表面与胶体化学—胶体的基本性质(三)1

合集下载

表面化学和胶体化学

表面化学和胶体化学
表面化学和胶体化学
汇报人: 202X-01-02
contents
目录
• 表面化学基础 • 胶体化学基础 • 表面化学与胶体化学的应用 • 表面化学和胶体化学的未来发展
01
表面化学基础
表面化学的定义和重要性
定义
表面化学是研究物质表面现象的 科学,主要研究气体、液体和固 体表面上的分子或原子之间的相 互作用。
表面活性剂
01
02
03
定义
表面活性剂是一种能够显 著降低液体表面张力的物 质,通常由亲水基团和疏 水基团组成。
分类
表面活性剂可以分为离子 型和非离子型两类,离子 型又可以分为阳离子型和 阴离子型。
应用
表面活性剂在清洁、化妆 品、农药、纺织等领域都 有广泛应用。
02
胶体化学基础
胶体的定义和分类
胶体的定义
03
石油工业
表面活性剂在石油工业中用于提高采油效率和原油的流动性,同时还可
以用于油水分离和油品净化。
在环境保护中的应用
污水处理
表面活性剂和胶体物质可用于污 水处理,通过吸附、絮凝等方法 去除水中的污染物,提高水质。
空气净化
利用表面活性剂和胶体物质可以吸 附和去除空气中的颗粒物、有害气 体等污染物,起到空气净化的作用 。
新技术
随着科技的不断进步,表面化学和胶体化学将与新技术相结合,如纳米技术、 生物技术等,推动相关领域的技术创新和产业升级。
表面化学和胶体化学与其他学科的交叉研究
生物学
表面化学和胶体化学与生物学交叉研究,探讨生物膜、细 胞、蛋白质等生物分子间的相互作用机制,为生物医学领 域提供新的研究思路和方法。
环境科学
土壤修复
表面化学和胶体化学在土壤修复中 也有应用,如利用表面活性剂和胶 体物质去除土壤中的重金属和有机 污染物。

胶体

胶体
电动电势决定着胶 粒在电场中的运动 速度。
紧密层
0热力学电势差:
固体表面与溶液本体间的电势差
x
双 电 层 的 Stern 模 型
当溶胶相对静止时,整个溶胶体系是电中性的,但 当分散相粒子和液体介质相对运动时,就会产生电位差, 这种电位差叫电动电势。 胶粒是带电的,由于静电引力使反粒子在表面周围,
又由于分子热运动,使反粒子在表面附近呈扩散分布。
离表面近的一层——紧密层(内层),厚度(约几
1869年,发现了Tyndall效应,可区别溶胶及溶液;
1903年,德国科学家Zsigmondy发明了超显微镜, 肯定溶胶的一个根本问题—体系的多相性,从而明确了 胶体化学是界面化学。
1907年,德国化学家Ostwald创办《胶体化学和工
业杂志》—胶体化学正式成为一门独立的学科。 1941年,前苏联的德查金(Derjaguin B V)和朗道 (Landau L D)以及1948年荷兰的维韦(Werwey E J W)和 奥佛比克(Overbeek J T G)胶体稳定性的DLWO理论。从 70年代起,对高分子稳定胶体的研究逐渐成为热点,其中
φ0
+ + + + + + + + + + + +
δ
φ0

+ + + + + + + + + + + + +
-
A B x -
平板双电层模型
扩散双电层模型
质 点 表面+ + + + + + + + + +

胶体与表面化学-胶体的光学性质

胶体与表面化学-胶体的光学性质
胶体与表面化学
2.3 溶胶的光学性质
胶体系统的光学性质, 胶体系统的光学性质,是其高度的分散性和多相的不均匀性 特点的反映。 特点的反映。
2.3.1 光散射现象
光束通过粗分散系统,粒子直径 入射光波长 主要发生反射 入射光波长, 反射, 光束通过粗分散系统,粒子直径>入射光波长,主要发生反射,系统呈现 粗分散系统 混浊。 混浊。 光束通过胶体溶液,胶粒直径 可见光波长 主要发生散射 可见光波长, 散射, 光束通过胶体溶液,胶粒直径<可见光波长,主要发生散射,可以看见 胶体溶液 乳白色的光柱。 乳白色的光柱。 光束通过小分子溶液,溶液均匀,散射光相互干涉而完全抵消,看不见 光束通过小分子溶液,溶液均匀,散射光相互干涉而完全抵消, 小分子溶液 散射光。 散射光。
动态光散射仪
散射光强度的影响因素
散射光的强度 与入射光波长 的四次方成反 比。
不同波长光的散射强度
天空为什么是蓝色的? 天空为什么是蓝色的?
解释蓝天的色彩
自然界的瑞利散射
石头里的瑞利散射现象
作业:朝霞不出门,晚霞行千里。 作业 朝霞不出门,晚霞行千里。 朝霞不出门
丁达尔现象的自然之美
丁达尔现象的自然之美
汽车灯光的丁达尔现象
教堂里的丁达尔现象
交通指示灯颜色选择中的科学
Байду номын сангаас
2.3.3 瑞利公式
2.3.3 瑞利公式
• 1871年,Rayleigh研究了大量的光散射现象,对于粒子半 研究了大量的光散射现象, 年 研究了大量的光散射现象 的溶胶, 计算公式, 径<47nm的溶胶,导出了散射光的强度 I 计算公式,称为 的溶胶 Rayleigh公式 公式
2 24π cv n2 − n0 I= × 2 4 n + 2n2 × I0 λ 0 3 2 2

