回归分析练习题
第七章 相关回归分析 思考题及练习题

实用价值越小。
13、在相关分析中,要求相关的两个变量( )
A、都是随机变量
B、都不是随机变量
C、其中因变量是随机变量 D、其中自变量是随机变量
14、在简单回归直线
中,
表示( ) A、当
增加一个单位时,
增加
的数量 B、当
增加一个单位时,
增加
的数量 C、当
增加一个单位时,
的平均增加值 D、当
增加一个单位时,
按一定数额变化时,变量
也随之近似地按固定的数额变化,那么,这时变量
和
之间存在着( )
A、正相关关系
B、负相关关系
C、直线相关关系 D、曲线相关关系
18、两个变量间的相关关系称为( )
A、单相关
B、无相关
C、复相关
D、多相关
19、如果两个变量之间的相关系数
,说明这两个变量之间存在( )。 A、低度相关关系 B、高度相关关系 C、完全相关关系 D、显著相关关系 20、已知
第七章 思考题及练习题
(一) 填空题
1、 1、 在相关关系中,把具有因果关系相互联系的两个变
量中起影响作用的变量称为_______,把另一个说明观察结果的
变量称为________。
2、 2、 现象之间的相关关系按相关的程度分有________相
关、________相关和_______相关;按相关的方向分有________
E、 E、回归方程实用价值大小的指标 10、现象之间相互联系的类型有( )
A、函数关系 B、回归关系 C、相关关系 D、随机关系 E、结构关系 11、相关关系种类( ) A、从相关方向分为正相关和负相关 B、从相关形态分为线性相关和非线性相关 C、从相关程度分为完全相关、不完全相关和零相关
回归方程问题练习题

回归方程问题练习题回归分析是统计学中常用的一种方法,用于研究自变量和因变量之间的关系。
在实际应用中,我们常常需要利用回归方程来预测未来的趋势或做出决策。
本文将介绍一些回归方程问题练习题,帮助读者更好地理解和掌握回归分析的基本概念和方法。
问题一:假设你正在研究一个小麦种植区的产量与气温的关系。
你收集了10年的种植数据,其中包括每个月的平均气温和当年的小麦产量。
你希望根据这些数据建立一个回归方程来预测未来的小麦产量。
请问,你需要采用什么类型的回归分析?为什么?解答一:在这个问题中,气温作为自变量,小麦产量作为因变量,我们想要建立一个回归方程来描述它们之间的关系。
由于气温是一个连续变量,而小麦产量也是一个连续变量,所以我们应该采用线性回归分析,它是回归分析中最常用的一种方法。
通过建立一个线性方程,我们可以更好地预测未来小麦产量。
问题二:假设你想研究一个城市的人口增长与GDP增长之间的关系。
你搜集了过去20年的数据,包括每年的人口数量和GDP增长率。
请问,你需要如何处理这些数据才能建立一个有效的回归方程?解答二:在这个问题中,人口数量作为因变量,GDP增长率作为自变量。
为了建立一个有效的回归方程,首先我们需要将数据进行可视化和摘要统计。
可以使用散点图来观察二者之间的关系,并计算相关系数来衡量它们之间的相关性。
如果两者呈现出线性关系,我们可以使用线性回归来建立回归方程。
如果呈现出非线性关系,我们可能需要尝试其他的回归方法,如多项式回归或非线性回归。
问题三:假设你正在研究一家电商平台的销售额与广告投入之间的关系。
你搜集了过去五年的数据,包括每月的销售额和当月的广告投入。
你希望建立一个回归方程来预测未来的销售额。
请问,你需要考虑哪些因素来建立回归方程?解答三:在这个问题中,销售额作为因变量,广告投入作为自变量。
然而,广告投入可能并不是唯一影响销售额的因素。
我们可能还需要考虑其他因素,如季节性变化、市场竞争情况等。
第七章回归与相关分析练习及答案

第七章回归与相关分析一、填空题1.现象之间的相关关系按相关的程度分为、和;按相关的形式分为和;按影响因素的多少分为和。
2.两个相关现象之间,当一个现象的数量由小变大,另一个现象的数量,这种相关称为正相关;当一个现象的数量由小变大,另一个现象的数量,这种相关称为负相关。
3.相关系数的取值X围是。
4.完全相关即是关系,其相关系数为。
5.相关系数,用于反映条件下,两变量相关关系的密切程度和方向的统计指标。
6.直线相关系数等于零,说明两变量之间;直线相关系数等1,说明两变量之间;直线相关系数等于—1,说明两变量之间。
7.对现象之间变量的研究,统计是从两个方面进行的,一方面是研究变量之间关系的,这种研究称为相关关系;另一方面是研究关于自变量和因变量之间的变动关系,用数学方程式表达,称为。
8.回归方程y=a+bx中的参数a是,b是。
在统计中估计待定参数的常用方法是。
9. 分析要确定哪个是自变量哪个是因变量,在这点上它与不同。
10.求两个变量之间非线性关系的回归线比较复杂,在许多情况下,非线性回归问题可以通过化成来解决。
11.用来说明回归方程代表性大小的统计分析指标是。
12.判断一条回归直线与样本观测值拟合程度好坏的指标是。
二、单项选择题1.下面的函数关系是( )A销售人员测验成绩与销售额大小的关系 B圆周的长度决定于它的半径C家庭的收入和消费的关系 D数学成绩与统计学成绩的关系2.相关系数r的取值X围( )A -∞<r<+∞B -1≤r≤+1C -1<r<+1D 0≤r≤+13.年劳动生产率z(干元)和工人工资y=10+70x,这意味着年劳动生产率每提高1千元时,工人工资平均( )A增加70元 B减少70元 C增加80元 D减少80元4.若要证明两变量之间线性相关程度是高的,则计算出的相关系数应接近于( )A+1 B 0 C 0.5 D [1]5.回归系数和相关系数的符号是一致的,其符号均可用来判断现象( ) A线性相关还是非线性相关 B正相关还是负相关C完全相关还是不完全相关 D单相关还是复相关6.某校经济管理类的学生学习统计学的时间(x)与考试成绩(y)之间建=a+b x。
回归分析练习试题和参考答案解析

