胶体与表面化学知识点整理1
表面化学和胶体化学汇总
§3 弯曲表面的特性 一、弯曲液面下的附加压强 1.液面的曲率 2.弯曲液面的附加压强
p0 p0 A B
p0 ps
A
B A B p = p0 - ps
dG =-SdT +Vdp +σdAs+Σidni
G A s U A T , p ,ni s H A S ,V ,ni s A A S , p ,ni s T ,V ,ni
2. 界面现象和表面现象: 在相的界面上发生的行为 。 如: 露珠为球形 微小液滴易蒸发 水在毛细管中会自动上升 3. 比表面A0
A 或 Ao 单位(量纲):面积· 质量-1 m 6l2 6 例如:有边长为 l 的立方体, A0 3 l l 60 l 分割成边长为 的小立方体,A0 ' 10 A0 l 10
平衡 自动
表面积不能改变时, dGs = Asdσ ≤0 , 平衡
σ减小为自动过程,吸附,润湿等表面过程。
自动
比表面Gibbs自由能和表面张力的比较 比表面Gibbs自由能 符号 数值 表面张力
σ
相等
σ
量纲
单位 J.m-2
相通
N.m-1
标量
强度性质
矢量
要点: 1) 表面分子所受到不对称力场 ——表面张力 2) 一切减小 σ,As 的过程为自动过程
积分:
GT ,P ,ni
0
dGT , P,ni dAs Wr '
物理化学各章概念总结、公式总结电子版1 表面化学与胶体
第8章 表面化学与胶体8.1 重要概念和规律1.比表面能与表面张力物质的表面是指约几个分子厚度的一层。
由于表面两侧分子作用力不同,所以在表面上存在一个不对称力场,即处在表面上的分子都受到一个指向体相内部的合力,从而使表面分子具有比内部分子更多的能量。
单位表面上的分子比同样数量的内部分子多出的能量称为比表面能(也称比表面Gibbs函数)。
表面张力是在表面上的相邻两部分之间单位长度上的相互牵引力,它总是作用在表面上,并且促使表面积缩小。
表面张力与比表面能都是表面上不对称力场的宏观表现,即二者是相通的,它们都是表面不对称力场的度量。
它们是两个物理意义不同,单位不同,但数值相同,量纲相同的物理量。
2.具有巨大界面积的系统是热力学不稳定系统物质表面所多余出的能量γA称表面能(亦叫表面Gibbs函数),它是系统Gibbs函数的一部分,表面积A越大,系统的G值越高。
所以在热力学上这种系统是不稳定的。
根据热力学第二定律,在一定温度和压力下,为了使G值减少,系统总是自发地通过以下两种(或其中的一种)方式降低表面能γA:①在一定条件下使表面积最小。
例如液滴呈球形,液面呈平面;②降低表面张力。
例如溶液自发地将其中能使表面张力降低的物质相对浓集到表面上(即溶液的表面吸附),而固体表面则从其外部把气体或溶质的分子吸附到表面上,从而改变表面结构,致使表面张力降低。
3.润湿与铺展的区别润湿和铺展是两种与固—液界面有关的界面过程。
两者虽有联系,但意义不同。
润湿是液体表面与固体表面相互接触的过程1因此所发生的变化是由固—液界面取代了原来的液体表面和固体表面。
润湿程度通常用接触角表示,它反映液、固两个表面的亲密程度。
当θ值最小(θ=0o)时,润湿程度最大,称完全润湿。
铺展是指将液体滴洒在固体表面上时,液滴自动在表面上展开并形成一层液膜的过程,因此所发生的变化是由固—液界面和液体表面取代原来的固体表面。
铺展的判据是上述过程的∆G:若∆G<0,则能发生铺展;若∆G≥0,则不能铺展。
胶体与表面化学复习资料(东北石油大学)
第一章绪论1.相:体系中物理化学性质完全相同的均匀部分;2.界面:相与相之间的交界面;3.表面:一相为气相的界面;4.比表面:单位体积或重量的物质所具有的总表面积;5.胶体化学:研究胶体体系的科学;6.表面化学:研究发生在物质表面或界面上的物理化学现象的一门学科;7.胶体:粒子大小1~100nm,热力学不稳定,动力学稳定,扩散速度慢,不发生渗析,能通过滤纸,在超显微镜下可见;8.胶体分类:按分散介质可分为“气、液、固溶胶”。
第二章胶体的制备1.胶体制备的一般条件:①分散相在介质中的溶解度必须极小,反应物浓度很稀,生成难溶物晶体颗粒很小,不具备长大条件;②必须有稳定剂存在;2.胶体制备方法:(一)分散法①机械分散法:适用于脆而易碎的物质,对于柔韧性物质必须先硬化再粉碎。
②电分散法:将金属做成两个电极,浸在水中,盛水的盘子放在冷浴中。
在水中加入少量氢氧化钠做稳定剂。
制备时在两电极上施加100V左右的直流电,调节电极间距离,使之发出电火花,这时表面金属蒸发,是分散过程,接着金属蒸汽立即被水冷却而凝聚成凝胶。
③超声波分散法:将分散相和分散介质两种不混溶的液体放在样品管中,样品管固定在变压器油浴中。
在两电极上通入高频电流,使电极中间的石英片发生机械震荡,使样品管中的两个液相均匀地混合成乳状液。
④溶胶分散法:新生成的沉淀中加入电解质或改变体系温度而形成溶胶体系。
(二)凝聚法:用物理方法或化学反应使分子、离子狙击成胶体粒子的方法。
(1)物理凝聚:将蒸汽状态或溶解状态的物质凝聚成胶体状态的方法。
①蒸汽骤冷法;②更换溶剂法;(2)化学凝聚:通过各种化学反应使生成物呈过饱和状态。
使初生成的难溶物微粒结合成胶粒,在少量稳定剂存在的条件下形成溶胶。
3.溶胶的净化方法(一)粗粒子:过滤、沉降、离心;(二)电解质:渗析、电渗析、超过滤、渗透与反渗透4.单分散溶胶定义:溶胶粒子的尺寸、形状、结构都相同的溶胶体系;5.单分散溶胶制备理论(LaMer)控制溶质的过饱和浓度,使之略高于成核浓度,爆发式成核。
上海大学胶体与表面化学考试知识点
