使A3A4=OA3,连接OA4交A3B2于点C2;…按照这个规律进行下去,则△C2019C2020A2022的面积为.【答案】【解答】解:在矩形OAA1B中,∵OA=3,AA1=2,∴∠A=90°,∴OA1===,∵==,∴=,∵∠OA1A2=∠A=90°,∴△OA1A2∽△OAA1,∴∠A1OA2=∠AOA1,∵A1B∥OA,∴∠CA1O=∠AOA1,∴∠COA1=∠CA1O,∴OC=CA1,∵∠A2OA1+∠OA2A1=90°,∠OA1C+∠A2A1C=90°,∴∠CA2A1=∠CA1A2,∴CA1=CA2=OC,同法可证OC1=A3C1,∴CC1∥A2A3,CC1=A2A3,∴=,∵A1A2=,∴OA2===,∴A2A3=×=,∴CC1=A2A3=,∴==××=,同法可证=S,由题意,===,∵△C2A3C1∽△C1A2C,∴相似比为:=,∴=()2×=,=,…,由此规律可得,△C2019C2020A2022的面积为.故答案为.十二.等边三角形的性质(共1小题)47.(2019•锦州)如图,边长为4的等边△ABC,AC边在x轴上,点B在y轴的正半轴上,以OB为边作等边△OBA1,边OA1与AB交于点O1,以O1B为边作等边△O1BA2,边O1A2与A1B交于点O2,以O2B为边作等边△O2BA3,边O2A3与A2B交于点O3,…,依此规律继续作等边△O n﹣1BA n,记△OO1A 的面积为S1,△O1O2A1的面积为S2,△O2O3A2的面积为S3,…,△O n﹣1O n A n 的面积为S n,则S n=.(n≥2,且n为整数)﹣1【答案】()n﹣1•【解答】解:由题意:△OO1A∽△O1O2A1∽△O2O3A2,…,∽△O n﹣1O n A n﹣1,相似比:==sin60°=,∵S 1==×1×=,=,∴S2=S1,S3=()2•S1,…,S n=()n﹣1•S1=()n﹣1•,故答案为:()n﹣1•.十三.含30度角的直角三角形(共2小题)48.(2020•营口)如图,∠MON=60°,点A1在射线ON上,且OA1=1,过点A1作A1B1⊥ON交射线OM于点B1,在射线ON上截取A1A2,使得A1A2=A1B1;过点A2作A2B2⊥ON交射线OM于点B2,在射线ON上截取A2A3,使得A2A3=A2B2;…;按照此规律进行下去,则A2020B2020长为.【答案】(1+)2019【解答】解:在Rt△OA1B1中,∵∠OA1B1=90°,∠MON=60°,OA1=1,∴A1B1=A1A2=OA1•tan60°=,∵A1B1∥A2B2,∴=,∴=,∴A2B2=(1+),同法可得,A3B3=(1+)2,…由此规律可知,A2020B2020=(1+)2019,故答案为(1+)2019.49.(2020•徐州)如图,∠MON=30°,在OM上截取OA 1=.过点A1作A1B1⊥OM,交ON于点B1,以点B1为圆心,B1O为半径画弧,交OM于点A2;过点A2作A2B2⊥OM,交ON于点B2,以点B2为圆心,B2O为半径画弧,交OM于点A3;按此规律,所得线段A20B20的长等于.【答案】219【解答】解:∵B1O=B1A2,B1A1⊥OA2,∴OA1=A1A2,∵B2A2⊥OM,B1A1⊥OM,∴B1A1∥B2A2,∴B1A1=A2B2,∴A2B2=2A1B1,同法可得A3B3=2A2B2=22•A1B1,…,由此规律可得A20B20=219•A1B1,∵A1B1=OA1•tan30°=×=1,∴A20B20=219,故答案为219.十四.勾股定理(共1小题)50.(2020•烟台)如图,△OA1A2为等腰直角三角形,OA1=1,以斜边OA2为直角边作等腰直角三角形OA2A3,再以OA3为直角边作等腰直角三角形OA3A4,…,按此规律作下去,则OA n的长度为()A.()n B.()n ﹣1C.()n D.()n﹣1【答案】B【解答】解:∵△OA1A2为等腰直角三角形,OA1=1,∴OA2=;∵△OA2A3为等腰直角三角形,∴OA3=2=;∵△OA3A4为等腰直角三角形,∴OA4=2=.∵△OA4A5为等腰直角三角形,∴OA5=4=,……∴OA n的长度为()n﹣1.故选:B.十五.正方形的性质(共1小题)51.(2019•鞍山)如图,正方形A0B0C0A1的边长为1,正方形A1B1C1A2的边长为2,正方形A2B2C2A3的边长为4,正方形A3B3C3A4的边长为8……依此规律继续作正方形A n B n∁n A n+1,且点A0,A1,A2,A3,…,A n+1在同一条直线上,连接A0C1交A1B1于点D1,连接A1C2交A2B2于点D2,连接A2C3交A3B3于点D3……记四边形A0B0C0D1的面积为S1,四边形A1B1C1D2的面积为S2,四边形A2B2C2D3的面积为S3……四边形A n﹣1B n﹣1C n﹣1D n的面积为S n,则S2019=.【答案】×42018【解答】解:∵四边形A0B0C0A1与四边形A1B1C1A2都是正方形,∴A1D1∥A2C1,∴=,∴=,∴A1D1=,同理可得:A2D2=,∴S1=1﹣×1×=40﹣×40,S2=4﹣×4,S3=42﹣×42,…,S n=4n ﹣1﹣×4n﹣1=×4n﹣1,∴S2019=×42018,故答案为:×42018.十六.扇形面积的计算(共1小题)52.(2019•抚顺)如图,直线l 1的解析式是y=x,直线l2的解析式是y=x,点A1在l1上,A1的横坐标为,作A1B1⊥l1交l2于点B1,点B2在l2上,以B1A1,B1B2为邻边在直线l1,l2间作菱形A1B1B2C1,分别以点A1,B2为圆心,以A1B1为半径画弧得扇形B1A1C1和扇形B1B2C1,记扇形B1A1C1与扇形B1B2C1重叠部分的面积为S1;延长B2C1交l1于点A2,点B3在l2上,以B2A2,B2B3为邻边在l1,l2间作菱形A2B2B3C2,分别以点A2,B3为圆心,以A2B2为半径画弧得扇形B2A2C2和扇形B2B3C2,记扇形B2A2C2与扇形B2B3C2重叠部分的面积为S2………按照此规律继续作下去,则S n=.(用含有正整数n的式子表示)【答案】(﹣)×()2n﹣2【解答】解:过A1作A1D⊥x轴于D,连接B1C1,B2C2,B3C3,B4C4,∵点A1在l1上,A1的横坐标为,点A1(,),∴OD=,A1D=,∴OA1===,∴在Rt△A1OD中,A1D=OA1,∴∠A1OD=30°,∵直线l2的解析式是y=x,∴∠B1OD=60°,∴∠A1OB1=30°,∴A1B1=OA1•tan∠A1OB1=1,∵A1B1⊥l1交l2于点B1,∴∠A1B1O=60°,∴∠A1B1B2=120°,∴∠B1A1C1=60°,∵四边形A1B1B2C1是菱形,∴△A1B1C1是等边三角形,∴S 1=2(S﹣S)=2×(﹣×12)=﹣,∵A1C1∥B1B2,∴∠A2A1C1=∠A1OB1=30°,∴A2C1=,A2B2=A2C1+B2C1=,∠A2B2O=60°,同理,S 2=2(S﹣S)=2×[﹣×()2]=(﹣)×()2,S3=(﹣)×()4,…∴S n=(﹣)×()2(n﹣1)=(﹣)×()2n﹣2.故答案为:(﹣)×()2n﹣2.十七.相似三角形的判定与性质(共1小题)53.(2021•东营)如图,正方形ABCB 1中,AB=,AB与直线l所夹锐角为60°,延长CB1交直线l于点A1,作正方形A1B1C1B2,延长C1B2交直线l于点A2,作正方形A2B2C2B3,延长C2B3交直线l于点A3,作正方形A3B3C3B4…,依此规律,则线段A2020A2021=.【答案】2×()2020【解答】解:根据题意可知AB1=AB=,∠B1AA1=90°﹣60°=30°,∴tan∠B1AA1==,∴A1B1=AB1×=×=1,AA1=2A1B1=2,A2B2=A1B2×=A1B1×=,A1A2=2A2B2=2×,A3B3=A2B3×=A2B2×=×=()2,A2A3=2A3B3=2×()2,∴A2021B2021=A2020B2021×=()2020,A2020A2021=2A2021B2021=2×()2020,故答案为:2×()2020.十八.概率公式(共1小题)54.(2020•济宁)小明用大小和形状都完全一样的正方体按照一定规律排放了一组图案(如图所示),每个图案中他只在最下面的正方体上写“心”字,寓意“不忘初心”.其中第(1)个图案中有1个正方体,第(2)个图案中有3个正方体,第(3)个图案中有6个正方体,…按照此规律,从第(100)个图案所需正方体中随机抽取一个正方体,抽到带“心”字正方体的概率是()A.B.C.D.【答案】D【解答】解:∵第1个图形中正方体的个数为1,第2个图形中正方体的个数3=1+2,第3个图形中正方体的个数6=1+2+3,∴第100个图形中,正方体一共有1+2+3+……+99+100==5050(个),其中写有“心”字的正方体有100个,∴抽到带“心”字正方体的概率是=,故选:D.。