胶体的性质

胶体的性质
首先,用其它方法测出待研究物质未溶剂化时的分子量 M, 由此计算等效圆球的阻力系数 f0:
f0
?
6??
3
3MV
4? N A
式中,V ——粒子比体积,即粒子密度的倒数1/? 。
因为体系中含有大量的粒子,人们常以1mol 粒子为基准, 并求出粒子或大分子的摩尔质量。
一、胶体的运动性质
其二,按
ቤተ መጻሕፍቲ ባይዱ
D ? kT f
一、胶体的运动性质
(1)粒子速度很慢,保持层流状态;
沉降公式 适合条件
(2)粒子是刚性球,没有溶剂化作用; (3)粒子之间无相互作用;
(4)与粒子相比,液体看作是连续介质。
上述沉降公式只适用于不超过100 ? m的颗粒分散体系,接近0.1 ? m 的小颗粒,还必须考虑扩散的影响。
沉降速度与介质的粘度成反比,因此可以通过提高介质的粘度来提 高分散体系的稳定性。
目录
一、胶体的运动性质 二、胶体的光学性质 三、胶体的电学性质
三、胶体的电学性质
1. 电动现象
早在1809年,俄国科学家就发现水介质的粘土颗粒在 外电场的作用下会向正极移动; 1961年,科学家也发现若 用压力将液体挤过毛细管或粉末压成的多孔塞,则在毛细 管或多孔塞的两端产生电势差。这种在外电场作用下使固 液两相发生相对运动以及外力使固 -液两相发生相对运动时 产生电场的现象统称为电动现象。
(2)溶胶浓度很稀,即粒子间距离很大,无相互作用,单位体 积的散射光强度是各粒子的简单加和;
(3)粒子为各向同性,非导体,不吸收光。
二、胶体的光学性质
由此导出的 Rayleigh 散射定律为:
I?
?
9? 2cV2 2?4R2
?(nn2222??2nn1122 )2

表面与胶体化学—胶体的基本性质(三)

表面与胶体化学—胶体的基本性质(三)
电解质离子在固液界面的吸附 1.离子晶体的选择性吸附
离子晶体总是选择性地吸附与其晶格 相同或相似的离子,并形成难溶盐。
例如:当Na2SO4与过量的BaCl2在溶 液中形成BaSO4沉淀时,由于BaCl2过量, 生成的BaSO4沉淀物总是优先吸附溶液 中的Ba2+使表面带正电荷,Cl-以扩散状 分布于粒子附近。
实用文档
12
胶体粒子
可滑动面 扩散层
{ [AgI]m n I- . (n-x) K+ }x-
胶核
2.静电物理吸附
紧密层
x K+
带电固体表面对溶液中带 电符号相反离子有库仑引力 作用而使其浓集于表面周围 的扩散层中,并最终使表面 电荷中和。异电离子价数越 高,其吸附能力越强,这是 由静电引力决定的。
实用文档
9
不同电解质对溶胶的聚沉值/mmol·L-1
As2S3 (负溶胶)
LiCl
58
NaCl
51
KCl
49.5
ห้องสมุดไป่ตู้
KNO3 CaCl2
50 0.65
MgCl2 MgSO4
0.72 0.81
AgI (负溶胶)
LiNO3 NaNO3 KNO3 RbNO3 Ca(NO3)2
165 140 136 126 2.40
-
I
-
I
-
I
-
II
-
I
-
I
+
K
-
-
+
+ I
-
-I
-
I
I
K+
+
K
K+ K I- I - I -

胶体与表面化学第一讲

胶体与表面化学第一讲

{[AgI]m· nAg+ · (n-x) NO3-} x+ · x NO3胶核 胶粒 胶团 胶粒带电,但整个胶体分散系是呈电中性的。 胶粒带电,但整个胶体分散系是呈电中性的。在 进行电泳实验时,由于电场的作用, 进行电泳实验时,由于电场的作用,胶团在吸附 层和扩散层的界面之间发生分离, 层和扩散层的界面之间发生分离,带正电的胶粒 向阴极移动,带负电的离子向阳极移动。因此, 向阴极移动,带负电的离子向阳极移动。因此, 胶团在电场作用下的行为跟电解质相似。 胶团在电场作用下的行为跟电解质相似。 吸附层 扩散层
胶粒带同种电荷,相互间产生排斥作用, 胶粒带同种电荷,相互间产生排斥作用, 不易结合成更大的沉淀微粒, 不易结合成更大的沉淀微粒,这是胶体具有稳 定性的主要因素 主要因素。 定性的主要因素。
例 在陶瓷工业上常遇到因陶土里混有 Fe2O3而影响产品质量的问题。解决方法 而影响产品质量的问题。 之一是把这些陶土和水放在一起搅拌, 之一是把这些陶土和水放在一起搅拌,使 粒子大小在1nm~100nm之间,然后插入 之间, 粒子大小在 之间 两根电极,接通直流电源, 两根电极,接通直流电源,这时阳极聚 带负电荷的胶粒(粒子陶土) 积 带负电荷的胶粒(粒子陶土), 带正电荷的胶粒( 阴极聚积 带正电荷的胶粒(Fe2O3) ,理由 是
3、 电泳现象 电学性质 、 电泳现象(电学性质 电学性质) 在外加电场作用下, 在外加电场作用下 胶体粒子在分散剂里 阴极或阳极) 的现象, 向电极 (阴极或阳极 作定向移动的现象 阴极或阳极 作定向移动的现象 叫做电泳
Fe(OH)3胶体向阴极 移动——带正电荷 带正电荷 移动 阴极
阳极
+
原因:粒子胶体微粒带同种电荷,当胶粒带正 原因:粒子胶体微粒带同种电荷, 电荷时向阴极运动, 电荷时向阴极运动,当胶粒带负电荷时 向阳极运动。 向阳极运动。 胶体的胶粒有的带电, 电泳现象 现象; 胶体的胶粒有的带电,有电泳现象;有的不带 没有电泳现象。 电,没有电泳现象。