1、胶体的基本特性特有的分散程度;粒子大小在1nm~100nm之间多相不均匀性:在超级显微镜下可观察到分散相与分散介质间存在界面。
热力学不稳定性;粒子小,比表面大,表面自由能高,是热力学不稳定体系,有自发降低表面自由能的趋势,即小粒子会自动聚结成大粒子。
2、胶体制备的条件:分散相在介质中的溶解度须极小必须有稳定剂存在3、胶体分散相粒子大小分类分子分散系统胶体分散系统粗分散系统二、1、动力学性质布朗运动、扩散、沉降光学性质是其高度分散性与不均匀性的反映电学性质主要指胶体系统的电动现象丁达尔实质:胶体中分散质微粒散射出来的光超显微镜下得到的信息(1)可以测定球状胶粒的平均半径。
(2)间接推测胶粒的形状和不对称性。
例如,球状粒子不闪光,不对称的粒子在向光面变化时有闪光现象。
(3)判断粒子分散均匀的程度。
粒子大小不同,散射光的强度也不同。
(4)观察胶粒的布朗运动、电泳、沉降和凝聚等现象观察到胶粒发出的散射光,可观察布朗运动电泳沉降凝聚,只能确定质点存在和位置(光亮点),只能推测不能看到大小和形状2、胶体制备的条件溶解度稳定剂3、溶胶的净化渗析法、超过滤法4、纳米颗粒粒径在1-100之间纳米颗粒的特性与粒子尺寸紧密相关,许多特性可表现在表面效应和体积效应两方面。
5、布朗运动使胶粒克服重力的影响,6、I反比于波长λ的四次方7、溶胶产生各种颜色的原因;溶胶中的质点对可见光产生选择性吸收。
溶胶对光吸收显示特定波长的补色不吸收显示散射光的颜色agcl&agbr光透过浅红垂直淡蓝雾里黄灯减散,入射白光散射光中蓝紫色光散射最强天蓝是太阳散射光,早傍晚红色是透射光有宇散射作用8、9、胶粒带电原因:吸附、电离、同晶置换(晶格取代)、摩擦带电。
10、胶团结构:一定量难溶物分子聚结成中心称为胶核、然后胶核选择性的吸附稳定剂中的一种离子,形成紧密吸附层;由于正、负电荷相吸,在紧密层外形成反号离子的包围圈,从而形成了带与紧密层相同电荷的胶粒;胶粒与扩散层中的反号离子,形成一个电中性的胶团。
胶体与表面化学的简答题
1.什么是气凝胶?有哪些主要特点和用途?当凝胶脱去大部分溶剂,使凝胶中液体含量比固体含量少得多,或凝胶的空间网状结构中充满的介质是气体,外表呈固体状,这即为干凝胶,也称为气凝胶。
气凝胶是一种固体物质形态,世界上密度最小的固体。
气凝胶貌似“弱不禁风”,其实非常坚固耐用。
它可以承受相当于自身质量几千倍的压力,在温度达到1200摄氏度时才会熔化。
此外它的导热性和折射率也很低,绝缘能力比最好的玻璃纤维还要强39倍。
用途:(1)制作火星探险宇航服(2)防弹不怕被炸(3)过滤与催化(4)隔音材料(5)日常生活用品 2.试述凝胶形成的基本条件?①降低溶解度,使被分散的物质从溶液中以“胶体分散状态”析出。
②析出的质点即不沉降,也不能自由行动,而是构成骨架,在整个溶液中形成连续的网状结构。
2.简述光学白度法测定去污力的过程。
将人工制备的污布放在盛有洗涤剂硬水的玻璃瓶中,瓶内还放有橡皮弹子,在机械转动下,人工污布受到擦洗。
在规定温度下洗涤一定时间后,用白度计在一定波长下测定污染棉布试片洗涤前后的光谱反射率,并与空白对照。
4.试述洗涤剂的发展趋势。
液体洗涤剂近几年的新的发展趋势: (1)浓缩化 (2)温和化、安全化(3)专业化 (4)功能化(5)生态化: ①无磷化②表面活性剂生物降解③以氧代氯 5.简述干洗的原理干洗是在有机溶剂中进行洗涤的方法,是利用溶剂的溶解力和表面活性剂的加溶能力去除织物表面的污垢。
3. 脂肪酶在洗涤剂中的主要作用是什么?脂肪酶,人的皮脂污垢如衣领污垢中因含有甘油三脂肪酸酯而很难去除,在食品污垢中也含有甘油三脂肪酸酯类的憎水物质,脂肪酶能将这些污垢分解成甘油和脂肪酸。
4.在洗涤剂中作为柔和剂的SAA主要是什么物质?用作柔和剂的表面活性剂主要是两性表面活性剂 8.用防水剂处理过的纤维为什么能防水?织物防水原理:将纤维织物用防水剂进行处理,可使处理后的纤维不表面变为疏水性,防水织物由于表面的疏水性使织物与水之间的接触角θ>90°,在纤维与纤维间形成的“毛细管”中的液面成凸液面,凸液面的表面张力的合力产生的附加压力△P的方向指向液体内部因此有阻止水通过毛细管渗透下来的作用。
表面及胶体化学知识点归纳
胶体: 指具有高度分散的分散体系(亦是研究对象),分散相可以是一相和多相,粒子大小通常为10-7~10-9m之间.胶体的研究内容:表面现象、分散体系、高分子溶液。
表面能δ:恒温恒压下,可逆地增加单位表面积,环境对体系所做的功,单位J·m-2。
表面张力δ:单位长度液体表面的收缩力,单位N·m-1(或mN·m-1)l aplace方程:球面,则R1=R2=R,ΔP=2σR 柱面,则R1=R,R2=∞,ΔP=σ/R 球形气泡,且R1=R2=RΔP=4σ/R表面过剩:界面相与体相的浓度差。
接触角:固液气三相交点处作气液界面的切线,此切线与固液交界线之间的夹角θ。
Gibbs吸附公式:(双组分体系)固体表面张力:新产生的两个固体表面的表面应力之和的一半。
固体表面能:指产生一平方厘米新表面所消耗的等温可逆功。
Laugmuir理论:假设被吸附分子间无作用力,因而分子脱附不受周围分子的影响。
只有碰撞在空间表面的分子才有可能被吸附(单分子层吸附)。
固体表面是均匀的,各处吸附能相同。
BET理论的基本假设:①固体表面是均匀的,同层分子(横向)间没有相互作用,分子在吸附和脱附时不受周围同层分子的影响。
②物理吸附中,固体表面与吸附质之间有范德华力,被吸附分子间也有范德华力,即吸附是多分子层的。
