同济第六版高等数学教案WORD版第09章重积分
同济第六版《高等数学》教案WORD版-第06章 定积分的应用
第六章定积分的应用教学目的1、理解元素法的基本思想;2、掌握用定积分表达和计算一些几何量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积).3、掌握用定积分表达和计算一些物理量(变力做功、引力、压力和函数的平均值等)。
教学重点:1、计算平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积.2、计算变力所做的功、引力、压力和函数的平均值等.教学难点:1、截面面积为已知的立体体积.2、引力。
§6. 1 定积分的元素法回忆曲边梯形的面积:设y=f(x)≥0 (x∈[a,b]).如果说积分,是以[a,b]为底的曲边梯形的面积,则积分上限函数就是以[a,x]为底的曲边梯形的面积.而微分dA(x)=f (x)dx表示点x处以dx为宽的小曲边梯形面积的近似值∆A≈f (x)dx, f (x)dx称为曲边梯形的面积元素.以[a,b]为底的曲边梯形的面积A就是以面积元素f(x)dx为被积表达式,以[a,b]为积分区间的定积分:.一般情况下,为求某一量U,先将此量分布在某一区间[a,b]上,分布在[a,x]上的量用函数U(x)表示,再求这一量的元素dU(x),设dU(x)=u(x)dx,然后以u(x)dx为被积表达式,以[a,b]为积分区间求定积分即得.用这一方法求一量的值的方法称为微元法(或元素法).§6. 2 定积分在几何上的应用一、平面图形的面积1.直角坐标情形设平面图形由上下两条曲线y=f上(x)与y=f下(x)及左右两条直线x=a与x=b所围成,则面积元素为[f上(x)- f下(x)]dx,于是平面图形的面积为.类似地, 由左右两条曲线x=ϕ左(y)与x=ϕ右(y)及上下两条直线y=d与y=c所围成设平面图形的面积为.例1计算抛物线y2=x、y=x2所围成的图形的面积.解(1)画图.(2)确定在x轴上的投影区间:[0, 1].(3)确定上下曲线: .(4)计算积分.例2计算抛物线y2=2x与直线y=x-4所围成的图形的面积.解(1)画图.(2)确定在y轴上的投影区间:[-2, 4].(3)确定左右曲线: .(4)计算积分.例3求椭圆所围成的图形的面积.解设整个椭圆的面积是椭圆在第一象限部分的四倍,椭圆在第一象限部分在x轴上的投影区间为[0,a].因为面积元素为ydx,所以.椭圆的参数方程为:x=a cos t,y=b sin t,于是.2.极坐标情形曲边扇形及曲边扇形的面积元素:由曲线ρ=ϕ(θ)及射线θ=α,θ=β围成的图形称为曲边扇形.曲边扇形的面积元素为.曲边扇形的面积为.例4。
《高等数学》(同济六版)教学课件★第9章.多元函数微分法及其应用(1)
例如, f ( x, y )
4
x2 y 2 2 2 xy 2 , x y 0 2 x y 0, x2 y 2 0
2 2 4
x 4x y y 2 2 y , x y 0 2 2 2 f x ( x, y ) (x y ) 0, x2 y2 0 x4 4x2 y 2 y 4 2 2 x , x y 0 2 2 2 f y ( x, y ) (x y ) 0, x2 y2 0 y f x (0, y ) f x (0, 0) lim 1 f x y (0,0) lim y 0 y y 0 y f y ( x, 0) f y (0, 0) x 1 lim f y x (0,0) lim x 0 x x 0 x
目录 上页 下页 返回 结束
r2
定理. 若 f x y ( x,y) 和 f y x ( x,y) 都在点 ( x0 , y0 ) 连续, 则
f x y ( x0 , y0 ) f y Байду номын сангаас ( x0 , y0 )
本定理对 n 元函数的高阶混合导数也成立.
(证明略)
例如, 对三元函数 u = f (x , y , z) , 当三阶混合偏导数 在点 (x , y , z) 连续时, 有
x 0 y 0
0
得
x 0 y 0
lim f ( x x, y y ) f ( x, y )
即 函数 z = f (x, y) 在点 (x, y) 可微
z f ( x x, y y) f ( x , y ) 函数在该点连续
下面两个定理给出了可微与偏导数的关系:
目录 上页 下页 返回
(同济大学)高等数学课件D9_4重积分的应用
π
a 3 r dr 0
1 2 半圆薄片的质量 M = π a 2 1 = M a2 4
机动 目录 上页 下页 返回 结束
8.求均匀球体对于过球心的一条轴 l 的转动惯量. 例8. 解: 取球心为原点, z 轴为 l 轴, 设球 所占域为 则
l
z
∫∫∫
(x + y )ρ dxdydz (用球坐标)
h
V = ∫∫∫ dxdydz = ∫ dz∫∫ d x d y = ∫
0 Dz
机动
hπ
0
目录
9
z(3 z)2dz
下页 返回 结束
上页
9 1 2 V = h ( 2h + h ) 9 2 4
3
π
z
∫∫∫ zdxdydz
o
3 1 2 = h (3 h + h ) 9 2 5 60 30h + 4h2 ∴ z =h 2 90 40h + 5h
4
C2 D
o
x
4sinθ 2 1 π 56 π 4 r d r = ∫ sin θ dθ = ∫ sinθ dθ ∫ 2sinθ 3π 0 9π 0
56 π 2 4 56 3 1 π 7 = 2∫ sin θ dθ = 2 = 0 9π 9π 4 2 2 3
机动 目录 上页 下页 返回 结束
机动
目录
上页
下页
返回
结束
一,立体体积
曲顶柱体 曲顶柱体的顶为连续曲面 则其体积为
V = ∫∫ f (x, y)dxdy
D
占有空间有界域 的立体的体积为 空间有界域
V = ∫∫∫ dxdydz
机动
目录
上页
9高等数学同济大学第六版本Word版
习题9-21 计算下列二重积分:(1)⎰⎰+Dd y x σ)(22, 其中D {(xy )| |x |1 |y |1};解 积分区域可表示为D1x 1 1y 1 于是⎰⎰+Dd y x σ)(22y d y x dx ⎰⎰--+=111122)(x d y y x ⎰--+=111132]31[ x d x ⎰-+=112)312(113]3232[-+=x x 38=(2)⎰⎰+Dd y x σ)23(, 其中D 是由两坐标轴及直线x +y =2所围成的闭区域:解 积分区域可表示为D 0x 2 0y 2x 于是⎰⎰+Dd y x σ)23(y d y x dx x⎰⎰-+=2020)23(dx y xy x ⎰-+=2022]3[ dx x x ⎰-+=202)224(0232]324[x x x -+=320=(3)⎰⎰++Dd y y x x σ)3(223, 其中D {(x y )| 0x 1, 0y 1}解 ⎰⎰++Dd y y x x σ)3(323⎰⎰++=1032310)3(dx y y x x dy ⎰++=1001334]4[dy x y y x x ⎰++=103)41(dy y y 0142]424[y y y ++=1412141=++=(4)⎰⎰+Dd y x x σ)cos(, 其中D 是顶点分别为(0, 0), (p , 0), 和(p , p )的三角形闭区域.解 积分区域可表示为Dx 0y x 于是,⎰⎰+Dd y x x σ)cos(⎰⎰+=x dy y x xdx 0)cos(π⎰+=π)][sin(dx y x x x⎰-=π0)sin 2(sin dx x x x ⎰--=π0)cos 2cos 21(x x xd+--=0|)cos 2cos 21(πx x x dx x x ⎰-π0)cos 2cos 21(π23-=2. 画出积分区域, 并计算下列二重积分:(1)⎰⎰Dd y x σ, 其中D 是由两条抛物线xy = 2x y =所围成的闭区域;解 积分区域图如并且D{(xy )| 0x 1 x y x ≤≤2} 于是⎰⎰Dd y x σ⎰⎰=102dy y x dx xx⎰=10223]32[dx y x x x 556)3232(10447=-=⎰dx x x(2)⎰⎰Dd xy σ2, 其中D 是由圆周x 2+y 2=4及y 轴所围成的右半闭区域;解 积分区域图如 并且D{(xy )| 2y 2 240y x -≤≤} 于是⎰⎰⎰⎰⎰----=22402240222222]21[dy y x dx xy dy d xy y y Dσ1564]10132[)212(22225342=-=-=--⎰y y dy y y (3)⎰⎰+Dy x d e σ, 其中D {(x y )| |x ||y |1}解 积分区域图如 并且 D {(x y )| 1x 0 x 1y x 1}{(x y )| 0x 1x 1y x 1} 于是 ⎰⎰⎰⎰⎰⎰+--+---++=111111x x y xx x yxDyx dy e dx e dy e dx e d eσ⎰⎰+---+--+=1110111][][dy e e dx e e x x y x x x y x ⎰⎰---+-+-=11201112)()(dx e e dx e ex x 101201112]21[]21[---+-+-=x x e ex x e e =e -e -1(4)⎰⎰-+Dd x y x σ)(22, 其中D 是由直线y =2, y =x 及y =2x 轴所围成的闭区域解 积分区域图如并且D{(xy )| 0y 2 y x y ≤≤21} 于是⎰⎰⎰⎰⎰-+=-+=-+2022232222022]2131[)()(dy x x y x dx x y x dy d x y x y y y y Dσ613)832419(2023=-=⎰dy y y3. 如果二重积分⎰⎰Ddxdy y x f ),(的被积函数f (x , y )是两个函数f 1(x )及f 2(y )的乘积, 即f (x , y )= f 1(x )f 2(y ), 积分区域D {(x y )| a x b , c y d },证明这个二重积分等于两个单积分的乘积, 即])([])([)()(2121dy y f dx x f dxdy y f x f dcbaD⎰⎰⎰⎰⋅=⋅证明 dxdy y f x f dy y f x f dx dxdy y f x f dcb a d cb aD⎰⎰⎰⎰⎰⎰⋅=⋅=⋅])()([)()()()(212121而 ⎰⎰=⋅dcd cdyy f x f dy y f x f )()()()(2121故 dxdy y f x f dxdy y f x f b adcD⎰⎰⎰⎰=⋅])()([)()(2121由于⎰dcdy y f )(2的值是一常数因而可提到积分号的外面于是得])([])([)()(2121dy y f dx x f dxdy y f x f dcbaD⎰⎰⎰⎰⋅=⋅4. 化二重积分⎰⎰=Dd y x f I σ),(为二次积分(分别列出对两个变量先后次序不同的两个二次积分), 其中积分区域D 是:(1)由直线y =x 及抛物线y 2=4x 所围成的闭区域; 解积分区域如图所示并且D {(x y )|x y x x 2 ,40≤≤≤≤} 或D {(x y )| y x y y ≤≤≤≤241 ,40}所以 ⎰⎰=xxdy y x f dx I 240),(或⎰⎰=yy dxy x f dy I 4402),((2)由x 轴及半圆周x 2+y 2=r 2(y 0)所围成的闭区域;解积分区域如图所示并且D {(x y )|220 ,x r y r x r -≤≤≤≤-} 或D{(xy )| 2222 ,0y r x y r r y -≤≤--≤≤}所以 ⎰⎰--=220),(x r r rdyy x f dx I 或⎰⎰---=2222),(0y r y r r dx y x f dy I(3)由直线y =x , x =2及双曲线x y 1=(x >0)所围成的闭区域;解积分区域如图所示并且D {(x y )|x y x x ≤≤≤≤1 ,21}或D{(xy )| 21 ,121≤≤-≤≤x yy }{(x y )|2 ,21≤≤≤≤x y y }所以 ⎰⎰=xxdyy x f dx I 1),(21或⎰⎰⎰⎰+=22121121),(),(yydxy x f dy dx y x f dy I(4)环形闭区域{(x , y )| 1x 2+y 24}.解 如图所示 用直线x =-1和x =1可将积分区域D 分成四部分, 分别记做D 1, D 2, D 3, D 4 于是⎰⎰⎰⎰⎰⎰⎰⎰+++=4321),(),(),(),(D D D D d y x f d y x f d y x f d y x f I σσσσ⎰⎰⎰⎰--------+=222244411112),(),(x x x x dy y x f dx dy y x f dx⎰⎰⎰⎰--------++222214442111),(),(x x x x dy y x f dx dy y x f dx用直线y =1, 和y =-1可将积分区域D 分成四部分, 分别记做D 1, D 2, D 3, D 4,如图所示. 于是⎰⎰⎰⎰⎰⎰⎰⎰+++=4321),(),(),(),(D D D D d y x f d y x f d y x f d y x f I σσσσ⎰⎰⎰⎰--------+=222244141121),(),(y y y y dx y x f dy dx y x f dy⎰⎰⎰⎰--------++222241441211),(),(y y y y dx y x f dy dx y x f dy5 设f (x , y )在D 上连续, 其中D 是由直线y =x 、y =a 及x =b (b >a )围成的闭区域,证明:⎰⎰⎰⎰=bybaxabadx y x f dy dy y x f dx ),(),(.证明 积分区域如图所示 并且积分区域可表示为D {(x y )|a x b a y x } 或D {(x y )|a y by x b } 于是 ⎰⎰Dd y x f σ),(⎰⎰=xab adyy x f dx ),( 或⎰⎰Dd y x f σ),(⎰⎰=byb a dxy x f dy ),(因此 ⎰⎰⎰⎰=byb ax ab adx y x f dy dy y x f dx ),(),(.6 改换下列二次积分的积分次序(1)⎰⎰ydx y x f dy 01),(;解 由根据积分限可得积分区域D {(x y )|0y 1 0x y } 如图因为积分区域还可以表示为D {(x y )|0x 1 x y 1} 所以 ⎰⎰⎰⎰=111),(),(xydyy x f dx dx y x f dy(2)⎰⎰yydx y x f dy 2202),(;解由根据积分限可得积分区域D{(x y)|0y2y2x2y}如图图.(5)⎰⎰exdy y x f dx 1ln 0),(;解 由根据积分限可得积分区域D ={(x , y )|1£x £e , 0£y £ln x }, 如图. 因为积分区域还可以表示为D ={(x , y )|0£y £1, e y £x £ e }, 所以 ⎰⎰ex dy y x f dx 1ln 0),(⎰⎰=10),(eey dx y x f dy}arcsin 2 ,01|),{(π≤≤-≤≤-=x y y y x D}arcsin arcsin ,10|),{(y x y y y x -≤≤≤≤⋃π,7. 设平面薄片所占的闭区域D 由直线x +y =2, y =x 和x 轴所围成, 它的面密度为m (x , y )=x 2+y 2, 求该薄片的质量. 解 如图, 该薄片的质量为⎰⎰=Dd y x M σμ),(⎰⎰+=Dd y x σ)(22⎰⎰-+=10222)(yydx y x dy⎰⎰--=Ddxdy y x V )326(⎰⎰--=110)326(dy y x dx10. 求由曲面z =x 2+2y 2及z =6-2x 2-y 2所围成的立体的体积.解 由⎩⎨⎧--=+=2222262y x z y x z 消去z , 得x 2+2y 2=6-2x 2-y 2, 即x 2+y 2=2, 故立体在x O y 面上的投影区域为x 2+y 2£2, 因为积分区域关于x 及y 轴均对称, 并且被积函数关于x , y 都是偶函数, 所以⎰⎰+---=Dd y x y x V σ)]2()26[(2222⎰⎰--=Dd y x σ)336(22⎰⎰---=2202220)2(12x dy y x dx π6)2(8232=-=⎰dx x .11 画出积分区域把积分⎰⎰Ddxdy y x f ),(表示为极坐标形式的二次积分,其中积分区域D 是:(1){(x , y )| x 2+y 2a 2}(a >0); 解积分区域D 如图 因为D {( )|02 0a } 所以⎰⎰⎰⎰=DDd d f dxdy y x f θρρθρθρ)sin ,cos (),(⎰⎰=πρρθρθρθ20)sin ,cos (d f d a(2){(x , y )|x 2+y 22x };解 积分区域D 如图因为}cos 20 ,22|),{(θρπθπθρ≤≤≤≤-=D 所以⎰⎰⎰⎰=DDd d f dxdy y x f θρρθρθρ)sin ,cos (),(⎰⎰-=22cos 20)sin ,cos (ππθρρθρθρθd f d(3){(x , y )| a 2x 2+y 2b 2}, 其中0a <b 解 积分区域D 如图 因为D {( )|02 a b } 所以⎰⎰⎰⎰=DDd d f dxdy y x f θρρθρθρ)sin ,cos (),(⎰⎰=πρρθρθρθ20)sin ,cos (bad f d(4){(x , y )| 0y 1-x , 0x 1}.解 积分区域D 如图因为}sin cos 10 ,20|),{(θθρπθθρ+≤≤≤≤=D 所以⎰⎰⎰⎰=DDd d f dxdy y x f θρρθρθρ)sin ,cos (),(⎰⎰+=θθρρθρθρθπsin cos 1020)sin ,cos (d f d12 化下列二次积分为极坐标形式的二次积分:(1)⎰⎰11),(dy y x f dx ;解 积分区域D 如图所示 因为}csc 0 ,24|),{(}sec 0 ,40|),{(θρπθπθρθρπθθρ≤≤≤≤⋃≤≤≤≤=D所以 ⎰⎰⎰⎰⎰⎰==DDd d f d y x f dy y x f dx θρρθρθρσ)sin ,cos (),(),(101⎰⎰=40sec 0)sin ,cos (πθρρθρθρθd f d ⎰⎰+24csc 0)sin ,cos (ππθρρθρθρθd f d(2)⎰⎰+xxdy y x f dx 32220)(;解 积分区域D 如图所示并且}sec 20 ,34|),{(θρπθπθρ≤≤≤≤=D所示 ⎰⎰⎰⎰⎰⎰=+=+x xDDd d f d y x f dy y x f dx 3222220)()()(θρρρσ⎰⎰=34sec 20)(ππθρρρθd f d(3)⎰⎰--21110),(x xdy y x f dx ;解 积分区域D 如图所示并且}1sin cos 1 ,20|),{(≤≤+≤≤=ρθθπθθρD所以 ⎰⎰⎰⎰⎰⎰--==10112)sin ,cos (),(),(x xDDd d f d y x f dy y x f dx θρρθρθρσ⎰⎰+=2sin cos 101)sin ,cos (πθθρρθρθρθd f d(4)⎰⎰21),(x dy y x f dx .解 积分区域D 如图所示 并且}sec tan sec ,40|),{(θρθθπθθρ≤≤≤≤=D所以 ⎰⎰2010),(x dy y x f dx ⎰⎰⎰⎰==DDd d f d y x f θρρθρθρσ)sin ,cos (),(⎰⎰=40sec tan sec )sin ,cos (πθθθρρθρθρθd f d13 把下列积分化为极坐标形式, 并计算积分值: (1)⎰⎰-+2202220)(x ax ady y x dx ;解 积分区域D 如图所示 因为}cos 20 ,20|),{(θρπθθρa D ≤≤≤≤= 所以⎰⎰-+2202220)(x ax ady y x dx ⎰⎰⋅=Dd d θρρρ2⎰⎰⋅=20cos 202πθρρρθa d d ⎰=2044cos 4πθθd a 443a π=(2)⎰⎰+xa dy y x dx 0220;解 积分区域D 如图所示 因为}sec 0 ,40|),{(θρπθθρa D ≤≤≤≤= 所以⎰⎰⎰⎰⋅=+Dxad d dy y x dx θρρρ0220⎰⎰⋅=40sec 0πθρρρθa d d ⎰=4033sec 3πθθd a )]12ln(2[63++=a(3)⎰⎰-+xxdy y xdx 221221)(;解 积分区域D 如图所示 因为}tan sec 0 ,40|),{(θθρπθθρ≤≤≤≤=D 所以⎰⎰⎰⎰⋅=+--Dxx d d dy y xdx θρρρ21212212)(12tan sec 40tan sec 02140-==⋅=⎰⎰⎰-πθθπθθθρρρθd d d(4)⎰⎰-+220220)(y a a dx y x dy .解 积分区域D 如图所示因为}0 ,20|),{(a D ≤≤≤≤=ρπθθρ 所以⎰⎰⎰⎰⋅=+-Dy a a d d dx y x dy θρρρ22222)(420028a d d aπρρρθπ=⋅=⎰⎰14. 利用极坐标计算下列各题: (1)⎰⎰+Dy xd e σ22,其中D 是由圆周x 2+y 2=4所围成的闭区域;解 在极坐标下D ={(r , q )|0£q £2p , 0£r £2}, 所以⎰⎰⎰⎰=+DDy x d d e d e θρρσρ222)1()1(2124420202-=-⋅==⎰⎰e e d e d ππρρθπρ.(2)⎰⎰++Dd y x σ)1ln(22,其中D 是由圆周x 2+y 2=1及坐标轴所围成的在第一象限内的闭区域;解 在极坐标下}10 ,20|),{(≤≤≤≤=ρπθθρD , 所以⎰⎰⎰⎰+=++DDd d d y x θρρρσ)1ln()1ln(222)12ln 2(41)12ln 2(212)1ln(20102-=-⋅=+=⎰⎰πρρρθπd d .(3)σd xy Darctan⎰⎰, 其中D 是由圆周x 2+y 2=4, x 2+y 2=1及直线y =0, y =x 所围成的第一象限内的闭区域.解 在极坐标下}21 ,40|),{(≤≤≤≤=ρπθθρD , 所以⎰⎰⎰⎰⎰⎰⋅=⋅=DDDd d d d d xyθρρθθρρθσ)arctan(tan arctan⎰⎰⋅=4021πρρθθd d ⎰⎰==40321643ππρρθθd d . 15 选用适当的坐标计算下列各题: (1)dxdy y x D22⎰⎰,其中D 是由直线x =2,y =x 及曲线xy =1所围成的闭区域解 因为积分区域可表示为}1 ,21|),{(x y x x y x D ≤≤≤≤=, 所以dxdy y x D22⎰⎰dy ydx x x x ⎰⎰=211221⎰-=213)(dx x x 49=(2)⎰⎰++--Dd y x y x σ222211, 其中D 是由圆周x 2+y 2=1及坐标轴所围成的在第一象限内的闭区域;解 在极坐标下}10 ,20|),{(≤≤≤≤=ρπθθρD , 所以⎰⎰⎰⎰⋅+-=++--DDd d d y x y x θρρρρσ2222221111)2(811102220-=+-=⎰⎰ππρρρρθπd d(3)⎰⎰+Dd y x σ)(22 其中D 是由直线y =x , y =x +a , y =a , y =3a (a >0)所围成的闭区域;解 因为积分区域可表示为D {(x y )|ay 3a y a x y }, 所以⎰⎰+Dd y x σ)(22⎰⎰-+=aaya y dx y x dy 322)(4332214)312(a dy a y a ay aa =+-=⎰(4)σd y x D22+⎰⎰ 其中D 是圆环形闭区域{(x , y )| a 2x 2+y 2b 2}解 在极坐标下D{()|02 a b }, 所以σd y x D 22+⎰⎰)(3233202a b dr r d ba -==⎰⎰πθπ16 设平面薄片所占的闭区域D 由螺线2上一段弧(20πθ≤≤)与直线2πθ=所围成, 它的面密度为(x , y )=x 2+y 2. 求这薄片的质量.解 区域如图所示 在极坐标下}20 ,20|),{(θρπθθρ≤≤≤≤=D 所以所求质量⎰⎰⎰⎰⋅==Dd d d y x M 20202),(πθρρρθσμ⎰==254404ππθθd17 求由平面y =0 y =kx (k >0) z =0以及球心在原点、半径为R 的上半球面所围成的在第一卦限内的立体的体积解 此立体在xOy 面上的投影区域D {(x y )|0arctan k0R } ⎰⎰--=Ddxdy y x R V 222kR d R d kRarctan 313arctan 022=-=⎰⎰ρρρθ18 计算以xOy 平面上圆域x 2+y 2=ax 围成的闭区域为底 而以曲面z =x 2+y 2为顶的曲顶柱体的体积解 曲顶柱体在xOy 面上的投影区域为D {(x y )|x 2y 2ax } 在极坐标下}cos 0 ,22|),{(θρπθπθρa D ≤≤≤≤-= 所以⎰⎰≤++=axy x dxdy y xV 22)(22πθθρρρθππθππ422cos 022442323cos 4a d a d d a ==⋅=⎰⎰⎰--(注:可编辑下载,若有不当之处,请指正,谢谢!)。
高等数学 课件 PPT 第九章 重积分
若函数ρ(x,y)=常数,则薄片的质量可用公式 质量=面密度×面积 来计算.现在面密度ρ(x,y)是变化的,故不能用上述公式来求. 这时仍可采用处理曲顶柱体体积的方法来求薄片的质量.分为下列 几个步骤:
一、二重积分的概念
(1)分割将D分成n个小闭区域Δσ1,Δσ2,…,Δσn(小区域 的面积也用这些符号表示),第i个小块的质量记为 ΔMi(i=1,2,…,n),则平面薄片的质量
于是
一、在直角坐标系下计算二重积分
图 9-11
一、在直角坐标系下计算二重积分
【例3】
计算
,D是由抛物线y2=2x与直线y=x-4所
围成的区域.