1 下面是7个地区2000年的人均国内生产总值(GDP)和人均消费水平的统计数据:求:(1)人均GDP作自变量,人均消费水平作因变量,绘制散点图,并说明二者之间的关系形态。
(2)计算两个变量之间的线性相关系数,说明两个变量之间的关系强度。
(3)求出估计的回归方程,并解释回归系数的实际意义。
(4)计算判定系数,并解释其意义。
α=)。
(5)检验回归方程线性关系的显著性(0.05(6)如果某地区的人均GDP为5000元,预测其人均消费水平。
(7)求人均GDP为5000元时,人均消费水平95%的置信区间和预测区间。
解:(1)可能存在线性关系。
(2)相关系数:系数a模型非标准化系数标准系数t Sig.相关性B标准误差试用版零阶偏部分1(常量).003人均GDP.309.008.998.000.998.998.998 a. 因变量: 人均消费水平有很强的线性关系。
(3)回归方程:734.6930.309y x=+系数a模型非标准化系数标准系数t Sig.相关性回归系数的含义:人均GDP没增加1元,人均消费增加元。
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。
系数(a)模型非标准化系数标准化系数t显著性B标准误Beta1(常量)人均GDP(元)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(4)模型汇总模型R R 方调整 R 方标准估计的误差1.998a.996.996a. 预测变量: (常量), 人均GDP。
人均GDP对人均消费的影响达到%。
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。
模型摘要模型R R 方调整的 R 方估计的标准差1.998(a)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(5)F检验:Anova b模型平方和df均方F Sig.1回归.6801.680.000a 残差5总计.7146a. 预测变量: (常量), 人均GDP。
5相关分析和回归分析练习题

第五章相关分析和回归分析练习题一、单项选择题1、相关分析研究的是()。
A、变量间的相互依存关系B、变量间的因果关系C、变量间严格的一一对应关系D、变量间的线性关系2、测定变量之间相关关系密切程度的主要方法是()。
A、相关表B、相关图C、相关系数D、定性分析3、下列情况中,称为正相关的是()。
A、随一个变量增加,另一个变量相应减少B、随一个变量减少,另一个变量相应增加C、随一个变量增加,另一个变量相应增加D、随一个变量增加,另一个变量不变4、相关系数r取值范围()。
A、︱r︱<∞B、︱r︱≤1C、r<1D、r≤0.55、相关系数等于零表明两个变量()。
A、是严格的函数关系B、不存在相关关系C、不存在线性相关关系D、存在曲线相关关系6、现象之间相互依存关系的程度是对等的,则相关系数()。
A、越小于0B、越接近-1C、越接近于1D、越接近于07、相关关系中,两个变量的关系是对待的,从而变更x对变量y的相关,同变量y对变量x的相关()。
A、是同一问题B、不一定相同C、有联系但是不是一个问题D、完全不同8、若居民收入增加,居民消费额也增加,则居民收入和居民消费额之间()。
A、无相关B、存在正相关C、存在负相关D、无法判断是否相关9、产品产量与单件成本的相关系数是-0.80,单位成本与利润率的相关系数是-0.94,产量与利润率之间的相关系数是0.89,因此()。
A、产量与利润率的相关程度最高B、单位成本与利润率的相关程度最高C、产量与单位成本的相关程度最高D、反映不出哪对变量的相关程度最高10、在回归分析中,自变量同因变量的地位不同,两变量y和x回归和x对y回归()。
A、是同一问题B、不一定相同C、有联系但不是一个问题D、完全不同11、回归分析中的简单回归是指()。
A、两上变量之间的回归B、变量之间的线性回归C、两个变量之间的线性回归D、变量之间的简单回归12、当自变量的数值确定后,因变量的数值也随之完全确定,这种关系属于()。
301-习题作业-第四章 多元线性回归分析

思考题4.1 为了考察城镇商品房市场的特征,有人建立了如下的模型:ii i i i Z P X Y εαααα++++=3210ln ln 其中:i Y 为第i 个城镇的商品房销售面积,i X 为该城镇居民的人均可支配收入,i P 为商品房均价,i Z 为常住人口数量。
(1)分别解释系数1α和2α的经济含义。
(2)有人认为,中国商品房市场存在严重的炒房现象,导致价格越高,商品房的销售量越火爆,你如何检验这种观点?写出你的原假设、备选假设、检验统计量和判定规则。
(3)有人认为,商品房市场存在严重泡沫,商品房的销售量已经与居民收入、人口规模严重脱节,你如何检验这种观点?写出你的原假设、备选假设、检验统计量和判定规则。
(4)如果样本中既有大城市,也有小城镇,你如何检验大小城市的商品房市场是否具有相同的特征。
4.2. 在分析变量Y 的影响因素时,学生甲建立了如下的多元回归方程: t t t t X X Y εααα+++=22110。
学生乙也在研究同样的经济问题,她只学习了一元回归模型。
为了考察在X 2不变时,X 1对Y 的影响,学生乙进行了如下的三步回归分析: t t t X Y 1210εββ++= (a ) t t t X X 22101εγγ++= (b )t t t 3211ˆˆεελε+= (c )其中:t t 21ˆ,ˆεε分别是回归方程(a )、(b )的残差项。
(1)参数1α和参数1λ有什么样的关系?解释你的理由。
(2)参数2α和参数1β是同一个参数吗?解释你的理由。
(3)回归方程(c )为什么没有截距项?4.3. 在基于受约束和无约束回归方程的估计结果检验规线性约束时,需要建立F 检验统计量。
有同学在相关文献中看到了如下的F 检验统计量:)1,(~)1/(/)(222-----=K N q F K N R qR R F ur r ur 。
(1)说明该F 统计量的形式是如何得到的。
线性回归分析练习题