2021年中考数学高频考点:《圆的综合》解答题专题练习(一)含答案
2021年中考数学复习高频考点精准练:《圆的综合》解答题专题练习(一)1.如图1,在△ABC中,AB=AC=5,以AB为直径作⊙O,分别交AC,BC于点E,F,连接EF,OE.(1)求证:∠OEF=∠ABC;(2)如图2,连接BE,若点D是线段BE上的一个动点,且tan∠CFE=2,求CD+BD 的最小值.2.在⊙O中,AB为直径,点P在BA的延长线上,PC为⊙O的切线,过点A作AH⊥PC于点H,交⊙O于点D,连接BC、BD、AC.(1)如图1,求证:∠CAH=∠CAB;(2)如图2,过点C作CE⊥AB于点E,求证:BD=2CE;(3)如图3,在(2)的条件下,点F在BC上,连接DF、EF,若BG=2AE,∠CFE=45°,OG=1,求线段EF的长.3.如图,在⊙O中,弦BC⊥半径OA于点D,点F是CD上一点,AF交⊙O于点E,点P为BC延长线上一点,PF=PE.(1)求证:PE是⊙O的切线;(2)若AD=2,BC=8,DF=1,求PE的长.4.如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆⊙O相交于点D,过D作直线DG∥BC.(1)求证:DG是⊙O的切线;(2)若DE=6,BC=6,求阴影部分的面积.5.在等边三角形ABC中,经过点B有一个圆与AC,AB,BC分别交于点D,E,F,连接BD,DE,DF.(1)如图(1),若BD是圆的直径,AE=CF时,求证:DE=DF;(2)如图(2),若=,AD=4时,求AB的长.6.如图,AB是⊙O的直径,D是AB延长线上的一点,点C在⊙O上,BC=BD,AE⊥CD交DC 的延长线于点E,AC平分∠BAE.(1)求证:CD是⊙O的切线;(2)若CD=6,求⊙O的直径.7.如图,AB是⊙O的直径,点C在⊙O上,点D为弦BC的中点,射线OD与圆周及切线BE 分别交于点M和点E,连接CE.(1)求证:直线CE是⊙O的切线;(2)若直径AB=4,填空:①连接CM,CO,当∠ABC=°时,四边形ACMO是菱形;②当ME=时,四边形OCEB是正方形.8.如图,AB是⊙O的弦,连接OA,过点O作OC⊥OA,OC交AB于点P,延长OP到C,连接BC,且CP=CB.(1)求证:BC是⊙O的切线;(2)若∠BAO=25°,OA=18,点Q是上的一点,求的长(结果用π表示).9.(1)如图1,求证:∠AOD=2∠ACD;(2)如图2,AC⊥BD,M是AB中点,求证:①EM⊥CD;②CD=2OM.10.如图,直线AB经过⊙O上的点C,直线AO与⊙O交于点E和点D,OB与⊙O交于点F,连接DF、DC.已知OA=OB,CA=CB.(1)求证:直线AB是⊙O的切线;(2)求证:∠FDC=∠EDC;(3)已知:DE=10,DF=6,求DC的长.11.如图,A,P,B,C是圆上的四个点,∠APC=∠CPB=60°,AP,CB的延长线相交于点D.(1)求证:△ABC是等边三角形;(2)若∠PAC=90°,AB=2,求PD的长.12.如图,AB为⊙O的直径,直线l与⊙O相切于D,⊙O的弦BC∥l,连接AD、AC,过D 作DE⊥AB于E点.(1)求证:BC=2DE;(2)过D作DG∥AB交AC于点G,GF⊥AB于点F.且BC=BF,求tan∠DAB的值.13.如图,AB是⊙O的直径,C是圆上一点,弦CD⊥AB于点E,且DC=AD.过A作⊙O的切线,过C作DA的平行线,两直线交于F,FC的延长线交AB的延长线于点G.(1)填空:∠D=°;(2)求证:FG与⊙O相切;(3)连接EF,求tan∠EFC的值.14.如图.⊙O过长方形ABCD的顶点D和BC上一点E.且与BA相切于点F,⊙O分别交AD,CD于G,H两点,BF=BE.(1)求证:BC是⊙O的切线;(2)连接FE,ED.若AG=1,BF=5,CH=2.求tan∠FED的值.15.在锐角△ABC中,AB=AC,以AB为直径的⊙O分别交边BC、AC于点D、E,AF⊥DE于点F.(1)求证:∠EDC=2∠CAF;(2)若直线AF是⊙O的切线,试判断△ABC的形状,并说明理由;(3)若=,求的值.参考答案1.(1)证明:如图1中,连接AF,OF.∵AB是直径,∴∠AFB=90°,∴AF⊥BC,∵AB=AC,∴∠EAF=∠FAB,∵∠EOF=2∠EAF,∠FOB=2∠FAB,∴∠EOF=∠FOB,∵OE=OF=OB,∴∠OEF=∠OFE=∠OFB=∠ABC,∴∠OEF=∠ABC.(2)解:如图2中,连接AF,过点C作CM⊥AB于M,过点D作DH⊥AB于H.∵四边形ABFE是圆内接四边形,∵∠CFE+∠EFB=180°,∴∠CFE=∠CAB,在Rt△AEB中,tan∠CAB=,tan∠CFE=2,∴=2,设AE=k,则BE=2k,∵AE2+BE2=AB2,∴k2+(2k)2=52,解得k=或﹣(舍弃),∴AE=,BE=2,∵AB=AC=5,AF⊥BC,BE⊥AC,又∵S=•AB•CM=•AC•BE,△ABC∴CM=BE=2,∵∠DHB=∠AEB=90°,∴sin∠DBH===,∴DH=BD,∵CD+DH≥CM=2,∴CD+BD=(CD+DH)≥×=10,∴CD+BD的最小值为10.2.(1)证明:连接OC,∵PC为⊙O的切线,∴OC⊥PC,∴∠PCO=90°,∵AH⊥PC,∴OC∥AH,∴∠CAH=∠ACO,∵OA=OC,∴∠OAC=∠OCA,∴∠CAH=∠CAB;(2)证明:连接OC,延长CO交BD于点M,∵∠CAH=∠CAB,CH⊥AH,CE⊥AB,∴CE=CH,∵AB为⊙O的直径,∴∠ADB=90°,∴∠DHC=∠HCM=∠ADB=90°,∴四边形HDMC为矩形,∴HC=DM,∠CMD=90°,CM⊥BD,∴BD=2DM=2CH=2CE;(3)解:连接CD,过点E作ES⊥BC于点S,ET⊥DF于点T,在Rt△CAH和Rt△CAE中,AC=AC,CH=CE,∴Rt△CAH≌Rt△CAE(HL),∴AH=AE,∵=,∴∠ABC=∠ADC,∵∠CAH=∠CEB=90°,CH=CE,∴△CHD≌△CEB(AAS),∴DH=BE,∵BG=2AE,设AE=a,则AH=AE=a,∵OG=1,∴OA=OB=2a+1,∴EO=OA﹣AE=a+1,EG=EO+OG=a+2,AG=OA+OG=2a+2,∴DH=BE=EG+BG=3a+2,∴AD=DH﹣AH=2a+2,∴AD=AG,∴∠ADG=∠AGD,∵∠HAE=∠ADG+∠AGD,∠HAE=∠HAC+∠EAC,由(1)知∠HAC=∠EAC,∴∠HAC=∠EAC=∠ADG=∠AGD,∴AC∥DF,∵AB为⊙O的直径,∴∠ACB=90°,∴∠DFC=∠DFB=∠ACB=90°,∵∠CFE=45°,∴∠EFC=∠EFD=45°,∵ES⊥BC,ET⊥DF,∴ES=ET,∠ESC=∠ETG=90°,∵∠CEG+∠CFG=180°,∴∠ECF+∠FGE=180°,∵∠EGT+∠EGF=180°,∴∠EGT=∠ECF.