1胶体与表面化学知识点整理-推荐下载

1胶体与表面化学知识点整理-推荐下载

(2)Rayleigh 散射定律
I

I0
24 3cV 2 4
(Leabharlann n22 n12 n12 2n22
)2
c 为单位体积中质点数,v 为单个粒子的体积(其线
性大小应远小于入射光波长), 为入射光波长,
n1、n2 分别为分散介质和分散相的折射率
①散射光强度与入射光波长的四次方成反比。入射光波长愈短,散射愈显著。 所以可见光中,蓝、紫色光散射作用强。②分散相与分散介质的折射率相差愈 显著,则散射作用亦愈显著。若 n1=n2 则无散射现象③散射光强度与单位体积 中的粒子数成正比。④散射光强度与粒子体积的平方成正比。在低分子溶液中, 散射光极弱,因此利用丁道尔现象可以鉴别溶胶和真溶液。
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线0产中不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资22负料,荷试而下卷且高总可中体保资配障料置23试时23卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看2度并55工且22作尽2下可护1都能关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编5试技写、卷术重电保交要气护底设设装。备备4置管高调、动线中试电作敷资高气,设料中课并3技试资件且、术卷料拒管中试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

表面及胶体化学知识点归纳

表面及胶体化学知识点归纳

胶体: 指具有高度分散的分散体系(亦是研究对象),分散相可以是一相和多相,粒子大小通常为10-7~10-9m之间.胶体的研究内容:表面现象、分散体系、高分子溶液。

表面能δ:恒温恒压下,可逆地增加单位表面积,环境对体系所做的功,单位J·m-2。

表面张力δ:单位长度液体表面的收缩力,单位N·m-1(或mN·m-1)l aplace方程:球面,则R1=R2=R,ΔP=2σR 柱面,则R1=R,R2=∞,ΔP=σ/R 球形气泡,且R1=R2=RΔP=4σ/R表面过剩:界面相与体相的浓度差。

接触角:固液气三相交点处作气液界面的切线,此切线与固液交界线之间的夹角θ。

Gibbs吸附公式:(双组分体系)固体表面张力:新产生的两个固体表面的表面应力之和的一半。

固体表面能:指产生一平方厘米新表面所消耗的等温可逆功。

Laugmuir理论:假设被吸附分子间无作用力,因而分子脱附不受周围分子的影响。

只有碰撞在空间表面的分子才有可能被吸附(单分子层吸附)。

固体表面是均匀的,各处吸附能相同。

BET理论的基本假设:①固体表面是均匀的,同层分子(横向)间没有相互作用,分子在吸附和脱附时不受周围同层分子的影响。

②物理吸附中,固体表面与吸附质之间有范德华力,被吸附分子间也有范德华力,即吸附是多分子层的。

影响溶液中吸附的因素:吸附剂:溶质、溶剂三者极性的影响;温度:溶液吸附也是放热过程,一般T上升,吸附下降;溶解度:吸附与溶解相反,溶解度越小,越易被吸附;同系物的吸附规律一般随C-H链的增长吸附有规律的增加和减少。

Trube规则;吸附剂的孔隙大小;吸附剂的表面化学性质,同一类吸附剂由于制备条件不同,表面活性相差很大,吸附性能也会有很大差异;混合溶剂的影响,色谱法中使用混合溶剂,洗提效果比单纯溶剂好,若自极性相同的混合溶剂中吸附第三组份,等温线界于两单等温线之间;若自极性不相同的混合溶剂中吸附第三组份,吸附量比任何单一溶剂中少,混合溶剂极性一致或不一致情况不同;多种溶质的混合溶液;9、盐的影响,盐的存在通过影响溶质的活度系数、溶解度、溶质的电离平衡而影响吸附。

表面与胶体化学—胶体的基本性质(三)

