排列组合古典概型—复习归纳(教师)
高考复习课件高考二轮·理科数学专题3第8讲排列、组合、二项式定理与古典概型、几何概型
3.古典概型与几何概型 (1)古典概型: ①实验中所有可能出现的基本事件只有有限个; ②每个基本事件出现的可能性相等, 我们将具有这两 个特点的概率模型称为古典概率模型. (2)几何概型: 如果每个事件发生的概率只与构成该事件区域的长 度(面积或体积)成比例,则称这样的概率模型为几何概率 模型.
4.常用公式 (1)排列数公式:Am …· (n-m+1). n =n(n-1)·
(2)用红、黄、蓝三种颜色之一去涂图中标号为 1,2,…,9的9个小正方形(如图),使得任意相邻(有 公共边的)小正方形所涂颜色都不相同,且标号为 “1、5、9”的小正方形涂相同的颜色,则符合条件 的所有涂法共有______种. 1 2 4中任选一种去涂 标号为“1、5、9”的小正方形,涂法有3种;
2 3 为C2 0.6 × 0.4 + 0.6 =0.648,故选A. 3
x y 8 的展开式中x2y2的系数 - y x 为________.(用数字作答)
考题3(2014全国Ⅰ)
【解析】70. 利用二项展开式的通项公式求 x2y2 的系数. 3r 3 8r-4 x y r 8-r r r r - =(-1) C8 x 2 y 2 由 Tr+1=C8 x y 3r 8- 2 =2, 知,要求 x2y2 的系数,则 解得 r=4, 3 r-4=2, 2 ∴ x2y2 的系数为(-1)4C4 8=70.
若 a=1,b=-x,则得到公式:
2 2 n n n (1-x)n=1-C1 nx+Cnx +…+(-1) Cnx .
(3)对于古典概型,事件 A 的概率为 A包含的基本事件的个数 P(A)= . 基本事件的总数
(4)对于几何概型,事件A的概率为P(A)= 构成事件A的区域长度(面积或体积) . 试验的全部结果所构成的区域长度(面积或体积)
古典概型知识点总结
古典概型知识点总结古典概型是概率论中的一个重要内容,它是指在相同的条件下,可能的结果均等可能的情况下,通过计算各种结果出现的可能性的概率。
在古典概型中主要涉及排列、组合、二项式定理、排列组合概率等基础知识。
下面就各个知识点做详细介绍。
一、排列排列是指从n个不同元素中取出m个进行排列,如果这m个元素的顺序不同则视为不同的排列。
排列数用P(n,m)表示,表示n中取m的排列数。
公式为P(n,m) = n!/(n-m)!例如,从5个不同的元素中取出3个元素进行排列,那么排列数就是P(5,3) = 5!/(5-3)! = 5*4*3 = 60。
二、组合组合是指从n个不同元素中取出m个进行组合,不考虑元素的排列顺序。
组合数用C(n,m)表示,表示n中取m的组合数。
公式为C(n,m) = n!/(m!*(n-m)!)例如,从5个不同的元素中取出3个元素进行组合,那么组合数就是C(5,3) = 5!/(3!*(5-3)!) = 10。
三、二项式定理二项式定理是代数中一个重要的定理,它包括二项式系数的公式以及二项式的展开式。
二项式系数的公式为C(n,m) = n!/(m!*(n-m)!)二项式展开式为(a+b)^n = C(n,0)*a^n*b^0 + C(n,1)*a^(n-1)*b^1 + ... + C(n,n)*a^0*b^n例如,(a+b)^3 = C(3,0)*a^3*b^0 + C(3,1)*a^2*b^1 + C(3,2)*a^1*b^2 + C(3,3)*a^0*b^3 = a^3 + 3*a^2*b + 3*a*b^2 + b^3。
四、排列组合概率排列组合概率是指在进行某种排列或组合的情况下,发生一定事件的概率。
在排列组合概率中,一般会出现某个事件的发生总数以及排列或组合的总数,然后通过计算得出该事件的概率。
例如,从一副扑克牌中随机取5张牌,计算得到顺子的概率。
我们可以计算出顺子的排列数,即5个元素的排列数P(5,5)=5!=120,然后计算出总的排列数,即从52张牌中取5张的排列数P(52,5)=52!/(52-5)!=2,598,960,最后通过计算得出顺子的概率为120/2,598,960≈0.000046。
古典概型一等奖优秀教案汇总古典概型公开课说课稿范文
古典概型一等奖优秀教案汇总古典概型公开课说课稿范文一、教学目标【知识与技能】会判断古典概型,会用列举法计算一些随机事件所含的基本事件数和试验中基本事件的总数;能够利用概率公式求解一些简单的古典概型的概率。
【过程与方法】通过从实际问题中抽象出数学模型的过程,提升运用从具体到抽象,特殊到一般的分析问题的能力和解决问题的能力。
【情感态度与价值观】在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是地科学态度,在此过程中还可以增加学习数学的学习兴趣。
二、教学重难点【重点】古典概型的概念以及概率公式。
【难点】如何判断一个试验是否是古典概型。
三、教学过程(一)导入新课提问:口袋里装2个白球和2个黑球,这4个球除颜色外完全相同,白球代表奖品,4个人按顺序依次从中摸球并记录结果,每一个人摸到白球的概率一样吗?追问:如何从理论上来计算出每个人的中奖率呢?引出课题:古典概型(二)探究新知1.探索基本事件和古典概型的概念师生活动:师生共同探讨两个概念的生成(1)抛掷一枚均匀的硬币,出现“正面朝上”和“反面朝上”的概率?(2)掷一粒均匀的骰子,出现“向上的点数为6”的概率是多少?活动:实验的结果只有6个,每种结果的可能性是相等的,每一种结果出现的概率都是(3)转动一个8等份标记的转盘,出现箭头指向4的概率为。
提问:以上三个实验都具有什么特征?预设:(1)试验的所有可能结果只有有限个,每次实验只出现其中的一个结果;(2)每一个试验结果出现的可能性相同。
我们把具有这样两个特征的随机试验的数学模型称为古典概型。
上面三个试验中,试验的每一个可能结果称为基本事件。
如果1次试验的等可能基本事件共有n个,那么每一个等可能基本事件发生的概率都是,如果一些事件A包含了其中M个等可能基本事件,那么事件A发生的概率P(A)=思考:向一个圆面内随机地投一个点,如果该点落在园内任意一点都是等可能的,你认为这是古典概型吗?为什么?(三)巩固提高1.一只口袋内装有大小相同的5只球,其中三只白球,2只黑球,从中一次摸出2只球。
《高三排列组合复习》课件
应用
计算在n个不同元素中取出m个 元素进行组合的不同方式的数目
。
示例
在5个不同元素中取出3个元素进 行组合的不同方式的数目为 $C_{5}^{3} = frac{5 times 4
times 3}{1 times 2 times 3} = 10$。
排列组合的逆序数计算
逆序数的定义
排列与组合的差异
排列考虑顺序,组合不考虑顺 序;
排列数的计算需要考虑取出的 元素顺序,而组合数的计算则 不需要考虑取出的元素顺序;
在实际应用中,排列和组合各 有其适用场景,需要根据具体 问题选择使用。
02
排列组合基本公式的应用
排列数公式的应用
排列数公式
$A_{n}^{m} = n(n-1)(n-2)...(n-m+1)$
06
复习总结与展望
本章重点回顾
排列组合的基本概念
排列组合的解题思路
排列和组合的定义、排列数和组合数 的计算公式等。
如何根据问题类型选择合适的解题方 法,如分步乘法计数原理、分类加法 计数原理等。
排列组合的常见问题类型
如分组、分配、排列、组合等问题。
学习心得体会
通过本次复习,我更加深入地理解了 排列组合的基本概念和计算方法,对 于常见问题类型也有了更清晰的认识 。
定序问题
总结词
解决定序问题需要使用定序法,根据题意确定元素的顺序。
详细描述
在排列组合问题中,有时需要特别注意元素的顺序。例如,有5个不同的书和4 个不同的笔,要求书和笔的顺序为“书-笔-书-笔-书”,则只要使用分组法,将元素分成若干组进行排列。
详细描述
求函数 y = x^2 - 4x + 4 在区间 [0,4] 的最值点
古典概型知识点总结
古典概型知识点总结在概率论中,古典概型是一个基础且重要的概念。
它为我们理解和解决许多概率问题提供了简单而直观的方法。
接下来,让我们一起深入探讨古典概型的相关知识点。
一、古典概型的定义古典概型是指试验中所有可能出现的基本事件是有限的,并且每个基本事件出现的可能性相等的概率模型。
例如,掷一枚均匀的硬币,出现正面和反面就是两个基本事件,且它们出现的可能性相等,这就是一个古典概型的例子。
二、古典概型的概率计算公式如果一个古典概型中,一共有 n 个基本事件,事件 A 包含的基本事件数为 m,那么事件 A 发生的概率 P(A) = m / n 。
这个公式是古典概型计算概率的核心,通过确定基本事件总数和事件 A 包含的基本事件数,就可以计算出事件 A 的概率。
三、古典概型的特点1、有限性:试验中所有可能出现的基本事件是有限的。
2、等可能性:每个基本事件出现的可能性相等。
这两个特点是判断一个概率模型是否为古典概型的关键。
四、计算古典概型概率的步骤1、确定试验的基本事件总数 n 。
2、确定所求事件 A 包含的基本事件数 m 。
3、代入公式 P(A) = m / n 计算概率。
例如,一个盒子里有 5 个红球和 3 个白球,从中随机取出一个球,求取出红球的概率。
基本事件总数 n = 8 (5 个红球+ 3 个白球),事件“取出红球”包含的基本事件数 m = 5 ,所以取出红球的概率 P =5 / 8 。
五、古典概型的常见题型1、摸球问题比如,一个袋子里有若干个不同颜色的球,从中摸出特定颜色球的概率。
2、掷骰子问题计算掷出特定点数或特定点数组合的概率。
3、抽奖问题在抽奖活动中,计算中奖的概率。
4、排列组合问题与古典概型的结合通过排列组合的方法确定基本事件总数和事件包含的基本事件数。
六、古典概型的应用1、决策分析在面临不确定性的决策时,可以通过计算不同结果的概率来辅助决策。
2、风险评估评估某些事件发生的可能性和风险程度。
高考排列组合、概率知识点总结及典型例题(教师版)
高考排列组合、概率知识点总结及典型例题排列组合知识点总结:一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。
2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()!!121m n n m n n n n A m n -=+---=……2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+(2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-; (3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。
1. 公式:()()()C A A n n n m m n m n m n m nm mm ==--+=-11……!!!! 10=n C 规定:组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,,①m m n c -=n n c ;②111-m n c --+=m n n n c c ;③11-k n kc -=k n nc ;11112111212211r r r r r r r rr r r rr r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注:若12m m 1212m =m m +m n nn C C ==则或 四、二项式定理.1. ⑴二项式定理:nn n r r n r n n n n nn b a C b a C b a C b a C b a 01100)(+++++=+-- . 展开式具有以下特点:① 项数:共有1+n 项;② 系数:依次为组合数;,,,,,,210n n r n n n n C C C C C③ 每一项的次数是一样的,即为n 次,展开式依a 的降幕排列,b 的升幕排列展开.⑵二项展开式的通项.n b a )+(展开式中的第1+r 项为:),0(1Z r n r b aC T rr n r n r ∈≤≤=-+.⑶二项式系数的性质.①在二项展开式中与首未两项“等距离”的两项的二项式系数相等;②二项展开式的中间项二项式系数.....最大. I. 当n是偶数时,中间项是第12+n项,它的二项式系数2nn C 最大; II. 当n 是奇数时,中间项为两项,即第21+n 项和第121++n 项,它们的二项式系数2121+-=n nn n C C最大.③系数和:1314201022-=++=+++=+++n n n n n n nn n n n C C C C C C C C概率知识点总结:一、基本知识在一定的条件下必然要发生的事件,叫做必然事件; 在一定的条件下不可能发生的事件,叫做不可能事件;在一定的条件下可能发生也可能不发生的事件,叫做随即事件。