∴△ECS≌△EGT(AAS),∴CE=EG=a+2,在Rt△ADB中,AB=2OA=4a+2,BD=2CE=2a+4,AD=2a+2,∵AD2+BD2=AB2,∴(2a+2)2+(2a+4)2=(4a+2)2,解得a=2(a=﹣1舍去),∴CE=a+2=4,BE=3a+2=8,∴tan∠EBC==,∵BE=8,设ES=m,BS=2m,∴m2+(2m)2=82,解得m=(负值舍去),∴ES=,∵∠CFE=45°,∴EF=ES=.3.(1)证明:如图,连接OE,∵OA=OE,∴∠A=∠OEA,∵OA⊥BC,∴∠ADF=90°,∴∠A+∠AFD=90°,∵∠AFD=∠PFE,∴∠A+∠PFE=90°,∵PF=PE,∴∠PFE=∠PEF,∴∠A+∠PEF=∠OEA+∠PEF=90°,∴∠OEP=90°,∴OE⊥PE,OE是⊙O的半径,∴PE是⊙O的切线;(2)解:连接OC,OP,设OC=x,则OD=OA﹣AD=x﹣2,∵OA⊥BC,∴BD=CD=BC=4,在Rt△ODC中,根据勾股定理,得OC2=OD2+CD2,∴x2=(x﹣2)2+42,解得x=5,∴OC=5,OD=3,∵PE=PF,∴PD=PF+DF=PE+1,在Rt△OPD和Rt△OPE中,根据勾股定理,得OP2=OD2+PD2=OE2+PE2,∴9+(PE+1)2=25+PE2,解得PE=.4.(1)证明:连接OD交BC于H,连接OB、OC,如图,∵点E是△ABC的内心∴AD平分∠BAC,即∠BAD=∠CAD,∴∠BOD=∠COD,∴=,∴OD⊥BC,BH=CH,∵DG∥BC,∴OD⊥DG,∴DG是⊙O的切线;(2)解:∵点E是△ABC的内心,∴∠ABE=∠CBE,∵∠DBC=∠BAD,∴∠DEB=∠BAD+∠ABE=∠DBC+∠CBE=∠DBE,∴DB=DE=6,∵BH=BC=3,在Rt△BDH中,sin∠BDH===,∴∠BDH=45°,∵OB=OD,∴△OBD为等腰直角三角形,∴∠BOD=90°,∵BD=6,∴OB=OD=3,∵∠DOC=∠BOD=90°,∴阴影部分的面积=S扇形DOC ﹣S△DOC=﹣3×3=π﹣9.5.(1)证明:如图1中,∵BD是直径,∴∠BED=∠BFD=90°,∵△ABC是等边三角形,∴BA=BC,∵AE=CF,∴BE=BF,∵BD=BD,∴Rt△BDE≌Rt△BDF(HL),∴DE=DF.(2)解:如图2中,过点D作DM⊥AB于M,DN⊥BC于N.∵∠AED+∠BED=180°,∠BED+∠BFD=180°,∴∠AED=∠DFB,∵∠DME=∠DNF=90°,∴△DME∽△DNF,∴==,在Rt△ADM中,∠AMD=90°,∠A=60°,AD=4,∴DM=AD•sin60°=2,∴DN=5,在Rt△DCN中,∠DNC=90°,∠C=60°,∴CD==10,∴AB=AC=AD+DC=4+10=14.6.(1)证明:连接OC,如图,∵AC平分∠EAB,∴∠OAC=∠EAC,∵OA=OC,∴∠OAC=∠OCA,∴∠EAC=∠ACO,∴OC∥AE,∵AE⊥DC,∴OC⊥CD,∴CD是⊙O的切线;(2)解:∵BC=BD,∴∠BCD=∠BDC,∵AB是⊙O的直径,∴∠ACB=∠ACO+∠OCB=90°,由(1)知OC⊥CD,∴∠OCD=∠BCD+∠OCB=90°,∴∠OAC=∠OCA=∠BCD=∠BDC,∵OC=OB,∴∠OBC=∠OCB,而∠OBC=∠BCD+∠D=2∠BCD,∴∠OCB=2∠BCD,而∠OCD=∠BCD+∠OCB=3∠BCD=90°,∴∠OAC=∠OCA=∠BCD=∠D=30°,设OC=x,则OD=2x,由勾股定理得4x2﹣x2=62,解得,所以.7.(1)证明:连接OC,∵BE为⊙O的切线,∴∠ABE=90°,∵点O为BC的中点,∴依据垂径定理得OE垂直平分BC,∴EC=EB,在△OEC和△OEB中,∵EC=EB,EO=EO,CO=BO,∴△OEC≌△OBC(SSS),∴∠ECO=∠EBO=90°,∵OC为半径,∴直线CE是⊙O的切线;(2)解:①30°;②,理由如下:①∵四边形ACMO为菱形,∴AC=AO,∵OC=OA,∴△CAO为等边三角形,∴∠CAO=60°,∴∠ABC=90°﹣60°=30°;②∵四边形OCEB为正方形,AB=4,∴OC=CE=2,∴,∵CM=2,∴ME=2﹣2,故答案为①30°;②.8.(1)证明:连接OB,∵OA,OB是⊙O的半径,∴∠OBA=∠OAB,∵CP=CB,∴∠CBP=∠CPB.∵∠CPB与∠APO是对顶角,∴∠APO=∠CPB,∴∠CBP=∠APO,∵OC⊥OA,交AB于点P,∴∠APO+∠PAO=90°,∴∠CBP+∠OBA=90°.∴OB⊥BC,∴BC是⊙O的切线.(2)解:∵∠BAO=25°,∴∠AOB=130°.∴所对的圆心角为230°,∵OA=18,∴.9.(1)证明:如图1中,连接CO,延长CO到T.∵∠TOD=∠D+∠DCO,∠AOT=∠A+∠AOC,∴∠AOD=∠TOD+∠TOA=∠D+∠DCO+∠ACO+∠A,∵OD=OC=OA,∴∠D=∠OCD,∠A=∠ACO,∴∠AOD=2∠ACD.(2)①证明:如图2﹣1中,延长ME交CD于H.∵AC⊥BD,∴∠AEB=90°,∵AM=BM,∴ME=AM=BM,∴∠A=∠D=∠AEM,∵∠AEM+∠MEB=90°,∠MEB=∠DEH,∴∠D+∠DEH=90°,∴∠DHE=90°,∴ME⊥CD.②证明:如图2﹣2中,延长BO交⊙O于P,连接PD,PA,AD.∵AM=MB,OP=OB,∴AP=2OM,∵PB是直径,∴∠PDB=90°,∵AC⊥BD,∴∠AEB=∠PDB=90°,∴PD∥AC,∴∠ADP=∠DAC,∴=,∴CD=AP,∴CD=2OM.10.(1)证明:连接OC,∵OA=OB,AC=CB,∴OC⊥AB,∵点C在⊙O上,∴AB是⊙O切线;(2)证明:∵OA=OB,AC=CB,∴∠AOC=∠BOC,∵OD=OF,∴∠ODF=∠OFD,∵∠AOB=∠ODF+∠OFD=∠AOC+∠BOC,∴∠BOC=∠OFD,∴OC∥DF,∴∠CDF=∠OCD,∵OD=OC,∴∠ODC=∠OCD,∴∠ADC=∠CDF;(3)解:作ON⊥DF于N,延长DF交AB于M.∵ON⊥DF,∴DN=NF=3,在Rt△ODN中,∵∠OND=90°,OD=5,DN=3∴,∵∠OCM+∠CMN=180°,∠OCM=90°,∴∠OCM=∠CMN=∠MNO=90°,∴四边形OCMN是矩形,∴ON=CM=4,MN=OC=5,在Rt△CDM中,∵∠DMC=90°,CM=4,DM=DN+MN=9,∴.11.(1)证明:∵∠ABC=∠APC,∠BAC=∠BPC,∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,∴△ABC是等边三角形.(2)解:∵△ABC是等边三角形,AB=2,∴AC=BC=AB=2,∠ACB=60°.在Rt△PAC中,∠PAC=90°,∠APC=60°,AC=2,∴AP==.在Rt△DAC中,∠DAC=90°,AC=2,∠ACD=60°,∴AD=AC•tan∠ACD=2.∴PD=AD﹣AP=.12.(1)证明:连接OD,交BC于M,∵l是⊙O的切线,∴OD⊥l,∵BC∥l,∴BC⊥OD,∵O为AB的中点,∴M为BC中点,∴BC=2BM,在△OBM和△ODE中,,∴△OBM≌△ODE(ASA),∴DE=BM,∴BC=2DE;(2)解:连接BG,在Rt△BGC和Rt△BGF中,,∴Rt△BGC≌Rt△BGF(HL),∴BG平分∠CBF,CG=GF,设CG=GF=DE=a,则BC=BF=2a,∵∠GAF=∠CAB,∠AFG=∠ACB,∴△AFG∽△ACB,∴,∴,∴2AF=a+AG,又∵AG2=AF2+GF2,解得AF=a,AG=a,由(1)知,AD平分∠BAC,∴AG=GD=a,∴AE=a=3a,∴tan∠DAB==.13.