§1回归剖析一.基本过关1.下列变量之间的关系是函数关系的是( )A.已知二次函数y=ax2+bx+c,个中a,c是已知常数,取b为自变量,因变量是这个函数的判别式Δ=b2-4acB.光照时光和果树亩产量C.降雪量和交通变乱产生率D.每亩施用肥料量和食粮产量2.在以下四个散点图中,个中实用于作线性回归的散点图为( )A.①②B.①③C.②③D.③④3.下列变量中,属于负相干的是( )A.收入增长,储蓄额增长B.产量增长,临盆费用增长C.收入增长,支出增长D.价钱降低,花费增长4.已知对一组不雅察值(x i,y i)作出散点图后肯定具有线性相干关系,若对于y =bx+a,求得b=0.51,x=61.75,y=38.14,则线性回归方程为A.yx+6.65 B.yxC.yx+42.30 D.yx5.对于回归剖析,下列说法错误的是( )A.在回归剖析中,变量间的关系若长短肯定关系,那么因变量不克不及由自变量独一肯定B.线性相干系数可所以正的,也可所以负的C.回归剖析中,假如r2=1,解释x与y之间完整相干D.样底细关系数r∈(-1,1)6.下表是x 和y 之间的一组数据,则y 关于x 的回归方程必过( )A.点B .点(1.5,4)C .点D .点(2.5,5)7.若线性回归方程中的回归系数b =0,则相干系数r =________. 二.才能晋升8.若施化肥量x (kg)与小麦产量y (kg)之间的线性回归方程为y =250+4x ,当施化肥量为50 kg 时,估计小麦产量为________ kg.9.某车间为了划定工时定额,需肯定加工零件所花费的时光,为此做了4次实验,得到的数据如下:若加工时光y (1)求加工时光与零件个数的线性回归方程; (2)试预告加工10个零件须要的时光.10.在一段时光内,分5次测得某种商品的价钱x (万元)和需求量y (t)之间的一组数据为:已知∑5i =1x i y i =62,∑i =1x 2i =16.6. (1)画出散点图;(2)求出y 对x 的线性回归方程;(3)假如价钱定为1.9万元,猜测需求量大约是若干?(准确到0.01 t). 11.某运发动练习次数与活动成绩之间的数据关系如下:(1)(2)求出回归方程;(3)盘算相干系数并进行相干性磨练;(4)试猜测该运发动练习47次及55次的成绩.答案1.7.0 8.yx 9.45010.解 (1)由表中数据,应用科学盘算器得x =2+3+4+54=3.5,y =2.5+3+4+4.54=3.5,∑4i =1x i y i =52.5,∑4i =1x 2i =54, b =∑4i =1xiyi -4x y ∑4i =1x2i -4x 2=52.5-4××3.554-4×3.52=0.7,a =y -b x =1.05,是以,所求的线性回归方程为yx +1.05.(2)将x =10代入线性回归方程,得y ×10+1.05=8.05(小时),即加工10个零件的预告时光为8.05小时. 11.解 (1)散点图如下图所示:(2)因为x =15×9=1.8,y =15×37=7.4,∑5i =1x i y i =62,∑5i =1x 2i =16.6,所以b =∑5i =1xiyi -5x y ∑5i =1x2i -5x 2=62-5××7.416.6-5×1.82=-11.5,a =y -b x ×1.8=28.1,故y 对x 的线性回归方程为yx . (3)y ×1.9=6.25(t).所以,假如价钱定为1.9万元,则需求量大约是6.25 t.12.解 (1)作出该运发动练习次数x 与成绩y 之间的散点图,如下图所示,由散点图可知,它们之间具有线性相干关系. (2)列表盘算:由上表可求得x =39.25,y =40.875, ∑8i =1x 2i =12 656,∑8i =1y 2i =13 731,∑8i =1x i y i =13 180, ∴b =∑8i =1xiyi -8x y ∑8i =1x2i -8x 2≈1.041 5,a =y -b x =-0.003 88,∴线性回归方程为y =1.041 5x -0.003 88.(3)盘算相干系数r =0.992 7,是以运发动的成绩和练习次数两个变量有较强的相干关系.(4)由上述剖析可知,我们可用线性回归方程y =1.041 5x -0.003 88作为该运发动成绩的预告值.将x =47和x =55分离代入该方程可得y =49和y =57.故猜测该运发动练习47次和55次的成绩分离为49和57. 13.解 ∵s x =lxyn ,s y =lxyn, ∴lxy n=r lxyn·lyy n ××15.2=57.76.∴β1=lxy n lxy n=57.767.62=1, β0=y -β1x =72-1×172=-100.故由身高估量平均体重的回归方程为y =x -100. 由x ,y 地位的对称性,得b =lxyn lxy n =57.7615.22=0.25,∴a =x -b y ×72=154.故由体重估量平均身高的回归方程为xy +154.可线性化的回归剖析一.基本过关1.某商品发卖量y(件)与发卖价钱x(元/件)负相干,则其线性回归方程可能是()A.y=-10x+200 B.y=10x+200C.y=-10x-200 D.y=10x-200 2.在线性回归方程y=a+bx中,回归系数b暗示()A.当x=0时,y的平均值 B.x变动一个单位时,y 的现实变动量C.y变动一个单位时,x的平均变动量 D.x变动一个单位时,y 的平均变动量3.对于指数曲线y=a e bx,令u=ln y,c=ln a,经由非线性化回归剖析之后,可以转化成的情势为()A.u=c+bx B.u=b+cx C.y=b+cx D.y=c+bx4.下列说法错误的是()A.当变量之间的相干关系不是线性相干关系时,也能直接用线性回归方程描写它们之间的相干关系B.把非线性回归化为线性回归为我们解决问题供给一种办法C.当变量之间的相干关系不是线性相干关系时,也能描写变量之间的相干关系D.当变量之间的相干关系不是线性相干关系时,可以经由过程恰当的变换使其转换为线性关系,将问题化为线性回归剖析问题来解决5.每一吨铸铁成本y c(元)与铸件废品率x%树立的回归方程y c=56+8x,下列说法准确的是 ()A.废品率每增长1%,成本每吨增长64元 B.废品率每增长1%,成本每吨增长8%C.废品率每增长1%,成本每吨增长8元 D.假如废品率增长1%,则每吨成本为56元6.为了考核两个变量x和y之间的线性相干性,甲.乙两个同窗各自自力地做10次和15次实验,并且应用线性回归办法,求得回归直线分离为l1和l2.已知在两小我的实验中发明对变量x的不雅测数据的平均值正好相等,都为s,对变量y的不雅测数据的平均值也正好相等,都为t.那么下列说法准确的是 ()A.直线l1和l2有交点(s,t)B.直线l1和l2订交,但是交点未必是点(s,t) C.直线l1和l2因为斜率相等,所以肯定平行 D.直线l1和l2肯定重合二.才能晋升7.研讨人员对10个家庭的儿童问题行动程度(X)及其母亲的不耐烦程度(Y)进行了评价成果如下,家庭1,2,3,4,5,6,7,8,9,10,儿童得分:72,40,52,87,39,95,12,64,49,46,母亲得分:79,62,53,89,81,90,10,82,78,70.下列哪个方程可以较恰当的拟合()A.y=0.771 1x+.y=36.958ln x-C.y=1.177 8x1.014 5D.y=20.924e0.019 3x8.已知x,y之间的一组数据如下表:则y与x.9.已知线性回归方程为y=x-,则x=25时,y的估量值为________.10.在一次抽样查询拜访中测得样本的5个样本点,数值如下表:(1)树立y与x(211.某地区六年来轻工业产品利润总额y 与年次x 的实验数据如下表所示:由经验知ab xe 0.个中a .b 均为正数,求y 关于x 的回归方程.(保存三位有用数字)三.探讨与拓展12.某市肆各个时代的商品流畅率y (%)和商品零售额x (万元)材料如下:散点图显示出x 都证实,流畅率y 决议于商品的零售额x ,表现着经营范围效益,假定它们之间消失关系式:y =a +bx .试依据上表数据,求出a 与b 的估量值,并估量商品零售额为30万元时的商品流畅率.答案1. 8.10.解 画出散点图如图(1)所示,不雅察可知y 与x 近似是反比例函数关系.设y =k x (k ≠0),令t =1x ,则y =kt .可得到y 关于t 的数据如下表:画出散点图如图(2),是以可应用线性回归模子进行拟合,易得: b =∑5i =1tiyi -5t y ∑5i =1t2i -5t 2≈4.134 4,a =y -b t ≈0.791 7,所以y =4.134 4t +0.791 7,所以y 与x 的回归方程是y =4.134 4x +0.791 7.11.解 对y =ab xe 0双方取对数,得ln y =ln a e 0+x ln b ,令z =ln y , 则z 与x 的数据如下表:由z =ln a e 0+a e 0≈, 即z =+0.047 7x ,所以y =×x.12.解 设u =1x,则y ≈a +bu ,得下表数据:进而可得n =10,u ≈0.060 4,y =, ∑i =110u2i -10u 2≈0.004 557 3, ∑i =110u i y i -10u y ≈0.256 35,b ≈0.256 350.004 557 3≈,a =y -b ·u ≈-0.187 5,所求的回归方程为y =-0.187 5+56.25x.当x =30时,y =1.687 5,即商品零售额为30万元时,商品流畅率为1.687 5%.。
回归分析与独立性检验练习