高中数学高考总复习---排列组合、二项式定理知识讲解及考点梳理
高中数学高考总复习---排列组合、二项式定理知识讲解及考点梳理【高考展望】命题角度:该部分的命题就是围绕两个点展开.第一个点是围绕排列,组合展开,设计利用排列组合和两个基本原理求解的实际计数问题的试题,目的是考查对排列组合基本方法的掌握程度,考查分类与整合的思想方法,试题都是选择题或者填空题,难度中等或者偏易;第二点是围绕二项式定理展开,涉及利用二项式的通项公式计算二项式中特定项的系数、常数项、系数和等试题,目的是考查对二项式定理的掌握程度和基本的运算求解能力,试题也都是选择题或者填空题,难度中等.预计高考对该部分的考查基本方向不变,即考查简单的计数问题、二项式定理的简单应用,但由于排列,组合试题的特点,也不排除出现难度稍大的试题的可能.复习建议:该部分的复习以基本问题为主,要点有两个:一个是引导学生掌握解决排列,组合问题的基本思想,即分类与分步的思想,使学生在解题时有正确的思维方向;一个是掌握好二项展开式的通项公式的应用,这是二项式定理的考查核心.【知识升华】一、排列与组合1、分类计数原理与分步计数原理是关于计数的两个基本原理,两者的区别在于分步计数原理和分步有关,分类计数原理与分类有关.2、排列与组合主要研究从一些不同元素中,任取部分或全部元素进行排列或组合,求共有多少种方法的问题.区别排列问题与组合问题要看是否与顺序有关,与顺序有关的属于排列问题,与顺序无关的属于组合问题.3、排列与组合的主要公式①排列数公式:)1()1()!(!+-⋅⋅⋅-=-=mnnnmnnA mn(m≤n)A nn=n! =n(n―1)(n―2) ·…·2·1.②组合数公式:12)1()1()1()!(!!⨯⨯⋅⋅⋅⨯-⨯+-⋅⋅⋅-=-=mmmnnnmnmnC mn(m≤n).③组合数性质:①mnnmnCC-=(m≤n). ②nnnnnnCCCC2210=+⋅⋅⋅+++③1314202-=⋅⋅⋅++=⋅⋅⋅++nnnnnnCCCCC4、分类应在同一标准下进行,确保“不漏”、“不重”,分步要做到“步骤连续”和“步骤独立”,并能完成事项.5、界定“元素与位置”要辩证地看待,“特殊元素”、“特殊位置”可直接优先安排,也可间接处理.6、解排列组合综合问题注意先选后排的原则,复杂的排列、组合问题利用分类思想转化为简单问题求解.7、常见的解题策略有以下几种:(1)特殊元素优先安排的策略;(2)合理分类与准确分步的策略;(3)排列、组合混合问题先选后排的策略;(4)正难则反、等价转化的策略;(5)相邻问题捆绑处理的策略;(6)不相邻问题插空处理的策略;(7)定序问题除法处理的策略;(8)分排问题直排处理的策略;(9)“小集团”排列问题中先整体后局部的策略;(10)构造模型的策略.二、二项式定理1、二项式定理(a +b)n =C 0n an +C1n an-1b+…+Crn an-rbr +…+Cnn bn,其中各项系数就是组合数Crn,展开式共有n+1项,第r+1项是Tr+1 =C rn an-rbr.2、二项展开式的通项公式二项展开式的第r+1项Tr+1=C rn an-rbr(r=0,1,…n)叫做二项展开式的通项公式。
高中数学高考总复习---古典概型与几何概型知识讲解及考点梳理
1.如果试验的结果构成的区域的几何度量可用长度表示,则其概率的计算公式为
2.将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被 取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域 中的点,这样的概率模型就可以用几何概型来求解。
位数字也即确定.故共有 6×1=6 种不同的结果,即概率为
.
(2)两个玩具的数字之和共有 2,3,4,5,6,7,8,9,10,11,12 共 11 种不同结果.
从中可以看出,出现 12 的只有一种情况,概率为 .出现数字之和为 6 的共有(1,5),(2,
4),(3,3),(4,2),(5,1)五种情况,所以其概率为 . 【总结升华】使用枚举法要注意排列的方法,做到不漏不重.
(3)应用公式
求值。
5.古典概型中求基本事件数的方法: (1)穷举法; (2)树形图; (3)排列组合法。利用排列组合知识中的分类计数原理和分步计数原理,必须做到不 重复不遗漏。 知识点二、几何概型 1. 定义: 事件 A 理解为区域Ω的某一子区域 A,A 的概率只与子区域 A 的几何度量(长度、面积 或体积)成正比,而与 A 的位置和形状无关。满足以上条件的试验称为几何概型。 2.几何概型的两个特点: (1)无限性,即在一次试验中基本事件的个数是无限的; (2)等可能性,即每一个基本事件发生的可能性是均等的。 3.几何概型的概率计算公式: 随机事件 A 的概率可以用“事件 A 包含的基本事件所占的图形面积(体积、长度)”与 “试验的基本事件所占总面积(体积、长度)”之比来表示。
举一反三: 【变式】某校要从艺术节活动中所产生的 4 名书法比赛一等奖的同学和 2 名绘画比赛一等 奖的同学中选出 2 名志愿者,参加广州亚运会的服务工作。求:(1)选出的 2 名志愿者都 是获得书法比赛一等奖的同学的概率;(2)选出的 2 名志愿者中 1 名是获得书法比赛一等 奖,另 1 名是获得绘画比赛一等奖的同学的概率. 【解析】把 4 名获书法比赛一等奖的同学编号为 1,2,3,4 . 2 名获绘画比赛一等奖的同 学编号为 5,6.
排列组合复习总结
排列组合、二项式定理复习总结一、分类计数与分步计数原理的区别和联系二、排列数与组合数公式()1(1)(2)(1)!=!mn m A n n n n m n n m =--⋅⋅⋅⋅⋅⋅-+-共个、(多用于计算)(多用于证明)()(1)(2)(12123!=!!m m nm n n n n m C mn m n m --⋅⋅⋅⋅⋅⋅-+=⋅⋅⋅⋅⋅⋅⋅⋅-共个共个、(多用于计算)(多用于证明)1-1-111210123=5=+6;72mm m m n m n n m n nm n nn n n k k k k k k k k m m n nn n n nA C A C CC C C C C C C C C C C C --++++=+++⋅⋅⋅⋅⋅⋅+=+++⋅⋅⋅⋅⋅⋅+=、 ; 4、;、;、、三、解排列组合应用题的常用方法 解决排列组合综合性问题的一般过程如下: 1)、认真审题弄清要做什么事。
2)、怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3)、确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素。
4)、解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略。
1、相异元素允许重复的排列。
允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地,从n 个相异元素中允许重复地取出m 个元素(1m n ≤≤),没有限制地安排在m 个位置上的排列数mN n =。
例1、3名同学报名参加4个不同学科的比赛,每名学生只能参赛一项,有多少种不同的报名方案?(34N =)例2、把5封信投入6个邮箱,不同的投法共有(65 种)2、不尽相异元素的全排列。
有n 个元素,其中有1m 个元素相同,又有2m 个元素相同……又有k m 个元素相同,(1m +2m +……k m ≤n ),则这n 个元素的全排列数 1212k knnm m m m m m A N A A A =⋯⋯ 例3、三个1,四个2,三个4能排成多少个10位数(有1010343343A N A A A =个)3、环排问题。
排列组合 古典概型—复习归纳
排列组合古典概型—复习归纳(教师)(共10页)-本页仅作为预览文档封面,使用时请删除本页-1.已知某运动员每次投篮命中的概率都为40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数: 907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989据此估计,该运动员三次投篮恰有两次命中的概率为 ( ) A . B . C . D .解析:∵20组随机数中恰有2个大于等于1且小于等于4的共有191、271、932、812、393五组,∴其概率为520=.2.(2010·北京高考)从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b >a 的概率是 ( )解析:分别从两个集合中各取一个数,共有15种取法,其中满足b >a 的有3种取法,故所求事件的概率为P =315=15.3.先后抛掷两枚均匀的骰子(骰子是一种正方体玩具,在正方体各面上分别有点数1,2,3,4,5,6),骰子落地后朝上的点数分别为x ,y ,则log 2x y =1的概率为 ( )解析:抛掷2枚骰子,共有6×6=36种情况,因为log 2x y =1,所以y =2x ,此时满足题意的数对(x ,y )共有(1,2)、(2,4)、(3,6)三种情况,所以概率P =336=112.4.(2010·江苏高考)盒子里共有大小相同的3只白球,1只黑球.若从中随机摸出两只球,则它们颜色不同的概率是________.解析:设3只白球为A ,B ,C,1只黑球为d ,则从中随机摸出两只球的情形有:AB ,AC ,Ad ,BC ,Bd ,Cd 共6种,其中两只球颜色不同的有3种,故所求概率为12.5.学校有两个食堂,甲、乙、丙三名学生各自随机选择其中的一个食堂用餐,则他们在同一个食堂用餐的概率为________.解析:每人用餐有两种情况,故共有23=8种情况.他们在同一食堂用餐有2种情况,故他们在同一食堂用餐的概率为28=14.1.基本事件的特点(1)任何两个基本事件是 的.(2)任何事件(除不可能事件)都可以表示成 的和. 2.古典概型具有以下两个特点的概率模型称为古典概率模型,简称古典模型. (1)试验中所有可能出现的基本事件 . (2)每个基本事件出现的可能性 . 3.古典概型的概率公式一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,如果某个事件A 包含的结果有m 个,那么事件A 的概率为P(A)= .考点一 简单古典概型的概率有两颗正四面体的玩具,其四个面上分别标有数字1,2,3,4,下面做投掷这两颗正四面体玩具的试验:用(x ,y)表示结果,其中x 表示第1颗正四面体玩具出现的点数,y 表示第2颗正四面体玩具出现的点数. (1)写出试验的基本事件;(2)求事件“出现点数之和大于3”的概率; (3)求事件“出现点数相等”的概率.[自主解答] (1)这个试验的基本事件为(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)共16个. (2)事件“出现点数之和大于3”包含以下13个基本事件:(1,3),(1,4),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4). 