表面与胶体化学—胶体的基本性质(三)
2kT
由于扩散层厚度的减小, ζ电位相应降低,胶粒间的 相互排斥力也减少。
由于扩散层减薄,颗粒相 撞时的距离减少,相互间的 吸引力变大。
颗粒间排斥力与吸引力的 合力由斥力为主变为以引力 为主,颗粒就能相互凝聚。
两个胶粒能否相互凝聚, 取决于二者的总势能。
.
四.聚合物对疏液胶体的 稳定与絮凝作用 1.空间稳定作用
有人将因加入无机电解质引起的聚集 称为聚沉,将加入大分子引起的聚集称为 絮凝。
.
二.临界聚沉浓度与Schulze-Handy规则 1.临界聚沉浓度
在一定时间内引起疏液胶体有明显变 化(如变浑浊, 颜色改变, 生成沉淀物等)所 需加入的惰性电解质的最小浓度称为该胶 体的临界聚沉浓度或聚沉值。
单位常用mmol·L-1。
.
有些无机絮凝剂在水中发生电离和水 解,既能生成带电粒子的反离子,又可能 形成新的胶体粒子,这些新粒子的带电符 号可能与絮凝胶体粒子带电符号相反,也 可发生电性中和,从而使体系失稳。
铝盐水解生成的粒子常带正电荷,可 以使负电粒子絮凝。
.
(2)桥连絮凝作用 高分子絮凝剂的长链一不同链节吸附
多个粒子,像架桥一样将这些本因电性排 斥不易聚集的粒子结合起来,这种作用称 为桥连絮凝作用。高分子絮凝剂分子量越 大对发生桥连絮凝作用越有利。
临界聚沉浓度在一定时间内引起疏液胶体有明显变化如变浑浊颜色改变生成沉淀物等所需加入的惰性电解质的最小浓度称为该胶体的临界聚沉浓度或聚沉值
胶体的基本性质
(三)胶体的稳定性和流变性
.
第五节 胶体稳定性
一.疏液胶体的稳定性 胶体体系一般分为亲液胶体与疏液胶体。 亲液胶体为热力学稳定体系,即在常规
条件下,即使加入少量其他物质,体系的稳 定性也不会破坏。

第05章胶体

第05章胶体
散射现象的强弱:
颗粒越大、越多;折光率相差越大散射越强。
(二)动力学性质——Brownian movement
1 Brownian movement:显微镜下可见胶体粒 子作不断改变速度和方向的无规则运动
颗粒越小, 温度越高, 布朗运动 越剧烈。
布朗运动 并不是胶 体特有的 性质。
2 扩散与沉降平衡 当溶胶中的胶粒存在浓度差时,胶粒从浓度 大的区域向浓度小的区域迁移,这种现象叫 扩散。
(一)溶胶的光学性质
当一束强光透过胶体时,可以看到一条光亮的 通路,这种现象叫做丁达尔现象。
用这种方法可以区别溶液和胶体。
产生原因:当颗粒大小d小于入射光波长入时 ,光环绕颗粒除入射光方向外,还向各方向散 射,即每个颗粒又作为一个光源,向各方向发 射光,散射出来的光称乳光。
产生条件: ①颗粒大小合适,d<λ(1-100nm之间) ②分散相折光率(n1)与分散介质折光率(n2)不 同。
氨基酸的 带电状态和在电场中的状况: 等电点
pH = pI pH < pI pH > pI
净电荷为零 带正电荷 带负电荷
在电场中不移动
在电场中移向负极
在电场中移向正 极
4 蛋白质在等电点时的性质
5 溶解度、黏度、渗透压、膨胀性最小 三 高分子溶液稳定性的破坏
加入高浓度无机盐,使蛋白质沉淀析出叫盐析。 实质是使蛋白质脱水,破坏水化膜,而析出。 盐析与溶胶聚沉不同: ①盐析用量大,聚沉用量少 ②盐析时正、负离子均起作用,聚沉时只与胶 粒电性相反的离子起作用。 ③除去电介质,蛋白质可以重新溶解即具可逆 性,而溶胶聚沉是不可逆的。
在胶体溶液中加入电解质,迫使一部分反离子 进入吸附层,使扩散层变薄,当电解质浓度加 大时,扩散层厚度可趋于零,在电场中不泳动

胶体与界面化学的基本原理

胶体与界面化学的基本原理

胶体与界面化学的基本原理胶体与界面化学是研究物质界面的重要学科,其中胶体学研究的是微米级别上液体分散系统的稳定性、形态、动力学,界面化学研究的是物质界面上的化学过程。

本文将探讨胶体的定义、性质、分类以及界面化学原理等方面。

一、胶体的定义与性质胶体是指两相(即固体、液体或气体)间的一种形态,其中一种相通过分散成微小粒子的形式均匀分散在另一种相中。

胶体的一般特性如下:1、粒子尺寸:胶体的尺寸范围一般为1-1000纳米。

2、稳定性:胶体的物理性质(如电荷、表面性质等)使其形成稳定的系统,避免粒子凝聚沉降。

3、光学性质:胶体可以表现出折射、透明度等光学性质,如煤油是胶体,因为它可以产生烟雾。

4、电性质:胶体中的粒子带有电荷,可以表现出与电场相关的性质。

5、化学性质:由于其表面性质的存在,胶体可以表现出与环境中其他分子的化学反应,如催化反应等。

二、胶体的分类根据胶体中分散相的物质性质和分散介质的性质,胶体可以分为以下几类:1、溶胶:溶胶是指分散相为分子(亦称为分子溶液),分散介质为液体,如酒精和水的混合物。