影响溶液中吸附的因素:吸附剂:溶质、溶剂三者极性的影响;温度:溶液吸附也是放热过程,一般T上升,吸附下降;溶解度:吸附与溶解相反,溶解度越小,越易被吸附;同系物的吸附规律一般随C-H链的增长吸附有规律的增加和减少。
Trube规则;吸附剂的孔隙大小;吸附剂的表面化学性质,同一类吸附剂由于制备条件不同,表面活性相差很大,吸附性能也会有很大差异;混合溶剂的影响,色谱法中使用混合溶剂,洗提效果比单纯溶剂好,若自极性相同的混合溶剂中吸附第三组份,等温线界于两单等温线之间;若自极性不相同的混合溶剂中吸附第三组份,吸附量比任何单一溶剂中少,混合溶剂极性一致或不一致情况不同;多种溶质的混合溶液;9、盐的影响,盐的存在通过影响溶质的活度系数、溶解度、溶质的电离平衡而影响吸附。
胶体与表面面化学
一、溶胶的胶团结构:1胶粒的结构比较复杂,首先有一定量的难溶物分子聚结形成胶粒的中心称为胶核2胶核选择性的吸附稳定剂中的一种离子,形成紧密的吸附层,由于正负电荷相吸,在紧密层外形成反号离子包围层,从而形成了带有紧密层相同电荷的胶粒3胶粒与扩散层中反号离子形成一个胶团。
二、双电层理论:当固体与液体接触时,可以是固体从溶液中选择性吸附某种离子,也可以是固体分子本身发生电离作用而使离子进入溶液,以致使固液两相分别带有不同符号的电荷,在界面上形成了双电层的结构。
1平板型模型2扩散双电层模型3stem模型。
三、溶胶的聚沉:溶胶的稳定具有条件的,一旦稳定条件被破坏,溶胶中的粒子就合并,长大,最后从介质中沉出。
影响因素:电解质、加热、辐射、溶胶本身。
聚沉值:能引起某一溶胶发生明显聚沉所需加电解质的最小浓度。
四、胶凝:一定浓度的溶胶或大分子化合物的真溶液在放置过程中自动形成胶凝的过程。
性质:1所有新形成的凝胶都含有大量液体,95%以上2凝胶有一定几何外形。
显示出固定的力学性质3由固液两相组成,具有液体的某些性质,不仅分散相是连续的,分散介质也连续。
分类:1弹性凝胶(明胶、琼脂)2非弹性(SiO2、TiO2、V2O5、Fe2O3)。
形成条件:1降低溶解度,使被分散的物质从溶液中以胶体分散状态析出2析出的质点既不沉降也不自由行动,而是构成骨架,通过整个溶液形成连续的网状结构。
形成方法:1改变温度2转化溶剂3加入电解质4化学反应。
不溶物形成凝胶的条件:1在产生不溶物的同时生成大量小晶粒2晶粒的形状以不对称为好,有利于搭成骨架。
五、膨胀:凝胶在液体或蒸汽中吸收液体和蒸汽使自身体积或重量增加的现象。
机理:一阶段:溶剂化层:溶剂分子很快出入凝胶中,与凝胶分子相互作用形成溶剂化层。
特征:1液体蒸汽压很低2体积收缩3热效应4熵值降低。
二阶段:溶剂分子的渗透和吸收。
六、硅酸铝凝胶制备(共沉淀法):酸性硫酸铝溶液+水玻璃溶液——硅铝溶胶—硅铝凝胶小球—老化—铝盐活化a—水洗—表面活性剂浸渍b—干燥—烘焙。
胶体与表面化学知识点整理1
第一章 绪论1.胶体特点之一是具有很大的表面积,分散直径1-100nm2.胶体是具有高度分散性的分散体系。
(是物质存在的一种特殊状态,而不是一种特殊物质,不是物质的本性。
)3.胶体化学研究对象是胶溶胶和高分子溶液。
4.胶体的分类:按分散介质可分为:气溶胶:云雾,青烟、高空灰尘液溶胶:泡沫,乳状液,金溶胶、墨汁、牙膏固溶胶:泡沫塑料、沸石、冰淇淋,珍珠、水凝胶、红宝石、合金第二章 胶体的制备一.溶胶的制备与净化1.溶胶制备的一般条件:(1)分散相在介质中的溶解度必须极小(2)必须有稳定剂存在2.胶体的制备方法:凝聚法、分散法。
(1)凝聚法:用物理或化学方法使分子或离子聚集成胶体粒子,又包括①还原法②氧化法③水解法④复分解法。
(2)分散法:又分为①机械分散;②电分散法:用来制备金属(Au Hg Ag )水溶胶;③超声波分散:制备乳状液;④胶溶法:在某些新生成的沉淀中,加入电解质,或置于某温度下使沉淀重新分散成溶胶。
3.凝聚法的原理:形成晶核、晶核成长。
4.haber 理论:凝结速度和饱和速度成正比,而定角速度取决于物质的极性大小,二者比较决定沉淀的有无定形。
5.溶液的净化分为:渗析、渗透和反渗透。
6.单分散溶胶的四种制备方式:⑴金属盐溶液水解法⑵金属络合物高温水解法⑶微乳液法(它由表面活性剂、助表面活性剂、有机溶剂、水4部分组成)⑷溶胶-凝胶转变法。
7.超细颗粒的特性及制备方法:⑴①表面积大②易形成团聚体③熔点低④磁性强⑤光吸收强⑥热导性好。
⑵①物理方法:气象沉积法、机械粉碎法;②化学方法:化学气象沉积法、沉淀法、化学环境法、溶液-凝胶法、溶剂蒸发法。
二.溶胶的运动性质1.溶胶的运动:扩散、布朗运动、沉降。
⑴扩散:过程为自发过程d d d d m c DA t x =-,式中dm/dt 表示单位时间通过截面A 扩散的物质数量,D 为扩散系数,单位为m2/s ,D 越大,质点的扩散能力越大扩散系数D 与质点在介质中运动时阻力系数f 之间的关系为:A RT D N f=(A N 为阿伏加德罗常数;R 为气体常数)若颗粒为球形,阻力系数f =6r πη(式中,η为介质的黏度,r 为质点的半径)故16RT D NA r πη=⨯,此式即为Einstein 第一扩散公式浓度梯度越大,质点扩散越快;就质点而言,半径越小,扩散能力越强,扩散速度越快。
胶体与表面化学期末复习资料(老马押题小组出品)
第一章绪论1.相:体系中物理化学性质完全相同的均匀部分;2.界面:相与相之间的交界面;3.表面:一相为气相的界面;4.比表面:单位体积或重量的物质所具有的总表面积;5.胶体化学:研究胶体体系的科学;6.表面化学:研究发生在物质表面或界面上的物理化学现象的一门学科;7.胶体:粒子大小1~100nm ,热力学不稳定,动力学稳定,扩散速度慢,不发生渗析,能通过滤纸,在超显微镜下可见;8.胶体分类:按分散介质可分为“气、液、固溶胶”。