故P =1316. (3)事件“出现点数相等”包含以下4个基本事件:(1,1),(2,2),(3,3),(4,4).故P =416=14.某口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出2只球. (1)共有多少个基本事件?(2)摸出的2只球都是白球的概率是多少?解:(1)分别记白球为1,2,3号,黑球为4,5号,从中摸出2只球,有如下基本事件[摸到1,2号球用(1,2)表示]:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5).因此,共有10个基本事件.(2)如图所示,上述10个基本事件的可能性相同,且只有3个基本事件是摸到2只白球(记为事件A),即(1,2),(1,3),(2,3),故P(A)=3 10.(3)故共有10个基本事件,摸出2只球都是白球的概率为3 10.考点二复杂的古典概型(2011·苏北四市联考)如图,在某城市中,M,N两地之间有整齐的方格形道路网,其中A1、A2、A3、A4是道路网中位于一条对角线上的4个交汇处.今在道路网M,N 处的甲、乙两人分别要到N,M处,他们分别随机地选择一条沿街的最短路径,以相同的速度同时出发,直到到达N,M处为止.(1)求甲经过A2到达N处的方法有多少种;(2)求甲、乙两人在A2处相遇的概率;(3)求甲、乙两人相遇的概率.[自主解答](1)甲经过A2,可分为两步:第一步,甲从M到A2的方法有C13种;第二步,甲从A2到N的方法有C13种.所以甲经过A2到达N处的方法有(C13)2=9种.(2)由(1)知,甲经过A 2的方法数为9;乙经过A 2的方法数也为9. 所以甲、乙两人在A 2处相遇的方法数为9×9=81; 甲、乙两人在A 2处相遇的概率为81C 36C 36=81400. (3)甲、乙两人沿最短路径行走,只可能在A 1、A 2、A 3、A 4处相遇,他们在A i (i =1,2,3,4)处相遇的走法有(C i -13)4种方法,所以(C 03)4+(C 13)4+(C 23)4+(C 33)4=164,故甲、乙两人相遇的概率为164400=41100.某车间甲组有10名工人,其中有4名女工人;乙组有10名工人,其中有6名女工人.现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取4名工人进行技术考核.(1)求从甲、乙两组各抽取的人数;(2)求从甲组抽取的工人中恰有1名女工人的概率; (3)求抽取的4名工人中恰有2名男工人的概率.解:(1)由于甲、乙两组各有10名工人,根据分层抽样原理,要从甲、乙两组中共抽取4名工人进行技术考核,则从每组各抽取2名工人.(2)记A 表示事件:从甲组抽取的工人中恰有1名女工人,则P (A )=C 14C 16C 210=815.(3)A i 表示事件:从甲组抽取的2名工人中恰有i 名男工人,i =0,1,2.B j 表示事件:从乙组抽取的2名工人中恰有j 名男工人,j =0,1,2. B 表示事件:抽取的4名工人中恰有2名男工人. A i 与B j 独立,i ,j =0,1,2,且B =A 0·B 2+A 1·B 1+A 2·B 0.故P (B )=P (A 0·B 2+A ·B 1+A 2·B 0)=P (A 0) ·P (B 2)+P (A 1) ·P (B 1)+P (A 2) ·P (B 0) =C 24C 210·C 24C 210+C 14C 16C 210·C 16C 14C 210+C 26C 210·C 26C 210=3175.现有8名奥运会志愿者,其中志愿者A1、A2、A3通晓日语,B1、B2、B3通晓俄语,C1、C2通晓韩语,从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.(1)求A1被选中的概率;(2)求B1和C1不全被选中的概率.解:从8人中选出日语、俄语和韩语志愿者各1名,其所有可能的结果组成的基本事件空间Ω={(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1)(A1,B3,C2),(A2,B1,C1),(A2,B1,C2),(A2,B2,C1),(A2,B2,C2),(A2,B3,C1),(A2,B3,C2),(A3,B1,C1),(A3,B1,C2),(A3,B2,C1),(A3,B2,C2),(A3,B3,C1),(A3,B3,C2)}由18个基本事件组成.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的.(1)用M表示“A1恰被选中”这一事件,则M={(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1),(A1,B3,C2)},事件M由6个基本事件组成,因而P(M)=618=13.(2)用N表示“B1、C1不全被选中”这一事件,则其对立事件N表示“B1、C1全被选中”这一事件,由N={(A1,B1,C1),(A2,B1,C1),(A3,B1,C1)},事件N有3个基本事件组成,所以P(N)=318=16.(3)由对立事件的概率公式P(N)=1-P(N)=1-16=56.考点三古典概型与统计的综合问题(2010·湖南高考)为了对某课题进行研究,用分层抽样方法从三所高校A,B,C高校相关人数抽取人数A18xB362C54y(1)求x,y;(2)若从高校B,C抽取的人中选2人作专题发言,求这2人都来自高校C的概率.[自主解答](1)由题意可得,x18=236=y54,所以x=1,y=3.(2)记从高校B抽取的2人为b1,b2,从高校C抽取的3人为c1,c2,c3,则从高校B,C抽取的5人中选2人作专题发言的基本事件有(b1,b2),(b1,c1),(b1,c2),(b1,c3),(b2,c1),(b2,c2),(b2,c3),(c1,c2),(c1,c3),(c2,c3)共10种.设选中的2人都来自高校C的事件为X,则X包含的基本事件有(c1,c2),(c1,c3),(c2,c3)共3种.因此P(X)=3 10 .故选中的2人都来自高校C的概率为310.某高级中学共有学生2000人,各年级男、女生人数如下表:年级性别高一高二高三女生373x y男生377370z 已知在全校学生中随机抽取1名,抽到高二年级女生的概率是.(1)现用分层抽样的方法在全校抽取48名学生,问应在高三年级抽取多少人?(2)已知y≥245,z≥245,求高三年级女生比男生多的概率.解:(1)∵x2000=,∴x=380,高三年级人数为y+z=2000-(373+377+380+370)=500,现用分层抽样的方法在全校抽取48名学生,应在高三年级抽取的人数为482000×500=12.(2)设“高三年级女生比男生多”为事件A,高三年级女生、男生数记为(y,z).由(1)知y+z=500,且y,z∈N*,则基本事件空间包含的基本事件有(245,255),(246,254),(247,253),(248,252),(249,251),(250,250),(251,249),(252,248),(253,247),(254,246),(255,245),共11个,事件A包含的基本事件有(251,249),(252,248),(253,247),(254,246),(255,245),共5个,∴P(A)=511.故高三年级女生比男生多的概率为511.高考对本节内容的考查形式既有选择题、填空题,也有解答题,主要考查古典概型概率公式的应用.尤其是古典概型与互斥事件、对立事件的综合问题更是高考的热点,2010年福建高考将古典概型与向量等知识结合考查,代表了高考的一个重要考向.[考题印证](2010·福建高考)(12分)设平面向量a m=(m,1),b n=(2,n),其中m,n∈{1,2,3,4}.(1)请列出有序数组(m,n)的所有可能结果;(2)记“使得a m⊥(a m-b n)成立的(m,n)”为事件A,求事件A发生的概率.[规范解答](1)有序数组(m,n)的所有可能结果为:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.……………………………………………………………(6分)(2)由a m⊥(a m-b n)得m2-2m+1-n=0,即n=(m-1)2.……………………………………………………………(8分)由于m,n∈{1,2,3,4},故事件A包含的基本事件为(2,1)和(3,4),共2个.又基本事件的总数为16,故所求的概率为P(A)=216=18.……………………………………………(12分)1.求古典概型概率的步骤(1)分别求出基本事件的总数n与所求事件A中所包含的基本事件个数m.(2)利用公式P(A)=mn求出事件A的概率.2.有放回抽样和无放回抽样的概率在古典概型的概率中,将涉及两种不同的抽取方法,设袋内装有n个不同的球,现从中依次摸球,每次只摸一只,具有两种摸球的方法.(1)有放回.每次摸出一只后,仍放回袋中,然后再摸一只,这种摸球的方法称为有放回的抽样,显然,对于有放回的抽样,每次摸出的球可以重复,且摸球可无限地进行下去. (2)无放回.每次摸出一只后,不放回原袋中,在剩下的球中再摸一 只,这种摸球方法称为无放回的抽样.显然,对于无放 回的抽样,每次摸出的球不会重复出现,且摸球只能进 行有限次.1.(2011·黄冈模拟)设集合P ={b,1},Q ={c,1,2},P Q ,若b ,c ∈{2,3,4,5,6,7,8,9},则b =c 的概率是 ( )解析:依题意得当b =2时,c 可从3,4,5,6,7,8,9中选取,此时b≠c;当b 从3,4,5,6,7,8,9中选取时,有b =c.因此,b =c 的概率为77+7=12. 2.(2011·银川模拟)将一骰子抛掷两次,所得向上的点数分别为m 和n ,则函数y =23mx3-nx +1在[1,+∞)上为增函数的概率是 ( )解析:由题可知,函数y =23mx 3-nx +1在[1,+∞)上单调递增,所以y′=2mx 2-n≥0在[1,+∞)上恒成立,所以2m≥n,则不满足条件的(m ,n)有(1,3),(1,4),(1,5),(1,6),(2,5),(2,6)共6种情况,所以满足条件的共有30种情况,则函数y =23mx 3-nx+1在[1,+∞)上单调递增的概率为3036=56.3.(2010·安徽高考)甲从正方形四个顶点中任意选择两个顶点连成直线,乙也从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是 ( )解析:甲从正方形四个顶点中任意选择两个顶点连成直线,乙也从该正方形的四个顶点中任意选择两个顶点连成直线,所得的直线共有6×62=18(对),而相互垂直的有5对,故根据古典概型概率公式得P =518. 4.(2010·辽宁高考)三张卡片上分别写上字母E ,E ,B ,将三张卡片随机地排成一行,恰好排成英文单词BEE 的概率为________.解析:基本事件总数为6,所含基本事件个数为2,所以所求的概率是P =26=13.5.一笼里有3只白兔和2只灰兔,现让它们一一出笼,假设每一只跑出笼的概率相同,则先出笼的两只中一只是白兔,而另一只是灰兔的概率是__________.解析:法一:设3只白免分别为b 1,b 2,b 3,2只灰兔分别为h 1,h 2.则所有可能的情况是(b 1,h 1),(b 1,h 2),(b 2,h 1),(b 2,h 2),(b 3,h 1),(b 3,h 2),(h 1,b 1),(h 2,b 1),(h 1,b 2),(h 2,b 2),(h 1,b 3),(h 2,b 3),(b 1,b 2),(b 1,b 3),(b 2,b 1),(b 2,b 3),(b 3,b 1),(b 3,b 2),(h 1,h 2),(h 2,h 1),共20种情况,其中符合一只白兔而另一只是灰兔的情况有12种,∴所求概率为1220=35.法二:从笼子中跑出两只兔子的情况有A 25=20种情况.设事件A :出笼的两只中一只是白兔,另一只是灰兔.则P(A)=C 13C 12+C 12C 13A 25=1220=35. 6.(2010·山东高考)一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求n <m +2的概率.解:(1)从袋中随机取两个球,其一切可能的结果组成的基本事件有1和2,1和3,1和4,2和3,2和4,3和4,共6个.从袋中取出的球的编号之和不大于4的事件共有1和2,1和3两个. 因此所求事件的概率P =26=13.(2)先从袋中随机取一个球,记下编号为m ,放回后,再从袋中随机取一个球,记下编号为n ,其一切可能的结果(m ,n)有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.又满足条件n≥m+2的事件为(1,3),(1,4),(2,4),共3个,所以满足条件n≥m+2的事件的概率为P1=316 .故满足条件n<m+2的事件的概率为1-P1=1-316=1316.11。