解 画出积分区域D的草图如图9-12所示.若先对x积分,
则有
一、在直角坐标系下计算二重积分
图 9-12
一、在直角坐标系下计算二重积分
若先对y积分,则需将D分为两个区域D1和D2, 于是
一、在直角坐标系下计算二重积分
【例1】
试将
化为两种不同次序的累次积分,其中
D是由y=x,y=2-x和x轴所围成的区域.
解 积分区域D如图9-9所示.首先说明如何用“穿线法”
确定累次积分的上、下限.如果先积x后积y,即选择Y型积
分区域,将区域D投影到y轴,得区间[0,1],0与1就是对y
积分的下限与上限,即0≤y≤1,在[0,1]上任意取一点y,
二、二重积分的性质
二重积分与定积分有类似的性质.假设 下面所出现的积分是存在的.
二、二重积分的性质
性质1
设c1,c2为常数,则
性质2
若闭区域D分为两个闭区域D1与D2,则
二、二重积分的性质
性质3
(σ为D的面积).
性质4
(完整版)同济第六版《高等数学》教案WORD版-第09章重积分.doc
高等数学教案 §9 重积分第九章重积分教学目的:1. 理解二重积分、 三重积分的概念, 了解重积分的性质, 知道二重积分的中值定理。
2. 掌握二重积分的(直角坐标、极坐标)计算方法。
3. 掌握计算三重积分的(直角坐标、柱面坐标、球面坐标)计算方法。
8、会用重积分求一些几何量与物理量(平面图形的面积、体积、重心、转动惯量、引力等)。
教学重点:1、 二重积分的计算(直角坐标、极坐标) ;2、 三重积分的(直角坐标、柱面坐标、球面坐标)计算。
3、二、三重积分的几何应用及物理应用。
教学难点:1、 利用极坐标计算二重积分;2、 利用球坐标计算三重积分;3、 物理应用中的引力问题。
§9 1 二重积分的概念与性质一、二重积分的概念1 曲顶柱体的体积设有一立体它的底是 xOy 面上的闭区域 D 它的侧面是以 D 的边界曲线为准线而母线平行于 z 轴的柱面它的顶是曲面 z f(x y)这里 f(x y) 0 且在 D 上连续 这种立体叫做曲顶柱体 现在我们来讨论如何计算曲顶柱体的体积首先 用一组曲线网把 D 分成 n 个小区域12n分别以这些小闭区域的边界曲线为准线作母线平行于 z 轴的柱面这些柱面把原来的曲顶柱体分为 n 个细曲顶柱体在每个i中任取一点 (ii) 以 f (ii) 为高而底为i 的平顶柱体的体积为f ( i i ) i (i 1 2n )这个平顶柱体体积之和nVf ( i , i) i i1可以认为是整个曲顶柱体体积的近似值为求得曲顶柱体体积的精确值将分割加密只需取极限即nV lim f ( i , i )ii 1其中是个小区域的直径中的最大值2平面薄片的质量设有一平面薄片占有xOy面上的闭区域D它在点(x y)处的面密度为(x y)这里(x y) 0 且在 D 上连续现在要计算该薄片的质量M用一组曲线网把 D 分成 n 个小区域12n把各小块的质量近似地看作均匀薄片的质量(i i)i各小块质量的和作为平面薄片的质量的近似值nM( i , i )ii 1将分割加细取极限得到平面薄片的质量nM lim( i , i )ii 1其中是个小区域的直径中的最大值定义设f(x y)是有界闭区域 D 上的有界函数将闭区域 D 任意分成n 个小闭区域12n其中i 表示第i 个小区域也表示它的面积在每个i 上任取一点(i i )作和nf ( i , i )ii 1如果当各小闭区域的直径中的最大值趋于零时这和的极限总存在则称此极限为函数f(x y)在闭区域 D 上的二重积分记作 f (x, y)d即Dnf ( x, y)d limf ( i , i)iDi 1f(x y)被积函数 f(x y)d被积表达式 d 面积元素 x y 积分变量D 积分区域 积分和直角坐标系中的面积元素如果在直角坐标系中用平行于坐标轴的直线网来划分 D 那么除了包含边界点的一些小闭区域外 其余的小闭区域都是矩形闭区域 设矩形闭区域 i 的边长为 x i 和 y i 则ix y 因此在直角坐标系中 有时也把面积元素 d 记作 dxdy 而把二重积分记作iif (x, y)dxdyD其中 dxdy 叫做直角坐标系中的面积元素二重积分的存在性 当 f(x y)在闭区域 D 上连续时 积分和的极限是存在的 也就是 说函数 f(x y)在 D 上的二重积分必定存在 我们总假定函数 f(x y) 在闭区域 D 上连续所以f(x y)在 D 上的二重积分都是存在的二重积分的几何意义 如果 f(x y) 0 被积函数 f(x y)可解释为曲顶柱体的在点 (x y)处的竖坐标 所以二重积分的几何意义就是柱体的体积 如果 f( x y)是负的 柱体就在 xOy 面的下方 二重积分的绝对值仍等于柱体的体积但二重积分的值是负的二 二重积分的性质性质 1 设 c 1、 c 2 为常数 则[c 1 f (x, y) c 2 g(x, y)]dc 1 f ( x, y)dc 2 g( x, y)dDDD性质 2 如果闭区域 D 被有限条曲线分为有限个部分闭区域则在 D 上的二重积分等于在各部分闭区域上的二重积分的和例如 D 分为两个闭区域 D 1 与 D 2 则f (x, y)df (x, y)df (x, y)dDD 1D 2性质 31 dd( 为 D 的面积 )DD性质 4 如果在 D 上 f(x y) g(x y)则有不等式f (x, y)dg(x, y)dDD特殊地有| f ( x, y)d || f (x, y) |dD D性质 5 设 M、 m 分别是 f(x y)在闭区域 D 上的最大值和最小值为D的面积则有m f ( x, y)d MD性质 6(二重积分的中值定理) 设函数 f(x y)在闭区域 D 上连续为D的面积则在 D 上至少存在一点()使得f (x, y)d f ( , )D§9 2二重积分的计算法一、利用直角坐标计算二重积分X型区域D1(x)y2(x) a x bY型区域D 1(x) y 2(x) c y d混合型区域设 f(x y) 0 D {( x y)| 1(x) y 2(x) a x b}此时二重积分 f (x, y)d 在几何上表示以曲面z f(x y)为顶以区域 D 为底的曲顶D柱体的体积对于 x [a b] 曲顶柱体在x x0 的截面面积为以区间[1(x ) (x )]为底、以曲线0 0 2 0 z f(x0 y)为曲边的曲边梯形所以这截面的面积为A(x ) 2 (x0) f (x , y)dy1( x0 )根据平行截面面积为已知的立体体积的方法得曲顶柱体体积为V b b 2 (x)A( x)dx [1(x)a a即V f ( x, y)d b 2 ( x) [1(x) aD f ( x, y)dy]dx f ( x, y)dy]dx可记为高等数学教案§9 重积分f (x, y)db 2 (x)dxf (x, y)dyDa1(x)类似地 如果区域 D 为 Y 型区域D (x) y (x) c y d12则有f (x, y)dd dy2 (y) f (x, y)dxc 1 (y)D例 1 计算 xyd其中 D 是由直线 y 1、x 2 及 y x 所围成的闭区域D解 画出区域 D方法一可把 D 看成是 X型区域 1 x 2 1 y x于是xyd2 x2y 2x1 231 x 4 x 22 9[xydy]dx1 [ x2 ]1 dx2 1 (x x)dx2 [42 ]1 8D1 1xyd2dx x2xydy注 积分还可以写成1 xydy1 xdxD11解法 2 也可把 D 看成是 Y型区域 1 y 2 y x 2 于是222x 2 22y 3 2 y 42 9xyd[xydx]dy[ y(2y)dy[ y2 ] y dy2 8 ]18D1 y11例 2 计算y 1 x 2 y 2d其中 D 是由直线 y 1、 x 1 及 y x 所围成的闭区域D解 画出区域 D 可把 D 看成是 X 型区域 1 x 1 x y 1 于是y 1 x 22d1 1x 2 2 dy1 12 2 )3 11 132ydx y 1y3[(1x y ] x dx3 (| x| 1)dxD1 x112 1 (x3 1)dx 13 02也可 D 看成是 Y 型区域: 1 y 1 1 x<y 于是y 1 x2y 2d 1y1 x2y 2dx1 ydy 1D例 3 计算xyd其中 D 是由直线 yx 2 及抛物线 y2x 所围成的闭区域D解 积分区域可以表示为 D D 1+D 2其中 D 1 : 0 x 1,x y xD 2 : 1 x 4, 2 yx 于是xyd1 xxydy 4 x xydydxx dx x 2D1积分区域也可以表示为 D 1 y 2 y 2x y 2 于是xyd2 dyy 22 2 2dy 1 22)2 y5]dyy 2 xydx [ x y] y y 2 [ y( yD1122 11 [ y 4 4 y 32 y 2 y 6 25 52 43 6 ] 1 8讨论积分次序的选择例 4求两个底圆半径都等于的直交圆柱面所围成的立体的体积解 设这两个圆柱面的方程分别为x 2 y 2 2 及 x 2 z 22利用立体关于坐标平面的对称性 只要算出它在第一卦限部分的体积V 1 然后再乘以 8 就行了第一卦限部分是以 D {( x y)| 0 yR2x 2, 0 x} 为底 以 zR2 x 2顶的曲顶柱体于是V 822 dRR 2 x 2R 22dyR2 2y]0R 2 x 2R x8 dxx 8 [ R xdxDR8 ( R 2 x 2)dx 16 R 33二 利用极坐标计算二重积分有些二重积分积分区域 D 的边界曲线用极坐标方程来表示比较方便且被积函数用极坐标变量、 表达比较简单 这时我们就可以考虑利用极坐标来计算二重积分f (x, y)dDn按二重积分的定义f (x, y)dlimf ( i , i ) iDi 1下面我们来研究这个和的极限在极坐标系中的形式以从极点 O 出发的一族射线及以极点为中心的一族同心圆构成的网将区域 D 分为 n 个小闭区域 小闭区域的面积为1 ( i i )2 12 1(2 ii )ii 2i 2i i 2 i i (ii)iiii2i其中i 表示相邻两圆弧的半径的平均值在i 内取点 (i , i )设其直角坐标为 ( ii )则有ii cos ii i sininn于是limf ( i , i )ilimf ( i cos i , i sin i ) iiii 1i 1即f x y df ( cos , sin ) d d( , )DD若积分区域 D 可表示为1( )( )2则 f ( cos , sin ) d d2()df ( cos , sin ) dD1( )讨论 如何确定积分限 ?f (cos , sin )d dd( )cos , sin ) df ( Df (cos , sin )d d2 ( )cos , sin ) ddf ( D例 5计算e x 2y 2 dxdy 其中 D 是由中心在原点、半径为 a 的圆周所围成的闭区D域解在极坐标系中闭区域D可表示为0 a 0 2e x2 y 22 2 a221e 2 ]0a d于是dxdy e d d [0 e d ]d[D D 021 (1 e a2 2 d (1 e a22 ) )注此处积分e x 2 y2 dxdy 也常写成e x2 y2 dxdyD x2 y2 a 2利用e x2 y2 dxdy (1 e a2 ) 计算广义积分e x 2 dxx2 y2 a 2设D1{( x y)|x2y2 D2{( x y)|x2y2S {( x y)|0 x R2R x 0 y 0} 2R2 x 0 y 0}显然 D1 S D2由于e x2y2 0 从则在这些闭区域上的二重积分之间有不等式e x2 y2 dxdy e x 2 y2 dxdy e x 2 y2 dxdyD1 S D2因为e x2 y2 dxdy R e x2 dx R e y 2 dy ( R e x2 dx)2S0 0 0又应用上面已得的结果有e x2 y2 dxdy (1 e R2 ) e x2 y 2 dxdy (1 e 2R 2 )D1 4 D24(1 e R2 R e x2 dx)2 (1 e 2R2 )于是上面的不等式可写成) (4 0 4令 R 上式两端趋于同一极限 4 从而0 e x2 dx 2例 6 求球体 x2 y2 z2 4a2被圆柱面 x2 y2 2ax 所截得的(含在圆柱面内的部分)立体的体积解由对称性立体体积为第一卦限部分的四倍V44a 2 x 2 y 2 dxdyD其中 D 为半圆周 y2ax x 2及 x 轴所围成的闭区域在极坐标系中 D 可表示为2a cos2于是V 4 4a22 d d 42d 2a cos 22 d4aD0 032 a 2 2 (1 sin 3 )d 32 a 2 ( 2 2)3 033§9 3 三重积分一、三重积分的概念定义 设 f(x y z)是空间有界闭区域上的有界函数 将 任意分成 n 个小闭区域v v 2v1n其中 v i 表示第 i 个小闭区域也表示它的体积在每个 v i 上任取一点 (iii )作乘积 f(n iii )v i ( i 1 2n)并作和f ( i , i , i ) v i 如果当各小闭区域的直径中的最大值i 1趋于零时 这和的极限总存在则称此极限为函数f(x y z)在闭区域上的三重积分记作f (x, y, z)dv即nf (x, y, z)dv limf ( i , i , i ) v i0 i 1三重积分中的有关术语 ——积分号 f( x y z)——被积函数f(x y z)dv ——被积表达式 dv 体积元素 x y z ——积分变量 ——积分区域在直角坐标系中 如果用平行于坐标面的平面来划分 则 v ixi y iz因此也把i体积元素记为 dv dxdydz三重积分记作f (x, y, z)dv f (x, y, z)dxdydzn当函数 f (x y z)在闭区域 上连续时 极限 limf ( i , i , i ) v i 是存在的i 1因此 f(x y z)在 上的三重积分是存在的 以后也总假定 f(x y z)在闭区域 上是连续的三重积分的性质 与二重积分类似比如[c 1 f (x, y, z) c 2g( x, y, z)]dv c 1 f (x, y, z)dv c 2g(x, y,z)dvf ( x, y, z)dvf (x, y, z)dvf (x, y, z)dv1212dv V 其中 V 为区域 的体积二、三重积分的计算1 利用直角坐标计算三重积分三重积分的计算 三重积分也可化为三次积分来计算设空间闭区域可表为z 1(x y) z z 2(x y) y 1 (x) y y 2 (x) a x b则f (x, y, z)dvz 2 (x,y)[f (x, y, z)dz]dz 1 (x, y)Dbdx y 2 (x) z 2 (x, y)[ f ( x, y,z)dz]dya y 1( x) z 1(x,y)b dxy 2 (x) z 2 (x, y)f (x, y, z)dza dyz 1( x, y)y 1( x) 即f (x, y, z)dvb y 2( x)dyz 2 (x,y)f (x, y, z)dzdxy 1(x) z 1(x, y)a其中 D : y 1(x) y y 2(x) a x b 它是闭区域在 xOy 面上的投影区域提示设空间闭区域 可表为z (x y) z z (x y) y (x) y y (x) a x b1212计算f (x, y, z)dv基本思想对于平面区域 D y 1(x) y y 2(x) a x b 内任意一点 (x y) 将 f(x y z)只看作 z 的函数在区间 [z 12y)]上对 z 积分 得到一个二元函数F(x y)(x y)z (xF (x, y) z 2(x,y)f (x, y, z)dzz 1 (x, y)然后计算 F(x y)在闭区域 D 上的二重积分 这就完成了 f(x y z) 在空间闭区域 上的三重积分F (x, y)dz 2 (x, y) b y 2 (x)z 2( x, y)[f (x, y, z)dz]d dx[f ( x, y, z)dz]dyDDz 1(x, y)ay 1(x) z 1(x,y)z 2(x, y)f (x, y, z)dz]d则f ( x, y, z)dv [z 1 (x, y)Db ab ay 2 (x)z 2 (x, y)dx [f ( x, y,z)dz]dy y 1( x) z 1(x,y) y 2 (x) dyz 2 (x, y)dxf (x, y, z)dzy 1( x) z 1( x, y)即f ( x, y, z)dvb y 2 (x) z 2 (x, y) f (x, y, z)dzdx dyz 1 (x, y)ay 1(x)其中 D : y 1(x) y y 2(x)a xb 它是闭区域在 xOy 面上的投影区域例 1 计算三重积分xdxdydz 其中 为三个坐标面及平面x 2y z 1 所围成的闭区域解 作图区域 可表示为 :0 z 1 x 2y0 y 1(1 x) 0 x 121 1 x1 x2 yxdxdydz2 dy xdz 于是dx 00 011 xxdx 2 (1 x 2y)dy1 1 23 1(x2xx )dx484 0讨论 其它类型区域呢 ?