最新分子生物学(朱玉贤第四版)复习提纲思维导图-4.生物信息的传递RNA-Protein
分子生物学复习提纲思维导图生物信息的传递RNAProtein
翻译后转运
细胞核 叶绿体 线粒体 过氧化物酶体
分泌蛋白 膜蛋白 溶酶体
D臂
二级结构
三叶草
反密码子臂 多余臂
氢键
tRNA转运氨基酸
高级结构
TψC臂 倒L折叠式
起始tRNA
原核fMet-tRNAfMet 真核Met-tRNAMet
分类 延伸tRNA
校正tRNA
无义突变 错义突变
同义突变、移码突变
蛋白质 36种
50S rRNA 23S、5S
原核 70S 蛋白质 21种
30S
真核
与原核相似,无E位点 eEF-1,eEF-2
RF-1
UAA UAG
原核
RF-2
UAA UGA
终止
RF-3
UAA
真核
eRF-1
UAG UGA
eRF-3
N端fMet、Met切除
二硫键生成
多肽链加工
化学修饰 非必需氨基酸切除
蛋白质转运
信号肽、信号肽假说
折叠
分子伴侣
热休克蛋白 伴侣素
翻译转运同步
附着核糖体→rER→Golgi
生物信息的传递RNA-Protein
蛋白质生物合成物质基础
起始密码子
AUG 原核GUG、UUG
64个遗传密码
UAA
终止密码子 UAG
UGA
连续性
简并性
mRNA和遗传密码
普遍性 特殊性
特点
C G
U
摆动性
摆动学说
反密码子1位
A U
G
A
ICU一级结构4种A、U、G、C排列顺序,化学修饰ψ、D
3’受体臂,CCA3'
2024年度-朱玉贤现代分子生物学第四版
蛋白质翻译后加工的意义
对于蛋白质的成熟、定位和功能发挥具有重要作用。例如,信号肽的去除可以使蛋白质从细胞内分泌 到细胞外或定位到细胞膜上;化学修饰可以调控蛋白质的活性和稳定性,从而影响细胞的生理功能; 剪切可以产生具有不同功能的蛋白质片段,增加蛋白质的多样性。
17
转录与转录后加工的调控
转录的调控主要通过转录 因子与DNA的结合来实 现,可以影响RNA聚合酶 的活性和选择性。
转录和转录后加工的调控 具有协同作用,可以共同 调节基因的表达水平和蛋 白质的功能。
ABCD
转录后加工的调控涉及多 种蛋白质和RNA的相互作 用,可以影响RNA的加工 效率和产物种类。
29
基因工程与基因组学的应用前景
农牧业领域
通过基因工程改良作物和畜禽品种, 提高产量和品质,增强抗逆性;应用 基因组学解析重要农艺性状形成的分 子机制,指导新品种选育。
工业领域
利用基因工程生产工业酶、生物燃料 和生物材料等;应用基因组学优化工 业生产过程和开发新产品。
医学领域
基因工程可用于生产重组蛋白药物、 基因诊断和基因治疗等;基因组学可 用于解析人类疾病的遗传基础,发现 新的治疗靶点和药物。
异常的转录和转录后加工 调控可能导致疾病的发生 ,如癌症、遗传性疾病等 。
18
05
蛋白质翻译与翻译后加工
19
蛋白质翻译的过程与特点
蛋白质翻译的过程
起始、延长和终止三个阶段。起始阶段,核糖体与mRNA结合,形成起始复合物;延长阶段,tRNA携带氨基酸 进入核糖体,进行肽链的延伸;终止阶段,释放完成翻译的蛋白质。
朱玉贤《现代分子生物学》(第4版)笔记和课后习题(含考研真题)详解
目录第1章绪论 (4)1.1复习笔记 (4)1.2课后习题详解 (5)1.3名校考研真题详解 (7)第2章染色体与DNA (10)2.1复习笔记 (10)2.2课后习题详解 (17)2.3名校考研真题详解 (22)第3章生物信息的传递(上)——从DNA到RNA (36)3.1复习笔记 (36)3.2课后习题详解 (44)3.3名校考研真题详解 (49)第4章生物信息的传递(下)——从mRNA到蛋白质 (62)4.1复习笔记 (62)4.2课后习题详解 (71)4.3名校考研真题详解 (78)第5章分子生物学研究法(上)——DNA、RNA及蛋白质操作技术 (90)5.1复习笔记 (90)5.2课后习题详解 (96)5.3名校考研真题详解 (101)第6章分子生物学研究法(下)——基因功能研究技术 (114)6.1复习笔记 (114)6.2课后习题详解 (120)6.3名校考研真题详解 (124)第7章原核基因表达调控 (132)7.1复习笔记 (132)7.2课后习题详解 (138)7.3名校考研真题详解 (140)第8章真核基因表达调控 (147)8.1复习笔记 (147)8.2课后习题详解 (154)8.3名校考研真题详解 (158)第9章疾病与人类健康 (168)9.1复习笔记 (168)9.2课后习题详解 (174)9.3名校考研真题详解 (177)第10章基因与发育 (182)10.1复习笔记 (182)10.2课后习题详解 (183)10.3名校考研真题详解 (185)第11章基因组与比较基因组学 (186)11.1复习笔记 (186)11.2课后习题详解 (189)11.3名校考研真题详解 (192)第1章绪论1.1复习笔记一、分子生物的概念分子生物学是从分子水平研究生物结构、组织和功能的一门学科,以核酸、蛋白质等生物大分子的结构、形态及其在遗传信息和细胞信息传递中的作用和功能为研究对象。
现代分子生物学笔记朱玉贤
第一章绪论分子生物学分子生物学的基本含义 (p8)分子生物学是研究核酸、蛋白质等所有生物大分子的形态、结构特征及其重要性、规律性和相互关系的科学,是人类从分子水平上真正揭开生物世界的奥秘,由被动地适应自然界转向主动地改造和重组自然界的基础学科。
一.DNA重组技术(recombinant DNA technology)定义:又称为基因工程,根据分子生物学和遗传学的原理,将一种生物的遗传物质DNA转移到另一生物体中,使后者获得新的遗传性状或表达出所需要的产物。
DNA重组技术的应用:利用微生物基因工程生产重组基因工程药物转基因植物和动物体细胞克隆基因表达与调控的基础研究二.生物大分子的结构功能研究三.基因组、功能基因组与生物信息学的研究基因组、蛋白质组与生物信息学基因组(Genome):细胞或生物体一条完整单体的全部染色体遗传物质的总和。
人类基因组计划(Human Genome Project, HGP):测定出人基因组全部DNA3109硷基对的序列、确定人类约5-10万个基因的一级结构。
基因组、蛋白质组与生物信息学蛋白组计划(Proteome project):又称为后基因组计划或功能基因组计划,用于揭示并阐明细胞、组织乃至整个生物个体全部蛋白质及其功能。
生物信息学(Bioinformatics):是在生命科学的研究中,以计算机为工具对生物信息进行储存、检索和分析的科学。
第二章染色体与DNA第一节染色体(chromosome)染色体(chromosome):原指真核生物细胞分裂中期具有一定形态特征的染色质。
现在这一概念已扩大为包括原核生物及细胞器在内的基因载体的总称。
染色质(chromatin):由DNA和蛋白质构成,在分裂间期染色体结构疏松,称为染色质。
其实染色质与染色体只是同一物质在不同细胞周期的表现。
常染色质(euchromatin):是进行活跃转录的部位,呈疏松的环状,电镜下表现为浅染,易被核酸酶在一些敏感的位点(hypersensitive sites)降解。
分子生物学复习提纲
分子生物学一、名词解释1. 中心法则是指遗传信息从DNA传递给RNA,再从RNA传递给蛋白质,即完成遗传信息的转录和翻译的过程。
也可以从DNA传递给DNA,即完成DNA的复制过程。
2. 半保留复制是亲代的两条链解开,每条链作为新链的模板,从而形成两个子代DNA分子,每一个子代DNA分子包含一条亲代链和一条新合成的链。
3. 重组除了被复制之外,细胞DNA还能发生重排,产生具有不同架设甚至新基因的新分子。
这一性质被泛称为重组。
4. 突变DNA序列中可遗传的改变称为突变。