高中数学排列与组合知识点归纳
高中数学排列与组合知识点归纳
数学中的排列与组合是高中数学中的重要内容之一。
下面对排
列与组合的相关知识点进行归纳总结。
排列
排列是指从给定元素集合中选取若干个元素按照一定的顺序排
列形成的一个整体。
以下是排列的相关知识点:
1. 排列的定义:排列是从$n$个不同元素中选取$r$个进行有序
排列的方式,记作$A_n^r$。
- 全排列:当$r=n$时,称为全排列,即从$n$个元素中选取
$n$个进行有序排列,全排列的数量为$n!$。
2. 公式计算方法:对于排列问题,可以使用公式计算:
- $A_n^r=\frac{n!}{(n-r)!}$。
3. 特殊情况:
- 环排列:当排列中的元素形成一个环状排列时,称为环排列。
组合
组合是指从给定元素集合中选取若干个元素,不考虑元素的顺序形成的一个整体。
以下是组合的相关知识点:
1. 组合的定义:组合是从$n$个不同元素中选取$r$个进行无序排列的方式,记作$C_n^r$。
- 组合数:组合数指的是从$n$个元素中选取$r$个进行组合的方式的数量。
2. 公式计算方法:对于组合问题,可以使用公式计算:
- $C_n^r=\frac{n!}{r! \cdot (n-r)!}$。
3. 组合的性质:
- 对称性质:$C_n^r=C_n^{n-r}$。
综上所述,排列与组合是高中数学中常见的概念与计算方法,掌握它们有助于解决相关的概率、统计等数学问题。
排列组合知识点总结及题型归纳
排列组合知识点总结及题型归纳嘿!今天咱们来好好聊聊排列组合这个让人又爱又恨的知识点呀!首先呢,咱们得搞清楚啥是排列,啥是组合。
哎呀呀,简单来说,排列就是从一堆东西里选出来,然后再排个顺序;组合呢,只要选出来就行,不管顺序啦!一、排列的知识点1. 排列的定义:从n 个不同元素中取出m(m≤n)个元素的排列数,记为A(n,m) 。
哇,这个公式可重要啦,A(n,m) = n! / (n - m)! ,记住没?2. 排列数的计算:咱们来算个例子,比如说从5 个不同的元素里选3 个进行排列,那就是A(5,3) = 5! / (5 - 3)! = 60 呀!二、组合的知识点1. 组合的定义:从n 个不同元素中取出m(m≤n)个元素的组合数,记为C(n,m) 。
公式是C(n,m) = n! / [m!(n - m)!] 。
2. 组合数的计算:就像从6 个不同元素里选4 个的组合数,C(6,4) = 6! / [4!(6 - 4)!] = 15 呢!三、常见的排列组合题型1. 排队问题:比如说,几个人排队,有多少种排法?这就得考虑有没有特殊位置或者特殊的人啦!2. 分组问题:把一些东西分成不同的组,要注意平均分和不平均分的情况哟!3. 分配问题:把人或者物品分配到不同的地方,这里面可藏着不少小陷阱呢!四、解题技巧1. 优先考虑特殊元素或特殊位置:哎呀呀,这可是解题的关键呀!2. 捆绑法:有些元素必须在一起,那就把它们捆起来当成一个整体来处理。
3. 插空法:有些元素不能相邻,那就先排好其他的,再把不能相邻的插进去。
总之呢,排列组合虽然有点复杂,但是只要咱们掌握了这些知识点和题型,多做几道题练习练习,就一定能搞定它!哇,加油呀!。
高中数学同步讲义(新教材):排列组合18种常考考法归类 (教师版)
环排问题 围桌而坐与坐成一排的不同点在于,坐成圆形没有首尾之分,所以固定一人并从此位置把圆形
线排法
多排问题 单排法 小集团题 先整体后 局部法 两类元素 的排列, 组合选位 法 分组与分 配问题
展成直线,一般地,n 个不同元素圆形排列,共有(n 1)!种排法。如果从 n 个不同元素中取出 m
个元素进行圆形排列,共有问题,可归结为一排考虑,再分段处理。
解小集团排列问题,先整体后局部,再结合其他策略进行处理。
将 m 个元素 a,n 个元素 b 进行全排列,我们可以从 m+n 个位置中选择 m 个位置安置元素 a,
剩下的
n
个位置安排元素
b,其方法数有
优先法和元素优先法是解决排列组合问题最常用也是最基本的方法之一。若以元素分析为主, 需先安排特殊元素,再处理其他元素;若以位置分析为主,需先满足特殊位置的要求,再处理 其他位置。若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其他条件。 捆绑法指将联系密切或必须排在一起的元素“捆绑”成一个整体,再与其他元素进行排列,同 时要注意合并后内部元素也必须排列.(注意捆绑元素是同元还是不同元),“捆绑”将特殊元 素特殊对待,能大大降低分析问题的难度.采用捆绑法分析排列组合问题,剩余元素的处理应考虑 其是排列问题还是组合问题,对于组合问题需将“顺序”带来的影响消除掉. 插空法在分析元素不相邻问题时较为常用,即先将无特殊要求的元素排列好,而后看其产生多 个满足题意的空,再将不能相邻的元素插入,使其满足题目的相关要求.部分习题创设的情境较 为复杂,还需采用捆绑法等其他一些方法.总之,无论采用何种方法,应清楚形成的空的数量. 部分不同元素在排列前后的顺序固定不变(不一定相邻)的排列问题,称之为定序(排列)问 题.定序问题可以用倍缩法(消序法),还可用空位法。①消序法:将 m+n 个元素排成一列,
高考数学必修一复习指导:排列组合知识点总结-word文档
高考数学必修一复习指导:排列组合知识点总结1.计数原理知识点①乘法原理:N=n1·n2·n3·…nM (分步)②加法原理:N=n1+n2+n3+…+nM (分类)2. 排列(有序)与组合(无序)Anm=n(n-1)(n-2)(n-3)-…(n-m+1)=n!/(n-m)! Ann =n!Cnm = n!/(n-m)!m!Cnm= Cnn-mCnm+Cnm+1= Cn+1m+1 k k!=(k+1)!-k!3.排列组合混合题的解题原则:先选后排,先分再排排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素。
以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置。
捆绑法(集团元素法,把某些必须在一起的元素视为一个整体考虑)插空法(解决相间问题)间接法和去杂法等等在求解排列与组合应用问题时,应注意:(1)把具体问题转化或归结为排列或组合问题;(2)通过分析确定运用分类计数原理还是分步计数原理;(3)分析题目条件,避免“选取”时重复和遗漏;(4)列出式子计算和作答。
经常运用的数学思想是:①分类讨论思想;②转化思想;③对称思想。
4.二项式定理知识点:①(a+b)n=Cn0ax+Cn1an-1b1+ Cn2an-2b2+ Cn3an-3b3+…+ Cnran-rbr+-…+ Cn n-1abn-1+ Cnnbn特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn②主要性质和主要结论:对称性Cnm=Cnn-m最大二项式系数在中间。
(要注意n为奇数还是偶数,答案是中间一项还是中间两项)所有二项式系数的和:Cn0+Cn1+Cn2+ Cn3+Cn4+…+Cnr+…+Cnn=2n奇数项二项式系数的和=偶数项而是系数的和Cn0+Cn2+Cn4+ Cn6+ Cn8+...=Cn1+Cn3+Cn5+ Cn7+ Cn9+ (2)-1③通项为第r+1项:Tr+1= Cnran-rbr 作用:处理与指定项、特定项、常数项、有理项等有关问题。
专题38 排列组合与古典概型--《2023年高考数学命题热点聚焦与扩展》【解析版】
专题排列组合与古典概型【热点聚焦】近几年的高考试题,计数原理常与古典概型综合考查.排列组合、古典概型问题往往以实际问题为背景,考查排列数、组合数、分类分步计数原理,同时考查分类讨论的思想及解决问题的能力.对排列组合除了独立考查外,也常与古典概型综合考查,也有在解答题中与古典概型等概率计算相结合进行考查的情况.另外,古典概型与统计、与数学文化、与时代气息等综合考查成为一种趋势.【重点知识回眸】(一)基础知识1.两个计数原理3.1、特殊优先:对于题目中有特殊要求的元素,在考虑步骤时优先安排,然后再去处理无要求的元素. 例如:用组成无重复数字的五位数,共有多少种排法?2、寻找对立事件:如果一件事从正面入手,考虑的情况较多,则可以考虑该事的对立面,再用全部可能的总数减去对立面的个数即可.3、先取再排(先分组再排列):排列数是指从个元素中取出个元素,再将这个元素进行排列.但有时会出现所需排列的元素并非前一步选出的元素,所以此时就要将过程拆分成两个阶段,可先将所需元素取出,然后再进行排列. (三)排列组合的常见模型1、捆绑法(整体法):当题目中有“相邻元素”时,则可将相邻元素视为一个整体,与其他元素进行排列,然后再考虑相邻元素之间的顺序即可.2、插空法:当题目中有“不相邻元素”时,则可考虑用剩余元素“搭台”,不相邻元素进行“插空”,然后再进行各自的排序注:(1)要注意在插空的过程中是否可以插在两边 (2)要从题目中判断是否需要各自排序3、错位排列:排列好的个元素,经过一次再排序后,每个元素都不在原先的位置上,则称为这个元素的一个错位排列.例如对于,则是其中一个错位排列.3个元素的错位排列有2种,4个元素的错位排列有9种,5个元素的错位排列有44种.以上三种情况可作为结论记住4、依次插空:如果在个元素的排列中有个元素保持相对位置不变,则可以考虑先将这个元素排好位置,再将个元素一个个插入到队伍当中(注意每插入一个元素,下一个元素可选择的空)5、不同元素分组:将个不同元素放入个不同的盒中6、相同元素分组:将个相同元素放入个不同的盒内,且每盒不空,则不同的方法共有种.解决此类问题常用的方法是“挡板法”,因为元素相同,所以只需考虑每个盒子里所含元素个数,则可将这个元素排成一列,共有个空,使用个“挡板”进入空档处,则可将这个元素划分为个区域,刚好对应那个盒子.7、涂色问题:涂色的规则是“相邻区域涂不同的颜色”,在处理涂色问题时,可按照选择颜色的总数进行分类讨论,每减少一种颜色的使用,便意味着多出一对不相邻的区域涂相同的颜色(还要注意两两不相邻的情况),先列举出所有不相邻区域搭配的可能,再进行涂色即可. (四)古典概型0,1,2,3,4mn A n m m n n ,,,a b c d ,,,d c a b n m m n m -1+n m n m 11m n C --n ()1n -()1m -n m m1. 