有时 我们计算一个三重积分也可以化为先计算一个二重积分、再计算一个定积分 设空间闭区域{( x y z)|(x y) D z c 1 z c 2 } 其中 D z 是竖坐标为 z 的平面截空间闭区域所得到的一个平面闭区域则有f (x, y, z)dvc 2f (x, y, z)dxdydzc 1D z例 2 计算三重积分z 2dxdydz 其中是由椭球面x 2y 2 z 2 1 所围成的空间闭a 2b 2c 2区域解 空间区域 可表为 :x 2 y2 1z2c z c2 22abcz 2dxdydzcdxdycz24 于是z 2dzab c (123cc 2 )z dz15 abcD z练习1 将三重积分 If (x, y,z)dxdydz 化为三次积分其中(1) 是由曲面 z 1 x 2 y 2 z 0 所围成的闭区域(2) 是双曲抛物面 xy z 及平面 x y 1 0 z 0 所围成的闭区域(3) 其中 是由曲面 z x 2 2y 2 及 z 2 x 2所围成的闭区域2 将三重积分 I f (x, y, z)dxdydz 化为先进行二重积分再进行定积分的形式其中 由曲面 z 1 x 2 y 2 z 0 所围成的闭区域2 利用柱面坐标计算三重积分设 M(x y z)为空间内一点 并设点 M 在 xOy 面上的投影 P 的极坐标为 P() 则这样的三个数 、、 z 就叫做点 M 的柱面坐标 这里规定 、 、 z 的变化范围为0 < 02 <z< 坐标面z z 的意义点 M 的直角坐标与柱面坐标的关系x cos x cos y sin z zy sin z z柱面坐标系中的体积元素dv d d dz简单来说 dxdyd d dxdydz dxdy dzd d dz柱面坐标系中的三重积分f ( x, y, z)dxdydzf ( cos , sin , z) d d dz例 3 利用柱面坐标计算三重积分zdxdydz 其中 是由曲面 z x 2 y 2 与平面 z 4 所围成的闭区域解 闭区域 可表示为2z 4 02 0 2于是zdxdydzz d d dz22 41dd2zdz 021 2[8 21 6]2 642 6 0 33 利用球面坐标计算三重积分2 2 4)dd(16设 M(x y z)为空间内一点则点 M 也可用这样三个有次序的数 r 、 、来确定其中r 为原点 O 与点 M 间的距离为 OM 与 z 轴正向所夹的角为从正 z 轴来看自 x 轴按逆时针方向转到有向线段OP 的角 这里 P 为点 M 在 xOy 面上的投影 这样的三个数 r 、 、叫做点 M 的球面坐标这里 r 、 、的变化范围为0 r <0 < 02坐标面 r r 00 的意义点 M 的直角坐标与球面坐标的关系x r sin cosy rsin sin z rcosx r sin cos y r sin sin z r cos球面坐标系中的体积元素dv r 2sin drd d球面坐标系中的三重积分f (x, y, z)dvf (r sincos ,r sin sin ,r cos )r 2 sin drd d例 4 求半径为 a 的球面与半顶角为的内接锥面所围成的立体的体积解 该立体所占区域可表示为0 r 2acos 0 0 2于是所求立体的体积为Vdxdydzr 2sin drd d2 dd2acos 2sin dr0 r2sin d2a cos 2drr16 a3cos3sin d4 a3(1 cos 4a)33提示 球面的方程为 x 2 y 2 (z a)2a 2 即 x 2 y 2 z 2 2az 在球面坐标下此球面的方程为 r 2 2arcos 即 r2acos§9 4 重积分的应用元素法的推广有许多求总量的问题可以用定积分的元素法来处理这种元素法也可推广到二重积分的应用中如果所要计算的某个量U 对于闭区域 D 具有可加性 (就是说 当闭区域 D 分成许多小闭区域时所求量 U 相应地分成许多部分量 且 U 等于部分量之和 ) 并且在闭区域D 内任取一个直径很小的闭区域 d 时 相应的部分量可近似地表示为 f(x y)d的形式 其中 (x y)在 d 内 则称 f(x y)d为所求量 U 的元素记为 dU 以它为被积表达式在闭区域 D 上积分Uf ( x, y)dD这就是所求量的积分表达式一、曲面的面积设曲面 S 由方程 z f(x y)给出 D 为曲面 S 在 xOy 面上的投影区域 函数 f(x y)在 D 上具有连续偏导数 f x (x y)和 f y (x y) 现求曲面的面积 A在区域 D 内任取一点 P( x y) 并在区域 D 内取一包含点 P( x y) 的小闭区域 d其面积 也记为 d在曲面 S 上点 M(x y f( x y)) 处做曲面 S 的切平面 T 再做以小区域 d的边界曲线为准线、母线平行于 z 轴的柱面 将含于柱面内的小块切平面的面积作为含于柱面内的 小块曲面面积的近似值记为 dA 又设切平面 T 的法向量与 z 轴所成的角为则dAd 1 f x 2( x, y) f y 2( x, y) dcos这就是曲面 S 的面积元素于是曲面 S 的面积为A1 f x 2(x, y) f y 2( x, y)dD或A1 ( z )2 ( z )2dxdyDx y设 dA 为曲面 S 上点 M 处的面积元素 dA 在 xOy 面上的投影为小闭区域 d M 在 xOy面上的投影为点 P(x y) 因为曲面上点 M 处的法向量为 n ( f x y所以f 1)dA |n |d1 f x2 (x, y) f y 2(x, y)d提示 dA 与 xOy 面的夹角为 (n ^ k) dAcos(n ^ k) d n k |n|cos(n ^ k)1 cos(n ^ k) |n|1讨论 若曲面方程为 x g(y z)或 yh(z x) 则曲面的面积如何求?A1 ( x)2(x) 2 dydz Dyz yz或A1 ( y )2( y )2dzdx Dzxzx其中 D yz 是曲面在 yOz 面上的投影区域D zx 是曲面在 zOx 面上的投影区域例 1 求半径为 R 的球的表面积解 上半球面方程为 zR 2 x 2 y 2 x 2 y 2 R 2因为 z 对 x 和对 y 的偏导数在 D x 2 y 2 R 2上无界 所以上半球面面积不能直接求出因此先求在区域 D 1 x 2 y 2 a 2 (a R)上的部分球面面积然后取极限Rdxdy 2ardrRdx 2 y 2 a2R 2 x 2y 20 0R 2 r22 R(RR 2 a 2 )于是上半球面面积为 lim 2 R( RR2a 2 ) 2 R2a R整个球面面积为 A 2A 1 4 R 2提示zR2x y2zy y21 ( z )2( z) 2R xx2y R 2x2xyR 2x 2y2解 球面的面积 A 为上半球面面积的两倍上半球面的方程为zR 2 x 2 y 2 而zxzyxR 2 x2y 2yR 2 x 2 y 2所以A 21 ( z )2( z )2x 2 y 2 R 2xy2Rdxdy 2Rd2RdR 2 x 2 y 2 x 2 y 2 R 2R 22 22R24 R R4 R例 2 设有一颗地球同步轨道通讯卫星 距地面的高度为 h 36000km 运行的角速度与地球自转的角速度相同试计算该通讯卫星的覆盖面积与地球表面积的比值(地球半径R 6400km)解 取地心为坐标原点地心到通讯卫星中心的连线为z 轴 建立坐标系通讯卫星覆盖的曲面是上半球面被半顶角为的圆锥面所截得的部分的方程为zR 2 x 2 y 2 x 2 y 2 R 2sin 2于是通讯卫星的覆盖面积为A1 ( z )2 ( z )2dxdyRdxdy DxyxyD xy R 2x2 y2其中 D xy {( x y)| x 2y 2 R 2sin 2 } 是曲面 在 xOy 面上的投影区域 利用极坐标得2d Rsin R dRsind 2 R 2(1 cos )A2 RR 22R 22由于 cosR代入上式得R hA 2 R 2(1R ) 2 R 2 h由此得这颗通讯卫星的覆盖面积与地球表面积之比为A h 36 10642.5%4 R2 2(R h) 2(36 6.4) 106由以上结果可知卫星覆盖了全球三分之一以上的面积故使用三颗相隔 2 角度的3通讯卫星就可以覆盖几乎地球全部表面二、质心设有一平面薄片占有 xOy 面上的闭区域 D 在点 P(x y)处的面密度为(x y) 假定(x y)在 D 上连续现在要求该薄片的质心坐标在闭区域 D 上任取一点 P(x y) 及包含点 P(x y)的一直径很小的闭区域 d (其面积也记为 d ) 则平面薄片对 x 轴和对 y 轴的力矩 (仅考虑大小 )元素分别为dM x y (x y)d dM y x (x y)d平面薄片对x 轴和对 y 轴的力矩分别为M x y (x, y)d M y x (x, y)dD D设平面薄片的质心坐标为(x, y) 平面薄片的质量为 M 则有x M M y y M M x于是M yx ( x, y)dM xy ( x, y)d D Dx(x, y)d y( x, y)dM MD D在闭区域 D 上任取包含点P(x y)小的闭区域 d (其面积也记为 d ) 则平面薄片对 x 轴和对 y 轴的力矩元素分别为dM x y (x y)d dM y x (x y)d平面薄片对x 轴和对 y 轴的力矩分别为M x y (x, y)d M y x (x, y)dD D设平面薄片的质心坐标为(x, y) 平面薄片的质量为M 则有x M M y y M M x于是M yx ( x, y)dM xy ( x, y)dx DyDM(x, y)dM( x, y)dDD提示 将 P(x y)点处的面积元素 d 看成是包含点 P 的直径得小的闭区域 D 上任取一点 P(x y)及包含的一直径很小的闭区域d (其面积也记为d ) 则平面薄片对 x 轴和对 y轴的力矩 (仅考虑大小 )元素分别为讨论 如果平面薄片是均匀的 即面密度是常数 则平面薄片的质心 ( 称为形心 )如何求?求平面图形的形心公式为xdydxDy DddDD例 3 求位于两圆 2sin 和 4sin 之间的均匀薄片的质心解 因为闭区域 D 对称于 y 轴 所以质心 C(x, y) 必位于 y 轴上于是 xyd2sin d dsin 4sin 2d7因为dD D2 sind2212 3Dyd 7 7 所求形心是 C(0, 7) 所以 yD d333D类似地 占有空间闭区域 、在点 (x y z)处的密度为(x y z)(假宽 (x y z)在 上连续 )的物体的质心坐标是x1 x (x, y, z)dvy 1 y (x, y,z)dvz1 z (x, y, z)dvMMM其中 M (x, y, z)dv例 4 求均匀半球体的质心解 取半球体的对称轴为 z 轴 原点取在球心上 又设球半径为 a 则半球体所占空间闭区可表示为{( x y z)| x 2 y 2 z 2 a 2 z 0}显然 质心在 z 轴上故 x y 0z dvzdvz3advdv 8故质心为 (0, 0,3a)8提示0 r a2 02dv2 d2 da 2sin dr2sin2 a 22 a 30 rddr dr30 0zdv2 2 d a r 2 sin dr1 2 sin 2 d 2 a 31 2 a 4 0dr cos2 0 drdr2 4 0三、转动惯量设有一平面薄片占有 xOy 面上的闭区域 D 在点 P(x y)处的面密度为(x y) 假定 (xy)在 D 上连续现在要求该薄片对于x 轴的转动惯量和 y 轴的转动惯量在闭区域 D 上任取一点 P(x y) 及包含点 P(x y)的一直径很小的闭区域 d (其面积也记为 d ) 则平面薄片对于 x 轴的转动惯量和 y 轴的转动惯量的元素分别为dI x y 2 (x y)ddI y x 2 (x y)d整片平面薄片对于x 轴的转动惯量和y 轴的转动惯量分别为I xy 2 (x, y)dI yx 2 (x, y)dDD例 5 求半径为 a 的均匀半圆薄片 (面密度为常量) 对于其直径边的转动惯量解 取坐标系如图则薄片所占闭区域 D 可表示为D {( x y)| x 2 y 2 a 2 y 0}而所求转动惯量即半圆薄片对于x 轴的转动惯量 I xI xy 2 d2sin2d dD Dsin 2 a 3d4sin 2 d 0da 04 01 a 41 Ma 242 4其中 M1 a2 为半圆薄片的质量2类似地占有空间有界闭区域、在点 (x y z)处的密度为 (x y z)的物体对于 x 、y 、 z轴的转动惯量为I x ( y 2 z 2) (x, y, z)dvI y ( z 2x 2) ( x, y, z)dvI z( x 2 y 2) (x, y, z)dv例 6 求密度为的均匀球体对于过球心的一条轴l 的转动惯量解 取球心为坐标原点 z 轴与轴 l 重合又设球的半径为a 则球体所占空间闭区域{( x y z)| x 2 y 2 z 2 a 2}所求转动惯量即球体对于z 轴的转动惯量 I zI z( x 2 y 2) dv(r 2sin 2cos2r 2 sin 2 sin 2 )r 2sin drd dr 4 sin32 dsin3da 4dr8 a 5 2 a 2M drd d r155其中 M 4 a 3为球体的质量3提示x 2 y 2 r 2sin 2 cos 2 r 2sin 2 sin 2r 2sin 2四、引力我们讨论空间一物体对于物体外一点P 0(x 0 y 0 z 0)处的单位质量的质点的引力问题设物体占有空间有界闭区域它在点 (x y z)处的密度为 (x y z) 并假定 (x y z)在上连续在物体内任取一点(x y z) 及包含该点的一直径很小的闭区域dv(其体积也记为dv)把这一小块物体的质量 dv 近似地看作集中在点 (x y z)处这一小块物体对位于 P0 (x0 y0 z0) 处的单位质量的质点的引力近似地为dF (dF x,dF y,dF z)(G ( x, y, z)( x x)dv,G(x, y, z)( y y)dv,G(x, y,z)( z z)dv)r 3 r 3 r 3其中 dF x、 dF y、 dF z 为引力元素 dF 在三个坐标轴上的分量r ( x x )2 ( y y )2 (z z )2G为引力常数将 dF x、dF y、dF z在上分别积分即可0 0 0得F x、F y、F z从而得 F (F x、F y、 F z)例 7 设半径为 R 的匀质球占有空间闭区域{( x y z)|x2 y2 z2 R2) 求它对于位于点M 0(0 0 a) (a>R)处的单位质量的质点的引力解设球的密度为0 由球体的对称性及质量分布的均匀性知F x=F y=0, 所求引力沿 z 轴的分量为F zG 0 z adv[ x2 y2 (z a)2 ]3 /2G 0 R ( z a)dzdxdy2 y 2 2 3/ 2R x2 [ x (z a) ]G 0 R ( z a)dz 2 d R2 z2 dR 0 0 [ 2( z a)2]3 /22 GR(z a)( 1 1 )dz 0 R 2a z 2az a2R2 G [ 2R 1 R (z a)d 2 2az a 2 ]R0 a R2G 0( 2R 2R 2R3 )G 4 R33a21 GM4 R3 3 0 a2 a2其中 M 0 为球的质量3上述结果表明匀质球对球外一质点的引力如同球的质量集中于球心时两质点间的引力。
高数(同济第六版)第九章总结
4
③当 AC
时,不能判断
2、条件极值,拉格朗日乘数法:
①构造 L(x,y)=f(x,y)+ (x,y)[其中,f 为原函数, 为条件]
② (x0,y0)+
=0
(x0,y0)+
=0
(x0,y0)=0
5
1、方向导:
2、梯度:
=
3、 =(
) 其中 为方向角,
记某点
处的方向导为 记梯度为
则
[其中
]
① =0 时,f 增长最快
② = 时,f 增长最慢
③ = 时,f 不变
第八节 多元函数的极值及其求法
1、极值存在 必要条件: ,
充要条件:有
C
①当 AC
A>0 时,有极小值
A<0 时, 有极大值
②当 AC <0 时,无极值
1、 偏导的符号不可拆
2、 偏导数的几何意义
第三节 全微分
1、 全增量: z=f(x+ x,y+ y)-f(x,y)
可表示为: z=A x+B y+o( )[其中 o( )=
]
2、全微分:
[其中
]
3、全微分存在条件: 4、各个关系
函数连续
互推不出
推不出
推不出
函数可导
推得出
函数可导
推
推
得
不
出
出
推得出
偏导连续
记 Jacobi 式:J=
(在解方程组式的隐函数时,可用可不用 Jacobi 式) 第六节 多元函数微分学几何应用
1、
3
[称其为一元向量值函数] 2、空间曲线的切线与法平面
高等数学(同济大学第六版)第9章多元函数微分法小结
法平面方程为
⎧x = x ⎧ F ( x, y , z ) = 0 ⎪ 情况 2.若空间曲线的方程为: ⎨ ,可化为情况 1 的形式为 ⎨ y = y ( x ) , 可得曲线在 ⎩G (x, y, z ) = 0 ⎪ z = z (x ) ⎩
y 0 = f ( x0 ) ,并有
F' dy = − x' . dx Fy
高等数学 -4-
高等数学阶段小结
第九章多元函数的微分法及其应用
2)一个三元方程确定一个二元隐函数的情形 设 函 数 F ( x, y , z ) 在 点 P ( x 0 , y 0 , z 0 ) 的 某 一 邻 域 内 具 有 连 续 的 偏 导 数 , 且
Fy' Fx' ∂z ∂z =− ' , =− ' . ∂x Fz ∂y Fz
3)一个四元方程组确定两个二元隐函数的情形 设 F ( x, y , u , v ) 、 G ( x, y , u , v ) 在点 P ( x 0 , y 0 , u 0 , v0 ) 的某一邻域内具有对各个变量的连续偏导数 , 又
Gu' Gv'
Gu' Gv'
Fy' Fv'
' Gy Gv' 1 ∂ (F , G ) ∂u =− =− ' ' ∂y J ∂ ( y, v ) Fu Fv
Fu' Fy
,
' Gu' G y ∂v 1 ∂ (F , G ) =− =− ' ' ∂y J ∂ (u, y ) Fu Fv
'
Gu' Gv'
Gu' Gv'
高等数学同济六版第九章第1节
y
图形为
空间中的超曲面.
机动 目录 上页 下页 返回 结束
Southern Medical University
三、多元函数的极限
定义2. 设 n 元函数 f ( P), P D R n , P0 是 D 的聚点 , 若存在常数 A , 对任意正数 , 总存在正数 , 对一 切 P D U ( P0 ,δ ) , 都有
(介值定理)
* (4) f (P) 必在D 上一致连续 . (证明略)
Southern Medical University
(一致连续性定理)
机动
目录
上页
下页
返回
结束
例5.求 lim 解: 原式
x 0 y 0
xy 1 1 . xy
1 1 lim x 0 x y 1 1 2
Southern Medical University
3. 多元函数的极限 lim f ( P) A ε 0 , δ 0 , 当0 PP0 δ 时, P P0 有 f ( P) A ε 4. 多元函数的连续性 lim f ( P) f ( P0 ) 1) 函数 f ( P) 在 P0 连续
例如,
x 0 y 0
显然
lim lim f ( x, y ) 0 ,
但由例3 知它在(0,0)点二重极限不存在 .