解(1)∵AB是⊙O的直径,C是圆上一点,弦CD⊥AB于点E,∴DE=DC,∵DC=AD,∴DE=AD,∴∠DAE=30°,∴∠D=60°;故答案为:60°;(2)如答图:连接OD、OC,∵OA=OD,∠DAE=30°,∴∠ADO=30°,∵∠ADC=60°,AD∥FG,∴∠CDO=30°,∠DCG=60°,∵OD=OC,∴∠DCO=30°,∴∠GCO=∠DCG+∠DCO=90°,∴OC⊥FG,∴FG与⊙O相切;(3)如答图2:连接EF、OF、OC,过E作EH⊥FG于H,设⊙O半径为R,∵AD∥FG,∠DAE=30°,FG与⊙O相切,∴∠G=30°,∠OCG=90°,∴OG=2R,CG=R,∵CD⊥AB,∴∠GEC=90°,GE=CG=R,∵EH⊥FG于H,∴EH=GE=R,∵∠DCG=60°,EH⊥FG于H,∴CH==R,∵CD⊥AB,AF是⊙O的切线,∴∠GEC=∠GAF=90°,∴CD∥AF,∴∠AFC=∠DCG=60°,∵FG、FA是是⊙O的切线,∴FA=FC,∠OCF=∠OAF,又OF=OF,∴△AOF≌△COF(HL),∴∠OFC=∠OFA=30°,∴CF=R,∴HF=CF+CH=R,在Rt△EHF中,tan∠EFC===.14.(1)证明:连接OF,OE,EF,如图1所示:∵⊙O与BA相切于点F,∴AB⊥OF,∴∠OFB=90°,∵四边形ABCD是矩形,∴∠B=90°,∵BF=BE,∴△BEF是等腰直角三角形,∴∠BFE=∠BEF=45°,∴∠OFE=90°45°=45°,又∵OE=OF,∴∠OEF=∠OFE=45°,∴∠OEB=45°+45°=90°,∴BC⊥OE,∴BC是⊙O的切线;(2)解:连接OG、FG,连接EO并延长交AD于P,如图2所示:则EP⊥AD,AP=BE=BF=5,∴GP=AP﹣AG=4,∵∠OFB=∠B=∠OEB=90°,∴四边形OFBE是矩形,∴OE=BF=5,在Rt△GPO中,由勾股定理得:PO===3,∴AF=OP=3,∵∠FGA=∠FED,∴,tan∠FED=tan∠FGA==3.15.证明:(1)∵AB是直径,∴∠ADB=90°,又∵AB=AC,∴BD=CD,∠B=∠C,∠BAD=∠CAD,∴=,∴BD=DE,∴BD=DE=DC,∴∠DEC=∠C=∠AEF,∵∠AEF+∠CAF=90°,∠C+∠DAC=90°,∴∠CAF=∠CAD,∵四边形ABDE是圆内接四边形,∴∠BAC+∠BDE=180°,又∵∠BDE+∠EDC=180°,∴∠EDC=∠BAC=2∠CAD=2∠CAF;(2)△ABC是等边三角形,理由如下:∵直线AF是⊙O的切线,∴∠BAF=90°,∵∠BAD=∠CAD=∠CAF,∴∠BAD=∠CAD=∠CAF=30°,∴∠BAC=60°,又∵AB=AC,∴△ABC是等边三角形;(3)∵=,∴设AD=25x,DF=24x,∴AF===7x,∵∠BAD=∠CAF,∠AFE=∠ADB=90°,∴△ADB∽△AFE,∴,∴,∴BD=x,∴BC=x,∵AB===x,∴.。
中考数学专题复习练习——圆 解答题
中考数学专题复习练习——圆 解答题例题讲解:1.如图,四边形OABC 是平行四边形,以O 为圆心,OA 为半径的圆交AB 于D ,延长 AO 交⊙O 于E ,连接CD ,CE ,若CE 是⊙O 的切线,解答下列问题:(1)求证:CD 是⊙O 的切线;(2)若平行四边形OABC 的两边长是方程216600x x -+=的两根,求平行四边形OABC 的面积.2.如图,Rt △ABC 中,∠A =90°,以AB 为直径的⊙O 交BC 于点D ,点E 在⊙O 上, CE =CA , AB ,CE 的延长线交于点F .(1) 求证:CE 与⊙O 相切;(2) 若⊙O 的半径为3,EF =4,求BD 的长.3.如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A 、B 、C .(1)请完成如下操作:①以点O 为原点、竖直和水平方向为轴、网格边长为单位长,建立平面直D F B AO角坐标系;②根据图形提供的信息,标出该圆弧所在圆的圆心D,并连接AD、CD.(2)请在(1)的基础上,完成下列填空:①写出点的坐标:C 、D ;②⊙D的半径= (结果保留根号);③∠ADC的度数为.④网格图中是否存在过点B的直线BE是⊙D的切线,如果没有,请说明理由;如果有,请直接写出直线BE的函数解析式。
当堂训练1.如图,在□ABCD中,AC=A D,⊙O是△ACD的外接圆,BC的延长线与AO的延长线交干E.(1)求证:AB是⊙O的切线;(2)若AB=8,AD=5,求OE的长.2.如图,AB为⊙O直径,C.D为⊙O上的点,CD=CA,CE⊥DB交DB的延长线于点E.(1)判断直线CE与⊙O的位置关系,并说明理由;(2)若AC=4,AB=5,求CE的长.3.如图所示,△ABC内接于⊙O,AB是⊙O的直径,D是AB延长线上一点,连接DC,且AC=DC,BC=BD.(1)求证:DC是⊙O的切线;(2)作CD的平行线AE交⊙O于点E,已知DC=10,求圆心O到AE的距离.4.如图,已知Rt△ABC,∠ACB=900,(1)根据下列语句作图并保留作图痕迹;作Rt△ABC的外接圆⊙O,过点A作⊙O的切线PA与AC的垂直平分线交于点P;并写出过点A作⊙O的切线PA的作图依据;(2)连接PC,求证:PC是⊙O的切线;(3)已知PA=AC=3,求线段PA、PC与弧AC围成的图形的面积。
专题01 中考数学专题复习最值问题(阿氏圆)练习
中考数学专题复习最值问题(阿氏圆)练习1.如图,在Rt△ABC中,∠ACB=90°,CB=7,AC=9,以C为圆心、3为半径作⊙C,P为⊙C上一动点,连接AP、BP,则13AP+BP的最小值为()A.7B.C.4D.【答案】B【解析】思路引领:如图,在CA上截取CM,使得CM=1,连接PM,PC,BM.利用相似三角形的性质证明MP13=PA,可得13AP+BP=PM+PB≥BM,利用勾股定理求出BM即可解决问题.答案解析:如图,在CA上截取CM,使得CM=1,连接PM,PC,BM.∵PC=3,CM=1,CA=9,∴PC2=CM•CA,∴PC CM CA CP=,∵∠PCM=∠ACP,∴△PCM∽△ACP,∴13 PM PCPA AC==,∴PM13=PA,∴13AP+BP=PM+PB,∵PM+PB≥BM,在Rt△BCM中,∵∠BCM=90°,CM=1,BC=7,∴BM==∴13AP +BP ,∴13AP +BP 的最小值为.故选:B .2.如图,边长为4的正方形,内切圆记为⊙O ,P 是⊙O +PB 的最小值为________.【答案】【分析】+PB (PA PB )PB 即可解答.【解析】解:设⊙O 半径为r ,OP =r =12BC =2,OB r =,取OB PI ,∴OI =IB∵OP OI =,OB OP ==,∴OP OBOI OP= ,∠O 是公共角,∴△BOP ,∴PI PB =,∴PI ,∴AP =AP +PI ,∴当A 、P 、I 在一条直线上时,AP 最小,作IE ⊥AB 于E ,∵∠ABO =∴IE =BE =1,∴AE =AB −BE =3,∴AI =∴AP 最小值=AI+PB (PA PB ),+=.故答案是【点睛】本题是“阿氏圆”问题,解决问题的关键是构造相似三角形.3.如图,已知正方ABCD 的边长为6,圆B 的半径为3,点P 是圆B 上的一个动点,则12PD PC -的最大值为_______.【答案】152【分析】如图,连接BP ,在BC 上取一点M ,使得BM =32,进而证明BPM BCP △∽△,则在点P 运动的任意时刻,均有PM =12PC ,从而将问题转化为求PD -PM 的最大值.