随机事件的概率 (1)事件的相关概念(2)频率与概率的关系在相同的条件下,大量重复进行同一试验时,随机事件A 发生的频率f n (A )=n An 会在某个常数附近摆动,则把这个常数记作P (A ),称为事件A 的概率,简称为A 的概率. (3)事件的关系与运算①任何事件A 的概率都在[0,1]内,即0≤P (A )≤1,不可能事件的概率为0,必然事件Ω的概率为1. ②如果事件A ,B 互斥,则P (A ∪B )=P (A )+P (B ). ③事件A 与它的对立事件A 的概率满足P (A )+P (A )=1. ④结论:如果事件A 1,A 2,…,A n 两两互斥,则称这n 个事件互斥,其概率有如下公式:P (A 1∪A 2∪…∪A n )=P (A 1)+P (A 2)+…+P (A n ). 2.基本事件的特点(1)任何两个基本事件是互斥的.(2)任何事件(除不可能事件)都可以表示成基本事件的和. 3.古典概型的特点4.古典概型的概率计算公式 P (A )=A 包含的基本事件的个数基本事件的总数.【典型考题解析】热点一 两个计数原理的综合应用【典例1】(2022·全国·高考真题)有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有( ) A .12种 B .24种C .36种D .48种【答案】B【分析】利用捆绑法处理丙丁,用插空法安排甲,利用排列组合与计数原理即可得解【详解】因为丙丁要在一起,先把丙丁捆绑,看做一个元素,连同乙,戊看成三个元素排列,有3!种排列方式;为使甲不在两端,必须且只需甲在此三个元素的中间两个位置任选一个位置插入,有2种插空方式;注意到丙丁两人的顺序可交换,有2种排列方式,故安排这5名同学共有:3!2224⨯⨯=种不同的排列方式, 故选:B【典例2】(2020·全国·高考真题(文))如图,将钢琴上的12个键依次记为a 1,a 2,…,a 12.设1≤i <j <k ≤12.若k –j =3且j –i =4,则称ai ,aj ,ak 为原位大三和弦;若k –j =4且j –i =3,则称ai ,aj ,ak 为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为( )A .5B .8C .10D .15【答案】C【分析】根据原位大三和弦满足3,4k j j i -=-=,原位小三和弦满足4,3k j j i -=-= 从1i =开始,利用列举法即可解出.【详解】根据题意可知,原位大三和弦满足:3,4k j j i -=-=.∴1,5,8i j k ===;2,6,9i j k ===;3,7,10i j k ===;4,8,11i j k ===;5,9,12i j k ===.原位小三和弦满足:4,3k j j i -=-=.∴1,4,8i j k ===;2,5,9i j k ===;3,6,10i j k ===;4,7,11i j k ===;5,8,12i j k ===. 故个数之和为10. 故选:C .【典例3】(2022·全国·高三专题练习)已知集合{}1,2,3M =-,{}4,5,6,7N =--,若从这两个集合中各取一个元素作为点的横坐标或纵坐标,则可得平面直角坐标系中第一、二象限内不同点的个数是( ) A .18 B .16C .14D .10【答案】C【分析】分M 中的元素作点的横坐标,N 中的元素作点的纵坐标和N 中的元素作点的横坐标,M 中的元素作点的纵坐标两类讨论求解. 【详解】分两类情况讨论:第一类,从M 中取的元素作为横坐标,从N 中取的元素作为纵坐标,则第一、二象限内的点共有326⨯=(个); 第二类,从M 中取的元素作为纵坐标,从N 中取的元素作为横坐标,则第一、二象限内的点共有248⨯=(个), 由分类加法计数原理,所以所求个数为6814+=. 故选:C【典例4】(2022·陕西·宝鸡市陈仓高级中学高三开学考试(理))某儿童游乐园有5个区域要涂上颜色,现有四种不同颜色的油漆可供选择,要求相邻区域不能涂同一种颜色,则符合条件的涂色方案有( )种A .36B .48C .54D .72【答案】D【分析】符合条件的涂色方案可分为两类,第一类区域②,④涂色相同的涂色方案,第二类区域②,④涂色不相同的涂色方案,再利用分步乘法计数原理分别求出其方法数,相加即可求得结果. 【详解】如图:将五个区域分别记为①,②,③,④,⑤,则满足条件的涂色方案可分为两类,第一类区域②,④涂色相同的涂色方案,第二类区域②,④涂色不相同的涂色方案,其中区域②,④涂色相同的涂色方案可分为5步完成,第一步涂区域①,有4种方法,第二步涂区域②,有3种方法,第三步涂区域③,有2种方法,第四步涂区域④,有1种方法,第五步涂区域⑤,有2种方⨯⨯⨯⨯种方案,即48种方案;法,由分步乘法计数原理可得区域②,④涂色相同的涂色方案有43212区域②,④涂色不相同的涂色方案可分为5步完成,第一步涂区域①,有4种方法,第二步涂区域②,有3种方法,第三步涂区域③,有2种方法,第四步涂区域④,有1种方法,第五步涂区域⑤,有1种方法,⨯⨯⨯⨯种方案,即24种方案;由分步乘法计数原理可得区域②,④涂色不相同的涂色方案有43211所以符合条件的涂色方案共有72种,故选:D.【总结提升】1.基本步骤:2.特别提醒(1)应用两个计数原理的难点在于明确是分类还是分步:分类要做到“不重不漏”,正确把握分类标准是关键;分步要做到“步骤完整”,步步相连才能将事件完成.(2)较复杂的问题可借助图表来完成.(3)对于涂色问题:分清元素的数目以及在不相邻的区域内是否可以使用同类元素. 热点二 排列问题【典例5】(2016·四川·高考真题(理))用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( ) A .24 B .48 C .60 D .72【答案】D【详解】试题分析:由题意,要组成没有重复数字的五位奇数,则个位数应该为1或3或5,其他位置共有44A 种排法,所以奇数的个数为44372A =,故选D. 【典例6】(2022·湖北·高三开学考试)将语文、数学、英语、物理、化学、生物六本书排成一排,其中语文、数学相邻,且物理、化学不相邻,则不同的排法共有种___________.(用数字作答) 【答案】144【分析】先利用捆绑法安排语文书、数学书,再用插空法安排物理书、化学书即可求解.【详解】先利用捆绑法把语文书、数学书看作一个整体,有22A 2=种;再把其与英语书、生物书进行全排列,有33A 6=种;再用插空法安排物理书、化学书,有24A 12=种; 所以一共有2612144⨯⨯=. 故答案为:144【典例7】3名女生和5名男生排成一排. (1)若女生全排在一起,有多少种排法? (2)若女生都不相邻,有多少种排法? (3)若女生不站两端,有多少种排法?(4)其中甲必须排在乙左边(可不邻),有多少种排法? (5)其中甲不站最左边,乙不站最右边,有多少种排法? 【答案】(1) 4320.(2) 14400.(3) 14400.(4) 20160.(5)30960.【解析】(1)(捆绑法)由于女生排在一起,可把她们看成一个整体,这样同5名男生合在一起有6个元素,排成一排有66A 种排法,而其中每一种排法中,3名女生之间又有23A 种排法,因此共有66A ·23A =4320种不同排法.(2)(插空法)先排5名男生,有55A 种排法,这5名男生之间和两端有6个位置,从中选取3个位置排女生,有A 36种排法,因此共有5356A A ⋅=14400种不同排法.(3)法一(位置分析法):因为两端不排女生,只能从5名男生中选2人排,有A 25种排法,剩余的位置没有特殊要求,有A 66种排法,因此共有2656A A ⋅=14400种不同排法.法二(元素分析法):从中间6个位置选3个安排女生,有36A 种排法,其余位置无限制,有55A 种排法,因此共有5356A A ⋅=14400种不同排法.(4)8名学生的所有排列共88A 种,其中甲在乙左边与乙在甲左边的各占12,因此符合要求的排法种数为1288A =20160.(5)甲、乙为特殊元素,左、右两边为特殊位置.法一(特殊元素法):甲在最右边时,其他的可全排,有77A 种不同排法;甲不在最右边时,可从余下6个位置中任选一个,有16A 种.而乙可排在除去最右边位置后剩余的6个中的任一个上,有16A 种,其余人全排列,共有116666A A A 种不同排法.由分类加法计数原理知,共有77A +116666A A A =30960种不同排法.法二(特殊位置法):先排最左边,除去甲外,有17A 种排法,余下7个位置全排,有77A 种排法,但应剔除乙在最右边时的排法A 16·A 66种,因此共有1777A A -1666A A =30960种排法.法三(间接法):8名学生全排列,共88A 种,其中,不符合条件的有甲在最左边时,有77A 种排法,乙在最右边时,有种77A 排法,其中都包含了甲在最左边,同时乙在最右边的情形,有66A 种排法.因此共有88A -277A +66A =30960种排法. 【规律方法】求解排列应用问题的六种基本方法热点三组合问题【典例8】(2020·海南·高考真题)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有()A.120种B.90种C.60种D.30种【答案】C【分析】分别安排各场馆的志愿者,利用组合计数和乘法计数原理求解.【详解】首先从6名同学中选1名去甲场馆,方法数有16C;然后从其余5名同学中选2名去乙场馆,方法数有25C;最后剩下的3名同学去丙场馆.故不同的安排方法共有126561060C C⋅=⨯=种.故选:C【典例9】(2016·全国·高考真题(理))如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )A.24B.18C.12D.9【答案】B【详解】解:从E到F,每条东西向的街道被分成2段,每条南北向的街道被分成2段,从E到F最短的走法,无论怎样走,一定包括4段,其中2段方向相同,另2段方向相同,每种最短走法,即是从4段中选出2段走东向的,选出2段走北向的,故共有C42C22=6种走法.同理从F到G,最短的走法,有C31C22=3种走法.∴小明到老年公寓可以选择的最短路径条数为6×3=18种走法.故选B.【典例10】(2018·全国·高考真题(理))从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)【答案】16【分析】首先想到所选的人中没有女生,有多少种选法,再者需要确定从6人中任选3人的选法种数,之后应用减法运算,求得结果.【详解】根据题意,没有女生入选有344C=种选法,从6名学生中任意选3人有3620C=种选法,故至少有1位女生入选,则不同的选法共有20416-=种,故答案是16.【规律方法】组合问题的常见类型与处理方法(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中选取.(2)“至少”或“至多”含有几个元素的题型:若直接法分类复杂时,逆向思维,间接求解.热点四排列组合综合问题【典例11】(2021·全国·高考真题(理))将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()A .60种B .120种C .240种D .480种【答案】C【分析】先确定有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,然后利用组合,排列,乘法原理求得.【详解】根据题意,有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,可以先从5名志愿者中任选2人,组成一个小组,有25C 种选法;然后连同其余三人,看成四个元素,四个项目看成四个不同的位置,四个不同的元素在四个不同的位置的排列方法数有4!种,根据乘法原理,完成这件事,共有254!240C ⨯=种不同的分配方案,故选:C.【典例12】(2020·山东·高考真题)现从4名男生和3名女生中,任选3名男生和2名女生,分别担任5门不同学科的课代表,则不同安排方法的种数是( ) A .12 B .120 C .1440 D .17280【答案】C【分析】首先选3名男生和2名女生,再全排列,共有3254351440C C A =种不同安排方法.