Southern Medical University
例3 目录 上页 下页 返回 结束
四、 多元函数的连续性
定义3 . 设 n 元函数 f ( P) 定义在 D 上, 聚点 P0 D ,
( x, y ) x y 0 ( x, y ) 1 x 2 y 2 4
同济第六版《高等数学》教案WORD版-第06章 定积分的应用
第六章定积分的应用教学目的1、理解元素法的基本思想;2、掌握用定积分表达和计算一些几何量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积)。
3、掌握用定积分表达和计算一些物理量(变力做功、引力、压力和函数的平均值等)。
教学重点:1、计算平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积。
2、计算变力所做的功、引力、压力和函数的平均值等。
教学难点:1、截面面积为已知的立体体积。
2、引力。
§6. 1 定积分的元素法回忆曲边梯形的面积:设y=f (x)≥0 (x∈[a,b]).如果说积分,⎰=b adx xfA)(是以[a,b]为底的曲边梯形的面积,则积分上限函数⎰=x adt tfxA)()(就是以[a,x]为底的曲边梯形的面积.而微分dA(x)=f (x)dx表示点x处以dx为宽的小曲边梯形面积的近似值∆A≈f (x)dx, f (x)dx称为曲边梯形的面积元素.以[a,b]为底的曲边梯形的面积A就是以面积元素f(x)dx为被积表达式,以[a,b]为积分区间的定积分:⎰=b adx xfA)(.一般情况下,为求某一量U,先将此量分布在某一区间[a,b]上,分布在[a,x]上的量用函数U(x)表示,再求这一量的元素dU(x),设dU(x)=u(x)dx,然后以u(x)dx为被积表达式,以[a,b]为积分区间求定积分即得⎰=b adx xfU)(.用这一方法求一量的值的方法称为微元法(或元素法).§6. 2 定积分在几何上的应用一、平面图形的面积1.直角坐标情形设平面图形由上下两条曲线y =f 上(x )与y =f 下(x )及左右两条直线x =a 与x =b 所围成, 则面积元素为[f 上(x )- f 下(x )]dx , 于是平面图形的面积为dx x f x f S b a ⎰-=)]()([下上.类似地, 由左右两条曲线x =ϕ左(y )与x =ϕ右(y )及上下两条直线y =d 与y =c 所围成设平面图形的面积为⎰-=dc dy y y S )]()([左右ϕϕ.例1 计算抛物线y 2=x 、y =x 2所围成的图形的面积.解 (1)画图.(2)确定在x 轴上的投影区间: [0, 1].(3)确定上下曲线: 2)( ,)(x x f x x f ==下上.(4)计算积分31]3132[)(10323102=-=-=⎰x x dx x x S . 例2 计算抛物线y 2=2x 与直线y =x -4所围成的图形的面积.解 (1)画图.(2)确定在y 轴上的投影区间: [-2, 4].(3)确定左右曲线: 4)( ,21)(2+==y y y y 右左ϕϕ. (4)计算积分⎰--+=422)214(dy y y S 18]61421[4232=-+=-y y y . 例3 求椭圆12222=+by a x所围成的图形的面积. 解 设整个椭圆的面积是椭圆在第一象限部分的四倍, 椭圆在第一象限部分在x 轴上的投影区间为[0, a ]. 因为面积元素为ydx , 所以⎰=aydx S 04. 椭圆的参数方程为:x =a cos t , y =b sin t ,于是 ⎰=a ydx S 04⎰=02)cos (sin 4πt a td b⎰-=022sin 4πtdt ab ⎰-=20)2cos 1(2πdt t ab ππab ab =⋅=22.2.极坐标情形曲边扇形及曲边扇形的面积元素:由曲线ρ=ϕ(θ)及射线θ =α, θ =β围成的图形称为曲边扇形. 曲边扇形的面积元素为θθϕd dS 2)]([21=. 曲边扇形的面积为⎰=βαθθϕd S 2)]([21. 例4. 计算阿基米德螺线ρ=a θ (a >0)上相应于θ从0变到2π 的一段弧与极轴所围成的图形的面积.解: ⎰=πθθ202)(21d a S 32203234]31[21πθπa a ==. 例5. 计算心形线ρ=a (1+cos θ ) (a >0) 所围成的图形的面积.解: ⎰+=πθθ02]cos 1([212d a S ⎰++=πθθθ02)2cos 21cos 221(d a πθθθπ20223]2sin 41sin 223[a a =++=.二、体 积1.旋转体的体积旋转体就是由一个平面图形绕这平面内一条直线旋转一周而成的立体. 这直线叫做旋转轴. 常见的旋转体: 圆柱、圆锥、圆台、球体.旋转体都可以看作是由连续曲线y =f (x )、直线x =a 、a =b 及x 轴所围成的曲边梯形绕x 轴旋转一周而成的立体.设过区间[a , b ]内点x 且垂直于x 轴的平面左侧的旋转体的体积为V (x ), 当平面左右平移dx 后, 体积的增量近似为∆V =π[f (x )]2dx , 于是体积元素为dV = π[f (x )]2dx ,旋转体的体积为dx x f V ba 2)]([π⎰=.例1 连接坐标原点O 及点P (h , r )的直线、直线x =h 及x 轴围成一个直角三角形. 将它绕x 轴旋转构成一个底半径为r 、高为h 的圆锥体. 计算这圆锥体的体积.解: 直角三角形斜边的直线方程为x hr y =. 所求圆锥体的体积为dx x h r V h 20)(π⎰=h x h r 0322]31[π=231hr π=. 例2. 计算由椭圆12222=+by a x所成的图形绕x 轴旋转而成的旋转体(旋转椭球体)的体积. 解: 这个旋转椭球体也可以看作是由半个椭圆 22x a ab y -= 及x 轴围成的图形绕x 轴旋转而成的立体. 体积元素为dV = π y 2dx ,于是所求旋转椭球体的体积为⎰--=aa dx x a ab V )(2222πa a x x a ab --=]31[3222π234ab π=. 例3 计算由摆线x =a (t -sin t ), y =a (1-cos t )的一拱, 直线y =0所围成的图形分别绕x 轴、y 轴旋转而成的旋转体的体积.解 所给图形绕x 轴旋转而成的旋转体的体积为 ⎰=a x dx y V ππ202⎰-⋅-=ππ2022)cos 1()cos 1(dt t a t a⎰-+-=ππ20323)cos cos 3cos 31(dt t t t a=5π 2a 3.所给图形绕y 轴旋转而成的旋转体的体积是两个旋转体体积的差. 设曲线左半边为x =x 1(y )、右半边为x =x 2(y ). 则⎰⎰-=a a y dy y x dy y x V 20212022)()(ππ ⎰⎰⋅--⋅-=πππππ022222sin )sin (sin )sin (tdt a t t a tdt a t t a⎰--=ππ2023sin )sin (tdt t t a =6π 3a 3 .2.平行截面面积为已知的立体的体积设立体在x 轴的投影区间为[a , b ], 过点x 且垂直于x 轴的平面与立体相截, 截面面积为A (x ), 则体积元素为A (x )dx , 立体的体积为dx x A V b a )(⎰=.例4 一平面经过半径为R 的圆柱体的底圆中心, 并与底面交成角α. 计算这平面截圆柱所得立体的体积.解: 取这平面与圆柱体的底面的交线为x 轴, 底面上过圆中心、且垂直于x 轴的直线为y 轴. 那么底圆的方程为x 2 +y 2=R 2. 立体中过点x 且垂直于x 轴的截面是一个直角三角形. 两个直角边分别为22x R -及αtan 22x R -. 因而截面积为αtan )(21)(22x R x A -=. 于是所求的立体体积为 dx x R V R R αtan )(2122-=⎰-ααtan 32]31[tan 21332R x x R R R =-=-. 例5. 求以半径为R 的圆为底、平行且等于底圆直径的线段为顶、高为h 的正劈锥体的体积.解: 取底圆所在的平面为x O y 平面, 圆心为原点, 并使x 轴与正劈锥的顶平行. 底圆的方程为x 2 +y 2=R 2. 过x 轴上的点x (-R <x <R )作垂直于x 轴的平面, 截正劈锥体得等腰三角形. 这截面的面积为22)(x R h y h x A -=⋅=.于是所求正劈锥体的体积为⎰--=R R dx x R h V 22h R d h R 2202221cos 2πθθπ==⎰ . 三、平面曲线的弧长设A , B 是曲线弧上的两个端点. 在弧AB 上任取分点A =M 0, M 1, M 2, ⋅ ⋅ ⋅ , M i -1, M i , ⋅ ⋅ ⋅, M n -1, M n =B , 并依次连接相邻的分点得一内接折线. 当分点的数目无限增加且每个小段M i -1M i 都缩向一点时, 如果此折线的长∑=-ni i i M M 11||的极限存在, 则称此极限为曲线弧AB 的弧长, 并称此曲线弧AB 是可求长的.定理 光滑曲线弧是可求长的.1.直角坐标情形设曲线弧由直角坐标方程y =f (x ) (a ≤x ≤b )给出, 其中f (x )在区间[a , b ]上具有一阶连续导数. 现在来计算这曲线弧的长度.取横坐标x 为积分变量, 它的变化区间为[a , b ]. 曲线y =f (x )上相应于[a , b ]上任一小区间[x , x +dx ]的一段弧的长度, 可以用该曲线在点(x , f (x ))处的切线上相应的一小段的长度来近似代替. 而切线上这相应的小段的长度为dx y dy dx 2221)()('+=+,从而得弧长元素(即弧微分)dx y ds 21'+=. 以dx y 21'+为被积表达式, 在闭区间[a , b ]上作定积分, 便得所求的弧长为⎰'+=ba dx y s 21. 在曲率一节中, 我们已经知道弧微分的表达式为dx y ds 21'+=, 这也就是弧长元素. 因此 例1. 计算曲线2332x y =上相应于x 从a 到b 的一段弧的长度. 解: 21x y =', 从而弧长元素dx x dx y ds +='+=112.因此, 所求弧长为b a b a x dx x s ])1(32[123+=+=⎰])1()1[(322323a b +-+=. 例2. 计算悬链线cx c y ch =上介于x =-b 与x =b 之间一段弧的长度. 解: cx y sh =', 从而弧长元素为 dx cx dx c x ds ch sh 12=+=. 因此, 所求弧长为⎰⎰==-b b b dx c x dx c x s 0ch 2ch cb c dx c x c b sh 2]sh [20==. 2.参数方程情形设曲线弧由参数方程x =ϕ(t )、y =ψ(t ) (α≤t ≤β )给出, 其中ϕ(t )、ψ(t )在[α, β]上具有连续导数.因为)()(t t dx dy ϕψ''=, dx =ϕ'(t )d t , 所以弧长元素为 dt t t dt t t t ds )()()()()(12222ψϕϕϕψ'+'='''+=. 所求弧长为⎰'+'=βαψϕdt t t s )()(22. 例3. 计算摆线x =a (θ-sin θ), y =a (1-cos θ)的一拱(0 ≤θ ≤2π )的长度.解: 弧长元素为θθθd a a ds 2222sin )cos 1(+-=θθd a )cos 1(2-=θθd a 2sin2=.所求弧长为⎰=πθθ202sin 2d a s πθ20]2cos 2[2-=a =8a . 3.极坐标情形设曲线弧由极坐标方程ρ=ρ(θ) (α ≤ θ ≤ β )给出, 其中r (θ)在[α, β]上具有连续导数. 由直角坐标与极坐标的关系可得x =ρ(θ)cos θ , y =ρ(θ)sin θ(α ≤θ ≤ β ).于是得弧长元素为θθθd y x ds )()(22'+'=θθρθρd )()(22'+=.从而所求弧长为⎰'+=βαθθρθρd s )()(22.例14. 求阿基米德螺线ρ=a θ (a >0)相应于θ 从0到2π 一段的弧长.解: 弧长元素为θθθθd a d a a ds 22221+=+=.于是所求弧长为⎰+=πθθ2021d a s )]412ln(412[222ππππ++++=a .§6. 3 功 水压力和引力一、变力沿直线所作的功例1 把一个带+q 电量的点电荷放在r 轴上坐标原点O 处, 它产生一个电场. 这个电场对周围的电荷有作用力. 由物理学知道, 如果有一个单位正电荷放在这个电场中距离原点O 为r 的地方, 那么电场对它的作用力的大小为2r q k F = (k 是常数). 当这个单位正电荷在电场中从r =a 处沿r 轴移动到r =b (a <b )处时, 计算电场力F 对它所作的功. 例1' 电量为+q 的点电荷位于r 轴的坐标原点O 处它所产生的电场力使r 轴上的一个单位正电荷从r =a 处移动到r =b (a <b )处求电场力对单位正电荷所作的功.提示: 由物理学知道, 在电量为+q 的点电荷所产生的电场中, 距离点电荷r 处的单位正电荷所受到的电场力的大小为2r q k F = (k 是常数). 解: 在r 轴上, 当单位正电荷从r 移动到r +dr 时, 电场力对它所作的功近似为dr r q k2, 即功元素为dr r q kdW 2=. 于是所求的功为dr rkq W b a 2⎰=b a r kq ]1[-=)11(b a kq -=. 例2. 在底面积为S 的圆柱形容器中盛有一定量的气体. 在等温条件下, 由于气体的膨胀, 把容器中的一个活塞(面积为S )从点a 处推移到点b 处. 计算在移动过程中, 气体压力所作的功. 解: 取坐标系如图, 活塞的位置可以用坐标x 来表示. 由物理学知道, 一定量的气体在等温条件下, 压强p 与体积V 的乘积是常数k , 即pV =k 或Vk p =. 解: 在点x 处, 因为V =xS , 所以作在活塞上的力为xk S xS k S p F =⋅=⋅=. 当活塞从x 移动到x +dx 时, 变力所作的功近似为dx xk , 即功元素为dx xk dW =. 于是所求的功为dx x k W b a ⎰=b a x k ][ln =ab k ln =.例3. 一圆柱形的贮水桶高为5m , 底圆半径为3m , 桶内盛满了水. 试问要把桶内的水全部吸出需作多少功?解: 作x 轴如图. 取深度x 为积分变量. 它的变化区间为[0, 5], 相应于[0, 5]上任小区间[x , x +dx ]的一薄层水的高度为dx . 水的比重为9.8kN/m 3, 因此如x 的单位为m , 这薄层水的重力为9.8π⋅32dx . 这薄层水吸出桶外需作的功近似地为dW =88.2π⋅x ⋅dx ,此即功元素. 于是所求的功为⎰=502.88xdx W π502]2[2.88x π=2252.88⋅=π(kj). 二、水压力从物理学知道, 在水深为h 处的压强为p =γh , 这里 γ 是水的比重. 如果有一面积为A 的平板水平地放置在水深为h 处, 那么, 平板一侧所受的水压力为P =p ⋅A .如果这个平板铅直放置在水中, 那么, 由于水深不同的点处压强p 不相等, 所以平板所受水的压力就不能用上述方法计算.例4. 一个横放着的圆柱形水桶, 桶内盛有半桶水. 设桶的底半径为R , 水的比重为 γ , 计算桶的一个端面上所受的压力.解: 桶的一个端面是圆片, 与水接触的是下半圆. 取坐标系如图.在水深x 处于圆片上取一窄条, 其宽为dx , 得压力元素为dx x R x dP 222-=γ.所求压力为⎰-=R dx x R x P 022 2γ)()(2221220x R d x RR ---=⎰γR x R 02322])(32[--=γ332R r =. 三、引力从物理学知道, 质量分别为m 1、m 2, 相距为r 的两质点间的引力的大小为221r m m G F =, 其中G 为引力系数, 引力的方向沿着两质点连线方向.如果要计算一根细棒对一个质点的引力, 那么, 由于细棒上各点与该质点的距离是变化的, 且各点对该质点的引力的方向也是变化的, 就不能用上述公式来计算.例5. 设有一长度为l 、线密度为ρ的均匀细直棒, 在其中垂线上距棒a 单位处有一质量为m 的质点M . 试计算该棒对质点M 的引力.例5'. 求长度为l 、线密度为ρ的均匀细直棒对其中垂线上距棒a 单位处质量为m 的质点M 的引力.解: 取坐标系如图, 使棒位于y 轴上, 质点M 位于x 轴上, 棒的中点为原点O . 由对称性知,引力在垂直方向上的分量为零, 所以只需求引力在水平方向的分量. 取y 为积分变量, 它的变化区间为]2 ,2[l l -. 在]2,2[l l -上y 点取长为dy 的一小段, 其质量为ρdy , 与M 相距22y a r +=. 于是在水平方向上, 引力元素为2222y a a y a dy m G dF x +-⋅+=ρ2/322)(y a dy am G +-=ρ. 引力在水平方向的分量为⎰-+-=222/322)(l l x y a dy am G F ρ22412la a l Gm +⋅-=ρ.。
(完整版)同济第六版《高等数学》教案WORD版-第02章导数与微分.docx
(完整版)同济第六版《高等数学》教案WORD版-第02章导数与微分.docx高等数学教案第二章导数与微分第二章导数与微分教学目的:1、理解导数和微分的概念与微分的关系和导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的的关系。
2、熟练掌握导数的四则运算法则和复合函数的求导法则,熟练掌握基本初等函数的导数公式,了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。
3、了解高阶导数的概念,会求某些简单函数的n 阶导数。
4、会求分段函数的导数。
5、会求隐函数和由参数方程确定的函数的一阶、二阶导数,会求反函数的导数。
教学重点:1、导数和微分的概念与微分的关系;2、导数的四则运算法则和复合函数的求导法则;3、基本初等函数的导数公式;4、高阶导数;6、隐函数和由参数方程确定的函数的导数。
教学难点:1、复合函数的求导法则;2、分段函数的导数;3、反函数的导数4、隐函数和由参数方程确定的导数。