连接PD ,在△PDM 中,PD -PM <DM ,故当D 、M 、P 共线时,PD -PM =DM 为最大值,勾股定理即可求得DM .【解析】如图,连接BP ,在BC 上取一点M ,使得BM =32,31232BM BP ==Q ,3162BP BC ==BM BPBP BC\=PBM CBP Ð=ÐQ \BPM BCP△∽△12MP BM PC BP \==12MP PC \=12PD PC PD MD\-=-在△PDM 中,PD -PM <DM ,当D 、M 、P 共线时,PD -PM =DM 为最大值,Q 四边形ABCD 是正方形90C \Ð=°在Rt CDM V 中,152DM ===故答案为:152.【点睛】本题考查了圆的性质,相似三角形的性质与判定,勾股定理,构造12PC 是解题的关键.4.如图,在V 90,2B AB CB Ð=°==,以点B 为圆心作圆B 与AC 相切,点P 为圆B 上任一动点,则PA +的最小值是___________.【分析】作BH ⊥AC 于H ,取BC 的中点D ,连接PD ,如图,根据切线的性质得BH等腰直角三角形的性质得到BH 12=AC =接着证明△BPD ∽△BCP 得到PD =,所以PAPC =PA +PD ,而PA +PD ≥AD (当且仅当A 、P 、D 共线时取等号),从而计算出AD 得到PA 的最小值.【解析】解:作BH ⊥AC 于H ,取BC 的中点D ,连接PD ,如图,∵AC 为切线,∴BH 为⊙B 的半径,∵∠90°=CB =2,∴AC ==∴BH 12=AC∴BP =∵PB BC BD BP ==,而∠PBD =∠CBP ,∴△BPD∴PD PC ∴PD =,∴PA =PA +PD ,而PA +PD ≥AD (当且仅当A 、P 、D 共线时取等号),而AD =∴PA+即PA【点睛】:圆的切线垂直于经过切点的半径.解决问题的关键是利用相似比确定线段PD=.也考查了等腰直角三角形的性质.5.如图,在Rt ABCD中,AB=AC=4,点E,F分别是AB,AC的中点,点P是扇形AEF的 E F上任意一点,连接BP,CP,则12BP+CP的最小值是_____..【分析】在AB上取一点T,使得AT=1,连接PT,PA,CT.证明PAT BAPD D∽,推出PTPB=APAB=12,推出PT=12PB,推出12PB+CP=CP+PT,根据PC+PT≥TC,求出CT即可解决问题.【解析】解:在AB上取一点T,使得AT=1,连接PT,PA,CT.∵PA=2.AT=1,AB=4,∴PA2=4=AT•AB,∴PAAT=ABPA,∵∠PAT=∠PAB,∴PAT BAPD D∽,∴PTPB=APAB=12,∴PT=12PB,∴12PB+CP=CP+PT,∵PC+PT≥TC,在Rt ACTD中,∵∠CAT=90°,AT=1,AC=4,∴CT,∴12PB+PC,∴12PB+PC..【点睛】本题考查等腰直角三角形的性质,三角形相似的判定与性质,勾股定理的应用,三角形的三边关系,圆的基本性质,掌握以上知识是解题的关键.6.如图,已知正方形ABCD的边长为4,⊙B的半径为2,点P是⊙B上的一个动点,则PD﹣12 PC的最大值为_____.【答案】5【解析】分析: 由PD−12PC=PD−PG≤DG,当点P在DG的延长线上时,PD−12PC的值最大,最大值为DG=5.解析: 在BC上取一点G,使得BG=1,如图,∵221PBBG==,422BCPB==,∴PB BC BG PB=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴12 PG BGPC PB==,∴PG=12PC,当点P在DG的延长线上时,PD−12PC的值最大,最大值为DG=5.故答案为5点睛: 本题考查圆综合题、正方形的性质、相似三角形的判定和性质等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.7.如图1所示,⊙O的半径为r,点A、B都在⊙O外,P为⊙O上的动点,已知r=k·OB.连接PA、PB,则当“PA+k·PB”的值最小时,P点的位置如何确定?【解析】1:连接动点至圆心0(将系数不为1的线段两端点分别与圆心相连接),即连接OP 、OB ;2:计算连接线段OP 、OB 长度;3:计算两线段长度的比值k OPOB=;4:在OB 上截取一点C ,使得OC OPOP OB=构建母子型相似:5:连接AC ,与圆0交点为P ,即AC 线段长为PA +K *PB 的最小值.本题的关键在于如何确定“k ·PB ”的大小,(如图 2)在线段 OB 上截取 OC 使 OC =k ·r ,则可说明△BPO 与△PCO 相似,即 k ·PB =PC .∴本题求“PA +k ·PB ”的最小值转化为求“PA +PC ”的最小值,即 A 、P 、C 三点共线时最小(如图 3),时AC 线段长即所求最小值.8.如图,点A 、B 在O e 上,且OA =OB =6,且OA ⊥OB ,点C 是OA 的中点,点D 在OB 上,且OD =4,动点P 在O e 上.求2PC +PD 的最小值.【答案】【分析】连接OP ,在射线OA 上截取AE =6,连接PE .由题意易证OPC OEP V :V ,即得出2PE PC =,从而得出2PC PD PE PD +=+,由此可知当P 、D 、E 三点共线时,PE PD +最小,最小值为DE 的长,最后在Rt OED △中利用勾股定理求出DE 的长即可.【解析】如图,连接OP ,在射线OA 上截取AE =6,连接PE .∵C 是OA 的中点,∴1122OC OA OP ==.∴在△OPC 和△OEP 中,12COP POE OC OP OP OE Ð=Ðìïí==ïî,∴OPC OEP V :V ,∴1=2PC PE ,即2PE PC =,∴2PC PD PE PD +=+,.∴当P 、D 、E 三点共线时,PE PD +最小,最小值即为DE 的长,如图,在Rt OED △中,DE ===,∴2PC PD +的最小值为.【点睛】本题考查同圆半径相等、三角形相似的判定和性质和勾股定理等知识.正确作出辅助线并理解当P 、D 、E 三点共线时,PE PD +最小,最小值为DE 的长是解答本题的关键.9.如图,Rt △ABC ,∠ACB =90°,AC =BC =2,以C CDEF (C 、D 、E 、F 四个顶点按逆时针方向排列)可以绕点C 自由转动,且CD ,连接AF ,BD(1)求证:△BDC ≌△AFC(2)当正方形CDEF 有顶点在线段AB 上时,直接写出BD AD 的值;(3)直接写出正方形CDEF 旋转过程中,BD 的最小值.【答案】(1)见解析;(21 ;(3【分析】(1)利用SAS ,即可证明△FCA ≌△DCB ;(2)分两种情况当点D ,E 在AB 边上时和当点E ,F 在边AB(3)取AC 的中点M .连接DM ,BM .则CM =1,可证得△DCM ∽△ACD ,可得DM ,从而得到当B ,D ,M 共线时,BD 的值最小,即可求解.【解析】(1)证明: ∵四边形CDEF 是正方形,∴CF =CD ,∠DCF =∠ACB =90°,∴∠ACF =∠DCB ,∵AC =CB ,∴△FCA ≌△DCB (SAS );(2)解:①如图2中,当点D ,E 在AB 边上时,∵AC =BC =2,∠ACB =90°,∴sin 45ACAB ==°∵CD ⊥AB ,∴AD AC =´=∴BD =1==;②如图3中,当点E ,F 在边AB 上时.BD =CF =sin 452BC ´°==AD∴BD =综上所述,BD 1+(3)如图4中.取AC 的中点M .连接DM ,BM .