【详解】首先从4名男生和3名女生中,任选3名男生和2名女生,共有3243C C 种情况,再分别担任5门不同学科的课代表,共有55A 种情况.所以共有3254351440C C A =种不同安排方法.故选:C【典例13】某课外活动小组共13人,其中男生8人,女生5人,并且男、女生各有一名队长.现从中选5人主持某种活动,依下列条件各有多少种选法? (1)只有一名女生当选; (2)两队长当选; (3)至少有一名队长当选; (4)至多有两名女生当选.【答案】(1) 350种.(2) 165种.(3) 825(种)).(4) 966种.【解析】(1)只有一名女生当选等价于有一名女生和四名男生当选.故共有1458C C =350种. (2)两队长当选,共有23211C C =165种.(3)至少有一名队长当选含有两类:只有一名队长当选,有两名队长当选.故共有14211C C +23211C C =825种.(或采用排除法:551311C C -=825(种)).(4)至多有两名女生当选含有三类:有两名女生当选,只有一名女生当选,没有女生当选.故选法共有2314558588C C C C C ++=966种.【规律方法】求解排列、组合问题常用的解题方法:(1)元素相邻的排列问题——“捆邦法”;(2)元素相间的排列问题——“插空法”;(3)元素有顺序限制的排列问题——“除序法”;(4)带有“含”与“不含”“至多”“至少”的排列组合问题——间接法. 热点五 分组、分配问题【典例14】(2020·海南·高考真题)要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有( ) A .2种 B .3种 C .6种 D .8种【答案】C【分析】首先将3名学生分成两个组,然后将2组学生安排到2个村即可.【详解】第一步,将3名学生分成两个组,有12323C C =种分法第二步,将2组学生安排到2个村,有222A =种安排方法所以,不同的安排方法共有326⨯=种 故选:C【典例15】(2022·甘肃白银·高三开学考试(理))6名志愿者要到A ,B ,C 三个社区进行志愿服务,每个志愿者只去一个社区,每个社区至少安排1名志愿者,若要2名志愿者去A 社区,则不同的安排方法共有( ) A .105种 B .144种 C .150种 D .210种【典例16】(2020·全国·高考真题(理))4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种.【答案】36【分析】根据题意,有且只有2名同学在同一个小区,利用先选后排的思想,结合排列组合和乘法计数原理得解.【详解】4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学∴先取2名同学看作一组,选法有:246C=现在可看成是3组同学分配到3个小区,分法有:336A=根据分步乘法原理,可得不同的安排方法6636⨯=种故答案为:36.【规律方法】分组、分配问题是排列组合的综合问题,解题思想是先分组后分配(1)分组问题属于“组合”问题,常见的分组方法有三种:①完全均匀分组,每组元素的个数都相等;②部分均匀分组,应注意不要重复;③完全非均匀分组,这种分组不考虑重复现象.(2)分配问题属于“排列”问题,常见的分配方法有三种:①相同元素的分配问题,常用“挡板法”;②不同元素的分配问题,利用分步乘法计数原理,先分组,后分配;③有限制条件的分配问题,采用分类求解.热点六古典概型【典例17】(2022·全国·高考真题)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()A.16B.13C.12D.23【典例18】(2021·全国·高考真题)将3个1和2个0随机排成一行,则2个0不相邻的概率为()A.0.3B.0.5C.0.6D.0.8【典例19】(2019·全国·高考真题(理))我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A.516B.1132C.2132D.1116【答案】A【分析】本题主要考查利用两个计数原理与排列组合计算古典概型问题,渗透了传统文化、数学计算等数学素养,“重卦”中每一爻有两种情况,基本事件计算是住店问题,该重卦恰有3个阳爻是相同元素的排列问【典例20】(2022·全国·高考真题(文))从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________.【答案】310##0.3用公式法求古典概型的概率就是用所求事件A所含的基本事件个数除以基本事件空间Ω所含的基本事件个数求解事件A发生的概率P(A).解题的关键如下:①定型,即根据古典概型的特点——有限性与等可能性,确定所求概率模型为古典概型.②求量,利用列举法、排列组合等方法求出基本事件空间Ω及事件A所含的基本事件数.③求值,代入公式P(A)求值.【精选精练】一、单选题1.(2022·福建·高三阶段练习)为了丰富学生的课余生活,某学校开设了篮球、书法、美术、吉他、舞蹈、击剑共六门活动课程,甲、乙、丙3名同学从中各自任选一门活动课程参加,则这3名学生所选活动课程不全相同的选法有()A.120种B.150种C.210种D.216种【答案】C【分析】用甲、乙、丙3名同学从中各自任选一门活动课程参加的方法数,减去3名学生所选活动课程全部相同的方法数,从而求得正确答案.【详解】依题意,每名同学都有6种选择方法,所以这3名学生所选活动课程不全相同的选法有366210-=种.故选:C2.(2022·全国·高三专题练习)核糖核酸RNA是存在于生物细胞以及部分病毒、类病毒中的遗传信息载体.参与形成RNA的碱基有4种,分别用A,C,G,U表示.在一个RNA分子中,各种碱基能够以任意次序出现,假设某一RNA分子由100个碱基组成,则不同的RNA分子的种数为()A.4100B.1004C.1002D.104【答案】B【分析】根据分步乘法计数原理进行计算即可.【详解】每个碱基有4种可能,根据分步乘法计数原理,可得不同的RNA分子的种数为1004.故A,C,D 错误.故选:B.3.(2022·山西·高三阶段练习)从属于区间[]2,10的整数中任取两个数,则至少有一个数是合数的概率为()A.59B.56C.1314D.11144.(2022·重庆·高三阶段练习)用1,2,3…,9这九个数字组成的无重复数字的四位偶数中,各位数字之和为奇数的共有()A.600个B.540个C.480个D.420个【答案】A【分析】依题意要使各位数字之和为奇数则可能是3个奇数1个偶数,或3个偶数1个奇数,分两种情况讨论,按照分类、分步计数原理计算可得.【详解】解:依题意要使各位数字之和为奇数则可能是3个奇数1个偶数,或3个偶数1个奇数,若为3个奇数1个偶数,则偶数一定排在个位,从4个偶数中选一个排在个位有14C 4=种,再在5个奇数中选出3个排在其余三个数位,有35A 60=种排法,故有1345C A 240=个数字;若为3个偶数1个奇数,则奇数不排在个位,从5个奇数中选一个排在前三位有1153C A 15=种,再在4个偶数中选出3个排在其余三个数位,有34A 24=种排法,故有113534C A A 360=个数字;综上可得一共有240360600+=个数字; 故选:A5.(2022·陕西·宝鸡市陈仓高级中学高三开学考试(理))春节是中华民族的传统节日,人们通过贴“福”字、贴春联、挂灯笼等方式来表达对新年的美好祝愿,某商家在春节前开展商品促销活动,顾客凡购物金额满30元,则可以从“福”字、春联和灯笼这三类礼品中任意免费领取一件,若有3名顾客都领取一件礼品,则他们三人领取的礼品种类都不相同的概率是( ) A .29B .127C .19D .136.(2022·安徽·高三开学考试)如图, “天宫空间站”是我国自主建设的大型空间站,其基本结构包括天和核心舱、问天实验舱和梦天实验舱三个部分. 假设有6名航天员(4男2女) 在天宫空间站开展实验,其中天和核心舱安排4人,问天实验舱与梦天实验舱各安排1人, 且两名女航天员不在一个舱内,则不同的安排方案种数为( )A .14B .18C .30D .36【答案】B【分析】先求出总的安排方案数,再求出两名女航天员在一个舱内的方案数,两者相减即可. 【详解】将6名航天员安排在3个实验舱的方案数为411621C C C 30=其中两名女航天员在一个舱内的方案数为212421C C C 12=所以满足条件的方案数为181230=-种. 故选:B.7.(2022·内蒙古包头·高三开学考试(文))从2名女同学和3名男同学中任选2人参加志愿者服务,则选中的2人恰好是男女同学各1名的概率为( ) A .0.4 B .0.3 C .0.6 D .0.58.(2022·河南安阳·高三开学考试(文))某学校开展劳动实习,将两名男生和两名女生分配到两个农场,每个农场需要两人,则两名女生被分配到不同农场的概率为( ) A .23B .12C .13D.149.(2022·重庆八中高三开学考试)用黑白两种颜色随机地染如图所示表格中5个格子,每个格子染一种颜色,并且从左到右数,不管数到哪个格子,总有黑色格子不少于白色格子的染色方法种数为()A .6B .10C .16D .20【答案】B【分析】根据题意,分情况讨论,求出每种情况对应的染色方法种数,即可得出结果【详解】解:依题意,第一个格子必须为黑色,则出现从左至右数,不管数到哪个格子,总有黑色格子不少于白色格子包含的情况有: ①全染黑色,有 1 种方法;②第一个格子染黑色,另外四个格子中有1个格染白色,剩余的都染黑色,有14C 4=种方法;③第一个格子染黑色,另外四个格子中有2个格染白色,剩余的都染黑色,有1223C C 5+=种方法;所以出现从左至右数,不管数到哪个格子,总有黑色格子不少于白色格子的染色方法有14510++=种, 故选:B10.(2021·上海市行知中学高三开学考试)定义域为集合{}1,2,3,,14上的函数()f x 满足:①()1f 、()8f 、()14f 构成等比数列;②()11f =;③()()()111,2,,13f x f x x +-==;这样的不同函数()f x 的个数为( )A .456B .465C .546D .564【答案】C【分析】分析出()f x 的所有可能取值,得到使()f x 中()1f 、()8f 、()14f 构成等比数列时对应的项,再运用计数原理及排列组合求出这样的不同函数()f x 的个数即可.【详解】解:()f x 的取值的最大值为x ,最小值为2x -,并且成以2为公差的等差数列, 故()8f 的取值为8,6,4,2,0,2-,4-,6-,()14f 的取值为14,12,10,8,6,4,2,0,2-,4-,6-,8-,10-,12-,所以能使()f x 中的()1f 、()8f 、()14f 成等比数列时,。
高中高三数学《古典概型》教案、教学设计
5.教学过程中,注重启发式教学,引导学生自主探究、发现规律,提高学生的自主学习能力。
-例如:在讲解古典概型计算方法时,教师给出部分提示,让学生自主完成计算过程。
6.设计丰富的课堂练习,巩固所学知识,并及时给予反馈,帮助学生查漏补缺。
-请学生尝试解决以下问题:一个袋子里有5个白球、4个黑球和1个红球,随机取出两个球,求取出的两个球颜色相同的概率。
作业要求:
1.学生在完成作业时,要注重理解古典概型的概念和计算方法,避免死记硬背。
2.在设计生活实例时,要尽量选择有趣、富有挑战性的问题,提高自己的实际应用能力。
3.完成作业后,要进行自我检查,确保解答过程正确无误,并对自己的作业进行适当的批改和反思。
四、教学内容与过程
(一)导入新课
1.教学活动:教师以一个生动的实际例子引入新课,如“一个袋子里有5个红球和3个蓝球,随机取出一个球,求取出红球的概率。”
2.提出问题:通过上述例子,教师引导学生思考以下问题:
-概率是什么?如何计算概率?