§2. 1导数概念一、引例1.直线运动的速度设一质点在坐标轴上作非匀速运动时刻 t 质点的坐标为s s 是 t 的函数s f(t)求动点在时刻 t0的速度考虑比值s s0 f (t) f (t0)t t0t t0这个比值可认为是动点在时间间隔t t0内的平均速度如果时间间隔选较短这个比值在实践中也可用来说明动点在时刻t0的速度但这样做是不精确的更确地应当这样令 t t0 0 取比值 f (t)f (t0 )的极限如果这个极限存在设为 v 即t t0v lim f (t) f (t0)t t0t t0这时就把这个极限值v 称为动点在时刻t 0的速度2.切线问题设有曲线 C 及 C 上的一点 M 在点 M 外另取 C 上一点 N作割线MN 当点 N 沿曲线 C 趋于点 M 时如果割线MN绕点M旋转而趋于极限位置 MT直线MT就称为曲线C有点M处的切线设曲线 C 就是函数 y f(x)的图形现在要确定曲线在点M(x ,y )( y 0f(x )) 处的切线只要000定出切线的斜率就行了为此在点 M 外另取 C 上一点 N(x, y)于是割线 MN 的斜率为y y0 f ( x) f (x0)tanx0x x0x其中为割线 MN 的倾角当点 N 沿曲线 C 趋于点 M 时 x x0如果当x0 时上式的极限存在设为 k即k f (x)f (x0)limx x0x x0存在则此极限 k是割线斜率的极限也就是切线的斜率这里 k tan其中是切线 MT 的倾角于是通过点 M(x0, f(x0))且以 k为斜率的直线 MT 便是曲线 C 在点 M 处的切线二、导数的定义1函数在一点处的导数与导函数从上面所讨论的两个问题看出非匀速直线运动的速度和切线的斜率都归结为如下的极限lim f ( x) f ( x0)x x0x x0令 x x x0则 y f(x0x) f(x0)f( x) f(x0) x x0相当于 x0 于是lim f ( x) f (x0)x x0x x0成为lim y或 lim f (x0x) f (x0)x0x x0x定义设函数y f(x)在点仍在该邻域内)时相应地函数限存在则称函数 y f(x)在点x0的某个邻域内有定义当自变量 x 在 x0处取得增量x(点x0 x y 取得增量 y f( x0x) f(x0)如果 y 与 x 之比当 x0 时的极x0处可导并称这个极限为函数y f(x)在点 x0处的导数记为y |x x0即f ( x ) lim y lim f (x0x) f (x0)x x0xx 0也可记为 y |x x 0dy 或 df (x)x 0dx x x 0dx x函数 f(x)在点 x 处可导有时也说成 f(x) 在点 x具有导数或导数存在导数的定义式也可取不同的形式常见的有f (x 0 ) lim f (x 0 h) f ( x 0 )hh 0f ( x ) lim f (x) f (x 0)x x 0 x x 0在实际中需要讨论各种具有不同意义的变量的变化“快慢” 问题在数学上就是所谓函数的变化率问题导数概念就是函数变化率这一概念的精确描述如果极限 limf (x 0x) f (x 0) 不存在就说函数 y f(x)在点 x 0 处不可导x 0x如果不可导的原因是由于lim f (x 0x) f (x 0)x 0x 也往往说函数 y f(x) 在点 x 0 处的导数为无穷大如果函数 y f(x) 在开区间 I 内的每点处都可导就称函数 f(x)在开区间 I 内可导这时对于任一 x I都对应着 f( x)的一个确定的导数值这样就构成了一个新的函数这个函数叫做原来函数 y f(x)的导函数记作 yf ( x)dy 或 df (x)dx dx导函数的定义式y limf ( x x) f ( x)limf ( xh) f ( x)xx h 0hf (x )与 f (x)之间的关系函数 f(x)在点 x 0 处的导数 f(x)就是导函数 f (x)在点 x x 0 处的函数值即f ( x 0 ) f (x) x x 0导函数 f (x)简称导数而 f(x )是 f(x)在 x 处的导数或导数左右导数所列极限存在则定义f( x)在 x 0 的左导数 f ( x 0 ) f (x 0 h) f ( x 0 )limhh 0f( x)在 x 0 的右导数f (x 0 ) f (x 0 h) f (x 0 )lim hh 0如果极限 limf (x 0 h) f ( x 0) 存在则称此极限值为函数在h0 h如果极限 limf (x 0h) f ( x 0)存在则称此极限值为函数在hh导数与左右导数的关系f (x 0) Af (x 0) f (x 0 ) Af (x)在 x 0 处的值x 0 的左导数x 0 的右导数高等数学教案第二章导数与微分2.求导数举例例 1.求函数 f(x) C (C 为常数)的导数解 f ( x) lim f (xh) f ( x) lim CC 0 h 0h h 0h即 (C ) 0例 2 求 f (x)1x 的导数f (x h) f (x)1 1h 解f ( x) lim lim x h xlim h 0 h h 0hh 0 h(x h) x例 3 求 f (x) x 的导数解f (x)f ( x h) f (x)lim x h xlim hhh 0hlimh11x 2 xh 0h( x hx) h 0 x h例 2.求函数 f(x) x n (n 为正整数 )在 x a 处的导数解 f (a) lim f (x) f (a)lim x na n lim (x n 1ax n 2xax a x axa x a 把以上结果中的 a 换成 x 得 f (x)nx n 1 即 (x n )nx n 1lim11x 2h 0 (x h)xa n 1) na n 1(C) 0 (1 ) 1 ( x) 1(x )x x 22 x 更一般地有 (x )其中为常数例 3.求函数 f(x) sin x 的导数解 f (x)lim f ( x h) f ( x)lim sin( xh 0h h 01 hh lim2 cos(x2) sinhh2x 1h) sin xhlim cos(x h)sin h2 cos xh 02 h2即 (sin x) cos x用类似的方法可求得 (cos x ) sin x例 4.求函数 f(x) a x (a>0 a 1) 的导数解 f (x) limh) f (x) lim a x h a xh 0hh 0ha x lim a h1 令a h 1 t a x lim th 0 htlog a (1 t)a x 1 a x ln alog a e特别地有 (e x ) e x例 5.求函数 f(x) log a x (a>0 a 1) 的导数解 f ( x) limf (x h) f ( x) h 0h lim 1log a (xh ) h 0 hxlim log a ( x h) log a xh 0h1lim x log a (1 h )1lim log a (1 h )h xx hxx h 0x1log a e1x xln a解log a (x h) log a x 1log a (1 h ) f (x) lim hlimxh 0h0 h1lim log a (1 h ) h x 1log a e1x h 0 x xxlna即(log a x)1xln a1 特殊地x(log a x)1(ln x)1xln a x3.单侧导数极限 lim f (x h)f ( x)存在的充分必要条件是h 0hlim f ( x h) f (x)及 lim f (x h) f (x)h 0h h 0h 都存在且相等f( x)在 x 处的左导数 f ( x 0 ) lim f (x h) f (x)0 h 0 hf( x)在 x 0 处的右导数 f ( x 0 ) lim f (x h) f ( x)h 0h导数与左右导数的关系函数 f(x)在点 x 0 处可导的充分必要条件是左导数左导数f (x 0 ) 和右导数 f (x 0)都存在且相等如果函数 f(x)在开区间 (a, b)内可导且右导数 f (a) 和左导数 f (b)都存在就说 f(x) 有闭区间 [a, b]上可导例 6.求函数 f(x) x|在 x 0 处的导数(0) lim f (0 h)f (0) lim |h|1h 0hh 0 hf (0) lim f (0 h) f (0) lim |h|1h 0 h h 0 h因为 f (0) f (0) 所以函数 f(x) |x|在 x 0 处不可导四、导数的几何意义函数 y f(x)在点 x 0 处的导数 f (x 0)在几何上表示曲线y f(x) 在点 M( x 0, f(x 0 ))处的切线的斜率即f ( x 0) tan其中是切线的倾角如果 y f(x)在点 x 0 处的导数为无穷大这时曲线 y f(x) 的割线以垂直于 x 轴的直线 x x 0为极限位置即曲线 y f( x)在点 M (x 0, f( x 0))处具有垂直于x 轴的切线 x x 0由直线的点斜式方程可知曲线 y f(x)在点 M(x , y )处的切线方程为y y 0 f (x 0)(x x 0)过切点 M(x , y )且与切线垂直的直线叫做曲线y f(x)在点 M 处的法线如果f (x 0) 0法线的斜率为1 从而法线方程为f ( x 0)y y 01( x x 0 )f (x 0 )例 8 求等边双曲线 1 1y x 在点 (2 , 2) 处的切线的斜率并写出在该点处的切线方程和法线方程解y1所求切线及法线的斜率分别为x2k 1 ( 1 ) x 14k 21 1x 22k 14所求切线方程为 y 24( x 1 ) 即 4x y 42所求法线方程为 y 21(x 1) 即 2x 8y 15 04 2例 9 求曲线 y x x 的通过点 (0 4)的切线方程解设切点的横坐标为x 0则切线的斜率为31f ( x 0 ) (x 2 )3x 2x 03 x 02 x 2于是所求切线的方程可设为3y x 0 x2x 0(x x 0)根据题目要求点 (0 4)在切线上因此4 x 0 x 03x 0(0 x 0 )2解之得 x 0 4 于是所求切线的方程为3y 4 4 4 (x 4) 即 3x y 4 0四、函数的可导性与连续性的关系设函数 y f(x)在点 x 0 处可导即 limy (x 0 ) 存在则fxxlimy limy x lim y lim x f (x ) 0 0x 0x 0 x x 0 xx 0这就是说函数 y f(x)在点 x 0 处是连续的所以如果函数 y f(x)在点 x 处可导则函数在该点必连续另一方面一个函数在某点连续却不一定在该点处可导例 7.函数 f (x)3x 在区间 ( , )内连续但在点 x 0 处不可导这是因为函数在点x 0 处导数为无穷大f (0 h) f (0) 3 h 0limhlimhh 0h 0x§2 2 函数的求导法则一、函数的和、差、积、商的求导法则定理 1 如果函数 u u(x)及 vv( x)在点 x 具有导数那么它们的和、差、积、商(除分母为零的点外 )都在点 x 具有导数并且[u(x) v(x)] u (x) v (x)[u(x) v(x)] u (x)v(x) u(x)v (x) u(x) u ( x)v( x) u(x)v (x)v(x)v 2 (x)证明 (1) [ u( x) v(x)] lim [ u( xh) v( x h)] [u(x)v( x)]hhlimu(x h) u( x)v( x h) v(x)u (x) v (x)h 0h h法则 (1) 可简单地表示为(u v) u v(2) [ u(x) v( x)] limu( xh)v(x h) u(x)v(x)h 0hlim 1 [u(x h)v(xh) u(x)v( x h)u( x)v(x h) u(x)v(x)]h 0 hlim u(x h) u( x) v( x h) u(x) v( xh) v( x)h 0 h hlimu(xh) u(x) lim v(x h)u(x) limv(xh) v(x)hh h 0hhu (x)v(x) u(x)v ( x)其中 lim v(x h)v(x) 是由于 v (x)存在故 v( x)在点 x 连续h 0法则 (2) 可简单地表示为(uv) u v uvu(x h) u(x)(3) u( x)limv(xh) v(x) lim u(x h)v(x) u( x)v( x h) v(x) hh h 0 v( x h)v( x)hlim [u(x h)u(x)] v(x) u(x)[v(x h) v(x)] h 0v(x h)v(x)hu(x h) u(x) v(x) u( x)v( xh) v( x) lim hv( x h)v(x)hh 0u (x)v(x) u(x)v (x)v 2( x)法则 (3) 可简单地表示为( u) u v uvvv 2(u v) u v(uv) u v uv ( u)u v uvv v 2定理 1 中的法则 (1)、 (2)可推广到任意有限个可导函数的情形例如设 u u(x)、 v v(x)、ww(x)均可导则有(u v w) uv w(uvw) [( uv)w] (uv) w (uv) w(u v uv )w uvw u vw uv w uvw 即(uvw)u vw uv w uvw(Cu) Cu例 1. y 2x 3 5x 2 3x 7 求 y解 y (2x 3 5x 23x7) (2x 3) 5x 2) 3x)7) 2 (x 3) 5 x 2) 3 x)2 3x 2 5 2x3 6x 2 10x 3例 2 f (x) x 34cos x sin求 f (x)及 f ()22解32f ( x)(x ) (4 cos x) (sin 2)3x4sin xf () 3242 4例 3. y e x (sin x cos x) 求 y解 ye x ) (sin x cos x) e x (sin x cos x)e x (sin x cos x) e x (cos x sin x) 2e x cos x例 4. y tan x 求 y解 y(tan x)( sin x )cos xcos 2 x sin 2 xcos 2x(sin x) cos xsin x(cos x)cos 2 x1sec 2xcos 2x即(tan x) sec 2x例 5. y sec x 求 y 解y (secx) ( 1)(1) cos x 1 (cos x)cos xcos 2 x 即(sec x) sec x tan xsin x sec x tan xcos 2x用类似方法还可求得余切函数及余割函数的导数公式(cot x) csc 2x(csc x)csc x cot x二、反函数的求导法则定理 2 如果函数 xf(y)在某区间 I y 内单调、可导且 f (y) 0 那么它的反函数 y f 1( x)在对应区间 I x { x|x f(y) yI y } 内也可导并且[ f 1( x) ] f 1dy1 ( y)或 dxdxdy简要证明由于 x f(y)在 I y 内单调、可导 (从而连续 ) 所以 x f(y)的反函数 y f 1(x)存在且 f 1( x)在 I x 内也单调、连续任取 xI x 给 x 以增量x( x 0 xx I x ) 由 y f 1(x) 的单调性可知11于是y 1x xy因为 y f 1(x)连续故lim y0x 0从而[ f1(x)] lim y lim11x x f(y)x 0y0y上述结论可简单地说成反函数的导数等于直接函数导数的倒数例 6.设 x sin y y[2,]为直接函数则 y arcsin x 是它的反函数函数 x sin y 在开2区间 (,)内单调、可导且22(sin y)cos y0因此由反函数的求导法则在对应区间 I x ( 11)内有(arcsin x)1111cos y1sin 2 y 1 x2(sin y)类似地有(arccosx)11x2例 7.设 x tan y y(,) 为直接函数则 y arctan x 是它的反函数函数x tan y 在22区间 (,)内单调、可导且22(tan y) sec2 y0因此由反函数的求导法则在对应区间 I x () 内有(arctan x)1111 (tan y)sec2 y1tan2 y 1 x2类似地有(arccot x)11x2例 8 设 x a y(a 0a1)为直接函数) 内单调、可导且(a y) a y ln a0因此由反函数的求导法则在对应区间(log a x)111(a y) a y ln a xln a则 y log a x 是它的反函数函数x a y在区间I y(I x (0)内有杂的初等函数的导数如可求呢?如函数lntan x、 e x3、的导数怎样求?三、复合函数的求导法则定理 3如果 u g( x)在点 x 可导函数 y f(u)在点 u g(x)可导则复合函数y f[g(x)] 在点 x 可导且其导数为dy dy dy dudx f (u) g ( x) 或dx du dx证明当 u g(x)在 x 的某邻域内为常数时y=f[(x)] 也是常数此时导数为零结论自然成立当 u g(x)在 x 的某邻域内不等于常数时u 0此时有y f [ g(x x)] f [g (x)] f [ g( x x)] f [ g( x)]g(x x)g(x)x x g (x x)g(x)xf (u u) f (u)g( x x) g( x)u xdy lim y lim f (u u) f (u)lim g (x x)g (x) = f( u) g (x )dx x0x u0u x 0x简要证明dy lim y lim y u lim y lim u f (u)g (x)dx x 0 x x 0 ux u 0 u x 0 x例9 y e x3求dydx解函数 y e x3可看作是由 y e u u x3复合而成的因此dy dy du u3x 22x3dx du dx e3x e例 10y sin2x dy 1 x2求dx解函数y sin2x是由 y sin uu2x复合而成的1x2 1 x2因此dy dydu cosu2(1x2 )(2x)22(1x2)2x2 dx du(12)222 cosdx x(1 x ) 1 x 对复合函数的导数比较熟练后就不必再写出中间变量dy例 11. lnsin x 求dx(ln sin x)1(sin x)1cosx cot x解sin xdx sin x例 12. y31 2x2求 dydxdy 12解[(1 2x 2 )3 ]1(1 2x 2) 3(12x 2)4xdx3 33 (1 2x 2) 2复合函数的求导法则可以推广到多个中间变量的情形例如设 y f(u)u (v) v (x)则dy dy du dy du dvdx du dx du dv dxdy 例 13. y lncos(e ) 求 dx dy x 1x 解dx [ln cos(e )]cos(e x ) [cos(e )]1xxxxcos(e x ) [ sin(e )] (e ) e tan(e ) sin 1 dy例 14. y e x 求dx1)cos1(1)解dy(ex )e x(sinexsin 1sin 1sin 1dxx x x1 sin 1cos 1e xx 2 x 例 15 设 x 0 证明幂函数的导数公式(x )x1解因为 x(e ln x ) eln x 所以(x ) (e ln x) e ln x( ln x) eln xx 1x1四、基本求导法则与导数公式1.基本初等函数的导数(1)(C) 0 (2)(x )x 1(3)(sin x) cos x (4)(cos x) sin x (5)(tan x) sec 2 x(6)(cot x) csc 2x(7)(sec x) sec x tan x(8)(csc x) csc x cot x (9)(a x ) a x ln a (10)( e x )e x(11) (log a x)1x ln a (12) (ln x)1(13) (arcsin x)1 1 x2(14) (arccos x) 11 x 2(15) (arctan x)1 1 x2(16) (arccot x)11 x 22.函数的和、差、积、商的求导法则设 u u(x) v v(x)都可导则 (1)(u v) u v (2)(C u) C u (3)(u v) u v u v (4) ( u )u vuvvv 23.反函数的求导法则设 x f(y)在区间 I y 内单调、可导且f (y) 0 则它的反函数 y f 1(x)在 I x f(I y )内也可导并且[ f1( x) ]1 或 dy 1f ( y)dxdxdy4.复合函数的求导法则设 y f(x)而 u g(x)且 f(u)及 g(x)都可导则复合函数 y f[g(x)] 的导数为dy dy du或 y (x) f (u) g (x)dxdu dx例 16 求双曲正弦 sh x 的导数 . 解因为sh x1x e x) 所以2 (e(sh x)1(e xe x) 1 (e x e x ) ch x22即 (sh x) ch x类似地有(ch x) sh x例 17 求双曲正切 th x 的导数解因为 th xsh x 所以ch x(th x) ch 2 x sh 2 x1ch 2xch 2x解因为 arsh x ln( x1x2 )所以(arsh x)1(1x)1x11x2x2 1 x2由 arch x ln( x x21) 可得 (arch x)1 x2 1由 arth x 1ln1x可得 (arth x)1 21x 1 x2类似地可得 (arch x)1(arth x)1 x211x2例 19. y sin nx sin n x (n 为常数 )求 y解 y (sin nx)sin n x + sin nx(sin n x)ncos nx sin n x+sin nx n sin n1x (sin x )ncos nx sin n x+n sin n 1x cos x n sin n 1x sin(n+1)x §2. 3高阶导数一般地函数 y f(x)的导数 y f(x) 仍然是 x 的函数我们把 y f (x)的导数叫做函数 y f(x)的二阶导数记作y 、 f (x) 或d 2 y dx2即y (y ) f(x) [f(x)] d 2 y d( dy )dx2dx dx相应地把 y f(x)的导数 f (x)叫做函数 y f(x)的一阶导数类似地二阶导数的导数叫做三阶导数三阶导数的导数叫做四阶导数一般地 (n 1)阶导数的导数叫做n 阶导数分别记作yy (4)nd 3 y d 4 y d n y y ( )或dx 3dx 4dx n函数 f(x)具有 n 阶导数也常说成函数 f(x)为 n 阶可导如果函数 f(x)在点 x 处具有 n 阶导数那么函数 f(x)在点 x 的某一邻域内必定具有一切低于n 阶的导数二阶及二阶以上的导数统称高阶导数y 称为一阶导数 y y y (4)y (n)都称为高阶导数例 1. y ax b 求 y 解 y a y 0例 2. s sin t 求 s解 scost s 2sin t例 3.证明函数 y2x x 2 满足关系式 y 3y 1 0证明因为 y2 2x 1 x2 2x x22x x 22x x 2(1 x) 2 2 xx2x)22x x 22x (1 11y22 x x 2(2x x 2 ) (2 x x 2)3y 3(2x x 2) 2所以 y 3y1 0例 4.求函数 y e x的 n 阶导数解 y e x y e x y e x y ( 4) e x一般地可得y ( n) e x即(e x )(n) e x例 5.求正弦函数与余弦函数的 n 阶导数解 y sin x y cos x sin( x 2)ycos(x) sin( x2) sin( x 2 )222 ycos(x2 ) sin( x 22) sin(x 3 )22 2y (4) cos(x 3) sin(x 4 )22一般地可得y (n) sin( x n) 即 (sin x)(n) sin(x n)22用类似方法可得 (cos x)(n) cos(x n)例 6.求对函数ln(1 x)的 n阶导数解y ln(1x)y(1x) 1y(1x)2y(1)(2)(1x)3y(4)(1)(2)(3)(1x) 4一般地可得(n 1)!y(n)(1)(2)(n1)(1x) n( 1)n 1(1x)n即[ln(1x)] (n)(1) n 1 (n 1)!(1x)n例 6.求幂函数 y x ( 是任意常数 )的 n 阶导数公式解 y x1y(1)x2y(1)(2)x3y ( 4)(1)(2)(3)x4一般地可得y (n)(1)(2)(n1)x n即(x )(n)(1)(2)(n 1)x n当n 时得到n(n)(x )( 1)( 2) 3 2 1 n!