5. 等位基因同源染色体含有以相同顺序出现的相同基因,这些基因不一定完全相同,他们在序列和功能上可能有少许差异,这些基因被称为等位基因6. 同源染色体在二倍体生物中对等的染色体叫做同源体或同源染色体。
二、选择题1. RNA聚合酶核心酶α、β和β’ 亚基一起构成了RNA聚合酶核心。
2. 碱基比例计算①双链DNA分子中,两互补碱基相等;任意两个不互补碱基之和恒等,各占碱基总数的50%,且不互补碱基之和的比值等于1.②双链DNA分子中A+T/G+C等于其中任何一条链的A+T/G+C③双链DNA分子中,互补的两条链中A+G/T+C互为倒数.即两不互补碱基之和的比值等于另一互补链中这一比值的倒数.④双链的DNA分子中,A+T占整个DNA分子碱基总数的百分比等于其中任何一条链中A+T 占该链碱基总数的比例3. PCR程序设定长的引物,非常容易引起发夹结构,或者其他互补情况,最后形成二聚体,引物CG含量到55%会稳定很多。
PCR聚合酶链式反应,用于体外扩增所需要的目的片段。
①DNA一般为双链。
首先,我们需要把它进行解链,从而产生两条单链,让引物结合上去。
达到复制的目的。
一开始我们设置的高温,刚好能够使得DNA双链解体。
约94~98℃,用3到5min即可。
此反应中我们用的TAQ酶,嗜热杆菌中提取的DNA聚合酶,也是高温启动的,初始的高温适合其开始在体系中的活性,但是约15分钟的高温会导致其半衰期,从而失去活性,使得反应效率降低,所以高温的时间不宜过长。
关于分子生物学总结归纳朱玉贤版
结合着下载的资料复习吧~~~~绪论分子生物学的发展简史Schleiden和Schwann提出“细胞学说”孟德尔提出了“遗传因子”的概念、分离定律、独立分配规律Miescher首次从莱茵河鲑鱼精子中分离出DNAMorgan基因存在于染色体上、连锁遗传规律Avery证明基因就是DNA分子,提出DNA是遗传信息的载体McClintock首次提出转座子或跳跃基因概念Watson和Crick提出DNA双螺旋模型Crick提出了“中心法则”Meselson与Stah用N重同位素证明了DNA复制是一种半保留复制Jacob和Monod提出了着名的乳糖操纵子模型Arber首次发现DNA限制性内切酶的存在Temin和Baltimore发现在病毒中存在以RNA为模板,逆转录成DNA的逆转录酶哪几种经典实验证明了DNA是遗传物质? (Avery等进行的肺炎双球菌转化实验、Hershey利用放射性同位素35S和32P分别标记T2噬菌体的蛋白质外壳和DNA)第二章染色体与DNA第一节染色体一、真核细胞染色体的组成DNA:组蛋白:非组蛋白:RNA = 1:1:(1-1.5):0.05(一)蛋白质(组蛋白、非组蛋白)(1)组蛋白:H1、H2A、H2B、H3、H4功能:①核小体组蛋白(H2A、H2B、H3、H4)作用是将DNA分子盘绕成核小体②不参加核小体组建的组蛋白H1,在构成核小体时起连接作用(2)非组蛋白:包括以DNA为底物的酶、作用于组蛋白的酶、RNA聚合酶等。
常见的有(HMG蛋白、DNA结合蛋白)二、染色质染色体:分裂期由染色质聚缩形成。
染色质:线性复合结构,间期遗传物质存在形式。
常染色质(着色浅)具间期染色质形态特征和着色特征染色质异染色质(着色深)结构性异染色质兼性异染色质(在整个细胞周期内都处于凝集状态)(特定时期处于凝集状态)三、核小体由H2A、H2B、H3、H4各2 分子组成的八聚体和绕在八聚体外的DNA、一分子H1组成。
北大分子生物学课件朱玉贤优秀ppt文档-2024鲜版
分子生物学与其他生物学科的交叉融合
分子生物学与遗传学、细胞生物学、发育生物学等生物学科相互渗透、交叉融合,共同推动 着生命科学的发展。
2024/3/27
分子生物学在医学、农业等领域的应用
分子生物学的研究成果在医学、农业等领域得到广泛应用,为疾病的诊断、治疗和农作物的 改良等提供了有力支持。
2024/3/27