则CM =1,∵CD CM =1,CA =2,∴CD 2=CM •CA ,∴CD CA =CMCD,∵∠DCM =∠ACD ,∴△DCM ∽△∴DM AD =CD AC ,∴DM ,∴BD =BD +DM ,∴当B ,D ,M 共线时,BD 的值最小,最小值BM ==【点睛】本题主要考查了相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,锐角三角函数,熟练掌握相关知识点是解题的关键.10.已知抛物线y =ax 2+bx +c 与x 轴交于A (﹣1,0),B (5,0)两点,C 为抛物线的顶点,抛物线的对称轴交x 轴于点D ,连接BC ,且tan∠CBD 4=3,如图所示.(1)求抛物线的解析式;(2)设P 是抛物线的对称轴上的一个动点.①过点P 作x 轴的平行线交线段BC 于点E ,过点E 作EF ⊥PE 交抛物线于点F ,连接FB 、FC ,求△BCF 的面积的最大值;②连接PB ,求35PC +PB 的最小值.【答案】(1)241620999x x -++;(2)①32;②245【解析】思路引领:(1)设抛物线的解析式为:y =a (x +1)(x ﹣5),可得对称轴为直线x =2,由锐角三角函数可求点C 坐标,代入解析式可求解析式;(2)①先求出直线BC 解析式,设P (2,t ),可得点E (534-t ,t ),点2315244F t t t æö--ç÷èø,,可求EF 的长,由三角形面积公式和二次函数性质可求解;②根据图形的对称性可知∠ACD =∠BCD ,AC =BC =5,过点P 作PG ⊥AC 于G ,可得PG 35=PC ,可得35PC PB PG PB +=+,过点B 作BH ⊥AC 于点H ,则PG +PB ≥BH ,即BH 是35PC +PB 的最小值,由三角形面积公式可求解.答案解析:(1)根据题意,可设抛物线的解析式为:y =a (x +1)(x ﹣5),∵抛物线的对称轴为直线x =2,∴D (2,0),又∵43CDtan CBD DBÐ==,∴CD =BD •tan∠CBD =4,即C (2,4),代入抛物线的解析式,得4=a (2+1)(2﹣5),解得 49a =-,∴二次函数的解析式为 ()()441599y x x =-+-=-x 2162099x ++;(2)①设P (2,t ),其中0<t <4,设直线BC 的解析式为 y =kx +b ,∴0542.k b k b =+ìí=+î,,解得 4320.3k b ì=-ïïíï=ïî即直线BC 的解析式为 42033y x =-+,令y =t ,得:354x t =-,∴点E (534-t ,t ),把354x t =- 代入()()4159y x x =-+-,得 24t y t æö=-ç÷èø,即2315244F t t t æö--ç÷èø,,∴221244t EF t t t t æö=--=-ç÷èø,∴△BCF 的面积12=´EF ×BD 32=(t 24t -)()223334(2)882t t t =--=--+,∴当t =2时,△BCF 的面积最大,且最大值为32;②如图,据图形的对称性可知∠ACD =∠BCD ,AC =BC =5,∴35AD sin ACD AC Ð==,过点P 作PG ⊥AC 于G ,则在Rt△PCG 中,35PG PC sin ACD PC =×Ð=,∴35PC PB PG PB +=+,过点B 作BH ⊥AC 于点H ,则PG +PB ≥BH ,∴线段BH 的长就是35PC PB +的最小值,∵11641222ABC S AB CD =´´=´´=V ,又∵1522ABC S AC BH BH =´´=V ,∴5122BH =,即245BH =,∴35PC PB +的最小值为245.11.问题提出:如图①,在Rt ABC △中,90C =o ∠,4CB =,6CA =,⊙C 的半径为2,P 为圆上一动点,连接AP 、BP ,求12AP BP +的最小值.(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图①,连接CP ,在CB 上取一点D ,使1CD =,则12CD CP CP CB ==.又PCD BCP Ð=Ð,所以PCD D ∽BCP D .所以12PD CD BP CP ==.所以12PD PB =,所以12AP BP AP PD +=+.请你完成余下的思考,并直接写出答案:12AP BP +的最小值为________;(2)自主探索:在“问题提出”的条件不变的前提下,求13AP BP +的最小值;(3)拓展延伸:如图②,已知在扇形COD 中,90COD Ð=o ,6OC =,3OA =,5OB =,P 是 CD上一点,求2PA PB +的最小值.【答案】(1;(2(3)13.【分析】(1)根据题意可知最小值为AD 长度,利用勾股定理即可求出AD 长度.(2)连接CP ,在CA 上取一点D ,使23CD =,即可证明PCD V ∽ACP △,得到13PD AP =,即13AP BP PD BP +=+,所以13AP BP +的最小值为BD 长度,利用勾股定理即可求出BD 长度.(3)延长OC 到E ,使6CE =,连接PE ,OP ,即可证明OAP △∽OPE V ,得到2EP PA =,即2PA PB EP PB +=+,所以2PA PB +的最小值为BE 长度,利用勾股定理即可求出BE 长度.【解析】(1)根据题意可知,当A 、P 、D 三点共线时,12AP BP +最小,最小值AD ====.(2)连接CP ,在CA 上取一点D ,使23CD =,则有13CD CP CP CA ==,∵PCD ACP Ð=Ð,∴PCD D ∽ACP △,得13PD CD AP CP ==,∴13PD AP =,故13AP BP PD BP +=+,仅当B 、P 、D 三点共线时,13AP BP +的最小值BD ====.(3)延长OC 到E ,使6CE =,连接PE ,OP ,则12OA OP OP OE ==,∵AOP POE Ð=Ð,∴OAP △∽OPE D ,∴12OA OP AP OP OE EP ===,∴2EP PA =,∴2PA PB EP PB +=+,仅当E 、P 、B 三点共线时,13EP PB BE +====,即2PA PB +的最小值为13.【点睛】本题考查圆的综合,勾股定理,相似三角形的判定和性质.根据阅读材料的思路构造出PCD V ∽ACP △和OAP △∽OPE V 是解题的关键.本题较难.12.如图,抛物线2y ax bx c =++与x 轴交于A 0),B 两点(点B 在点A 的左侧),与y 轴交于点C ,且3OB OA =,OAC Ð的平分线AD 交y 轴于点D ,过点A 且垂直于AD 的直线l 交y 轴于点E ,点P 是x 轴下方抛物线上的一个动点,过点P 作PF x ^轴,垂足为F ,交直线AD 于点H .(1)求抛物线的解析式;(2)设点P 的横坐标为m ,当FH HP =时,求m 的值;(3)当直线PF 为抛物线的对称轴时,以点H 为圆心,12HC 为半径作⊙H ,点Q 为⊙H 上的一个动点,求14AQ EQ +的最小值.【答案】(1)y 13=x 2﹣3;(2);(3【分析】对于(1),结合已知先求出点B 和点C 的坐标,再利用待定系数法求解即可;对于(2),在Rt△OAC 中,利用三角函数的知识求出∠OAC 的度数,再利用角平分线的定义求出∠OAD 的度数,进而得到点D 的坐标;接下来求出直线AD 的解析式,表示出点P ,H ,F 的3),首先求出⊙H 的半径,在HA 上取一点K ,使得HK=14,此时K (15-8);然后由HQ 2=HK·HA ,得到△QHK∽△AHQ,再利用相似三角形的性质求出KQ=14AQ ,进而可得当E 、Q 、K 共线时,14AQ+EQ 的值最小,据此解答.