而(x n)( n 1) 0如果函数u u(x)及v v(x)都在点x处具有n阶导数那么显然函数u(x) v(x)也在点 x 处具有 n阶导数且(u v) (n) u(n) v(n)(uv)u v uv(uv)u v2u v uv(uv)u v 3u v3u v uv用数学归纳法可以证明n(uv)(n)C n k u(n k)v(k)k0这一公式称为莱布尼茨公式2 2x(20)例 8. y x e求 y解设 u e2 x v x2则(u)(k)2k e2x (k1, 2,, 20)v 2x v 2 (v)(k)0 (k 3, 4,, 20)代入莱布尼茨公式得y (20)(u v)(20)u(20)v C 201u(19) v C 202u(18)v220e2x x2 20 219e2x 2x20 19218e2 x 22!220e2x(x220x95)§2. 4隐函数的导数由参数方程所确定的函数的导数相关变化率一、隐函数的导数显函数形如 y f(x) 的函数称为显函数例如 y sin x y ln x +e x隐函数由方程 F(x y) 0所确定的函数称为隐函数例如方程 x y3 1 0 确定的隐函数为y y 3 1 x如果在方程F(x y) 0 中当x取某区间内的任一值时相应地总有满足这方程的唯一的y 值存在那么就说方程F(x y) 0 在该区间内确定了一个隐函数把一个隐函数化成显函数叫做隐函数的显化隐函数的显化有时是有困难的甚至是不可能的但在实际问题中有时需要计算隐函数的导数因此我们希望有一种方法不管隐函数能否显化都能直接由方程算出它所确定的隐函数的导数来例 1.求由方程 e y xye 0 所确定的隐函数 y 的导数解把方程两边的每一项对x 求导数得(e y ) (xy) (e) (0) 即 e y y y xy从而yy yx e y(x e0)例 2.求由方程 y 5 2y x 3x 7 0 所确定的隐函数 y f (x)在x 0 处的导数 y |x 0解把方程两边分别对 x 求导数得5y y 2y 1 21x 6 0由此得y1 21x 65 y 42因为当 x 0 时从原方程得 y 0 所以y |x 0 1 21x 6 |x 015y 4 2 2例 3求椭圆 x2y 21 在 (2, 33) 处的切线方程16 9 2 解把椭圆方程的两边分别对 x 求导得x2y y 08 9从而y9 x16y当 x 2 时y3 3 代入上式得所求切线的斜率2k y |x 234所求的切线方程为y 3 33 ( x 2) 即 3x4 y 8 3 02 4解把椭圆方程的两边分别对 x 求导得 x 2 y y 0 89将 x 2y3 3代入上式得211 y 043于是k y |x3 24所求的切线方程为y333( x 2) 即 3x 4 y 8 3 024例 4.求由方程x y 12sin y 0所确定的隐函数y的二阶导数解方程两边对x 求导得1dy1cos y dy0dx2dx于是dy2dx 2 cos y上式两边再对x 求导得d 2 y 2sin ydy4sin ydxdx2(2cos y)2(2 cos y)3对数求导法这种方法是先在y f(x)的两边取对数然后再求出 y 的导数设 y f(x)两边取对数得ln y ln f(x)两边对 x 求导得1 y[ln f (x)]yy f( x) [ln f(x)]对数求导法适用于求幂指函数 y [u(x)] v(x)的导数及多因子之积和商的导数例5.求 y x sin x (x>0) 的导数解法一两边取对数得ln y sin x ln x上式两边对x 求导得1y cos x ln x sin x1y x于是y y(cos x ln x sin x 1 ) xx sin x(cos x ln x sin x)x解法二这种幂指函数的导数也可按下面的方法求。
(完整版)同济第六版《高等数学》教案WORD版-第06章定积分的应用
第六章定积分的应用教学目的1、理解元素法的基本思想;2、掌握用定积分表达和计算一些几何量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积)。
3、掌握用定积分表达和计算一些物理量(变力做功、引力、压力和函数的平均值等)。
教学重点:1、计算平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积。
2、计算变力所做的功、引力、压力和函数的平均值等。
教学难点:1、截面面积为已知的立体体积。
2、引力。
§6. 1 定积分的元素法回忆曲边梯形的面积:设y=f (x)≥0 (x∈[a,b]).如果说积分,⎰=b adx xfA)(是以[a,b]为底的曲边梯形的面积,则积分上限函数⎰=x adt tfxA)()(就是以[a,x]为底的曲边梯形的面积.而微分dA(x)=f (x)dx表示点x处以dx为宽的小曲边梯形面积的近似值∆A≈f (x)dx, f (x)dx称为曲边梯形的面积元素.以[a,b]为底的曲边梯形的面积A就是以面积元素f(x)dx为被积表达式,以[a,b]为积分区间的定积分:⎰=b adx xfA)(.一般情况下,为求某一量U,先将此量分布在某一区间[a,b]上,分布在[a,x]上的量用函数U(x)表示,再求这一量的元素dU(x),设dU(x)=u(x)dx,然后以u(x)dx为被积表达式,以[a,b]为积分区间求定积分即得⎰=b adx xfU)(.用这一方法求一量的值的方法称为微元法(或元素法).§6. 2 定积分在几何上的应用一、平面图形的面积1.直角坐标情形设平面图形由上下两条曲线y =f 上(x )与y =f 下(x )及左右两条直线x =a 与x =b 所围成, 则面积元素为[f 上(x )- f 下(x )]dx , 于是平面图形的面积为dx x f x f S b a ⎰-=)]()([下上.类似地, 由左右两条曲线x =ϕ左(y )与x =ϕ右(y )及上下两条直线y =d 与y =c 所围成设平面图形的面积为⎰-=dc dy y y S )]()([左右ϕϕ.例1 计算抛物线y 2=x 、y =x 2所围成的图形的面积.解 (1)画图.(2)确定在x 轴上的投影区间: [0, 1].(3)确定上下曲线: 2)( ,)(x x f x x f ==下上.(4)计算积分31]3132[)(10323102=-=-=⎰x x dx x x S . 例2 计算抛物线y 2=2x 与直线y =x -4所围成的图形的面积.解 (1)画图.(2)确定在y 轴上的投影区间: [-2, 4].(3)确定左右曲线: 4)( ,21)(2+==y y y y 右左ϕϕ. (4)计算积分⎰--+=422)214(dy y y S 18]61421[4232=-+=-y y y . 例3 求椭圆12222=+by a x所围成的图形的面积. 解 设整个椭圆的面积是椭圆在第一象限部分的四倍, 椭圆在第一象限部分在x 轴上的投影区间为[0, a ]. 因为面积元素为ydx , 所以⎰=aydx S 04. 椭圆的参数方程为:x =a cos t , y =b sin t ,于是 ⎰=a ydx S 04⎰=02)cos (sin 4πt a td b⎰-=022sin 4πtdt ab ⎰-=20)2cos 1(2πdt t ab ππab ab =⋅=22.2.极坐标情形曲边扇形及曲边扇形的面积元素:由曲线ρ=ϕ(θ)及射线θ =α, θ =β围成的图形称为曲边扇形. 曲边扇形的面积元素为θθϕd dS 2)]([21=. 曲边扇形的面积为⎰=βαθθϕd S 2)]([21. 例4. 计算阿基米德螺线ρ=a θ (a >0)上相应于θ从0变到2π 的一段弧与极轴所围成的图形的面积.解: ⎰=πθθ202)(21d a S 32203234]31[21πθπa a ==. 例5. 计算心形线ρ=a (1+cos θ ) (a >0) 所围成的图形的面积.解: ⎰+=πθθ02]cos 1([212d a S ⎰++=πθθθ02)2cos 21cos 221(d a πθθθπ20223]2sin 41sin 223[a a =++=.二、体 积1.旋转体的体积旋转体就是由一个平面图形绕这平面内一条直线旋转一周而成的立体. 这直线叫做旋转轴. 常见的旋转体: 圆柱、圆锥、圆台、球体.旋转体都可以看作是由连续曲线y =f (x )、直线x =a 、a =b 及x 轴所围成的曲边梯形绕x 轴旋转一周而成的立体.设过区间[a , b ]内点x 且垂直于x 轴的平面左侧的旋转体的体积为V (x ), 当平面左右平移dx 后, 体积的增量近似为∆V =π[f (x )]2dx , 于是体积元素为dV = π[f (x )]2dx ,旋转体的体积为dx x f V ba 2)]([π⎰=.例1 连接坐标原点O 及点P (h , r )的直线、直线x =h 及x 轴围成一个直角三角形. 将它绕x 轴旋转构成一个底半径为r 、高为h 的圆锥体. 计算这圆锥体的体积.解: 直角三角形斜边的直线方程为x hr y =. 所求圆锥体的体积为dx x h r V h 20)(π⎰=h x h r 0322]31[π=231hr π=. 例2. 计算由椭圆12222=+by a x所成的图形绕x 轴旋转而成的旋转体(旋转椭球体)的体积. 解: 这个旋转椭球体也可以看作是由半个椭圆 22x a ab y -= 及x 轴围成的图形绕x 轴旋转而成的立体. 体积元素为dV = π y 2dx ,于是所求旋转椭球体的体积为⎰--=aa dx x a ab V )(2222πa a x x a ab --=]31[3222π234ab π=. 例3 计算由摆线x =a (t -sin t ), y =a (1-cos t )的一拱, 直线y =0所围成的图形分别绕x 轴、y 轴旋转而成的旋转体的体积.解 所给图形绕x 轴旋转而成的旋转体的体积为 ⎰=a x dx y V ππ202⎰-⋅-=ππ2022)cos 1()cos 1(dt t a t a⎰-+-=ππ20323)cos cos 3cos 31(dt t t t a=5π 2a 3.所给图形绕y 轴旋转而成的旋转体的体积是两个旋转体体积的差. 设曲线左半边为x =x 1(y )、右半边为x =x 2(y ). 则⎰⎰-=a a y dy y x dy y x V 20212022)()(ππ ⎰⎰⋅--⋅-=πππππ022222sin )sin (sin )sin (tdt a t t a tdt a t t a⎰--=ππ2023sin )sin (tdt t t a =6π 3a 3 .2.平行截面面积为已知的立体的体积设立体在x 轴的投影区间为[a , b ], 过点x 且垂直于x 轴的平面与立体相截, 截面面积为A (x ), 则体积元素为A (x )dx , 立体的体积为dx x A V b a )(⎰=.例4 一平面经过半径为R 的圆柱体的底圆中心, 并与底面交成角α. 计算这平面截圆柱所得立体的体积.解: 取这平面与圆柱体的底面的交线为x 轴, 底面上过圆中心、且垂直于x 轴的直线为y 轴. 那么底圆的方程为x 2 +y 2=R 2. 立体中过点x 且垂直于x 轴的截面是一个直角三角形. 两个直角边分别为22x R -及αtan 22x R -. 因而截面积为αtan )(21)(22x R x A -=. 于是所求的立体体积为 dx x R V R R αtan )(2122-=⎰-ααtan 32]31[tan 21332R x x R R R =-=-. 例5. 求以半径为R 的圆为底、平行且等于底圆直径的线段为顶、高为h 的正劈锥体的体积.解: 取底圆所在的平面为x O y 平面, 圆心为原点, 并使x 轴与正劈锥的顶平行. 底圆的方程为x 2 +y 2=R 2. 过x 轴上的点x (-R <x <R )作垂直于x 轴的平面, 截正劈锥体得等腰三角形. 这截面的面积为22)(x R h y h x A -=⋅=.于是所求正劈锥体的体积为⎰--=R R dx x R h V 22h R d h R 2202221cos 2πθθπ==⎰ . 三、平面曲线的弧长设A , B 是曲线弧上的两个端点. 在弧AB 上任取分点A =M 0, M 1, M 2, ⋅ ⋅ ⋅ , M i -1, M i , ⋅ ⋅ ⋅, M n -1, M n =B , 并依次连接相邻的分点得一内接折线. 当分点的数目无限增加且每个小段M i -1M i 都缩向一点时, 如果此折线的长∑=-ni i i M M 11||的极限存在, 则称此极限为曲线弧AB 的弧长, 并称此曲线弧AB 是可求长的.定理 光滑曲线弧是可求长的.1.直角坐标情形设曲线弧由直角坐标方程y =f (x ) (a ≤x ≤b )给出, 其中f (x )在区间[a , b ]上具有一阶连续导数. 现在来计算这曲线弧的长度.取横坐标x 为积分变量, 它的变化区间为[a , b ]. 曲线y =f (x )上相应于[a , b ]上任一小区间[x , x +dx ]的一段弧的长度, 可以用该曲线在点(x , f (x ))处的切线上相应的一小段的长度来近似代替. 而切线上这相应的小段的长度为dx y dy dx 2221)()('+=+,从而得弧长元素(即弧微分)dx y ds 21'+=. 以dx y 21'+为被积表达式, 在闭区间[a , b ]上作定积分, 便得所求的弧长为⎰'+=ba dx y s 21. 在曲率一节中, 我们已经知道弧微分的表达式为dx y ds 21'+=, 这也就是弧长元素. 因此 例1. 计算曲线2332x y =上相应于x 从a 到b 的一段弧的长度. 解: 21x y =', 从而弧长元素dx x dx y ds +='+=112.因此, 所求弧长为b a b a x dx x s ])1(32[123+=+=⎰])1()1[(322323a b +-+=. 例2. 计算悬链线cx c y ch =上介于x =-b 与x =b 之间一段弧的长度. 解: cx y sh =', 从而弧长元素为 dx cx dx c x ds ch sh 12=+=. 因此, 所求弧长为⎰⎰==-b b b dx c x dx c x s 0ch 2ch cb c dx c x c b sh 2]sh [20==. 2.参数方程情形设曲线弧由参数方程x =ϕ(t )、y =ψ(t ) (α≤t ≤β )给出, 其中ϕ(t )、ψ(t )在[α, β]上具有连续导数.因为)()(t t dx dy ϕψ''=, dx =ϕ'(t )d t , 所以弧长元素为 dt t t dt t t t ds )()()()()(12222ψϕϕϕψ'+'='''+=. 所求弧长为⎰'+'=βαψϕdt t t s )()(22. 例3. 计算摆线x =a (θ-sin θ), y =a (1-cos θ)的一拱(0 ≤θ ≤2π )的长度.解: 弧长元素为θθθd a a ds 2222sin )cos 1(+-=θθd a )cos 1(2-=θθd a 2sin2=.所求弧长为⎰=πθθ202sin 2d a s πθ20]2cos 2[2-=a =8a . 3.极坐标情形设曲线弧由极坐标方程ρ=ρ(θ) (α ≤ θ ≤ β )给出, 其中r (θ)在[α, β]上具有连续导数. 由直角坐标与极坐标的关系可得x =ρ(θ)cos θ , y =ρ(θ)sin θ(α ≤θ ≤ β ).于是得弧长元素为θθθd y x ds )()(22'+'=θθρθρd )()(22'+=.从而所求弧长为⎰'+=βαθθρθρd s )()(22.例14. 求阿基米德螺线ρ=a θ (a >0)相应于θ 从0到2π 一段的弧长.解: 弧长元素为θθθθd a d a a ds 22221+=+=.于是所求弧长为⎰+=πθθ2021d a s )]412ln(412[222ππππ++++=a .§6. 3 功 水压力和引力一、变力沿直线所作的功例1 把一个带+q 电量的点电荷放在r 轴上坐标原点O 处, 它产生一个电场. 这个电场对周围的电荷有作用力. 由物理学知道, 如果有一个单位正电荷放在这个电场中距离原点O 为r 的地方, 那么电场对它的作用力的大小为2r q k F = (k 是常数). 当这个单位正电荷在电场中从r =a 处沿r 轴移动到r =b (a <b )处时, 计算电场力F 对它所作的功. 例1' 电量为+q 的点电荷位于r 轴的坐标原点O 处它所产生的电场力使r 轴上的一个单位正电荷从r =a 处移动到r =b (a <b )处求电场力对单位正电荷所作的功.提示: 由物理学知道, 在电量为+q 的点电荷所产生的电场中, 距离点电荷r 处的单位正电荷所受到的电场力的大小为2r q k F = (k 是常数). 解: 在r 轴上, 当单位正电荷从r 移动到r +dr 时, 电场力对它所作的功近似为dr r q k2, 即功元素为dr r q kdW 2=. 于是所求的功为dr rkq W b a 2⎰=b a r kq ]1[-=)11(b a kq -=. 例2. 在底面积为S 的圆柱形容器中盛有一定量的气体. 在等温条件下, 由于气体的膨胀, 把容器中的一个活塞(面积为S )从点a 处推移到点b 处. 计算在移动过程中, 气体压力所作的功. 解: 取坐标系如图, 活塞的位置可以用坐标x 来表示. 由物理学知道, 一定量的气体在等温条件下, 压强p 与体积V 的乘积是常数k , 即pV =k 或Vk p =. 解: 在点x 处, 因为V =xS , 所以作在活塞上的力为xk S xS k S p F =⋅=⋅=. 当活塞从x 移动到x +dx 时, 变力所作的功近似为dx xk , 即功元素为dx xk dW =. 于是所求的功为dx x k W b a ⎰=b a x k ][ln =ab k ln =.例3. 一圆柱形的贮水桶高为5m , 底圆半径为3m , 桶内盛满了水. 试问要把桶内的水全部吸出需作多少功?解: 作x 轴如图. 取深度x 为积分变量. 它的变化区间为[0, 5], 相应于[0, 5]上任小区间[x , x +dx ]的一薄层水的高度为dx . 水的比重为9.8kN/m 3, 因此如x 的单位为m , 这薄层水的重力为9.8π⋅32dx . 这薄层水吸出桶外需作的功近似地为dW =88.2π⋅x ⋅dx ,此即功元素. 于是所求的功为⎰=502.88xdx W π502]2[2.88x π=2252.88⋅=π(kj). 二、水压力从物理学知道, 在水深为h 处的压强为p =γh , 这里 γ 是水的比重. 如果有一面积为A 的平板水平地放置在水深为h 处, 那么, 平板一侧所受的水压力为P =p ⋅A .如果这个平板铅直放置在水中, 那么, 由于水深不同的点处压强p 不相等, 所以平板所受水的压力就不能用上述方法计算.例4. 一个横放着的圆柱形水桶, 桶内盛有半桶水. 设桶的底半径为R , 水的比重为 γ , 计算桶的一个端面上所受的压力.解: 桶的一个端面是圆片, 与水接触的是下半圆. 取坐标系如图.在水深x 处于圆片上取一窄条, 其宽为dx , 得压力元素为dx x R x dP 222-=γ.所求压力为⎰-=R dx x R x P 022 2γ)()(2221220x R d x RR ---=⎰γR x R 02322])(32[--=γ332R r =. 三、引力从物理学知道, 质量分别为m 1、m 2, 相距为r 的两质点间的引力的大小为221r m m G F =, 其中G 为引力系数, 引力的方向沿着两质点连线方向.如果要计算一根细棒对一个质点的引力, 那么, 由于细棒上各点与该质点的距离是变化的, 且各点对该质点的引力的方向也是变化的, 就不能用上述公式来计算.例5. 设有一长度为l 、线密度为ρ的均匀细直棒, 在其中垂线上距棒a 单位处有一质量为m 的质点M . 试计算该棒对质点M 的引力.例5'. 求长度为l 、线密度为ρ的均匀细直棒对其中垂线上距棒a 单位处质量为m 的质点M 的引力.解: 取坐标系如图, 使棒位于y 轴上, 质点M 位于x 轴上, 棒的中点为原点O . 由对称性知,引力在垂直方向上的分量为零, 所以只需求引力在水平方向的分量. 取y 为积分变量, 它的变化区间为]2 ,2[l l -. 在]2,2[l l -上y 点取长为dy 的一小段, 其质量为ρdy , 与M 相距22y a r +=. 于是在水平方向上, 引力元素为2222y a a y a dy m G dF x +-⋅+=ρ2/322)(y a dy am G +-=ρ. 引力在水平方向的分量为⎰-+-=222/322)(l l x y a dy am G F ρ22412la a l Gm +⋅-=ρ.。
《高等数学》(同济六版)教学★第9章.多元函数微分法及其应用ppt课件
图形为中心在原点的上半球面.
又如, z sin(xy), (x, y) R 2
说明: 二元函数 z = f (x, y), (x, y) D
的图形一般为空间曲面 .
三元函数 u arcsin(x2 y2 z2 )
定义域为 单位闭球
z
o 1y
2
19
机动 目录 上页 下页 返回 结束
• 二重极限 lim f (x, y) 与累次极限 lim lim f (x, y)
x x0
xx0 y y0
y y0
不同.