回归分析与独立性检验综合训练回归分析: 热身练习1. 在画两个变量的散点图时,下面哪个叙述是正确的( )(A)预报变量在x 轴上,解释变量在y 轴上 (B)解释变量在x 轴上,预报变量在y 轴上 (C)可以选择两个变量中任意一个变量在x 轴上 (D)可以选择两个变量中任意一个变量在y 轴上 2. 一位母亲记录了儿子3~9岁的身高,由此建立的身高与年龄的回归模型为y=7.19x+73.93用这个模型预测这个孩子10岁时的身高,则正确的叙述是( ) A.身高一定是145.83cm; B.身高在145.83cm 以上; C.身高在145.83cm 以下; D.身高在145.83cm 左右.3. 两个变量y 与x 的回归模型中,分别选择了4个不同模型,它们的相关指数2R 如下 ,其中拟合效果最好的模型是( )A.模型1的相关指数2R 为0.98 B.模型2的相关指数2R 为0.80 C.模型3的相关指数2R 为0.50 D.模型4的相关指数2R 为0.254. 若有一组数据的总偏差平方和为100,相关指数为0.5,则期残差平方和为_______ 回归平方和为____________5.工人月工资(元)依劳动生产率(千元)变化的回归直线方程为ˆ6090yx =+,下列判断正确的是() A.劳动生产率为1000元时,工资为50元 B.劳动生产率提高1000元时,工资提高150元 C.劳动生产率提高1000元时,工资提高90元 D.劳动生产率为1000元时,工资为90 独立性检验: 热身练习1.下面是一个2×2列联表:则表中a 、b 处的值分别为( )A .94、96B .52、50C .52、60D .54、52 2.下列关于等高条形图的叙述正确的是( ).A .从等高条形图中可以精确地判断两个分类变量是否有关系B .从等高条形图中可以看出两个变量频数的相对大小C .从等高条形图可以粗略地看出两个分类变量是否有关系D .以上说法都不对3.关于分类变量x 与y 的随机变量K 2的观测值k ,下列说法正确的是( ).A .k 的值越大,“X 和Y 有关系”可信程度越小B .k 的值越小,“X 和Y 有关系”可信程度越小C .k 的值越接近于0,“X 和Y 无关”程度越小D .k 的值越大,“X 和Y 无关”程度越大 4.若由一个2×2列联表中的数据计算得k =4.013,那么在犯错误的概率不超过________的前提下认为两个变量之间有关系.5.为了判断高中三年级学生是否选修文科与性别的关系,现随机抽取50名学生,得到如下2×2列联表:理科 文科 男 13 10 女720已知P (K 2≥3.841)≈0.05,P (K 2≥5.024)≈0.025.根据表中数据,得到k =50×13×20-10×7223×27×20×30≈4.844.则认为选修文科与性别有关系出错的可能性约为________.6.第16届亚运会于2010年11月12日至27日在中国广州进行,为了搞好接待工作,组委会招幕了16名男志愿者和14名女志愿者,调查发现,男、女志愿者中分别有10人和6人喜爱运动,其余人不喜爱运动.(1)根据以上数据完成以下2×2列联表:喜爱运动 不喜爱运动 总计 男 10 16 女 614 总计30(2) 基础练习1.下列变量间的关系,不是函数关系的是( ) A .角度和它的余弦值 B .正方形的边长和面积C .正多边形的边数和顶点的角度之和D .人的年龄和身高2. “回归”一词是在研究子女的身高与父母的身高之间的遗传关系时,由高尔顿提出的.他的研究结果是子代的平均身高向中心回归.根据他提出的结论,在儿子的身高y 与父亲的身高x 的回归方程ˆya bx =+中,b ( )A .在(-1,0)内B .等于0C .在(0,1)内D .在[1,)+∞内 3.已知回归直线斜率的估计值为1.23,样本的中心点为(4,5),则回归直线方程为( )A .ˆ 1.234yx =+ B .ˆ 1.235y x =+ C .ˆ 1.230.08y x =+ D .ˆ0.08 1.23y x =+ 4.对于回归直线方程ˆ 4.67 2.85yx =+,当21x =时,y 的估计值为 5.一所大学图书馆有6台复印机供学生使用管理人员发现,每台机器的维修费用与其使用的时间有一定的关系,根据去年一年的记录,得到每周使用时间(单位:小时)与年维修费用(单位:元)的数据如下:时间 33 21 31 37 46 42 费用 16 14 25 29 38 34则使用时间与维修费用之间的相关系数为6.某种产品的广告支出与销售额(单位:百万元)之间有如下的对应关系x 2 4 5 6 8 y3040605070(1)假定x 与y 之间具有线性相关关系,求回归直线方程.(2)若实际销售额不少于60百万元,则广告支出应该不少于多少?7.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程ˆˆy bxa =+; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:32.5435464.566.5⨯+⨯+⨯+⨯=) 8.下表为收集到的一组数据:(1)作出x 与y 的散点图,猜测(2)建立x 与y 的关系,预报回归模型并计算残差; (3)利用所得模型,预报x =40时y 的值.综合练习:一、选择题1.已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的方程是( ) Ay ∧=1.23x +4 By ∧=1.23x+5 C y ∧=1.23x+0.08 D y ∧=0.08x+1.232.回归分析中,相关指数R 2的值越大,说明残差平方和( )A 越小B 越大C 可能大也可能小D 以上都不对3.为研究变量x 和y 的线性相关性,甲、乙二人分别作了研究,利用线性回归方法得到回归直线方程1l 和2l ,两人计算知x 相同,y 也相同,下列正确的是()A 1l 与2l 一定平行B 1l 与2l 相交于点),(y xC 1l 与2l 重合D 无法判断1l 和2l 是否相交 4.变量x 与y 具有线性相关关系,当x 取值16,14,12,8时,通过观测得到y 的值分别为11,9,8,5,若在实际问题中,y 的预报最大取值是10,则x 的最大取值不能超过( )A 16B 17C 15D 12二、填空题5.在回归分析中,代表了数据点和它在回归直线上相应位置的差异的是____________6.利用独立性检验来考虑两个分类变量X 和Y 是否有关系时,通过查阅下表来确定断言“X 和Y 有关系”的可信度。
第八章-相关与回归分析练习题