-在这个问题中,为什么红球和蓝球的个数会影响概率的计算?
3.过渡:通过讨论,引出古典概型的概念,指出古典概型是解决此类问题的有效方法。
(三)学生小组讨论
1.教学活动:学生分成小组,针对以下问题进行讨论:
-生活中还有哪些问题可以用古典概型来解决?
-在解决古典概型问题时,如何运用排列组合知识?
2.讨论过程:小组成员相互交流,共同解决问题,教师巡回指导。
3.分享与评价:各小组汇报讨论成果,其他小组进行评价,教师给予点评。
(四)课堂练习
1.教学活动:学生完成以下练习题,巩固所学知识。
新高考二轮复习第22讲排列组合古典概型几何概型与二项式定理课件(53张)
(2)对于复杂的两个原理综合使用的问题,可恰当 列出示意图或表格,使问题形象化、直观化.
(3)种植问题是常见的计数应用问题,可从选植 物、选区域进行分类、分步,从不同角度解决问题.
专题八 计数原理、概率与统计 真题回放 考点诠释 限时训练
考点诠释
考点1 两个计数原理 考点2 排列与组合 考点3 古典概型 考点4 二项式定理
专题八 计数原理、概率与统计
考点1 两个计数原理
真题回放 考点诠释 限时训练
如果每种方法都能将规定的事件完成,则要用分类加法计数 原理将方法种数相加;如果需要通过若干步才能将规定的事件完 成,则要用分步乘法计数原理将各步的方法种数相乘.
专题八 计数原理、概率与统计 真题回放 考点诠释 限时训练
2.排列、组合、两个计数原理往往通过实际问题进 行综合考查,一般以选择题、填空题形式出现,难度中 等,还经常与概率问题相结合,出现在解答题的第一或 第二问中,难度也为中等;对于二项式定理的考查,主 要出现在选择题或填空题中,难度为易或中等.
=
(m+1)·n!
=
(m+1)·m!·(n-m)·(n-m-1)!
m!·(nn!-m)!=左边,故 D 正确.
故选 ABD.
专题八 计数原理、概率与统计 真题回放 考点诠释 限时训练
【思维启迪】求解排列、组合问题的思路:排 组分清,加乘明确;有序排列,无序组合;分类相 加,分步相乘.
具体地说,解排列、组合的应用题,通常有以 下途径:
专题八 计数原理、概率与统计 真题回放 考点诠释 限时训练
2.(2020·新高考卷Ⅰ)6 名同学到甲、乙、丙三个场馆做志愿者,每 名同学只去 1 个场馆,甲场馆安排 1 名,乙场馆安排 2 名,丙场馆安 排 3 名,则不同的安排方法共有( )
古典概型教案7篇
古典概型教案7篇古典概型教案篇1一、教学目标:1、知识与技能:(1)正确理解古典概型的两大特点:1)试验中全部可能涌现的基本领件只有有限个;2)每个基本领件涌现的可能性相等;(2)掌控古典概型的概率计算公式:p(a)=2、过程与方法:(1)通过对现实生活中详细的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培育规律推理技能;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。
3、情感立场与价值观:通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点.二、重点与难点:重点是掌控古典概型的概念及利用古典概型求解随机事项的概率;难点是如何判断一个试验是否是古典概型,分清一个古典概型中某随机事项包含的基本领件的个数和试验中基本领件的总数。
三、教法与学法指导:依据本节课的特点,可以采纳问题探究式学案导学教学法,通过问题导入、问题探究、问题解决和问题评价等教学过程,与同学共同探讨、合作争论;应用所学数学知识解决现实问题。
四、教学过程:1、创设情境:(1)掷一枚质地匀称的硬币的试验;(2)掷一枚质地匀称的骰子的试验。
师生共同探讨:依据上述状况,你能发觉它们有什么共同特点?同学分组争论试验,每人写出试验结果。
依据结果探究这种试验所求概率的特点,尝试归纳古典概型的定义。
在试验(1)中结果只有2个,即正面朝上或反面朝上,它们都是随机事项。
在试验(2)中,全部可能的试验结果只有6个,即涌现1点2点3点4点5点和6点,它们也都是随机事项。
2、基本概念:(看书130页至132页)(1)基本领件、古典概率模型。
(2)古典概型的概率计算公式:p(a)= .3、例题分析:(呈现例题,深刻体会古典概型的两个特征依据每个例题的不同条件,让每个同学找出并回答每个试验中的基本领件数和基本领件总数,分析是否满意古典概型的特征,然后利用古典概型的`计算方法求得概率。
) 例1 从字母a,b,c,d中任意取出两个不同的试验中,有哪些基本领件?分析:为了得到基本领件,我们可以根据某种顺次,把全部可能的结果都列出来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.已知某运动员每次投篮命中的概率都为40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989据此估计,该运动员三次投篮恰有两次命中的概率为 ( )A .0.35B .0.25C .0.20D .0.15解析:∵20组随机数中恰有2个大于等于1且小于等于4的共有191、271、932、812、393五组,∴其概率为520=0.25.2.(2010·北京高考)从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b >a 的概率是 ( )A.45B.35 C.25 D.15解析:分别从两个集合中各取一个数,共有15种取法,其中满足b >a 的有3种取法,故所求事件的概率为P =315=15.3.先后抛掷两枚均匀的骰子(骰子是一种正方体玩具,在正方体各面上分别有点数1,2,3,4,5,6),骰子落地后朝上的点数分别为x ,y ,则log 2x y =1的概率为 ( )A.16B.536C.112D.12解析:抛掷2枚骰子,共有6×6=36种情况,因为log 2x y =1,所以y =2x ,此时满足题意的数对(x ,y )共有(1,2)、(2,4)、(3,6)三种情况,所以概率P =336=112.4.(2010·江苏高考)盒子里共有大小相同的3只白球,1只黑球.若从中随机摸出两只球,则它们颜色不同的概率是________.解析:设3只白球为A ,B ,C,1只黑球为d ,则从中随机摸出两只球的情形有:AB ,AC ,Ad ,BC ,Bd ,Cd 共6种,其中两只球颜色不同的有3种,故所求概率为12.5.学校有两个食堂,甲、乙、丙三名学生各自随机选择其中的一个食堂用餐,则他们在同一个食堂用餐的概率为________.解析:每人用餐有两种情况,故共有23=8种情况.他们在同一食堂用餐有2种情况,故他们在同一食堂用餐的概率为28=14.1.基本事件的特点(1)任何两个基本事件是 的.(2)任何事件(除不可能事件)都可以表示成 的和. 2.古典概型具有以下两个特点的概率模型称为古典概率模型,简称古典模型. (1)试验中所有可能出现的基本事件 . (2)每个基本事件出现的可能性 . 3.古典概型的概率公式一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,如果某个事件A 包含的结果有m 个,那么事件A 的概率为P(A)= .考点一简单古典概型的概率有两颗正四面体的玩具,其四个面上分别标有数字1,2,3,4,下面做投掷这两颗正四面体玩具的试验:用(x ,y)表示结果,其中x 表示第1颗正四面体玩具出现的点数,y 表示第2颗正四面体玩具出现的点数. (1)写出试验的基本事件;(2)求事件“出现点数之和大于3”的概率; (3)求事件“出现点数相等”的概率.[自主解答] (1)这个试验的基本事件为(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)共16个.(2)事件“出现点数之和大于3”包含以下13个基本事件:(1,3),(1,4),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4). 故P =1316.(3)事件“出现点数相等”包含以下4个基本事件:(1,1),(2,2),(3,3),(4,4).故P=416=1 4.某口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出2只球.(1)共有多少个基本事件?(2)摸出的2只球都是白球的概率是多少?解:(1)分别记白球为1,2,3号,黑球为4,5号,从中摸出2只球,有如下基本事件[摸到1,2号球用(1,2)表示]:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5).因此,共有10个基本事件.(2)如图所示,上述10个基本事件的可能性相同,且只有3个基本事件是摸到2只白球(记为事件A),即(1,2),(1,3),(2,3),故P(A)=3 10.(3)故共有10个基本事件,摸出2只球都是白球的概率为3 10.考点二复杂的古典概型(2011·苏北四市联考)如图,在某城市中,M ,N 两地之间有整齐的方格形道路网,其中A1、A2、A3、A4是道路网中位于一条对角线上的4个交汇处.今在道路网M ,N 处的甲、乙两人分别要到N ,M 处,他们分别随机地选择一条沿街的最短路径,以相同的速度同时出发,直到到达N ,M 处为止.(1)求甲经过A2到达N 处的方法有多少种; (2)求甲、乙两人在A2处相遇的概率; (3)求甲、乙两人相遇的概率.[自主解答] (1)甲经过A 2,可分为两步: 第一步,甲从M 到A 2的方法有C 13种; 第二步,甲从A 2到N 的方法有C 13种.所以甲经过A 2到达N 处的方法有(C 13)2=9种.(2)由(1)知,甲经过A 2的方法数为9;乙经过A 2的方法数也为9. 所以甲、乙两人在A 2处相遇的方法数为9×9=81; 甲、乙两人在A 2处相遇的概率为81C 36C 36=81400.(3)甲、乙两人沿最短路径行走,只可能在A 1、A 2、A 3、A 4处相遇,他们在A i (i =1,2,3,4)处相遇的走法有(C i -13)4种方法,所以(C 03)4+(C 13)4+(C 23)4+(C 33)4=164,故甲、乙两人相遇的概率为164400=41100.某车间甲组有10名工人,其中有4名女工人;乙组有10名工人,其中有6名女工人.现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取4名工人进行技术考核.(1)求从甲、乙两组各抽取的人数;(2)求从甲组抽取的工人中恰有1名女工人的概率; (3)求抽取的4名工人中恰有2名男工人的概率.解:(1)由于甲、乙两组各有10名工人,根据分层抽样原理,要从甲、乙两组中共抽取4名工人进行技术考核,则从每组各抽取2名工人.