如果它们都存在, 则三者相等. 仅知其中一个存在, 推不出其它二者存在.
例如,
显然
lim lim f (x, y) 0,
x0 y0
但由例3 知它在(0,0)点二重极限不存在 .
在空间中,
U ( P0 , ) (x, y, z )
PP0 δ 称为点 P0 的邻域.
(圆邻域)
(球邻域)
说明:若不需要强调邻域半径 ,也可写成 U ( P0 ).
点 P0 的去心邻域记为
0 PP0 δ
3
机动 目录 上页 下页 返回 结束
在讨论实际问题中也常使用方邻域, 因为方邻域与圆 邻域可以互相包含.
ቤተ መጻሕፍቲ ባይዱ
内总有E 中的点 , 则
称 P 是 E 的聚点.
聚点可以属于 E , 也可以不属于 E (因为聚点可以为
E 的边界点 )
所有聚点所成的点集成为 E 的导集 .
6
机动 目录 上页 下页 返回 结束
(3) 开区域及闭区域
• 若点集 E 的点都是内点,则称 E 为开集;
• E 的边界点的全体称为 E 的边界, 记作E ;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章 重积分教学目的:1. 理解二重积分、三重积分的概念,了解重积分的性质,知道二重积分的中值定理。
2. 掌握二重积分的(直角坐标、极坐标)计算方法。
3. 掌握计算三重积分的(直角坐标、柱面坐标、球面坐标)计算方法。
8、会用重积分求一些几何量与物理量(平面图形的面积、体积、重心、转动惯量、引力等)。
教学重点:1、 二重积分的计算(直角坐标、极坐标);2、 三重积分的(直角坐标、柱面坐标、球面坐标)计算。
3、二、三重积分的几何应用及物理应用。
教学难点:1、 利用极坐标计算二重积分;2、 利用球坐标计算三重积分;3、 物理应用中的引力问题。
§9. 1 二重积分的概念与性质一、二重积分的概念 1. 曲顶柱体的体积设有一立体, 它的底是xOy 面上的闭区域D , 它的侧面是以D 的边界曲线为准线而母线平行于z 轴的柱面, 它的顶是曲面z =f (x , y ), 这里f (x , y )≥0且在D 上连续. 这种立体叫做曲顶柱体. 现在我们来讨论如何计算曲顶柱体的体积. 首先, 用一组曲线网把D 分成n 个小区域 ∆σ 1, ∆σ 2, ⋅ ⋅ ⋅ , ∆σ n .分别以这些小闭区域的边界曲线为准线, 作母线平行于z 轴的柱面, 这些柱面把原来的曲顶柱体分为n 个细曲顶柱体. 在每个∆σ i 中任取一点(ξ i , η i ), 以f (ξ i , η i )为 高而底为∆σ i 的平顶柱体的体积为 f (ξ i , η i ) ∆σi (i =1, 2, ⋅ ⋅ ⋅ , n ). 这个平顶柱体体积之和 i i i ni f V σηξ∆≈=∑),(1.可以认为是整个曲顶柱体体积的近似值. 为求得曲顶柱体体积的精确值, 将分割加密, 只需取极限, 即i i i ni f V σηξλ∆==→∑),(lim 10.其中λ是个小区域的直径中的最大值. 2. 平面薄片的质量.设有一平面薄片占有xOy 面上的闭区域D , 它在点(x , y )处的面密度为ρ(x , y ), 这里ρ(x , y )>0且在D 上连续. 现在要计算该薄片的质量M .用一组曲线网把D 分成n 个小区域 ∆σ 1, ∆σ 2, ⋅ ⋅ ⋅ , ∆σ n .把各小块的质量近似地看作均匀薄片的质量: ρ(ξ i , η i )∆σ i .各小块质量的和作为平面薄片的质量的近似值: i i i ni M σηξρ∆≈=∑),(1.将分割加细, 取极限, 得到平面薄片的质量 i i i ni M σηξρλ∆==→∑),(lim 10.其中λ是个小区域的直径中的最大值.定义 设f (x , y )是有界闭区域D 上的有界函数. 将闭区域D 任意分成n 个小闭区域 ∆σ 1, ∆σ 2, ⋅ ⋅ ⋅ , ∆σ n .其中∆σ i 表示第i 个小区域, 也表示它的面积. 在每个∆σ i 上任取一点(ξ i , ηi ), 作和i i i ni f σηξ∆=∑),(1.如果当各小闭区域的直径中的最大值λ趋于零时, 这和的极限总存在, 则称此极限为函数f (x , y )在闭区域D 上的二重积分, 记作σd y x f D⎰⎰),(, 即i i i ni Df d y x f σηξσλ∆==→∑⎰⎰),(lim ),(10. f (x , y )被积函数, f (x , y )d σ被积表达式, d σ面积元素, x , y 积分变量, D 积分区域, 积分和. 直角坐标系中的面积元素:如果在直角坐标系中用平行于坐标轴的直线网来划分D , 那么除了包含边界点的一些小闭区域外, 其余的小闭区域都是矩形闭区域. 设矩形闭区域∆σi 的边长为∆x i 和∆y i , 则∆σi =∆x i ∆y i , 因此在直角坐标系中, 有时也把面积元素d σ 记作dxdy , 而把二重积分记作dxdy y x f D⎰⎰),(其中dxdy 叫做直角坐标系中的面积元素.二重积分的存在性: 当f (x , y )在闭区域D 上连续时, 积分和的极限是存在的, 也就是说函数f (x , y )在D 上的二重积分必定存在. 我们总假定函数f (x , y )在闭区域D 上连续, 所以f (x , y )在D 上的二重积分都是存在的.二重积分的几何意义: 如果f (x , y )≥0, 被积函数f (x , y )可解释为曲顶柱体的在点(x , y )处的竖坐标, 所以二重积分的几何意义就是柱体的体积. 如果f (x , y )是负的, 柱体就在xOy 面的下方, 二重积分的绝对值仍等于柱体的体积, 但二重积分的值是负的.二. 二重积分的性质 性质1 设c 1、c 2为常数, 则σσσd y x g c d y x f c d y x g c y x f c DDD⎰⎰⎰⎰⎰⎰+=+),(),()],(),([2121.性质2如果闭区域D 被有限条曲线分为有限个部分闭区域, 则在D 上的二重积分等于在各部分闭区域上的二重积分的和. 例如D 分为两个闭区域D 1与D 2, 则σσσd y x f d y x f d y x f D D D⎰⎰⎰⎰⎰⎰+=21),(),(),(.性质3σσσ==⋅⎰⎰⎰⎰DDd d 1(σ为D 的面积).性质4 如果在D 上, f (x , y )≤g (x , y ), 则有不等式σσd y x g d y x f DD⎰⎰⎰⎰≤),(),(.特殊地有σσd y x f d y x f DD⎰⎰⎰⎰≤|),(||),(|.性质5 设M 、m 分别是f (x , y )在闭区域D 上的最大值和最小值, σ为D 的面积, 则有 σσσM d y x f m D≤≤⎰⎰),(.性质6(二重积分的中值定理) 设函数f (x , y )在闭区域D 上连续, σ 为D 的面积, 则在D 上至少存在一点(ξ, η)使得 σηξσ),(),(f d y x f D=⎰⎰.§9. 2 二重积分的计算法一、利用直角坐标计算二重积分 X --型区域:D : ϕ1(x )≤y ≤ϕ2(x ), a ≤x ≤b . Y --型区域:D : ψ1(x )≤y ≤ψ2(x ), c ≤y ≤d . 混合型区域:设f (x , y )≥0, D ={(x , y )| ϕ1(x )≤y ≤ϕ2(x ), a ≤x ≤b }. 此时二重积分σd y x f D⎰⎰),(在几何上表示以曲面z =f (x , y )为顶, 以区域D 为底的曲顶柱体的体积.对于x 0∈[a , b ], 曲顶柱体在x =x 0的截面面积为以区间[ϕ1(x 0), ϕ2(x 0)]为底、以曲线z =f (x 0, y )为曲边的曲边梯形, 所以这截面的面积为 ⎰=)()(000201),()(x x dy y x f x A ϕϕ.根据平行截面面积为已知的立体体积的方法, 得曲顶柱体体积为 ⎰=badx x A V )(dx dy y x f b a x x ⎰⎰=]),([)()(21ϕϕ.即 V =dx dy y x f d y x f b a x x D⎰⎰⎰⎰=]),([),()()(21ϕϕσ.可记为⎰⎰⎰⎰=bax x Ddy y x f dx d y x f )()(21),(),(ϕϕσ.类似地, 如果区域D 为Y --型区域: D : ψ1(x )≤y ≤ψ2(x ), c ≤y ≤d , 则有⎰⎰⎰⎰=dc y y Ddx y x f dy d y x f )()(21),(),(ψψσ.例1. 计算σd xy D⎰⎰, 其中D 是由直线y =1、x =2及y =x 所围成的闭区域.解: 画出区域D .方法一. 可把D 看成是X --型区域: 1≤x ≤2, 1≤y ≤x . 于是⎰⎰⎰⎰=211][xDdx xydy d xy σ⎰⎰-=⋅=2132112)(21]2[dx x x dx y x x 89]24[212124=-=x x .注: 积分还可以写成⎰⎰⎰⎰⎰⎰==211211xx Dydy xdx xydy dx d xy σ.解法2. 也可把D 看成是Y --型区域: 1≤y ≤2, y ≤x ≤2 . 于是⎰⎰⎰⎰=212][y Ddy xydx d xy σ⎰⎰-=⋅=2132122)22(]2[dy y y dy x y y 89]8[2142=-=y y . 例2. 计算σd y x yD⎰⎰-+221, 其中D 是由直线y =1、x =-1及y =x 所围成的闭区域.解 画出区域D , 可把D 看成是X --型区域: -1≤x ≤1, x ≤y ≤1. 于是⎰⎰⎰⎰-+=-+-122112211xDdy y x y dx d y x y σ⎰⎰----=-+-=1131112322)1|(|31])1[(31dx x dx y x x 21)1(32103=--=⎰dx x . 也可D 看成是Y --型区域:-1≤y ≤1, -1≤x <y . 于是⎰⎰⎰⎰---+=-+111222211yDdx y x ydy d y x y σ.例3 计算σd xy D⎰⎰, 其中D 是由直线y =x -2及抛物线y 2=x 所围成的闭区域.解 积分区域可以表示为D =D 1+D 2,其中x y x x D ≤≤-≤≤ ,10 :1; x y x D ≤≤≤≤2 ,41 :2. 于是⎰⎰⎰⎰⎰⎰--+=41210xx xxDxydy dx xydy dx d xy σ.积分区域也可以表示为D : -1≤y ≤2, y 2≤x ≤y +2. 于是⎰⎰⎰⎰-+=2122y yDxydx dy d xy σ⎰-+=21222]2[dy y x y y ⎰--+=2152])2([21dy y y y 855]62344[21216234=-++=-y y y y .讨论积分次序的选择.例4 求两个底圆半径都等于ρ的直交圆柱面所围成的立体的体积. 解 设这两个圆柱面的方程分别为 x 2+y 2=ρ 2及x 2+z 2=ρ 2.利用立体关于坐标平面的对称性, 只要算出它在第一卦限部分的体积V 1, 然后再乘以8就行了.第一卦限部分是以D ={(x , y )| 0≤y ≤22x R -, 0≤x ≤ρ}为底, 以22x R z -=顶的曲顶柱体. 于是σd x R V D⎰⎰-=228⎰⎰--=R x R dy x R dx 022228⎰--=Rx Rdx y x R 002222][83022316)(8R dx x R R=-=⎰.二. 利用极坐标计算二重积分有些二重积分, 积分区域D 的边界曲线用极坐标方程来表示比较方便, 且被积函数用极坐标变量ρ 、θ 表达比较简单. 这时我们就可以考虑利用极坐标来计算二重积分σd y x f D⎰⎰),(.按二重积分的定义i ni i i Df d y x f σηξσλ∆=∑⎰⎰=→1),(lim ),(. 下面我们来研究这个和的极限在极坐标系中的形式.以从极点O 出发的一族射线及以极点为中心的一族同心圆构成的网将区域D 分为n 个小闭区域, 小闭区域的面积为:i i i i i i θρθρρσ∆⋅⋅-∆⋅∆+=∆2221)(21i i i i θρρρ∆⋅∆∆+=)2(21i i i i i θρρρρ∆⋅∆⋅∆++=2)(i i i θρρ∆∆=,其中i ρ表示相邻两圆弧的半径的平均值.在∆σi 内取点) , (i i θρ, 设其直角坐标为(ξ i , η i ), 则有 i i i θρξcos =, i i i θρηsin =. 于是 i i ni i i i i i i n i i i f f θρρθρθρσηξλλ∆∆=∆∑∑=→=→11)sin ,cos (lim ),(lim , 即θρρθρθρσd d f d y x f DD)sin ,cos (),(⎰⎰⎰⎰=.若积分区域D 可表示为ϕ 1(θ)≤ρ≤ϕ 2(θ), α≤θ≤β,则ρρθρθρθθρρθρθρθϕθϕβαd f d d d f D⎰⎰⎰⎰=)()(21)sin ,cos ()sin ,cos (.讨论:如何确定积分限?ρρθρθρθθρρθρθρθϕβαd f d d d f D⎰⎰⎰⎰=)(0)sin ,cos ()sin ,cos (.ρρθρθρθθρρθρθρθϕπd f d d d f D⎰⎰⎰⎰=)(020)sin ,cos ()sin ,cos (.例5. 计算⎰⎰--Dy xdxdy e 22, 其中D 是由中心在原点、半径为a 的圆周所围成的闭区域.解 在极坐标系中, 闭区域D 可表示为 0≤ρ≤a , 0≤θ ≤2π . 于是⎰⎰⎰⎰---=DDy xd de dxdy e θρρρ222θθρρπρπρd e d d e a a020200]21[ ][22⎰⎰⎰---==)1()1(212220a a e d e ---=-=⎰πθπ.注: 此处积分⎰⎰--Dy xdxdy e 22也常写成⎰⎰≤+--22222a y x y xdxdy e .利用)1(222222a a y x y x edxdy e-≤+---=⎰⎰π计算广义积分dx e x 2-+∞⎰:设D 1={(x , y )|x 2+y 2≤R 2, x ≥0, y ≥0}, D 2={(x , y )|x 2+y 2≤2R 2, x ≥0, y ≥0}, S ={(x , y )|0≤x ≤R , 0≤y ≤R }. 显然D 1⊂S ⊂D 2. 由于022>--y x e , 从则在这些闭区域上的二重积分之间有不等式⎰⎰⎰⎰⎰⎰------<<22222122D y xSy xD y xdxdy e dxdy e dxdy e .因为20)(22222⎰⎰⎰⎰⎰-----=⋅=Rx Ry Rx Sy x dx e dy edx edxdy e,又应用上面已得的结果有)1(42122R D y xe dxdy e ----=⎰⎰π,)1(422222R D y xe dxdy e ----=⎰⎰π,于是上面的不等式可写成)1(4)()1(4222220R R x R e dx e e ----<<-⎰ππ.令R →+∞, 上式两端趋于同一极限4π, 从而220 π=-∞+⎰dx e x .例6 求球体x 2+y 2+z 2≤4a 2被圆柱面x 2+y 2=2ax 所截得的(含在圆柱面内的部分)立体的体积.解 由对称性, 立体体积为第一卦限部分的四倍.⎰⎰--=Ddxdy y x a V 22244,其中D 为半圆周22x ax y -=及x 轴所围成的闭区域. 在极坐标系中D 可表示为 0≤ρ≤2a cos θ , 20πθ≤≤. 于是 ⎰⎰⎰⎰-=-=20cos 2022224444πθρρρθθρρρa Dd a d d d a V)322(332)sin 1(33222032-=-=⎰πθθπa d a .§9.3 三重积分一、三重积分的概念定义 设f (x , y , z )是空间有界闭区域Ω上的有界函数. 将Ω任意分成n 个小闭区域 ∆v 1, ∆v 2, ⋅ ⋅ ⋅ , ∆v n其中∆v i 表示第i 个小闭区域, 也表示它的体积. 在每个∆v i 上任取一点(ξi , ηi , ζi ), 作乘积f (ξi , η i , ζ i )∆v i (i =1, 2, ⋅ ⋅ ⋅, n )并作和i i i i ni v f ∆=∑),,(1ζηξ. 如果当各小闭区域的直径中的最大值λ趋于零时, 这和的极限总存在, 则称此极限为函数f (x , y , z )在闭区域Ω上的三重积分, 记作dv z y x f ⎰⎰⎰Ω),,(. 即i i i i ni v f dv z y x f ∆==→Ω∑⎰⎰⎰),,(lim ),,(10ζηξλ. 三重积分中的有关术语:⎰⎰⎰Ω——积分号, f (x , y , z )——被积函数, f (x , y , z )dv ——被积表达式, dv 体积元素, x , y , z ——积分变量, Ω——积分区域.在直角坐标系中, 如果用平行于坐标面的平面来划分Ω, 则∆v i =∆x i ∆y i ∆z i , 因此也把体积元素记为dv =dxdydz , 三重积分记作⎰⎰⎰⎰⎰⎰ΩΩ=dxdydz z y x f dv z y x f ),,(),,(.当函数f (x , y , z )在闭区域Ω上连续时, 极限i i i i ni v f ∆=→∑),,(lim 10ζηξλ是存在的,因此f (x , y , z )在Ω上的三重积分是存在的, 以后也总假定f (x , y , z )在闭区域Ω上是连续的. 三重积分的性质: 与二重积分类似. 比如dv z y x g c dv z y x f c dv z y x g c z y x f c ⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ±=±),,(),,()],,(),,([2121;dv z y x f dv z y x f dv z y x f ⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ+Ω+=2121),,(),,(),,(;V dv =⎰⎰⎰Ω, 其中V 为区域Ω的体积.二、三重积分的计算1. 利用直角坐标计算三重积分三重积分的计算: 三重积分也可化为三次积分来计算. 设空间闭区域Ω可表为 z 1(x , y )≤z ≤z 2(x , y ), y 1(x )≤y ≤y 2(x ), a ≤x ≤b , 则σd dz z y x f dv z y x f Dy x z y x z ⎰⎰⎰⎰⎰⎰=Ω]),,([),,(),(),(21⎰⎰⎰=ba x y x y y x z y x z dy dz z y x f dx)()(),(),(2121]),,([ ⎰⎰⎰=ba y x z y x z x y x y dz z y x f dy dx ),(),()()(2121),,(,即⎰⎰⎰⎰⎰⎰=Ωb ay x z y x z x y x y dz z y x f dy dx dv z y x f ),(),()()(2121),,(),,(.其中D : y 1(x )≤ y ≤ y 2(x ), a ≤x ≤b . 它是闭区域Ω在xOy 面上的投影区域. 提示:设空间闭区域Ω可表为z 1(x , y )≤z ≤z 2(x , y ), y 1(x )≤y ≤y 2(x ), a ≤x ≤b , 计算⎰⎰⎰Ωdv z y x f ),,(.基本思想:对于平面区域D : y 1(x )≤y ≤y 2(x ), a ≤x ≤b 内任意一点(x , y ), 将f (x , y , z )只看作z 的函数, 在区间[z 1(x , y ), z 2(x , y )]上对z 积分, 得到一个二元函数F (x , y ), ⎰=),(),(21),,(),(y x z y x z dz z y x f y x F ,然后计算F (x , y )在闭区域D 上的二重积分, 这就完成了f (x , y , z )在空间闭区域Ω上的三重积分.⎰⎰⎰⎰⎰=Dy x z y x z Dd dz z y x f d y x F σσ]),,([),(),(),(21⎰⎰⎰=bax y x y y x z y x z dy dz z y x f dx )()(),(),(2121]),,([,则σd dz z y x f dv z y x f Dy x z y x z ⎰⎰⎰⎰⎰⎰=Ω]),,([),,(),(),(21⎰⎰⎰=ba x y x y y x z y x z dy dz z y x f dx)()(),(),(2121]),,([ ⎰⎰⎰=ba y x z y x z x y x y dz z y x f dy dx ),(),()()(2121),,(.