第二章胶体的制备1.胶体制备的一般条件:①分散相在介质中的溶解度必须极小,反应物浓度很稀,生成难溶物晶体颗粒很小,不具备长大条件;②必须有稳定剂存在;2.胶体制备方法:(一)分散法①机械分散法:适用于脆而易碎的物质,对于柔韧性物质必须先硬化再粉碎。
②电分散法:将金属做成两个电极,浸在水中,盛水的盘子放在冷浴中。
在水中加入少量氢氧化钠做稳定剂。
制备时在两电极上施加100V 左右的直流电,调节电极间距离,使之发出电火花,这时表面金属蒸发,是分散过程,接着金属蒸汽立即被水冷却而凝聚成凝胶。
③超声波分散法:将分散相和分散介质两种不混溶的液体放在样品管中,样品管固定在变压器油浴中。
在两电极上通入高频电流,使电极中间的石英片发生机械震荡,使样品管中的两个液相均匀地混合成乳状液。
④溶胶分散法:新生成的沉淀中加入电解质或改变体系温度而形成溶胶体系。
(二)凝聚法:用物理方法或化学反应使分子、离子狙击成胶体粒子的方法。
(1)物理凝聚:将蒸汽状态或溶解状态的物质凝聚成胶体状态的方法。
①蒸汽骤冷法;②更换溶剂法;(2)化学凝聚:通过各种化学反应使生成物呈过饱和状态。
使初生成的难溶物微粒结合成胶粒,在少量稳定剂存在的条件下形成溶胶。
3.溶胶的净化方法(一)粗粒子:过滤、沉降、离心;(二)电解质:渗析、电渗析、超过滤、渗透与反渗透4.单分散溶胶定义:溶胶粒子的尺寸、形状、结构都相同的溶胶体系;5.单分散溶胶制备理论(LaMer )控制溶质的过饱和浓度,使之略高于成核浓度,爆发式成核。
土壤胶体表面化学考研知识点总结
土壤胶体表面化学考研知识点总结●土壤胶体的表面类型与构造●土壤胶体:一般将半径 d<0.001mm(即1 μm)的球形颗粒称为胶体(土壤粘粒又称为土壤胶粒)。
●❗❗❗胶粒基本构造:胶核与双电层●❗❗❗三类表面●硅氧烷型表面(硅氧片的表面):2∶1型粘粒(蒙脱石、蛭石)的上、下两面;1∶1型粘粒(高岭石)1/2面。
是非极性的疏水表面。
●水合氧化物型表面:羟基化表面(R-OH);水合氧化物型表面是极性的亲水表面。
电荷来源为表面-OH基质子的缔合(-OH2+)或解离(-OH→-O- + H+)。
产生的电荷为可变电荷。
●有机物型表面:腐质物质为主的表面,表面羧基(—COOH)、酚羟基(R-OH)、氨基(—NH2)、醌基、醛基、甲氧基等活性基团。
解离 H+ 或缔合H+ 产生表面电荷。
产生的电荷为可变电荷。
●土壤胶体表面性质●土壤胶体的表面积●❗比表面 (specific surface) :单位重量(体积)物体的总表面积。
物体颗粒愈细小,表面积愈大。
●非结晶型氧化物比表面积比结晶型大很多。
●土壤胶体表面电荷●❗❗❗❗❗种类●永久电荷:起源于矿物晶格内部离子的同晶置换,具有的电荷就不受外界环境(如pH、电解质浓度等)影响。
●可变电荷:1)水合氧化物型表面对质子的缔合和解离。
2)土壤有机质表面的可变电荷可来自羧基、氨基、酚羟基等功能团的质子化或解离。
●土壤电荷数量●一般用每千克物质吸附离子的厘摩尔数[cmol (+) /kg]表示●❗❗阳离子交换量CEC ,即土壤净负电荷的数量,非恒值,随pH变化●土壤胶体对阳离子的吸附与交换●吸附●定义:根据物理化学的反应,溶质在溶液中呈不均一的分布状态,溶液表面层中的浓度与其内部不同的现象称为吸附作用。
●阳离子的静电吸附●土壤胶体一般带有大量负电荷●通过静电力(库仑力)使土壤胶体表面能从土壤溶液中吸附阳离子,在胶体表面形成扩散双电层(完全解离,自由移动)●被吸附的阳离子一般都可以被溶液中另一种阳离子交换而从胶体表面解吸●❗❗阳离子静电吸附的速度、数量和强度决定因素●表面负电荷愈多,吸附的阳离子数量就愈多●离子的价态愈高,受胶体的吸持力愈大,吸附能力愈强●同价的离子,离子半径愈大,水化半径愈小,吸附强度愈大●阳离子的交换●定义:交换性阳离子发生交换吸附的反应●作用特点●快速的可逆反应,容易达到动态平衡●遵循等价交换的原则●符合质量作用定律●❗❗阳离子交换量的影响因素●胶体的类型含腐殖质和2:1型粘土矿物较多的土壤,其阳离子交换量较大,而含高岭石和氧化物较多的土壤,其阳离子交换量较小。
胶体与表面化学课程大纲及重点
胶体与表面化学第一章绪论(2学时)1.1胶体的概念什么是胶体,胶体的分类1.2胶体化学发展简史1.3胶体化学的研究对象表面现象,疏液胶体,缔合胶体,高分子溶液。
重点:胶体、分散系统、分散相、分散介质的概念。
难点:胶体与表面化学在矿物加工工程中的作用及意义。
教学方法建议:启发式教学,引导学生对胶体及表面化学的兴趣。
第二章胶体与纳米材料制备(4学时)2.1胶体的制备胶体制备的条件和方法,凝聚法原理。
2.2胶体的净化渗析、渗透和反渗透。
2.3单分散溶胶单分散溶胶的定义及制备方法。
2.4胶体晶体胶体晶体的定义及制备方法2.5纳米粒子的制备什么是纳米材料,纳米粒子的特性及制备方法重点:胶体的制备、溶胶的净化、胶体晶体的制备。
难点:胶体制备机理。
教学方法建议:用多媒体教学,注重理论联系实际。
第三章胶体系统的基本性质(8学时)3.1溶胶的运动性质扩散、布朗运动、沉降、渗透压和Donnan平衡。
3.2溶胶的光学性质丁道尔效应和溶胶的颜色。
3.3溶胶的电学性质电动现象、双电层结构模型和电动电势(。
电势)3.4溶胶系统的流变性质剪切速度越切应力,牛顿公式,层流与湍流,稀胶体溶液的黏度。
3.5胶体的稳定性溶胶的稳定性、DLVO理论、溶胶的聚沉、高聚物稳定胶体体系理论。