第八章-相关与回归分析练习题第八章相关与回归分析一、单选题1.相关分析研究的是()A、变量间相互关系的密切程度B、变量之间因果关系C、变量之间严格的相依关系D、变量之间的线性关系2.若变量X的值增加时,变量Y的值也增加,那么变量X和变量Y之间存在着()。
A、正相关关系 B、负相关关系 C、直线相关关系 D、曲线相关关系3.若变量X的值增加时,变量Y的值随之下降,那么变量X和变量Y之间存在着()。
A、正相关关系 B、负相关关系 C、直线相关关系 D、曲线相关关系4.相关系数等于零表明两变量()。
A.是严格的函数关系B.不存在相关关系C.不存在线性相关关系D.存在曲线线性相关关系5.相关关系的主要特征是()。
A、某一现象的标志与另外的标志之间的关系是不确定的B、某一现象的标志与另外的标志之间存在着一定的依存关系,但它们不是确定的关系C、某一现象的标志与另外的标志之间存在着严格的依存关系D、某一现象的标志与另外的标志之间存在着不确定的直线关系 6.时间数列自身相关是指()。
A、两变量在不同时间上的依存关系 B、两变量静态的依存关系C、一个变量随时间不同其前后期变量值之间的依存关系D、一个变量的数值与时间之间的依存关系7.如果变量X和变量Y之间的相关系数为负1,说明两个变量之间()。
A、不存在相关关系 B、相关程度很低 C、相关程度很高 D、完全负相关8.若物价上涨,商品的需求量愈小,则物价与商品需求量之间()。
A、无相关 B、存在正相关 C、存在负相关 D、无法判断是否相关 9.相关分析对资料的要求是()。
A.两变量均为随机的 B.两变量均不是随机的 C、自变量是随机的,因变量不是随机的 D、自变量不是随机的,因变量是随机的 10.回归分析中简单回归是指()。
A.时间数列自身回归 B.两个变量之间的回归 C.变量之间的线性回归 D.两个变量之间的线性回归11.已知某工厂甲产品产量和生产成本有直线关系,在这条直线上,当产量为1000时,其生产成本为30000元,其中不随产量变化的成本为6000元,则成本总额对产量的回归方程为()A. y=6000+24xB. y=6+0.24xC. y=24000+6xD. y=24+6000x12.直线回归方程中,若回归系数为负,则() A.表明现象正相关 B.表明现象负相关C.表明相关程度很弱D.不能说明相关方向和程度二、多项选择题1.下列属于相关关系的有()。
相关和回归分析练习题