【解析】(1)由题意A 0),B 0),C (0,﹣3),设抛物线的解析式为y =a (x(x ,把C (0,﹣3)代入得到a 13=,∴抛物线的解析式为y 13=x 2﹣3.(2)在Rt△AOC 中,tan∠OAC OCOA==,∴∠OAC =60°.∵AD OAC ,∴∠OAD =30°=D (0,﹣1),∴直线AD 的解析式为y =﹣1,由题意P (m ,13m 2,H (m ﹣1),F (m ,0).∵FH =PH ,∴1=﹣1﹣(13﹣3)解得m =,∴当时,m .(3)如图,∵PF 是对称轴,∴F 0),H (.∵AH ⊥AE ,∴∠EAO =60°,∴EO ==3,∴E (0,3).∵C (0,﹣3),∴HC ==2,AH =2FH =4,∴QH 12=CH =1,在HA 上取一点K ,使得HK14=,此时K (158-).∵HQ 2=1,HK •HA =1,∴HQ 2=HK •HA ,∴HQ KHAH HQ=.∵∠QHK =∠AHQ ,∴△QHK ∽△AHQ ,∴14KQ HQ AQ AH ==,∴KQ 14=AQ ,∴14AQ +QE =KQ +EQ ,∴当E 、Q 、K 共线时,14AQ +QE 的值最小,最小值==.【点睛】本题考查了相似三角形对应边成比例、两边成比例且夹角相等的两个三角形相似、待定系数法求二次函数的表达式、二次函数的图象与性质、数轴上两点间的距离公式,熟练掌握该知识点是本题解题的关键.。
最新中考数学 整式乘法与因式分解易错压轴解答题专题练习(附答案)
最新中考数学整式乘法与因式分解易错压轴解答题专题练习(附答案)一、整式乘法与因式分解易错压轴解答题1.两个边长分别为a和b的正方形如图放置(图1),其未叠合部分(阴影)面积为S1;若再在图1中大正方形的右下角摆放一个边长为b的小正方形(如图2),两个小正方形叠合部分(阴影)面积为S2.(1)用含a,b的代数式分别表示S1、S2;(2)若a+b=10,ab=20,求S1+S2的值;(3)当S1+S2=30时,求出图3中阴影部分的面积S3.2.观察下列各式:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;……根据这一规律计算:(1)(x﹣1)(x4+x3+x2+x+1)=________.(x﹣1)(x n+x n﹣1+…+x+1)=________. (2)22020+22019+22018+…+22+2+1.(3)32020﹣32019+32018﹣32017+…+32﹣3+1.3.[数学实验探索活动]实验材料现有若干块如图①所示的正方形和长方形硬纸片.实验目的:用若干块这样的正方形和长方形硬纸片拼成一个新的长方形,通过不同的方法计算面积,得到相应的等式,从而探求出多项式乘法或分解因式的新途径.例如,选取正方形、长方形硬纸片共6块,拼出一个如图②的长方形,计算它的面积,写出相应的等式有a2+3ab+2b2=(a+2b)(a+b)或(a+2b)(a+b)=a2+3ab+2b2.问题探索:(1)小明想用拼图的方法解释多项式乘法(2a+b)(a+b)=2a2+3ab+b2,那么需要两种正方形纸片________张,长方形纸片________张;(2)选取正方形、长方形硬纸片共8块,可以拼出一个如图③的长方形,计算图③的面积,并写出相应的等式;(3)试借助拼图的方法,把二次三项式2a2+5ab+2b2分解因式,并把所拼的图形画在虚线方框3内.4.如图,将几个小正方形与小长方形拼成一个边长为(a+b+c)的正方形(1)若用不同的方法计算这个边长为(a+b+c)的正方形面积,就可以得到一个等式,这个等式可以为 ________ .(只要写出一个即可)(2)请利用(1)中的等式解答下列问题:①若三个实数a,b,c满足a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值②若三个实数x,y,z满足2x×4y÷8z= ,x2+4y2+9z2=44,求2xy-3xz-6yz的值5.阅读下列材料:对于多项式x2+x-2,如果我们把x=1代入此多项式,发现x2+x-2的值为0,这时可以确定多项式中有因式(x-1):同理,可以确定多项式中有另一个因式(x+2),于是我们可以得到:x2+x-2=(x-1)(x+2)又如:对于多项式2x2-3x-2,发现当x=2时,2x2-3x-2的值为0,则多项式2x2-3x-2有一个因式(x-2),我们可以设2x2-3x-2=(x-2)(mx+n),解得m=2,n=1,于是我们可以得到:2x2-3x-2=(x-2)(2x+1)请你根据以上材料,解答以下问题:(1)当x=________时,多项式6x2-x-5的值为0,所以多项式6x2-x-5有因式________ ,从而因式分解6x2-x-5=________.(2)以上这种因式分解的方法叫试根法,常用来分解一些比较复杂的多项式.请你尝试用试根法分解多项式:①2x2+5x+3;②x3-7x+6(3)小聪用试根法成功解决了以上多项式的因式分解,于是他猜想:代数式(x-2)3-(y-2)3-(x-y)3有因式________ ,________ ,________ ,所以分解因式(x-2)3-(y-2)3-(x-y)3= ________。
最新中考数学 一元一次不等式易错压轴解答题专题练习
最新中考数学一元一次不等式易错压轴解答题专题练习一、一元一次不等式易错压轴解答题1.已知一件文化衫价格为28元,一个书包的价格比一件文化衫价格的2倍少6元. (1)求一个书包的价格是多少元?(2)“同一蓝天”爱心社出资3000元,拿出不少于400元但不超过500元的经费奖励山区小学的优秀学生,剩余经费还能为多少名山区小学的学生每人购买一个书包和一件文化衫?2.先阅读理解下面的例题,再按要求解答:例题:解不等式(x+5)(x-5)>0解:由有理数的乘法法则“两数相乘,同号得正”,得①或②解不等式组①得x>5,解不等式组②得x<-5,所以不等式的解集为x>5或x<-5。
(1)求不等式x²-2x-3<0的解集。
(2)求不等式的解集。
3.某服装厂生产一种西装和领带,西装每套定价400元,领带每条定价50元.厂方在开展促销活动期间,向客户提供两种优惠方案:方案①:买一套西装送一条领带;方案②:西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20)(1)若该客户按方案①购买,需付款________元(用含x的代数式表示);若该客户按方案②购买,需付款________元(用含x的代数式表示);(2)若x=30,通过计算说明此时按哪种方案购买较为合算?(3)若两种优惠方案可同时使用,当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法并计算出此种方案的付款金额.4.有大小两种货车,3辆大货车与2辆小货车一次可以运货21吨,2辆大货车与4辆小货车一次可以运货22吨.(1)每辆大货车和每辆小货车一次各可以运货多少吨?(2)现有这两种货车共10辆,要求一次运货不低于35吨,则其中大货车至少多少辆?(用不等式解答)(3)日前有23吨货物需要运输,欲租用这两种货车运送,要求全部货物一次运完且每辆车必须装满.已知每辆大货车一次运货租金为300元,每辆小货车一次运货租金为200元,请列出所有的运输方案井求出最少租金.5.学校准备购进一批篮球和排球,买2个篮球和3个排球共需230元,买3个篮球和2个排球共需290元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学解答题目专题目练习1
解答题专题练习(一)
一、解答题
1.已知:如图,梯形ABCD 中,DC ∥AB ,AD =BC ,对角线AC 、BD 交于点O ,∠COD =60°,若
CD =3,
AB =8,求梯形ABCD 的高.