3.6显微镜及其对胶体粒子大小和形状的测定显微镜的类型及基本作用重点:沉降、渗透压、电泳、电渗、。
电势的计算、双电层结构模型、DLVO理论、溶胶的聚沉。
难点:双电层结构模型。
教学方法建议:多媒体教学和板书教学相结合。
第四章表面张力、毛细作用与润湿作用(6学时)4.1表面张力和表面能净吸力和表面张力的概念、影响表面张力的因素、液体表面张力和固体表面张力的测定方法。
4.2液-液界面张力Anntonff规则、Good-Girifalco公式、Fowkes理论和液-液界面张力的测定。
4.3毛细作用与Laplace公式和Kelvin公式毛细作用,Laplace公式和Kelvin公式的应用,曲界面两侧的压力差及与曲率半径的关系,毛细管上升或下降现象,弯曲液面上的饱和蒸气压。
东油油工胶体与表面化学名词解释
1.分散度:把物体分散成细小微 粒的程度称为分散度. 2.净吸力:表面分子受到垂直于 液体表面、指向液体内部的“合 吸力”,通常称为净吸力。 3.表面张力:增加单位面积所消 耗的功。 4.分子间力可以引起净吸力,而 净吸力因其表面张力。表面张力 永远和液体表面相切,而和净吸 力相互垂直。 5.测定液体表面张力的方法:毛 细管上升法、环膜法、气泡最大 压力法 6.铺展系数:恒温恒压下,铺展 单位面积时,体系表面自由焓的
第六章
1.表面活性剂的性质:在各种界 面上的定向吸附、在溶液内部能 形成胶束。 2.表面活性剂:少量使用即能显 著降低液体表面张力的物质 3.表面活性剂的特点:两亲性分 子。 4.表面活性剂分类 按能否电离及离子类型:(1)阴 离子型:羧酸盐、硫酸酯盐、磺 酸盐、磷酸酯盐(2)阳离子型: 伯胺盐、仲胺盐、叔胺盐、季胺 盐(3)两性离子型(3)非离子 型:聚乙二醇型(平平加型、OP 型、P 型)、多元醇型(司盘型、 吐温型) 按溶解性:水溶性、油溶性 按分子量:高、中、低 按用途:消泡剂、起泡剂、润湿 剂、分散剂 5.浊点:对非离子表面活性剂的 透明水溶液缓慢加热,到某一温 度后溶液发生浑浊,溶液呈浑浊 的最低温度叫做浊点。 6.Krafft 点:离子型表面活性剂 在低温时溶解度较低,随着温度 的升高其溶解度缓慢地增加,达 到某一温度后其溶解度突然迅速 增加,这个温度即为 Krafft 点 7.胶束:达到一定浓度时其疏水 基相互缔合成有序组合体,这种 缔合结构称为胶束 8.临界胶束浓度:胶束开始明显 形成时表面活性剂的浓度。 9.增溶作用:指难溶和不难溶有机 物在表面活性剂胶束水溶液中溶 解度增大的现象。
第七章
1.乳状液:一种液体以极小的液 滴形式分散在另一种与其不相混 融的液体中所构成的多分散相体 系。 2.分类:水包油型(O/W)、油包 水 型 ( W/O )、 多 重 乳 状 液
胶体表面化学 复习资料1
名词解释胶体系统:一种物质以细分状态分散在另一种物质中构成的系统成为胶体系统分散相:在分散系统中被分散的不连续的相称为分散相分散介质:分散系统中连续的相称为分散介质胶体:分散相粒子至少在一个尺度上的大小处在1~100nm范围内的分散系统称为胶体分散系统,或胶体系统,或胶体。
纳米材料;:在三维空间内至少有一维处于规定的纳米尺度范围内(1~100nm),则该种材料称为纳米材料纳米污染:由纳米微粒对环境和人类健康所带来污染和危害渗透:借半透膜将溶液(浓相)和溶剂(如水)隔开,此膜只允许溶剂分子通过,二胶粒或溶质不能通过单分散溶胶:特定条件下制取的胶粒尺寸、形状和组成皆相同的溶胶渗析:利用羊皮纸或由火棉胶制成的半透膜,将溶胶与纯分散介质隔开,这是因为这种膜的空隙很小,它不仅能让小分子或离子通过,而胶粒不能通过纳米粒子(或纳米粉体),它们在空间的三维尺度均在纳米尺度内(均小于100nm),因此称为零维纳米材料。
胶体晶体:由一种或多种单分子分散胶体粒子组装并规整排列的二维或三维类似于晶体的有序结构成为胶体晶体聚沉:溶胶中的分散相微粒互相聚结,颗粒变大,进而发生沉淀的现象。
毛细现象:由于液体表面张力的存在而引起的液体表面形态、性质变化的各种现象。
CMC:表面活性剂溶液性质发生突变的浓度反胶束:表面活性剂在非水溶剂(主要是非极性和弱极性溶剂)中形成的聚集体;囊泡也称为泡囊,两亲分子形成的封闭双层结构称为囊泡或脂质体表面活性剂的亲水亲油平衡值(HLB值)乳状液:由两种(或两种以上)不互溶或部分互溶的液体形成的分散系统,称乳状液。
气体分离:用物理或化学的方法将混合气体分离成单一组分的气体。
吸附(adsorption):在不相混溶的两相接触时,两体相中的某种或几种组分浓度与它们在界面相中浓度不同的现象称为吸附。
吸附质(adsorbate):发生吸附作用时已被吸附的物质称为吸附质。
吸附剂(adsorbent):能有效在其表面上发生吸附作用的固体物质称为吸附剂吸附量:吸附平衡时单位质量或单位表面积吸附剂上吸附吸附质的量吸附热:在吸附过程中的热效应称为吸附热积分吸附热:等温条件下,一定量的固体吸附一定量的气体所放出的热,用Q表示。
第十三章表面化学与胶体的基本知识
P 200 Pa 1.5mmHg
r =10-5mm时
P 145 P
可见:颗粒半径可用mm及>mm描述时, △P可忽略
当半径小至不能用mm描述时(超细粉、纳米材料),由
于△P值巨大,会使液、固的许多性质发生巨变,与正 常液、固体不同。
第三节 Young-Laplace方程的应用 一、弯曲表面下液体的蒸气压 定性说明 在一定的T和P外下,当液滴半径很小时,压力P很 大,其μ很高,从而蒸汽压增大。
水的相图
2、过热液体 物系(液体)点位于气相区
P外 P
为什么能存在?