课本例题:对某10户居民家庭的年可支配收入和消费支出进行调查,得到的原始资料如下, 单位:千元居民家庭编号1 2 3 4 5 6 7 8 9 10 可支配收入25 18 60 45 62 88 92 99 75 98 消费支出 20 15 40 30 42 60 65 70 53 78 (1) 计算居民可支配收入与消费支出之间的相关系数,判断这两个变量之间是否显著相关;(P223)(2) 建立居民消费支出对居民可支配收入的一元线性回归方程,并解释回归系数的经济意义;(P227)(3) 计算拟合系数2R , 解释其意义;(P230)(4) 当居民可支配收入为120千元时,利用回归方程预测相应的消费支出。
(P232)相关系数的计算222222()()()()()()i i i i XX Y Y XY nXY r X n X Y n Y X X Y Y ---==⋅---⋅-∑∑∑∑∑∑ 参数1ˆβ和0ˆβ的估计122ˆXY nXY X nX β-=-∑∑ 01ˆˆY X ββ=- 拟合系数的计算2222222211222ˆˆˆ()()](()[)ii i i X n X Y n Y y x R y y ββ===--∑∑∑∑∑∑2,,X XX ∑∑ 2,,Y Y Y ∑∑ XY ∑ 1、 解:22()()()()i i i i X X Y Y r XX Y Y --=-⋅-∑∑∑ 21025,152711,128.125Y Y Y ===∑∑,129559.16ni i i X Y ==∑2195.56,5822.3334,24.445X X X ===∑∑变量X 的离差平方和2222()1041.86()92i i X X X n x X -==-=∑∑∑, 变量Y 的离差平方和2222()21382.8()75i i Y Y Y n y Y -==-=∑∑∑变量X 和Y 离差乘积项的和()()4503.305i i i i X x y X X Y Y Y nXY =--=-=∑∑∑ 22()()4503.3050.95401041.869221382.875()()i i i i XX Y Y r X X Y Y --===⨯-⋅-∑∑∑ 2.解:(1) 2199.5,7667.15,24.9375Y YY ===∑∑,1107610.4ni i i X Y ==∑ 22670,1587328,333.75X XX ===∑∑ 12241027.275ˆ0.0589696215.5XY nXY X nX β-===-∑∑ 00ˆˆ24.93780.0589333.75 5.2700Y X ββ=-=-⨯= 样本回归方程为ˆ 5.27000.0589i iY X =+ (2)变量X 的离差平方和222696215.5,i i x X nX =-=∑∑ 变量Y 的离差平方和2222692.1188i i y Y nY =-=∑∑22221ˆˆ()0.0589696215.52415.3178i i yx β==⨯=∑∑ 222ˆ2415.31780.89812692.1188ii y R y ===∑∑,表明自变量能解释因变量89.81%左右的变动,模型的拟合效果较好。
相关分析与回归分析练习试卷1(题后含答案及解析)

相关分析与回归分析练习试卷1(题后含答案及解析) 题型有:1. 单选题 2. 多选题单项选择题以下每小题各有四项备选答案,其中只有一项是正确的。
1.根据散点图8-1,可以判断两个变量之间存在( )。
A.正线性相关关系B.负线性相关关系C.非线性关系D.函数关系正确答案:A 涉及知识点:相关分析与回归分析2.假设某品牌的笔记本市场需求只与消费者的收入水平和该笔记本的市场价格水平有关。
则在假定消费者的收入水平不变的条件下,该笔记本的市场需求与其市场价格水平的相关关系就是一种( )。
A.单相关B.复相关C.偏相关D.函数关系正确答案:C解析:在某一现象与多种现象相关的场合,假定其他变量不变,专门考察其中两个变量的相关关系称为偏相关。
在假定消费者的收入水平不变的条件下,该笔记本的市场需求与其市场价格水平的关系就是一种偏相关。
知识模块:相关分析与回归分析3.相关图又称( )。
A.散布表B.折线图C.散点图D.曲线图正确答案:C解析:相关图又称散点图,是指把相关表中的原始对应数值在乎面直角坐标系中用坐标点描绘出来的图形。
知识模块:相关分析与回归分析4.下列相关系数取值中错误的是( )。
A.-0.86B.0.78C.1.25D.0正确答案:C解析:相关系数r的取值介于-1与1之间。
知识模块:相关分析与回归分析5.如果相关系数r=0,则表明两个变量之间( )。
A.相关程度很低B.不存在任何关系C.不存在线性相关关系D.存在非线性相关关系正确答案:C解析:相关系数r是根据样本数据计算的度量两个变量之间线性关系强度的统计量。
如果相关系数r=0,说明两个变量之间不存在线性相关关系。
知识模块:相关分析与回归分析6.当所有观测值都落在回归直线上,则两个变量之间的相关系数为( )。
A.1B.-1C.+1或-1D.大于-1,小于+1正确答案:C解析:当所有观测值都落在回归直线上时,说明两个变量完全线性相关,所以相关系数为+1或-1。
回归分析习题及答案.doc