2、胶体溶液:胶体溶液是指分散相为聚合物,分散介质为液体,如天然胶或橡胶溶液。

3、乳液:乳液是指分散相为液体,分散介质为液体,如牛奶、酸奶等。

4、凝胶:凝胶是指不易流动的胶体,其中分散相一般是聚合物,分散介质为液体,如煤油。

5、气溶胶:气溶胶是指分散相为固体或液体,分散介质为气体,如雾、烟雾、霉菌等。

三、界面化学的基本原理界面化学是研究物质界面的化学过程,主要是两相(如油水分界面)之间物理和化学反应的研究。

界面活性剂是使界面分子在界面上形成一层膜较集的化合物,使界面能量降低而使得体系稳定的物质。

界面化学的原理主要有以下几点:1、界面能:界面能是指分界面两侧之间的能量差,即表面张力。

界面分子本身存在形成一层膜的趋势,因此其能量会比波动的分子间间隔大。

这一差异形成了表面张力,是使体系向能量最小化方向发展的主要因素。

胶体化学第3章-胶体的基本性质

胶体化学第3章-胶体的基本性质

1)当光束通过粗分散体系,由于粒子大于入射光的波 长,主要发生反射,使体系呈现混浊。 2)当光束通过胶体溶液,由于胶粒直径小于可见光波 长,主要发生散射,可以看见乳白色的光柱。 3)当光束通过分子溶液,由于溶液十分均匀,散射光 因相互干涉而完全抵消,看不见散射光。
区别溶胶、真溶液 和悬浮体最简单而 灵敏的方法。
Brown运动产生的本质
分散介质分子以大小不同和方向不同的力对胶体粒 子不断撞击而产生的。由于受到的力不平衡,连续地以 不同方向、不同速度作不规则运动。随着粒子增大,撞 击的次数增多,而作用力抵消的可能性也变大。
Brown运动的特点
★粒子越小,布朗运动越激烈。 ★运动激烈的程度不随时间而改变,但随温度 的升高而增加。 ★粒子半径大于5μm后,Brown运动就会消失。
物理吸附 如吸附表面活性剂,极性基团吸附到极性( 亲水)表面,非极性基团吸附到非极性(疏水)表面 。当非极性基团吸附到疏水表面时,疏水表面变为 亲水,而且带电。
(2)电离 对于可能发生电离的大分子的 溶胶而言,则胶粒带电主要是其本身发生电离 引起的。
例如蛋白质分子,当它的羧基或胺基在水中解离时, 整个大分子就带负电或正电荷。当介质的pH较低时, 蛋白质分子带正电,pH较高时,则带负电荷。
当蛋白质分子所带的净电荷为零时,这时介 质的pH称为蛋白质的等电点。在等电点时蛋 白质分子的移动已不受电场影响,它不稳定且 易发生凝聚。
(3)离子的不等量溶解
对离子型的固体物质有两种电荷相反的离子,可获得 离子。对于金属氧化物和氢氧化物的溶胶,决定胶粒电 性的主要离子是H+和OH-的浓度。
4)晶格取代
R-观测距离
θ-观测角度
I 1
4
I
大气密度的涨落引起太阳光的散射, 散射光呈淡蓝色

胶体与固体表面化学

胶体与固体表面化学
1961年,Quincke发现:在一定压力下将液体 挤过毛细管时,则在毛细管两端产生电势差
电动现象:在外电场作用下使分散相-分散介质固 液两相发生相对运动或在外力作用下使固-液两相 发生相对运动而产生电场的现象。
外力包括水力发电、风力发电、磁力发电、核力 发电等等
1 电泳( 分散相)
Fick第一、二定律对平动扩散进行了描述
Fick第一定律: 在时dt间内,沿x方向通过界面积A而扩散的
物质量dm与界面积A处的浓度梯度dc/dx关系如下: (1.9)
dm DA dc dt dx
D—扩散系数,近似常数,与浓度c有一点关系 dm与 dc/dt方向相反---表示从高浓度区向低浓度 区扩散
(b)颗粒不能太小,>100nm,否则考虑扩散。 在实际体系中,等效半径可代替r,则式(1.5),(1.7)
可进行粒度分析。 因为粒度与沉降、上浮有关,即与稳定性有关,由
此可以得出体系的稳定性信息。
1.1.2分散相的扩散
如果从分子水平上观察,分散相颗粒 的主要运动方式是布朗运动。布朗运动会 使细小的颗粒从高浓度区向低浓度区运动, 从而形成扩散。
大粒子的光散射大粒子的光散射??粒子的大小超过粒子的大小超过20??miemie对球形粒子系统进行了处理对球形粒子系统进行了处理mie123123高分子溶液的光散射高分子溶液的光散射??11涨落理论与光散射公式涨落理论与光散射公式??纯溶剂和真容液也能产生光散射纯溶剂和真容液也能产生光散射??涨落理论
(1.40) (1.41)
h2 是线团的均方末端距
据式(1.38),采用双外推法可测定M 、A2和,M 重均分子量,双外推法:θ→∞,截距为1/M,斜率 为2A2
§1.3 胶体的电学性质

物理化学 第七章胶体

物理化学 第七章胶体

使一定量溶胶在一定时间内明显聚沉所需的外加电解质的最小浓度 称为此电解质的聚沉值或凝结值。常用的单位是: mol•m-3或 mmol•d
m-3
电解质的聚沉值越小,其聚沉能力越大。故定义聚沉值的倒数为电 解质的聚沉能力。电解质对溶胶聚沉的影响有如下经验规律: 1. 电解质中主要起聚沉作用的是与胶粒所带电荷电性相反的离子 (即反离子),且反离子的价数越高,聚沉能力越大。一、二、三 价离子的聚沉能力之比为: 1 : 26 : 36 。此规律称叔采-哈迪价数 规则。 2. 价数相同的离子其聚沉能力相近但有差别,部分一价离子的聚沉 能力大小顺序为:H+ >Cs+ >Rb+ >NH4+ >K+ >Na+ >Li+ F- >IO3- >H2PO4- >BrO3 ->Cl- >ClO3- > Br->I->CNS 3.有机离子的聚沉能力很强,如高分子凝结剂。
(2) 若液-固界面张力小于气-固表面张力, cosθ >
0, θ< 90°, 此种情况称为润湿。当θ=0°时,则为
完全润湿,即发生铺展。
3.毛细现象 毛细现象是指具有细微缝隙的固体与液体接触时,液体 沿缝隙上升或下降的现象。例如:将一玻璃毛细管插入水 中,管内液面升得比管外液面高,如下图7.5 (a)所示; 而将一玻璃毛细管插入汞中,管内液面降得比管外液面 低,如下图7.5 (b)所示.
若AB为凸液面,则周围液体的表面张力方向与AB 面相切,合力向下,表现为指向液体内部的附加压力。
若AB为凹液面,那么周围液体的表面张力方向仍 与AB面相切,表现为指向液体外部的附加压力。
二.液体对固体的润湿作用