P外 P
l
l
P P
Tb Tb ,
P可忽略(大气泡)
液体升温时只产生小气泡
Tb : PV P P
T : PV P
b
P P l H m 1 1 ln ( ) P R Tb Tb
B
B
B
比表面能
G )T , P ,nB 狭义的表面自由能定义: ( A
保持T、P和nB不变,每增加单位表面积时,Gibbs自
由能的增加值称为比表面自由能(简称表面能).
三、表面张力
表面的不均匀力场 表面分子企图“钻入”内部
表面收缩
即宏观存在表面收缩力
1、表面张力:
单位长度上使表面收缩的力。 用 表示,单位是N· -1。 m 是表面不均匀力场的度量
定义: 温度、压力和组成恒定时,可逆使表面积 增加dA所需要对体系作的功W’。 计算 γ的物理意义:
W dA
'
γ—比例系数
T,P及组成恒定的条件下,增加单位表面积
胶体与表面化学讲义第一章 基本概念
《胶体与界面化学》讲义第一章基本概念第一节胶体与表面一、胶体与胶体分散体系•目前科学地将颗粒大小在10-6~10-9m这样的物质(不管其聚集状态是气态、液态还是固态)称为胶体。
•胶体与其分散在其中的介质组成分散体系,介质可以是气、液和固体并与胶体颗粒间存在相界面,因此它还是高分散的多相的分散体系。
•胶体分散体系一般是两个组分以上的多组分体系,不过也存在极为罕见的单组分胶体分散体系,这类分散体系是液体,但由于分子的热运动而出现的涨落现象,一些分子会在液态内部聚集成较大的聚集体,这种分散体系称为类胶体(iso-colloid)分散体系。
聚合物或大分子量物质•聚合物或大分子量物质过去也称之为胶体分散体系的物质。
•如蛋白质,纤维素以及各种天然的和人工合成的聚合物,其尺寸也在胶体范围、并具有胶体的某些性质,比如慢扩散性,不透过半透膜,电泳行为等。
•因此过去也把它们作为胶体与表面化学的讲解内容。
但由于其迅速的发展,形成一个庞大的大分子家族,而成为一个独立学科去研究,不过它的某些理论和研究方法确系胶体的理论和研究方法。
二、表面和界面•表面(surface):是指凝聚相与真空,空气或其蒸气间的交界•界面(interface):是指凝聚相与其他相间的交界面。
•水的表面张力是水的表面(与空气或蒸汽的交界面)上的表面张力,约为72.8×10-3N/m;水和苯间界面张力为35×10-3N/m;水与汞间界面张力为375×10-3N/m。
•由此可见,界面张力值决定于相邻相的物质。
相边界上“面”的含义•这里所说的“面”是指相边界上的化学概念上的而非数学概念上的面。
数学面只有面积而无厚度,而化学面是有一定厚度的,起码有几个分子大小的厚度。
数学面所示在面上相的性质(如密度、浓度等)发生突变是不可思议的,而化学面中相的性质逐渐变化才是可理解的。
但在描述它时,由于其厚度值与两相本体尺寸比较可忽略不计近似为零。
化学中胶体知识点总结
化学中胶体知识点总结一、胶体的定义和性质1. 胶体的定义胶体是由两种或多种物质组成的混合物,其中至少有一种物质分散在另一种物质中形成胶体颗粒。
这些颗粒的直径范围在1~1000纳米之间,与溶液中的溶质颗粒直径相当。
2. 胶体的性质(1)悬浮性:胶体颗粒在溶剂中形成悬浮系统,不会很快沉淀下来。
(2)分散性:胶体颗粒的分散程度较高,不容易团聚。
(3)不可过滤性:胶体颗粒的大小与溶质颗粒相近,不容易通过过滤器。
(4)光学性质:胶体颗粒对光有一定的散射和吸收作用,显示出乳白或彩色。
(5)电性质:胶体颗粒可以带电,形成电性胶体。
(6)表面效应:胶体颗粒的表面活性较高,与外界有较强的相互作用。
二、胶体的形成和稳定1. 胶体的形成胶体的形成是由于两种或多种物质之间的相互作用所导致的。
常见的胶体形成方式包括:(1)机械法:通过机械方式混合两种或多种物质而形成的胶体。
(2)凝聚法:由于凝聚或凝聚抑制作用导致的胶体形成。
(3)化学法:由化学反应而形成的胶体,如溶胶凝胶法。
2. 胶体的稳定胶体颗粒在溶液中往往会因为分散力和聚合力的作用而发生团聚,影响胶体的稳定性。
为了稳定胶体颗粒,通常采用以下方法:(1)增加分散剂:通过增加分散剂的使用量来提高胶体颗粒的分散性。
(2)控制电荷:通过改变胶体颗粒的表面电荷来调控其相互作用,从而提高稳定性。
(3)控制溶液条件:通过调节溶液的pH值、温度等条件来影响胶体颗粒的稳定性。
三、胶体的分类1. 根据分散介质的性质,胶体可分为溶胶、凝胶和胶体溶液。
溶胶是指液体中形成的胶体,凝胶是指固体中形成的胶体,胶体溶液是指固体和液体相混合形成的胶体。
2. 根据胶体颗粒的大小,胶体可分为溶胶胶体(颗粒直径小于1纳米)、胶体(颗粒直径1~1000纳米)和胶束(颗粒直径大于1000纳米)。
3. 根据分散相和连续相之间的互作用,胶体可分为溶胶性胶体和胶凝性胶体。