2.已知:如图,AB 为⊙O 的直径,⊙O 过AC 的中点D ,DE ⊥BC 于点E . (1)求证:DE 为⊙O 的切线; (2)若DE =2,tan C =2
1
,求⊙O 的直径.
3.(本小题满分7分)
已知二次函数22-+-=m mx x y .
(1) 求证:无论m 为任何实数,该二次函数的图象与x 轴都有两个交点; (2) 当该二次函数的图象经过点(3,6)时,求二次函数的解析式;
B
C
D
O
A
4.如图,直线3+-=x y 与x 轴,y 轴分别交于B ,C 两点,抛物线c bx x y ++-=2经过点B 和点C ,点A 是抛物线与x 轴的另一个交点. (1)求抛物线的解析式和顶点坐标;
(2)若点Q 在抛物线的对称轴上,能使△Q AC 的周长最小,请求出Q 点的坐标;
5某工厂计划招聘A 、B 两个工种的工人共120人,A 、B 两个工种的工人月工资分别为800元和1000元.
(1)若某工厂每月支付的工人工资为ll000O 元,那么A 、B 两个工种的工人各招聘多少人?设招聘A 工种的工人x 人。
根据题设完成下列表格,并列方程求解.
(2)若要求B 工种的人数不少于A 工种人数的2倍,那么招聘A 工种的工人多少人时,可使工厂每月支付的工人工资最少?
6.如图,已知一次函数b kx y +=的图象经过)1,2(--A ,)3,1(B 两点,并且交x 轴于点C ,交y 轴于
点D , (1)求该一次函数的解析式; (2)求OCD ∠tan 的值; (3)求证:︒=∠135AOB .
答案(1)
四、解答题(共4小题,每小题5分,满分20分) 19.解:过点C 作CE ∥DB ,交AB 的延长线于点E .
∴∠ACE =∠COD =60°. -----------------1分
又∵DC ∥AB , ∴四边形DCEB 为平行四边形.---------------- 2分 ∴BD =CE ,BE = DC =3,AE =AB +BE =8+3=11. ---------------- 3分 又∵DC ∥AB ,AD =BC , ∴DB =AC =CE .
∴△ACE 为等边三角形.
∴AC =AE =11, ∠CAB =60°. -------------------------------------------------- 4分 过点C 作CH ⊥AE 于点H .在Rt △ACH 中, CH =AC ·sin ∠CAB =11×2
3=113.
∴梯形ABCD 的高为11
3
. --------------------------------------------------
5分
20.(1)证明:联结OD . ∵ D 为AC 中点, O 为AB 中点,
∴ OD 为△ABC 的中位线. ∴OD ∥BC . ----------- 1
H
E
A
B
D
C
O
B
D C A
O 1 1
(第6
y
分
∵ DE ⊥BC , ∴∠DEC =90°.
∴∠ODE =∠DEC =90°. ∴OD ⊥DE 于点D . ∴ DE 为⊙O 的切线. ------------ 2分
(2)解:联结DB . ∵AB 为⊙O 的直径,
∴∠ADB =90°. ∴DB ⊥AC . ∴∠CDB =90°.
∵ D 为AC 中点, ∴AB=AC . 在Rt △DEC 中,∵DE =2 ,tan C =
21
, ∴EC =4tan =C
DE . ------------------------- 3分
由勾股定理得:DC =52.
在Rt △DCB 中, BD=5tan =⋅C DC .由勾股定理得: BC =5.
∴AB= BC =5. --------------------------- 4分 ∴⊙O 的直径为5. --------------------------- 5分 23.(1)证明:令y =0,则022=-+-m mx x .
∵△)2(4)(2---=m m 842+-=m m =4)2(2+-m , --------------------------- 1分 又∵0)2(2≥-m , ∴04)2(2>+-m .即△>0.
∴无论m 为任何实数,一元二次方程022=-+-m mx x 总有两不等实根. ∴该二次函数图象与x 轴都有两个交点. -----------------------------2分
(2)解:∵二次函数22-+-=m mx x y 的图象经过点(3,6),
∴ 62332=-+-m m .解得 21
=
m . ∴二次函数的解析式为2
3
212--=x x y . ----------------------------
3分
26、(1)322++-=x x y ,顶点(1,4);……4分 (2)Q (1,2);……5分
⒛解:填表按行如下:
第一行:800 800x………………………………………………………………1分 第二行:l000 l20-x l000(120一x)………………………………………2分 依题意得:800x+l000(120-x)=110000……………………………………3分 解得:x=50
120-x=70………………………………………………………………………5分 (2)由120一x≥2x 解得x≤40.
设工厂每月支付的工人工资为y 元,则:
y=800x+1000(120一x)=一200x+120000…………………………………7分 ∴当x=40时,y 有最小值为11000…………………………………………8分 答:(l)A 、B 两工种工人分别招聘50人和70人.
(2)当招聘A 工种40人时,工厂每月支付的工人工资最少.……………………9分
21.解:(1)由⎩⎨⎧
+=+-=-b k b k 321,解得⎪⎩
⎪⎨
⎧=
=3
534
b k ,所以3534+=x y ······ 3分 (2)5(0)4C -,,5
(0)3
D ,.
在Rt △OCD 中,35=OD ,4
5=OC , ∴OCD ∠tan 3
4
==
OC OD . ····················· 6分 (3)取点A 关于原点的对称点(21)E ,, 则问题转化为求证︒=∠45BOE . 由勾股定理可得,
5=OE ,5=BE ,10=OB ,
∵222BE OE OB +=, ∴△EOB 是等腰直角三角形. ∴︒=∠45BOE . ∴135AOB ∠=°.
(第21。