《胶体化学》课件

《胶体化学》课件
胶体的稳定性
胶体粒子由于其巨大的表面积和表面能而倾向于相互聚集,形成沉淀或絮凝体。 为了维持胶体的稳定性,需要采取措施来降低胶体粒子的相互作用,如加入电 解质或高分子物质。
聚沉
当胶体粒子聚集形成更大的粒子或沉淀时,称为聚沉。聚沉可以通过加入电解 质、加热、搅拌等方法实现。
胶体的电学性质
电泳
在电场作用下,胶体粒子会向电极移动,这一现象称为电泳。电泳是研究胶体电 学性质的重要手段之一。
胶体在交叉学科领域的应用前景
总结词
胶体化学与其它学科的交叉融合将为胶体化 学的发展开辟新的领域。
详细描述
胶体化学与生物学、医学、物理学等学科有 着密切的联系。例如,在生物学中,胶体可 以模拟细胞膜的结构和功能;在医学中,胶 体可以作为药物载体和诊断试剂;在物理学 中,胶体可以用于制备新型的光学、电学和 磁学材料。随着各学科之间的交叉融合,胶
油田污水处理
利用胶体吸附原理,去除 污水中的油、悬浮物等杂 质,实现废水的达标排放。
石油运输与储存
通过控制油品的胶体稳定 性,防止油品在运输和储 存过程中的变质和沉淀。
胶体在食品工业中的应用
食品加工
利用胶体作为增稠剂、稳定剂等,改善食品的口感和质地,提高 食品品质。
食品保鲜
通过控制食品胶体的稳定性,延缓食品变质,延长食品的保质期。
光学显微镜观察
总结词
通过光学显微镜可以观察胶体的形态、粒径大小和分布情况。
详细描述
光学显微镜利用可见光透射或反射胶体粒子,通过观察胶体粒子的形状、大小和分布,可以初步判断胶体的性质。
电学性质的测量
总结词
电学性质的测量是表征胶体的重要手段,可以了解胶体的电导率、电泳行为等。
详细描述

表面化学和胶体化学

表面化学和胶体化学

注意:表面自由能与表面张力的代表符相同,均 为σ,量纲相通,但两者的概念不同!! 表面自由能是单位表面积的能量,标量;
表面张力是单位长度上的力,矢量。 讨论:dU =TdS – pdV +σdAs+Σidni dH =TdS + Vdp +σdAs+Σidni
dA =-SdT –pdV +σdAs+Σidni
s
σ= 58.85×10-3N.m-1, ps= 2 /r =11.77×103kPa
h = 0.02m,ρ=958.1kg· m-3
p静=gh = 958.1×9.8×0.02=0.1878kPa p大气=100kPa
p =100 + 0.1878 + 11.77×103 = 11.87×103kPa pr 2M 1 007127 根据开尔文公式 ln 得: p0 RT r
◆ 过饱和蒸气
降温过程:
p
微小
pB
A:不能凝出微小液滴 pA B:凝出微小液滴 AB:过饱和蒸气 pB> pA
l
B 大块
A
g TA T
消除:如人工降雨,加AgI颗粒
◆ 过冷液体
原因:凝固点下降。如纯净水可到-40℃不结冰。
◆过热液体 液体在正常沸腾温度不沸腾,要温度超过正 常沸腾温度才沸腾。 原因:液体表面气化,液体内部的极微小气泡 (新相)不能长大逸出(气泡内为凹液面)。 小气泡受到的压力为: p大气 p = p大气+ ps+ p静 p静=ρgh ps = 2σ/r h 如 r =-10-8m,T = 373.15K时, p
dG =-SdT +Vdp +σdAs+Σidni