(2)记A表示事件:从甲组抽取的工人中恰有1名女工人,则P(A)=C14C16C210=815.(3)A i表示事件:从甲组抽取的2名工人中恰有i名男工人,i=0,1,2.B j表示事件:从乙组抽取的2名工人中恰有j名男工人,j=0,1,2. B表示事件:抽取的4名工人中恰有2名男工人.A i与B j独立,i,j=0,1,2,且B=A0·B2+A1·B1+A2·B0.故P(B)=P(A0·B2+A·B1+A2·B0)=P(A0)·P(B2)+P(A1)·P(B1)+P(A2)·P(B0)=C24C210·C24C210+C14C16C210·C16C14C210+C26C210·C26C210=3175.现有8名奥运会志愿者,其中志愿者A1、A2、A3通晓日语,B1、B2、B3通晓俄语,C1、C2通晓韩语,从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.(1)求A1被选中的概率;(2)求B1和C1不全被选中的概率.解:从8人中选出日语、俄语和韩语志愿者各1名,其所有可能的结果组成的基本事件空间Ω={(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1)(A1,B3,C2),(A2,B1,C1),(A2,B1,C2),(A2,B2,C1),(A2,B2,C2),(A2,B3,C1),(A2,B3,C2),(A3,B1,C1),(A3,B1,C2),(A3,B2,C1),(A3,B2,C2),(A3,B3,C1),(A3,B3,C2)}由18个基本事件组成.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的.(1)用M表示“A1恰被选中”这一事件,则M={(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1),(A1,B3,C2)},事件M由6个基本事件组成,因而P(M)=618=13.(2)用N表示“B1、C1不全被选中”这一事件,则其对立事件N表示“B1、C1全被选中”这一事件,由N={(A1,B1,C1),(A2,B1,C1),(A3,B1,C1)},事件N有3个基本事件组成,所以P(N)=318=16.(3)由对立事件的概率公式P(N)=1-P(N)=1-16=56.考点三古典概型与统计的综合问题(2010·湖南高考)为了对某课题进行研究,用分层抽样方法从三所高校A,B,C 的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人).高校相关人数抽取人数A 18 xB 36 2C 54 y(1)求x,y;(2)若从高校B,C抽取的人中选2人作专题发言,求这2人都来自高校C的概率.[自主解答](1)由题意可得,x18=236=y54,所以x=1,y=3.(2)记从高校B抽取的2人为b1,b2,从高校C抽取的3人为c1,c2,c3,则从高校B,C抽取的5人中选2人作专题发言的基本事件有(b1,b2),(b1,c1),(b1,c2),(b1,c3),(b2,c1),(b2,c2),(b2,c3),(c1,c2),(c1,c3),(c2,c3)共10种.设选中的2人都来自高校C的事件为X,则X包含的基本事件有(c1,c2),(c1,c3),(c2,c3)共3种.因此P(X)=3 10.故选中的2人都来自高校C的概率为310.某高级中学共有学生2000人,各年级男、女生人数如下表:年级性别高一高二高三女生373 x y男生 377 370 z已知在全校学生中随机抽取1名,抽到高二年级女生的概率是0.19. (1)现用分层抽样的方法在全校抽取48名学生,问应在高三 年级抽取多少人?(2)已知y ≥245,z ≥245,求高三年级女生比男生多的概率.解:(1)∵x2000=0.19,∴x =380,高三年级人数为y +z =2000-(373+377+380+370)=500,现用分层抽样的方法在全校抽取48名学生,应在高三年级抽取的人数为482000×500=12.(2)设“高三年级女生比男生多”为事件A ,高三年级女生、男生数记为(y ,z ).由(1)知y +z =500,且y ,z ∈N *,则基本事件空间包含的基本事件有(245,255),(246,254),(247,253),(248,252),(249,251),(250,250),(251,249),(252,248),(253,247),(254,246),(255,245),共11个, 事件A 包含的基本事件有(251,249),(252,248),(253,247),(254,246),(255,245),共5个, ∴P(A)=511.故高三年级女生比男生多的概率为511.高考对本节内容的考查形式既有选择题、填空题,也有解答题,主要考查古典概型概率公式的应用.尤其是古典概型与互斥事件、对立事件的综合问题更是高考的热点,2010年福建高考将古典概型与向量等知识结合考查,代表了高考的一个重要考向.[考题印证] (2010·福建高考)(12分)设平面向量a m =(m,1),b n =(2,n),其中m ,n ∈{1,2,3,4}.(1)请列出有序数组(m ,n)的所有可能结果;(2)记“使得a m ⊥(a m -b n )成立的(m ,n)”为事件A ,求事件A 发生的概率.[规范解答] (1)有序数组(m ,n)的所有可能结果为:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.……………………………………………………………(6分) (2)由a m ⊥(a m -b n )得m 2-2m +1-n =0,即n =(m -1)2. ……………………………………………………………(8分)由于m ,n ∈{1,2,3,4},故事件A 包含的基本事件为(2,1)和(3,4),共2个.又基本事件的总数为16,故所求的概率为P(A)=216=18.……………………………………………(12分)1.求古典概型概率的步骤(1)分别求出基本事件的总数n 与所求事件A 中所包含的基本事件个数m. (2)利用公式P(A)=mn求出事件A 的概率.2.有放回抽样和无放回抽样的概率在古典概型的概率中,将涉及两种不同的抽取方法,设袋内装有n 个不同的球,现从中依次摸球,每次只摸一只,具有两种摸球的方法. (1)有放回.每次摸出一只后,仍放回袋中,然后再摸一只,这种摸 球的方法称为有放回的抽样,显然,对于有放回的抽 样,每次摸出的球可以重复,且摸球可无限地进行下去. (2)无放回.每次摸出一只后,不放回原袋中,在剩下的球中再摸一 只,这种摸球方法称为无放回的抽样.显然,对于无放 回的抽样,每次摸出的球不会重复出现,且摸球只能进 行有限次.1.(2011·黄冈模拟)设集合P ={b,1},Q ={c,1,2},P ÜQ ,若b ,c ∈{2,3,4,5,6,7,8,9},则b =c 的概率是 ( )A.18B.14C.12D.34解析:依题意得当b =2时,c 可从3,4,5,6,7,8,9中选取,此时b ≠c ;当b 从3,4,5,6,7,8,9中选取时,有b =c.因此,b =c 的概率为77+7=12.2.(2011·银川模拟)将一骰子抛掷两次,所得向上的点数分别为m 和n ,则函数y =23mx 3-nx +1在[1,+∞)上为增函数的概率是 ( )A.12B.56C.34D.23解析:由题可知,函数y =23mx 3-nx +1在[1,+∞)上单调递增,所以y ′=2mx 2-n ≥0在[1,+∞)上恒成立,所以2m ≥n ,则不满足条件的(m ,n)有(1,3),(1,4),(1,5),(1,6),(2,5),(2,6)共6种情况,所以满足条件的共有30种情况,则函数y =23mx 3-nx +1在[1,+∞)上单调递增的概率为3036=56.3.(2010·安徽高考)甲从正方形四个顶点中任意选择两个顶点连成直线,乙也从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是 ( )A.318B.418C.518D.618解析:甲从正方形四个顶点中任意选择两个顶点连成直线,乙也从该正方形的四个顶点中任意选择两个顶点连成直线,所得的直线共有6×62=18(对),而相互垂直的有5对,故根据古典概型概率公式得P =518.4.(2010·辽宁高考)三张卡片上分别写上字母E ,E ,B ,将三张卡片随机地排成一行,恰好排成英文单词BEE 的概率为________.解析:基本事件总数为6,所含基本事件个数为2,所以所求的概率是P =26=13.5.一笼里有3只白兔和2只灰兔,现让它们一一出笼,假设每一只跑出笼的概率相同,则先出笼的两只中一只是白兔,而另一只是灰兔的概率是__________.解析:法一:设3只白免分别为b 1,b 2,b 3,2只灰兔分别为h 1,h 2.则所有可能的情况是(b 1,h 1),(b 1,h 2),(b 2,h 1),(b 2,h 2),(b 3,h 1),(b 3,h 2),(h 1,b 1),(h 2,b 1),(h 1,b 2),(h 2,b 2),(h 1,b 3),(h 2,b 3),(b 1,b 2),(b 1,b 3),(b 2,b 1),(b 2,b 3),(b 3,b 1),(b 3,b 2),(h 1,h 2),(h 2,h 1),共20种情况,其中符合一只白兔而另一只是灰兔的情况有12种,∴所求概率为1220=35.法二:从笼子中跑出两只兔子的情况有A 25=20种情况.设事件A :出笼的两只中一只是白兔,另一只是灰兔.则P(A)=C 13C 12+C 12C 13A 25=1220=35. 6.(2010·山东高考)一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求n <m +2的概率.解:(1)从袋中随机取两个球,其一切可能的结果组成的基本事件有1和2,1和3,1和4,2和3,2和4,3和4,共6个.从袋中取出的球的编号之和不大于4的事件共有1和2,1和3两个. 因此所求事件的概率P =26=13.(2)先从袋中随机取一个球,记下编号为m ,放回后,再从袋中随机取一个球,记下编号为n ,其一切可能的结果(m ,n)有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.又满足条件n ≥m +2的事件为(1,3),(1,4),(2,4),共3个,所以满足条件n ≥m +2的事件的概率为P 1=316.故满足条件n <m +2的事件的概率为1-P 1=1-316=1316.。