1.1回归分析的基本思想及其初步应用例题:1.在画两个变量的散点图时,下面哪个叙述是正确的()(A)预报变量在x轴上,解释变量在y轴上(B)解释变量在X轴上,预报变量在y轴上(0可以选择两个变量中任意一个变量在x轴上(D)可以选择两个变量中任意一个变量在y轴上解析:通常把自变量X称为解析变量,因变量y称为预报变量.选B2,若一组观测值(xi, yi) (x2, y2) ••- (x…, y n)之间满足 y-bxi+a+e;(i=l> 2. •••!!)若巳恒为0,则仁为_____________解析:e』亘为0,说明随机误差对方贡献为0.答案:1.3.假设关于某设备的使用年限x和所支出的维修费用y (万兀),有如下的统计资料:X 2 3 4 5 6y 22 38 55 65 70若由资料可知y对x呈线性相关关系试求:(1)线性回归方程;(2)估计使用年限为10年时,维修费用是多少?解:(1)列表如下:i 1 2 3 4 5X] 2 3 4 5 622 38 55 65 70时•44 114 220 325 420X; 4 9 16 25 36_ _ 5 5x = 4, y = 5,»;=9o, »,北=112.3z'=l z'=l5 ___况一5xy干旱,仃112.3-5x4x5 …c十正方= ------------- = ------------ -- = 1.23,S,厂2 90 —5x42小「- 5x<=|a = y -bx = 5-1.23x4 = 0.08线性回归方程为:y =bx + a = 1.23x + Q.QS ( 2 )当 x=10 时,y = 1.23x10 + 0.08 = 12.38 (万兀)即估计使用10年时维修费用是1238万元课后练习:1.一位母亲记录了儿子3~9岁的身高,由此建立的身高与年龄的回归模型为y=7. 19x+73.93 用这个模型预测这个孩子10岁时的身高,则正确的叙述是()A.身高一定是145. 83cm;B.身高在145. 83cm以上;C.身高在145. 83cm以下;D.身I W J在 145. 83cm 左右.2.两个变量y与x的回归模型中,分别选择了 4个不同模型,它们的相关指数人2如下,其中拟合效果最好的模型是()A.模型1的相关指数人2为0. 98B.模型2的相关指数R2为。
简单线性回归分析思考与练习参考答案

简单线性回归分析思考与练习参考答案第10章简单线性回归分析思考与练习参考答案⼀、最佳选择题1.如果两样本的相关系数21r r =,样本量21n n =,那么( D )。
A. 回归系数21b b = B .回归系数12b b < C. 回归系数21b b > D .t 统计量11r b t t = E. 以上均错2.如果相关系数r =1,则⼀定有( C )。
A .总SS =残差SSB .残差SS =回归SSC .总SS =回归SSD .总SS >回归SS E.回归MS =残差MS3.记ρ为总体相关系数,r 为样本相关系数,b 为样本回归系数,下列( D )正确。
A .ρ=0时,r =0B .|r |>0时,b >0C .r >0时,b <0D .r <0时,b <0 E. |r |=1时,b =14.如果相关系数r =0,则⼀定有( D )。
A .简单线性回归的截距等于0B .简单线性回归的截距等于Y 或XC .简单线性回归的残差SS 等于0D .简单线性回归的残差SS 等于SS 总E .简单线性回归的总SS 等于05.⽤最⼩⼆乘法确定直线回归⽅程的含义是( B )。
A .各观测点距直线的纵向距离相等B .各观测点距直线的纵向距离平⽅和最⼩C .各观测点距直线的垂直距离相等D .各观测点距直线的垂直距离平⽅和最⼩E .各观测点距直线的纵向距离等于零⼆、思考题1.简述简单线性回归分析的基本步骤。
答:①绘制散点图,考察是否有线性趋势及可疑的异常点;②估计回归系数;③对总体回归系数或回归⽅程进⾏假设检验;④列出回归⽅程,绘制回归直线;⑤统计应⽤。
2.简述线性回归分析与线性相关的区别与联系。
答:区别:(1)资料要求上,进⾏直线回归分析的两变量,若X 为可精确测量和严格控制的变量,则对应于每个X 的Y 值要求服从正态分布;若X 、Y 都是随机变量,则要求X 、Y 服从双变量正态分布。
直线相关分析只适⽤于双变量正态分布资料。
(完整版)第十二章相关和回归分析练习试题

第十二章相关与回归分析一、填空1. 如果两变量的相关系数为0,说明这两变量之间__ 。
2.相关关系按方向不同,可分为_____ 和________ 。
3. 相关关系按相关变量的多少,分为和复相关。
4.在数量上表现为现象依存关系的两个变量,通常称为自变量和因变量。
自变量是作为(变化根据)的变量,因变量是随(自变量)的变化而发生相应变化的变量。
5.对于表现为因果关系的相关关系来说,自变量一般都是确定性变量,因变量则一般是(随机性)变量。
6.变量间的相关程度,可以用不知Y与 X有关系时预测 Y的全部误差 E1,减去知道 Y与 X有关系时预测Y的联系误差E2,再将其化为比例来度量,这就是(削减误差比例)。
7.依据数理统计原理,在样本容量较大的情况下,可以作出以下两个1)实际观察值 Y 围绕每个估计值 Y c是服假定:从();(2)分布中围绕每个可能的 Y c 值的()是相同的。
7. 已知:工资(元)倚劳动生产率(千元)的回归方程为yc 10 80x,因此,当劳动生产率每增长 1 千元,工资就平均增加 80 元。
8.根据资料,分析现象之间是否存在相关关系,其表现形式或类型如何,并对具有相关关系的现象之间数量变化的议案关系进行测定,即建立一个相关的数学表达式,称为(回归方程),并据以进行估计和预测。
这种分析方法,通常又称为(回归分析)。
9.积差系数 r 是(协方差)与 X 和 Y 的标准差的乘积之比。
二、单项选择1.欲以图形显示两变量 X 和 Y 的关系,最好创建( D )。
A 直方图 B 圆形图 C 柱形图 D 散点图2.在相关分析中,对两个变量的要求是(A )。
A 都是随机变量B 都不是随机变量C 其中一个是随机变量,一个是常数D 都是常数3.相关关系的种类按其涉及变量多少可分为()。
A. 正相关和负相关B. 单相关和复相关C. 线性相关和非线性相关D. 不相关、不完全相关、完全相关4.关于相关系数,下面不正确的描述是(B )。
回归分析练习题