天津大学胶体与表面化学课件第三章

天津大学胶体与表面化学课件第三章
2020/5/3
1
第一节 概述
一 、凝胶的特征 (Gel) 1、有一定的几何形状和固体的力学性质。 2、由固--液(或气)两相组成,属胶体的分
散体系。 3、在新形成的水凝胶中,不仅分散相(搭成
网结)是连续相,分散介质(水)也是连续相。
2020/5/3
2
二、凝胶的分类
1 、弹性凝胶 (Elastic gel) 柔性的大分子(如明胶,琼脂等)形成的
33
四、吸附等温线(Adsorption )
1、非弹性凝胶的吸附(Non-elastic gel)
2020/5/3
34
2、弹性凝胶的吸附(Elastic gel)
2020/5/3
35
第六节 凝胶中的扩散和化学反应
1、扩散作用(Diffusion) 扩散与凝胶浓度,结构以及扩散物质的本性有关。 (1)低浓度gel中,扩散速度与纯液体没有变化。 (2)浓度升高,扩散速度下降。
2020/5/3
22
积分:
s ds
0(SMax
S)
s 0
(d(SSMaMxax S)S)
K
t
dt
0
所以:
ln(S
S M ax Max
S)
Kt
整理:lg(SMax
S)(Βιβλιοθήκη K膨 )t 2.303lg
S Max
2020/5/3
23
3 、膨胀机理--两个阶段
第一阶段——形成溶剂化层(时间很短,速度快)。 其特征(1)液体蒸气压很低; (2)体积收缩; (3)放出膨胀热; (4)溶剂熵值降低。
4 、流动性质 失去流动性,获的弹性。
5 、电导(Electrical conductivity) 溶胶胶凝后,体系电导无明显变化。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不同电解质对溶胶的聚沉值 不同电解质对溶胶的聚沉值/mmol·L-1 聚沉值
As2S3 (负溶胶 负溶胶) 负溶胶 58 LiCl 51 NaCl KCl 49.5 50 KNO3 CaCl2 0.65 MgCl2 0.72 0.81 MgSO4 AlCl3 0.093 1/2Al2(SO4)3 0.096 0.009 Th(NO3)4 AgI (负溶胶 负溶胶) 负溶胶 165 LiNO3 NaNO3 140 KNO3 136 RbNO3 126 Ca(NO3)2 2.40 Mg(NO3)2 2.60 Pb(NO3)2 2.43 Al(NO3)3 0.067 La(NO3)3 0.069 Ce(NO3)3 0.069 Fe(OH)3 (正溶胶 正溶胶) Al2O3 (正溶胶 正溶胶) 正溶胶 正溶胶 NaCl 9.25 NaCl 43.5 KCl 9.0 KCl 46 KBr 12.5 KNO3 60 KI 16 KCNS 67 K2SO4 0.205 K2SO4 0.30 K2Cr2O7 0.159 K2Cr2O7 0.63 MgSO4 0.22 K2C2O4 0.69 K3[Fe(CN)6] 0.08 K4[Fe(CN)6] 0.05
粒子间的静电排斥作用
排斥能可由下式计算: 排斥能可由下式计算:
H h
Ze ϕ δ exp( 2 kT ) − 1 64 π an 0 kT Ui = exp( − κ h ) 2 κ exp( Ze ϕ δ ) 数 κ: 扩散双电层厚度的倒数 a : 粒子半径 h : 粒子之间的距离
三.DLVO理论 理论 DLVO理论认为:疏液胶体粒子间既有因粒 理论认为: 理论认为 子带电形成的扩散双电层交联时产生的静电排 斥作用,又有粒子间van der Waals力相互吸引 斥作用,又有粒子间 力相互吸引 作用,此两作用均与粒子间距离有关。 作用,此两作用均与粒子间距离有关。当粒子 间排斥能大于吸引能时,胶体体系稳定; 间排斥能大于吸引能时,胶体体系稳定;当吸 引能大于排斥能时,粒子发生聚集, 引能大于排斥能时,粒子发生聚集,体系稳定 性破坏。 性破坏。粒子表面溶剂化层的形成有利于提高 稳定性。加入反离子, 稳定性。加入反离子,压缩双电层利于粒子聚 粒子间总作用能U( )为排斥能U 集。粒子间总作用能 ( h)为排斥能 i(h) ) 与吸引能U 与吸引能 m(h)之和。 )之和。
Zeϕδ exp( ) − 1 64πan0 kT Aa 2kT U = Ui + Um = exp(−κh) − Zeϕδ 12h κ2 exp( ) + 1 2kT
2
由于扩散层厚度的减小, 由于扩散层厚度的减小, 电位相应降低, ζ电位相应降低,胶粒间的 相互排斥力也减少。 相互排斥力也减少。 由于扩散层减薄, 由于扩散层减薄,颗粒 相撞时的距离减少, 相撞时的距离减少,相互间 的吸引力变大。 的吸引力变大。 颗粒间排斥力与吸引力 的合力由斥力为主变为以引 力为主,颗粒就能相互凝聚。 力为主,颗粒就能相互凝聚。 两个胶粒能否相互凝聚, 两个胶粒能否相互凝聚, 取决于二者的总势能。 取决于二者的总势能。
2
粒子间的van der Waals吸引作用
对于半径为a,相距 的球形粒子相互吸引能 的球形粒子相互吸引能U 对于半径为 ,相距h的球形粒子相互吸引能 m 为:
Um
Aa =− 12 h
A为Hamaker常数。
球形粒子间总的作用应为U 球形粒子间总的作用应为 i和Um之和
Ze ϕδ exp( ) − 1 64πan0 kT Aa 2 kT U = Ui +Um = exp( −κh ) − 2 Ze ϕ δ 12 h κ exp( ) + 1 2 kT