即⎰⎰⎰⎰⎰⎰=Ωb ay x z y x z x y x y dz z y x f dy dx dv z y x f ),(),()()(2121),,(),,(.其中D : y 1(x )≤ y ≤ y 2(x ), a ≤x ≤b . 它是闭区域Ω在xOy 面上的投影区域. 例1 计算三重积分dxdydz x ⎰⎰⎰Ω, 其中Ω为三个坐标面及平面x +2y +z =1所围成的闭区域.解 作图, 区域Ω可表示为:0≤z ≤1-x -2y , )1(210x y -≤≤, 0≤x ≤1. 于是⎰⎰⎰⎰⎰⎰---Ω=10210210x y x xdz dy dx dxdydz x ⎰⎰---=1210)21(xdy y x xdx⎰=+-=1032481)2(41dx x x x . 讨论: 其它类型区域呢?有时, 我们计算一个三重积分也可以化为先计算一个二重积分、再计算一个定积分. 设空间闭区域Ω={(x , y , z )|(x , y )∈D z , c 1≤ z ≤c 2}, 其中D z 是竖坐标为z 的平面截空间闭区域Ω所得到的一个平面闭区域, 则有⎰⎰⎰⎰⎰⎰=ΩzD c c dxdy z y x f dz dv z y x f ),,(),,(21.例2 计算三重积分dxdydz z ⎰⎰⎰Ω2, 其中Ω是由椭球面1222222=++c z b y a x 所围成的空间闭区域.解 空间区域Ω可表为:2222221cz b y a x -≤+, -c ≤ z ≤c .于是⎰⎰⎰⎰⎰⎰-Ω=cc Dzdxdy dz z dxdydz z 223222154)1(abc dz z c z ab cc ππ=-=⎰-.练习1. 将三重积分dxdydz z y x f I ⎰⎰⎰Ω=),,(化为三次积分, 其中(1)Ω是由曲面z =1-x 2-y 2, z =0所围成的闭区域.(2)Ω是双曲抛物面xy =z 及平面x +y -1=0, z =0所围成的闭区域. (3)其中Ω是由曲面z =x 2+2y 2及z =2-x 2所围成的闭区域. 2. 将三重积分dxdydz z y x f I ⎰⎰⎰Ω=),,(化为先进行二重积分再进行定积分的形式, 其中Ω由曲面z =1-x 2-y 2, z =0所围成的闭区域. 2. 利用柱面坐标计算三重积分设M (x , y , z )为空间内一点, 并设点M 在xOy 面上的投影P 的极坐标为P (ρ, θ ), 则这样的三个数ρ、θ 、z 就叫做点M 的柱面坐标, 这里规定ρ、θ 、z 的变化范围为: 0≤ρ<+∞, 0≤θ ≤2π , -∞<z <+∞. 坐标面ρ=ρ0, θ =θ 0, z =z 0的意义: 点M 的直角坐标与柱面坐标的关系:x =ρcos θ, y =ρsin θ, z =z . ⎪⎩⎪⎨⎧===zz y x θρθρsin cos柱面坐标系中的体积元素: dv =ρd ρd θdz . 简单来说, dxdy =ρd ρd θ , dxdydz =dxdy ⋅dz =ρd ρd θ dz .柱面坐标系中的三重积分:⎰⎰⎰⎰⎰⎰ΩΩ=dz d d z f dxdydz z y x f θρρθρθρ),sin ,cos (),,(.例3 利用柱面坐标计算三重积分⎰⎰⎰Ωzdxdydz , 其中Ω是由曲面z =x 2+y 2与平面z =4所围成的闭区域.解 闭区域Ω可表示为: ρ2≤z ≤4, 0≤ρ≤2, 0≤θ≤2π. 于是⎰⎰⎰⎰⎰⎰ΩΩ=dz d d z zdxdydz θρρ⎰⎰⎰=πρρρθ202042zdz d d ⎰⎰-=πρρρθ20204)16(21d d πρρπ364]618[2212062=-⋅=.3. 利用球面坐标计算三重积分设M (x , y , z )为空间内一点, 则点M 也可用这样三个有次序的数r 、ϕ、θ 来确定, 其中 r 为原点O 与点M 间的距离, ϕ为→OM 与z 轴正向所夹的角, θ为从正z 轴来看自x 轴按逆时针方向转到有向线段→OP 的角, 这里P 为点M 在xOy 面上的投影, 这样的三个数r 、ϕ 、θ 叫做点M 的球面坐标, 这里r 、ϕ、θ 的变化范围为 0≤r <+∞, 0≤ϕ<π, 0≤θ ≤2π. 坐标面r =r 0, ϕ=ϕ0, θ=θ0的意义: 点M 的直角坐标与球面坐标的关系:x =r sin ϕcos θ, y =r sin ϕsin θ, z =r cos ϕ . ⎪⎩⎪⎨⎧===ϕθϕθϕcos sin sin cos sin r z r y r x球面坐标系中的体积元素: dv =r 2sin ϕdrd ϕd θ . 球面坐标系中的三重积分:θϕϕϕθϕθϕd drd r r r r f dv z y x f sin )cos ,sin sin ,cos sin (),,(2⎰⎰⎰⎰⎰⎰ΩΩ=. 例4 求半径为a 的球面与半顶角α为的内接锥面所围成的立体的体积. 解 该立体所占区域Ω可表示为: 0≤r ≤2a cos ϕ, 0≤ϕ≤α, 0≤θ≤2π.于是所求立体的体积为 ⎰⎰⎰⎰⎰⎰ΩΩ==θϕϕd drd r dxdydz V sin 2⎰⎰⎰=παϕϕϕθ20cos 202sin a dr r d d⎰⎰=αϕϕϕπcos 202sin 2a dr r d⎰=αϕϕϕπ033sin cos 316d a )cos 1(3443a a -=π. 提示: 球面的方程为x 2+y 2+(z -a )2=a 2, 即x 2+y 2+z 2=2az . 在球面坐标下此球面的方程为r 2=2ar cos ϕ, 即r =2a cos ϕ.§9. 4 重积分的应用元素法的推广:有许多求总量的问题可以用定积分的元素法来处理. 这种元素法也可推广到二重积分的应用中. 如果所要计算的某个量U 对于闭区域D 具有可加性(就是说, 当闭区域D 分成许多小闭区域时, 所求量U 相应地分成许多部分量, 且U 等于部分量之和), 并且在闭区域D 内任取一个直径很小的闭区域d σ时, 相应的部分量可近似地表示为f (x , y )d σ 的形式, 其中(x , y )在d σ内, 则称f (x , y )d σ 为所求量U 的元素, 记为dU , 以它为被积表达式, 在闭区域D 上积分: ⎰⎰=Dd y x f U σ),(,这就是所求量的积分表达式. 一、曲面的面积设曲面S 由方程 z =f (x , y )给出, D 为曲面S 在xOy 面上的投影区域, 函数f (x , y )在D 上具有连续偏导数f x (x , y )和f y (x , y ). 现求曲面的面积A .在区域D 内任取一点P (x , y ), 并在区域D 内取一包含点P (x , y )的小闭区域d σ, 其面积也记为d σ. 在曲面S 上点M (x , y , f (x , y ))处做曲面S 的切平面T , 再做以小区域d σ的边界曲线为准线、母线平行于z 轴的柱面. 将含于柱面内的小块切平面的面积作为含于柱面内的小块曲面面积的近似值, 记为dA . 又设切平面T 的法向量与z 轴所成的角为γ , 则 σγσd y x f y x f d dA yx ),(),(1cos 22++==,这就是曲面S 的面积元素.于是曲面S 的面积为 σd y x f y x f A y x D),(),(122++=⎰⎰,或 dxdy yz x z A D22)()(1∂∂+∂∂+=⎰⎰.设dA 为曲面S 上点M 处的面积元素, dA 在xOy 面上的投影为小闭区域d σ, M 在xOy 面上的投影为点P (x , y ), 因为曲面上点M 处的法向量为n =(-f x , -f y , 1), 所以 σσd y x f y x f d dA y x ),(),(1||22++==n . 提示: dA 与xOy 面的夹角为(n ,^ k ), dA cos(n ,^ k )=d σ, n ⋅k =|n |cos(n ,^ k )=1, cos(n ,^ k )=|n |-1.讨论: 若曲面方程为x =g (y , z )或y =h (z , x ), 则曲面的面积如何求? dydz z x y x A yzD ⎰⎰∂∂+∂∂+=22)()(1, 或 dzdx xy z y A zxD ⎰⎰∂∂+∂∂+=22)()(1. 其中D yz 是曲面在yOz 面上的投影区域, D zx 是曲面在zOx 面上的投影区域. 例1 求半径为R 的球的表面积.解 上半球面方程为222y x R z --=, x 2+y 2≤R 2.因为z 对x 和对y 的偏导数在D : x 2+y 2≤R 2上无界, 所以上半球面面积不能直接求出. 因此先求在区域D 1: x 2+y 2≤a 2 (a <R )上的部分球面面积, 然后取极限.dxdy y x R R a y x 222222--⎰⎰≤+⎰⎰-=πθ20022a r R rdr d R)(222a R R R --=π.于是上半球面面积为2222)(2lim R a R R R Ra ππ=--→.整个球面面积为 A =2A 1=4πR 2. 提示:222y x R x x z ---=∂∂, 222yx R y y z ---=∂∂, 22222)()(1y x R R y z x z --=∂∂+∂∂+.解 球面的面积A 为上半球面面积的两倍. 上半球面的方程为222y x R z --=, 而222y x R x x z ---=∂∂, 222yx R y y z ---=∂∂,所以 22)()(12222yz x z A R y x ∂∂+∂∂+=⎰⎰≤+dxdy yx R R R y x 2222222--=⎰⎰≤+⎰⎰-=πρρρθ200222R R d d R 20224 4R R R Rπρπ=--=.例2设有一颗地球同步轨道通讯卫星, 距地面的高度为h =36000km , 运行的角速度与地球自转的角速度相同. 试计算该通讯卫星的覆盖面积与地球表面积的比值(地球半径R =6400km).解 取地心为坐标原点, 地心到通讯卫星中心的连线为z 轴, 建立坐标系. 通讯卫星覆盖的曲面∑是上半球面被半顶角为α的圆锥面所截得的部分. ∑的方程为 222y x R z --=, x 2+y 2≤R 2sin 2α. 于是通讯卫星的覆盖面积为 ⎰⎰⎰⎰--=∂∂+∂∂+=xy xyD D dxdy yx R R dxdy yz x z A 22222)()(1.其中D xy ={(x , y )| x 2+y 2≤R 2sin 2α}是曲面∑在xOy 面上的投影区域. 利用极坐标, 得 )cos 1(222sin 022sin 02220απρρρπρρρθααπ-=-=-=⎰⎰⎰R d R R d R R d A R R . 由于hR R +=αcos , 代入上式得hR h R h R R R A +=+-=222)1(2ππ.由此得这颗通讯卫星的覆盖面积与地球表面积之比为%5.4210)4.636(21036)(24662≈⋅+⋅=+=h R h R A π. 由以上结果可知, 卫星覆盖了全球三分之一以上的面积, 故使用三颗相隔π32角度的通讯卫星就可以覆盖几乎地球全部表面. 二、质心设有一平面薄片, 占有xOy 面上的闭区域D , 在点P (x , y )处的面密度为ρ(x , y ), 假定μ(x , y )在D 上连续. 现在要求该薄片的质心坐标.在闭区域D 上任取一点P (x , y ), 及包含点P (x , y )的一直径很小的闭区域d σ(其面积也记为d σ), 则平面薄片对x 轴和对y 轴的力矩(仅考虑大小)元素分别为 dM x =y μ(x , y )d σ, dM y =x μ(x , y )d σ. 平面薄片对x 轴和对y 轴的力矩分别为 ⎰⎰=Dx d y x y M σμ),(, ⎰⎰=Dy d y x x M σμ),(.设平面薄片的质心坐标为) ,(y x , 平面薄片的质量为M , 则有 y M M x =⋅, x M M y =⋅ . 于是⎰⎰⎰⎰==DDy d y x d y x x M M x σμσμ),(),(, ⎰⎰⎰⎰==DD x d y x d y x y MMy σμσμ),(),(. 在闭区域D 上任取包含点P (x , y )小的闭区域d σ(其面积也记为d σ), 则 平面薄片对x 轴和对y 轴的力矩元素分别为 dM x =y μ(x , y )d σ, dM y =x μ(x , y )d σ. 平面薄片对x 轴和对y 轴的力矩分别为 ⎰⎰=Dx d y x y M σμ),(, ⎰⎰=Dy d y x x M σμ),(.设平面薄片的质心坐标为) ,(y x , 平面薄片的质量为M , 则有 y M M x =⋅, x M M y =⋅ .于是⎰⎰⎰⎰==DDyd y x d y x x MM x σμσμ),(),(, ⎰⎰⎰⎰==DDxd y x d y x y MM y σμσμ),(),(.提示: 将P (x , y )点处的面积元素d σ看成是包含点P 的直径得小的闭区域. D 上任取一点P (x , y ), 及包含的一直径很小的闭区域d σ(其面积也记为d σ), 则平面薄片对x 轴和对y 轴的力矩(仅考虑大小)元素分别为讨论: 如果平面薄片是均匀的, 即面密度是常数, 则平面薄片的质心(称为形心)如何求?求平面图形的形心公式为⎰⎰⎰⎰=DDd xd x σσ, ⎰⎰⎰⎰=DDd yd y σσ.例3 求位于两圆ρ=2sin θ 和ρ=4sin θ 之间的均匀薄片的质心.解 因为闭区域D 对称于y 轴, 所以质心) ,(y x C 必位于y 轴上, 于是0=x . 因为⎰⎰⎰⎰=DDd d yd θρθρσsin 2πρρθθθθπ7sin sin 4sin 220==⎰⎰d d ,πππσ31222=⋅-⋅=⎰⎰d D,所以3737===⎰⎰⎰⎰ππσσDD d yd y . 所求形心是)37 ,0(C .类似地, 占有空间闭区域Ω、在点(x , y , z )处的密度为ρ(x , y , z )(假宽ρ(x , y , z )在Ω上连续)的物体的质心坐标是 ⎰⎰⎰Ω=dv z y x x M x ),,(1ρ, ⎰⎰⎰Ω=dv z y x y My ),,(1ρ, ⎰⎰⎰Ω=dv z y x z Mz ),,(1ρ,其中⎰⎰⎰Ω=dv z y x M ),,(ρ.例4 求均匀半球体的质心.解 取半球体的对称轴为z 轴, 原点取在球心上, 又设球半径为a , 则半球体所占空间闭区可表示为Ω={(x , y , z )| x 2+y 2+z 2≤a 2, z ≥0} 显然, 质心在z 轴上, 故0==y x .⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩΩ==dv zdvdvdv z z ρρ83a =.故质心为)83,0 ,0(a . 提示: Ω: 0≤r ≤a , 20πϕ≤≤, 0≤θ≤2π.⎰⎰⎰⎰⎰⎰=Ωadr r d d dv 022020sin ϕθϕππ⎰⎰⎰=adr r d d 022020sin ππθϕϕ323a π=,⎰⎰⎰⎰⎰⎰⋅=Ωadr r r d d dv z 022020sin cos ϕϕθϕππ⎰⎰⎰=a dr r d d 0320202sin 21ππθϕϕ42214a ⋅⋅=π.三、转动惯量设有一平面薄片, 占有xOy 面上的闭区域D , 在点P (x , y )处的面密度为μ(x , y ), 假定ρ(x , y )在D 上连续. 现在要求该薄片对于x 轴的转动惯量和y 轴的转动惯量.在闭区域D 上任取一点P (x , y ), 及包含点P (x , y )的一直径很小的闭区域d σ(其面积也记为d σ), 则平面薄片对于x 轴的转动惯量和y 轴的转动惯量的元素分别为 dI x =y 2μ(x , y )d σ , dI y =x 2μ(x , y )d σ .整片平面薄片对于x 轴的转动惯量和y 轴的转动惯量分别为 σμd y x y I Dx ),(2⎰⎰=, σμd y x x I Dy ),(2⎰⎰=.例5 求半径为a 的均匀半圆薄片(面密度为常量μ)对于其直径边的转动惯量. 解 取坐标系如图, 则薄片所占闭区域D 可表示为 D ={(x , y )| x 2+y 2≤a 2, y ≥0}而所求转动惯量即半圆薄片对于x 轴的转动惯量I x ,⎰⎰⎰⎰⋅==DDx d d d y I θρρθρμσμ222sin⎰⎰⎰⋅==ππθθμρρθθμ0240032sin 4 sin d a d d a2441241Ma a =⋅=πμ, 其中μπ221a M =为半圆薄片的质量. 类似地, 占有空间有界闭区域Ω、在点(x , y , z )处的密度为ρ(x , y , z )的物体对于x 、y 、z 轴的转动惯量为 ⎰⎰⎰Ω+=dv z y x z y I x ),,()(22ρ,⎰⎰⎰Ω+=dv z y x x z I y ),,()(22ρ, ⎰⎰⎰Ω+=dv z y x y x I z ),,()(22ρ.例6 求密度为ρ的均匀球体对于过球心的一条轴l 的转动惯量.解 取球心为坐标原点, z 轴与轴l 重合, 又设球的半径为a , 则球体所占空间闭区域 Ω={(x , y , z )| x 2+y 2+z 2≤a 2}.所求转动惯量即球体对于z 轴的转动惯量I z . ⎰⎰⎰Ω+=dv y x I z )(22ρθϕϕθϕθϕρd drd r r r sin )sin sin cos sin (2222222+=⎰⎰⎰Ωθϕϕρd drd r 34sin ⎰⎰⎰Ω=dr r d d a ⎰⎰⎰=ππϕϕθρ200043 sin ρπ5158a =M a 252=, 其中ρπ334a M =为球体的质量.提示: x 2+y 2=r 2sin 2ϕcos 2θ+r 2sin 2ϕ sin 2θ=r 2sin 2ϕ.四、引力我们讨论空间一物体对于物体外一点P 0(x 0, y 0, z 0)处的单位质量的质点的引力问题. 设物体占有空间有界闭区域Ω, 它在点(x , y , z )处的密度为ρ(x , y , z ), 并假定ρ(x , y , z )在Ω上连续.在物体内任取一点(x , y , z )及包含该点的一直径很小的闭区域dv (其体积也记为dv ). 把这一小块物体的质量ρdv 近似地看作集中在点(x , y , z )处. 这一小块物体对位于P 0(x 0, y 0, z 0)处的单位质量的质点的引力近似地为),,(z y x dF dF dF d =F)))(,,(,))(,,(,))(,,((303030dv r z z z y x G dv r y y z y x G dv r x x z y x G---=ρρρ, 其中dF x 、dF y 、dF z 为引力元素d F 在三个坐标轴上的分量, 202020)()()(z z y y x x r -+-+-=, G 为引力常数. 将dF x 、dF y 、dF z 在Ω上分别积分, 即可得F x 、F y 、F z , 从而得F =(F x 、F y 、F z ).例7设半径为R 的匀质球占有空间闭区域Ω={(x , y , z )|x 2+y 2+z 2≤R 2). 求它对于位于点M 0(0, 0, a ) (a >R )处的单位质量的质点的引力.解 设球的密度为ρ0, 由球体的对称性及质量分布的均匀性知F x =F y =0, 所求引力沿z 轴的分量为 dv a z y x a z G F z 2/32220])([-++-=⎰⎰⎰Ωρ ⎰⎰⎰--≤+-++-=R Rz R y x a z y x dxdy dz a z G 22222/32220])([)(ρ ⎰⎰⎰---+-=2202/322200])([)(z R R R a z d d dz a z G ρρρθρπ⎰-+----=RR dz a az R z a a z G )211)((2220ρπ ]2)(12[2220⎰-+--+-=R Ra az R d a z a R G ρπ )3222(2230aR R R G -+-=πρ 2203134a M G a R G -=⋅⋅-=ρπ, 其中0334ρπR M =为球的质量.上述结果表明:匀质球对球外一质点的引力如同球的质量集中于球心时两质点间的引力.。