练习题:
1、将下表中关于某商场1989年至1998年商品流通费用与商品零售总额的资料输入到SPSS
假设1999年该商场的商品零售总额预计为36.33亿元,请预测1999年该商场的商品流通费用,将结果保存为“练习7-1.spv”文件。
2、将下表中20名糖尿病人的血糖、胰岛素、生长素的测量结果输入到SPSS中,保存为“练习7-2.sav”文件,完成下列操作:
试以血糖为因变量,胰岛素和生长素为自变量,建立多元线性回归方程,将结果保存为“练习7-2.spo”文件。
3、将下表中关于国民经济数据输入到SPSS中,保存为“练习7-3.sav”文件,完成下列操作:
判断人均GDP主要受哪些因素的影响,并建立以人均GDP为因变量的线性回归方程,将结果保存为“练习7-3.spo”文件。
整理回归分析练习题与参考答案

20 年 月 日
A4打印 / 可编辑
2019
年招收攻读硕士学位研究生入学
考试试题
2019年招收攻读硕士学位研究生入学考试试题
********************************************************************************************招生专业与代码:流行病与卫生统计学100401、劳动卫生与环境卫生学100402、营养与食品卫生学100403、儿少卫生与妇幼保健学100404、卫生毒理学100405、公共卫生(专业学位)105300考试科目名称及代码:卫生综合353
整理丨尼克
本文档信息来自于网络,如您发现内容不准确或不完善,欢迎您联系我修正;如您发现内容涉嫌侵权,请与我们联系,我们将按照相关法律规定及时处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 从20的样本中得到的有关回归结果是:SSR=60,SSE=40。
要检验x 与y 之间的线性关系是否显著,即检验假设:01:0H β=。
(1)线性关系检验的统计量F 值是多少? (2)给定显著性水平a =0.05,F a 是多少? (3)是拒绝原假设还是不拒绝原假设?
(4)假定x 与y 之间是负相关,计算相关系数r 。
(5)检验x 与y 之间的线性关系是否显著?
解:(1)SSR 的自由度为k=1;SSE 的自由度为n-k-1=18;
因此:F=
1
S S R
k
S S E n k --=60
14018
=27
(2)()1,18F α=()0.051,18F =4.41 (3)拒绝原假设,线性关系显著。
(4)
,由于是负相关,因此r=-0.7746
(5)从F 检验看线性关系显著。
2. 某汽车生产商欲了解广告费用(x)对销售量(y)的影响,收集了过去12年的有关数据。
通过计算得到下面的有关结果:
(1)完成上面的方差分析表。
(2)汽车销售量的变差中有多少是由于广告费用的变动引起的?
(3)销售量与广告费用之间的相关系数是多少?
(4)写出估计的回归方程并解释回归系数的实际意义。
(5)检验线性关系的显著性(a=0.05)。
(2)R2=0.9756,汽车销售量的变差中有97.56%是由于广告费用的变动引起的。
(3)r=0.9877。
(4)回归系数的意义:广告费用每增加一个单位,汽车销量就增加1.42个单位。
(5)回归系数的检验:p=2.17E—09<α,回归系数不等于0,显著。
回归直线的检验:p=2.17E—09<α,回归直线显著。
3. 根据两个自变量得到的多元回归方程为12
ˆ18.4 2.01 4.74y
x x =-++,
并且已知n =10,SST =6 724.125,SSR =6 216.375,1
ˆ0.0813s β=,
2
ˆ
s β=0.056 7。
要求:
(1)在a=0.05的显著性水平下,12,x x 与y 的线性关系是否显著? (2)在a =0.05的显著性水平下,1
β是否显著?
(3)在a =0.05的显著性水平下,2
β是否显著?
解(1)回归方程的显著性检验:
假设:H 0:1
β=2
β=0 H 1:1β,2
β不全等于0
SSE=SST-SSR=6 724.125-6 216.375=507.75 F=
1
S S R p S S E n p --=
6724.1252507.751021
--=42.85
()
2,7F α=4.74,F>()2,7F α,认为线性关系显著。
(2)回归系数的显著性检验: 假设:H 0:1
β=0 H 1:1
β≠0
t=
1
1S β
β=
2.010.0813
=24.72
()
2
1t n p α
--=2.36,t >()2
7t α,认为y 与x 1线性关系显著。
(3)回归系数的显著性检验: 假设:H 0:2
β=0 H 1:2
β≠0
t=
2
2S β
β=
4.740.0567
=83.6
()
2
1t n p α
--=2.36,t >()2
7t α,认为y 与x 2线性关系显著。
4. 根据下面Excel 输出的回归结果,说明模型中涉及多少个自变量、少个观察值?写出回归方程,并根据F ,s e ,R 2及调整的2a
R 的值对模型进行讨论。
df SS MS F Significance F
回归 3 321946.8018 107315.6006 8.961759 0.002724 残差 11 131723.1982 11974.84 总计 14 453670
Coefficients 标准误差 t Stat P-value Intercept X Variable 1 X Variable 2 X Variable 3
657.0534 5.710311 -0.416917 -3.471481
167.459539 1.791836 0.322193 1.442935
3.923655 3.186849 -1.293998 -2.405847
0.002378 0.008655 0.222174 0.034870
解:自变量3个,观察值15个。
回归方程:ˆy
=657.0534+5.710311X 1-0.416917X 2-3.471481X 3 拟合优度:判定系数R 2=0.70965,调整的2a R =0.630463,说明三个自变量对因变量的影响的比例占到63%。
回归方程的检验:F 检验的P=0.002724,在显著性为5%的情况下,整个回归方程线性关系显著。
回归系数的检验:1β的t 检验的P=0.008655,在显著性为5%的情况下,y 与X 1线性关系显著。
2β的t 检验的P=0.222174,在显著性为5%的情况下,y 与X 2线性关系不显著。
3β的t 检验的P=0.034870,在显著性为5%的情况下,y 与X 3线性关系显著。
因此,可以考虑采用逐步回归去除X 2,从新构建线性回归模型。