溶胶性胶体是指分散相和连续相间的互作用力比较弱,易于分散;胶凝性胶体是指分散相和连续相间的互作用力比较强,不容易分散。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.影响溶胶稳定性的因素
(1)外加电解质的影响;(2)浓度的影响;(3)温度的影响;(4)胶体体 系的相互作用。 (二)溶胶的聚沉 聚沉值:使一定量的溶胶在一定时间内完全聚沉所需电解质的最小浓度。从已 知的表值可见,对同一溶胶,外加电解质的离子价数越低,其聚沉值越大。 聚沉能力:是聚沉值的倒数。聚沉值越大的电解质,聚沉能力越小;反之,聚 沉值越小的电解质,其聚沉能力越强。 1.电解质的聚沉作用:质对溶胶稳定性的影响不仅取决于其浓度,还与离子价 有关。在离子浓度相同时,离子价越高,聚沉能力越大,聚沉值越小。聚沉能 力主要决定于胶粒带相反电荷的离子的价数。聚沉值与异电性离子价数的六次 方成反比,这就是 Schulze-Hardy 规则。 2.带相反电荷的离子就是价数相同,其聚沉能力也有差异。 相同价数离子的聚沉能力不同:胶粒带负电的溶胶,一价阳离子硝酸盐的聚沉 能力次序为:H+>Cs+>Rb+>NH4+>K+>Na+>Li+Li+半径最小,水化能力最强,水化半 径最大,故聚成能力最小;带正电的胶粒,一价阴离子的钾盐的聚沉能力次序 为: F->Cl->Br->NO3->I- >SCN- ,种次序称为感胶离子序(lyotropic ser 2 4
( n22 n12 n12 2n22
)2
c 为单位体积中质点数,v 为单个粒子的体积(其线
性大小应远小于入射光波长), 为入射光波长,
n1、n2 分别为分散介质和分散相的折射率
①散射光强度与入射光波长的四次方成反比。入射光波长愈短愈显著。,散射所
以可见光中,蓝、紫色光散射作用强。
吸收
若溶胶对可见光的各部分吸收很弱,且大致相同,则溶胶无色 若溶胶能较强的选择性吸收某一波长的光,则透过光该波长的光变弱,就会呈 现该波长光的补色光 质点对光的吸收主要取决于其化学结构 每种分子都有其自己的特征吸收波长,若特征波长在可见光波长范围内,则该 物质显色 四.溶胶的电学性质和胶团结构 1.电动现象及其应用 (1)电泳:胶粒颗粒带电,在外电场的作用下,向正极移动,后来发现,任何 溶胶中的胶粒都有这样的现象,带负电的胶粒向正极移动,带负电的胶粒向负 极移动,这种现象被称为电泳。 (2)电渗析:水在外加电场的作用下,通过黏土颗粒间的毛细通道向负极移动 的现象称为电渗析。 (3)沉降电位,在无外加电场作用下,若使分散相粒子在分散介质中迅速沉降 时,使底层与表面层的粒子浓度悬殊,从而产生电势差,这就是沉降电势。这 种现象是电泳的逆过程。 贮油罐中的油内常会有水滴,水滴的沉降会形成很高的电势差,有时会引发事 故。通常在油中加入有机电解质,增加介质电导,降低沉降电势。 (4)流动电位若用压力将液体挤过毛细管网或由粉末压成的多孔塞,则在毛细 管网或多孔塞的两端会产生电位差,此之谓流动电位,此现象为电渗析的逆过 程。在用泵输送原油或易燃化工原料时,要使管道接地或加入油溶性电解质, 增加介质电导,防止流动电势可能引发的事故。 2.质点表面的电荷的来源:电离、离子吸附、晶格取代、非水介质中质点带电 的原因。 3.胶团结构 胶核、吸附层、胶粒、扩散层、胶团 胶核吸附离子是有选择性的,首先吸附与胶核中相同的某种离子,用同离子效 应使胶核不易溶解,若无相同离子,则首先吸附水化能力较弱的负离子,所以自然界中
整个溶液中形成连续的网状结构。 2.凝胶形成的方法 (1)改变温度 (2)加入非溶剂 (3)加入盐类(4)化学反应 不溶物形成凝胶的条件是(1)在产生不溶物的同时生成大量的小晶体;(2)晶 粒的形状以不对称的为好,这样有利于形成骨架。 三.凝胶的结构 1.结构分类 (1)球形质点相互联结,由质点联成的链排成三维的网架 (2)棒状或片状质点搭成的网架 (3)线性大分子构成的凝胶,在骨架中一部分分子链有序排列构成微晶区 (4)线性大分子因化学交联而形成凝胶 2.凝胶结构间的区别主要表现在质点的形状、质点的刚性或柔性和质点之间联 结的特殊方式。 (1)质点的形状:质点形状对形成凝胶所需的最低浓度值有明显的影响。形状 越不对称,所需的浓度越低。 (2)质点的刚性或柔性:柔性大分子通常形成弹性凝胶,而刚性质点形成非弹 性凝胶,这两类凝胶的许多性质都不一样。 (3)网状结构中质点联结的性质 ①靠质点间的分子吸引力形成的结构,这类结构不稳定,往往具有触变性,在 外里作用下结构遭到破坏,静置后又可复原。 ②靠氢键形成结构,主要是蛋白质,结构较前类牢固些,比较稳定。 ③靠化学键形成网状结构,这类结构非常稳定。这类凝胶在吸收液体后只能发 生有限膨胀,加热后也不会变成无限膨胀。 四.胶凝作用及其影响因素 1.溶胶 凝胶转变是的现象 ①转变温度:无恒定的转变温度,往往与冷却快慢有关。且凝点(胶凝的温度) 常比熔点(液化温度)低 ②热效应:大分子溶液形成凝胶时常常放热 ③光学效应:溶胶转变为凝胶时,丁达尔效应增强,这是由于质点增大,水化 程度减弱。 ④流动性质:溶胶转变为凝胶后流流动性质变化很大,溶胶失去流动性,凝胶 获得了弹性、屈服值等。 ⑤电导:溶胶胶凝后,体系的电导无明显变化,这说明凝胶中离子的迁移率未 受到阻碍,从而说明水凝胶中必然含有连通的毛细管空间系统,其中充满这分 散介质。 ⑥溶胶中的质点表面若具有亲水集团,则胶凝后其表面人具有亲水性。 2.影响胶凝作用的因素 (一)明胶溶液 ①溶液浓度:浓度越大,胶凝速度越快。 ②温度:温度升高,分子热运动加剧,不利于形成结构,故使胶凝速度减慢。 ③电解质:盐类对明胶胶凝的影响主要是阴离子的作用: SO42->C4H4O6->Ac->Cl->NO3->ClO3->Br->I->SCN-
Einstein 认为,粒子的平均位移 x 与粒子半径 r 、介质黏度 、温度T 和位移时
1
间
t
之间的关系: x
RT NA
t 3 r
2
,此式常称为
Einstein-Brown
位移方程。
式中 x 是在观察时间 t 内粒子沿 x 轴方向的平均位移;r 为胶粒的半径; 为介
质的粘度; NA 为阿伏加德罗常数。 ⑶沉降
明亮的光带,被称为丁达尔效应
光本质是电磁波,当光波作用到介质中小于光波波长的粒子上时,粒子中的电
子被迫振动(其振动频率与入射光波的频率相同),成为二次波源,向各个方向
发射电磁波,这就是散射光波也就是我们看到的散射光。
丁达尔效应可以认为是胶粒对光的散射作用的宏观表现。
(2)Rayleigh 散射定律
I
(4)水化膜:在胶团的双电层中反离子都是水化的,因此在胶粒外有一层水
化膜,它阻止了胶粒的相互碰撞而导致胶粒结合变大。
2.DLVO 理论:溶胶在一定条件下是稳定存在还是聚沉,取决于粒子间的相互吸
引力和静电斥力。若斥力大于吸引力则溶胶稳定,反之则不稳定。
(1) 质点间的范德华吸引能
胶粒之间的相互作用可看作是分子作用的加和
3.有机化合物的离子都有很强的聚沉能力,这可能与其具有强吸附能力有关。 4.与胶体带相反电荷的离子相同时,则另一同性离子的价数也会影响聚沉值, 价数愈高,聚沉能力愈低。这可能与这些同性离子的吸附作用有关 5.溶胶的相互聚沉:将两种电性不同的溶胶混合,可以发生相互聚沉作用。但仅 在这两种溶胶的数量达到某一比例时才发生完全聚沉,否则可能不发生聚沉或 聚沉不完全。
① 介质中的微粒受到两种力:重力和扩散力。
②溶胶是高度分散体系,胶粒一方面受到重力吸引而下降,另一方面由于布朗运动促使浓
度趋于均一。当这两种效应相反的力相等时,粒子的分布达到平衡,粒子的浓度随高度不
同有一定的梯度,如图所示。这种平衡称为沉降平衡。
三、溶胶的光学性质
1.光散射
(1)丁达尔效应:以一束强光射入溶胶后,在入射光的垂直方向可以看到一道
故D
RT NA
1 6 r
,此式即为
Einstein
第一扩散公式
浓度梯度越大,质点扩散越快;就质点而言,半径越小,扩散能力越强,扩散 速度越快。 ⑵布朗运动:本质是分子的热运动 现象:分子处于不停的无规则运动中 由于布朗运动是无规则的,因此就单个粒子而言,它们向各方向运动的几率是 相等的。在浓度高的区域,单位体积的粒子较周围多,造成该区域“出多进少”, 使浓度降低,这就表现为扩散。扩散是布朗运动的宏观表现,而布朗运动是扩 散的微观基础
第三章 凝胶
一、概述 1.所有新形成的都含有大量的液体(液体含量通常在 95%以上) 所含液体为水的凝胶称为水凝胶,所有水凝胶外表相似,呈半固体状,无流动 性。 一定浓度的溶胶或大分子化合物的真溶液在放置过程中自动形成凝胶的过程称 为胶凝。 在新形成的水凝胶中,不仅分散相(搭成网结)是连续相,分散介质(水也是 连续相),这是凝胶的主要特征。 2.凝胶的分类 (1)弹性凝胶:由柔性的线性大分子物质形成的凝胶。 这类凝胶的干胶在水中加热溶解后,在冷却过程中便胶凝成凝胶。此凝胶经脱 水干燥又成干胶,并可如此反复下去,说明这一过程是完全可逆的,故又称为 可逆凝胶。 (2)非弹性凝胶:由刚性质点溶胶所形成的凝胶。在吸收或脱除溶剂后刚性凝 胶的骨架基本不变,所以体积也无明显变化 这类凝胶脱水干燥再置水中加热一般不形成原来的凝胶,更不能形成产生此凝 胶的溶胶,因此,此类凝胶也称为不可逆凝胶。 二.凝胶的形成 1.凝胶形成的条件:(1)降低溶解度,使被分散相的物质从溶液中以“胶体分 散状态”析出。(2)析出的质点既不沉降也不能自由行动,而是构成骨架,在
第一章 绪论
1.胶体特点之一是具有很大的表面积,分散直径 1-100nm 2.胶体是具有高度分散性的分散体系。(是物质存在的一种特殊状态,而不是一 种特殊物质,不是物质的本性。) 3.胶体化学研究对象是胶溶胶和高分子溶液。 4.胶体的分类:按分散介质可分为: 气溶胶:云雾,青烟、高空灰尘 液溶胶:泡沫,乳状液,金溶胶、墨汁、牙膏 固溶胶:泡沫塑料、沸石、冰淇淋,珍珠、水凝胶、红宝石、合金