2.Schulze-Handy规则 规则 临界聚沉浓度CCC除与体系中胶体粒子浓 临界聚沉浓度 除与体系中胶体粒子浓 度,反离子大小,电解质加入方式和加入时间 反离子大小, 等因素有关外,主要由反离子的价数决定。 等因素有关外,主要由反离子的价数决定。 反离子价数越高, 越小, 反离子价数越高,CCC越小,CCC与反离 越小 与反离 子价数6次方成反比 此即Schulze-Hardy规则。 次方成反比, 规则。 子价数 次方成反比,此即 规则 对于带负电胶体粒子, 关系: 对于带负电胶体粒子,CCC关系: 关系
电解质离子在固液界面的吸附 1.离子晶体的选择性吸附 离子晶体总是选择性地吸附与其晶格 相同或相似的离子,并形成难溶盐。 例如:当Na2SO4与过量的BaCl2在溶 液中形成BaSO4沉淀时,由于BaCl2过量, 生成的BaSO4沉淀物总是优先吸附溶液 中的Ba2+使表面带正电荷,Cl-以扩散状 分布于粒子附近。
Zeϕδ exp( ) − 1 64πan0 kT Aa 2kT U = Ui + Um = exp(−κh) − Zeϕδ 12h κ2 exp( ) + 1 2kT
2
外加电解质能极大地 影响总作用能曲线, 影响总作用能曲线,降 低势垒,甚至在CCC使 低势垒,甚至在 使 势垒消失。 势垒消失。因此可根据 特定的总作用曲线确定 临界聚沉浓度。 临界聚沉浓度。 C=CCC时,U=0, 时 , dU/dh=0, 应用上式求 解得 3 5 ε (kT ) CCC = K 2 6 6 为常数。 ,K为常数。 为常数 Ae z
胶体粒子
可滑动面
K+
+
{ [AgI]m n I- . (n-x) K+ }x胶核
+
x K+
K+
K K K - - I-I - - II II I
K+
K+ K + K -- I I- II I
+
K
K
+
K
+
K
- - - - IIII - II I II
+
+
胶团
胶核
+
(AgI)m
K+ K + K
K+
胶粒
滑动面以内的部分称为胶粒, 滑动面以内的部分称为胶粒,胶粒与扩散层之间有一个 胶粒 电位差,称为胶体的电动电位 电动电位( 电位) 电位差,称为胶体的电动电位(ζ电位)。而胶核表面的 电位离子与溶液之间的电位差称为总电位(φ0电位)。 电位离子与溶液之间的电位差称为总电位( 电位) 总电位
双电层压缩
憎水性胶体
当两个胶粒相互接近以至 双电层发生重叠时, 双电层发生重叠时,就产生静 电斥力。 电斥力。 向溶液中投加电解质,溶 向溶液中投加电解质, 液中离子浓度增加, 液中离子浓度增加,扩散层的 厚度将减小。 厚度将减小。 加入的反离子与扩散层原有 反离子之间的静电斥力将部分 反离子挤压到吸附层(紧密层) 反离子挤压到吸附层(紧密层) 从而使扩散层厚度减小。 中,从而使扩散层厚度减小。
若在稀的KI溶液中,滴加少量的 稀溶液, 过量 过量。 若在稀的 溶液中,滴加少量的AgNO3稀溶液,KI过量。 溶液中 AgI微粒表面将吸附 -离子,胶粒表面则带负电荷,K+为反 微粒表面将吸附I 微粒表面将吸附 离子,胶粒表面则带负电荷, 离子,这时胶团结构则应表示为: 离子,这时胶团结构则应表示为:
带正电Al 胶体对反离子的吸附量及相应CCC大小 带正电 2O3胶体对反离子的吸附量及相应 大小
反离子 (NO3)3C6H2OC2O42[Fe(CN)6]3[Fe(CN)6]4离子价数 1 2 3 4 CCC/(mmol·L-1) ( 8.7 0.69 0.08 0.05 吸附量 /mmol·(gAl2O3)-1 0.28 2.26 5.04 7.00
临界聚沉浓度与Schulze-Handy规则 二.临界聚沉浓度与 临界聚沉浓度与 规则 1.临界聚沉浓度 临界聚沉浓度 在一定时间内引起疏液胶体有明显变 如变浑浊, 化(如变浑浊 颜色改变 生成沉淀物等 所 如变浑浊 颜色改变, 生成沉淀物等)所 需加入的惰性电解质的最小浓度称为该胶 体的临界聚沉浓度或聚沉值。 体的临界聚沉浓度或聚沉值。 单位常用mmol·L-1。 单位常用
胶体粒子
可滑动面
扩散层
{ [AgI]m n I- . (n-x) K+ }x胶核
x K+
2.静电物理吸附 静电物理吸附 紧密层 带电固体表面对溶液中带 电符号相反离子有库仑引力 作用而使其浓集于表面周围 的扩散层中,并最终使表面 电荷中和。异电离子价数越 高,其吸附能力越强,这是 由静电引力决定的。 静电作用引起的吸附重要 实例是使胶体体系的聚沉作 用。加入电解质迫使反离子 更多 进入吸附(紧密)层,扩散层变薄,稳定性下降。
如As2S3胶体制备:
As 2 O3 + 3H 2 O 饱和溶液→ 2H 3AsO3
2H 3 AsO3 通入 → As 2S3 + 6H 2 O H 2S
因HS-为稳定剂(H2S过量)因此胶粒带负电。
胶体粒子
{[As2S3]m·nHS-·(n-x)H+}x-·xH+
胶核 胶团 紧密层 扩散层
+ K K K +K I
K
+
- - I-I - I I
K
K+
滑动面
+
+
+
K
+
胶体体系加入某些电解质,改变温度, 胶体体系加入某些电解质,改变温度, 加入一定浓度的大分子化合物等可使分散 相粒子聚集成可分离的沉淀物。 相粒子聚集成可分离的沉淀物。这一过程 称为聚沉或絮凝, 称为聚沉或絮凝,形成沉淀物称为聚沉物 或絮凝物。 或絮凝物。 有人将因加入无机电解质引起的聚集 称为聚沉, 称为聚沉,将加入大分子引起的聚集称为 絮凝。 絮凝。
憎液溶胶的胶团结构
FeCl3 + 3H 2 O 沸水,搅拌 → Fe(OH) 3 + 3HCl
相关文档
最新文档