20
DNA损伤的修复机制
直接修复
针对某些简单的DNA损伤,如碱 基错配或脱落,可通过特定的酶
直接进行修复。
2024/3/27
切除修复
对于较复杂的DNA损伤,如嘧啶 二聚体等,需要先将损伤部位切除, 然后通过DNA聚合酶和连接酶的 作用进行修复。
重组修复
在某些情况下,DNA损伤过于严重, 无法直接修复,此时可通过DNA重 组的方式,利用未损伤的同源序列 进行修复。
基因克隆技术应用
用于基因功能研究、基因工程疫苗研制、基因治疗等。
2024/3/27
25
DNA测序技术及应用
DNA测序技术
通过特定的方法和技术,对DNA序列进行测定和分析。
DNA测序技术应用
用于基因组学研究、疾病相关基因鉴定、个性化医疗等。
2024/3/27
26
分子生物学在医学、农业等领域的应用
医学领域应用
2024/3/27
12
RNA的二级结构
01 02
A型RNA双螺旋
RNA的二级结构大多数都是单链,但是可以形成局部双链结构,这些双 链结构是由于碱基配对形成的,常见的A型RNA双螺旋结构中的碱基对 是A-U和G-C。
分子生物学(朱玉贤第四版)复习提纲思维导图 3.生物信息的传递DNA-RNA
-Hale Waihona Puke 0区,pribnow区 -35区,Sextama区
起始子 核心启动子 启动子 转录过程
转录终止
DNA→RNA 概念 模板链、无义链、-链 编码链、有意链、+链 模板DNA RNA聚合酶 物质基础 NTP 蛋白质 Mg2+ 2α 核心酶 原核 RNA聚合酶 Ⅰ 真核 模板识别 转录 原核 Ⅱ Ⅲ 全酶 β β' ω σ rRNA hnRNA、pre-mRNA、mRNA tRNA、5SrRNA TATAAT TTGACA 精确起始 TATA区 真核 上游启动子 CAAT区 GC区 增强子 远端调控序列 沉默子 二元封闭复合物 二元开放复合物 转录起始 遗传信息的传递DNA-RNA 三元开放复合物 模板DNA RNA聚合酶 新生RNA 转录延伸 σ离开 5'→3' 不依赖于ρ因子终止 依赖于ρ因子终止 半衰期短 原核 无帽、无尾 多顺反子 0号帽子 5'加帽 mRNA 3'加尾 真核 GU-AG法则 转录产物加工 剪接 内含子切除,外显子连接 Ⅰ型 自我剪接 Ⅱ型 23S 原核 rRNA 真核 45S 30S 16S 5S 28S 18S 5.8S 化学修饰 tRNA 4.5S切4S Mg2+ 剪接体 1号帽子 2号帽子 poly(A)n U1 U2 U4、U5、U6 自由鸟苷 核酶 m7GpppNpNp m7GpppNmpNp m7GpppNmpNmp GC二重对称、茎环结构 polyA NTP酶,“穷追”模型 起始频率
现代分子生物学(第四版)朱玉贤课件 PPT 第1章 绪论
主要教材与参考书
1.《现代分子生物学》 第3版(2007)朱玉贤、李毅、郑晓峰
2. 现代生物学精要(Instant Notes)系列 《分子生物学》第二版(2002)刘进元 《Molecular Biology》2e P.C.turner,et al 3. Principles of Biochemistry
1994 Gilman Rodbell 美国
1995
Lewis Nusslein-Volhard Wieschaus
美国 德国 美国
建立DNA测序方法
诺贝尔生理医学奖
建立和发展了单克隆抗体技术
诺贝尔生理医学奖
发现可移动癌基因
诺贝尔化学奖 诺贝尔生理医学奖
G蛋白在细胞内信息传导中的作用 诺贝尔生理医学奖
发现了控制果蝇体节发育的基因
诺贝尔生理医学奖
年份
科学家
Doherty 1996 Zinkernagel
国籍
澳 瑞士
1997 Prusiner
美
Furchgott
美
1998
Ignarro Murad
1999 Blobel
美
Carlsson
德
2000 Greengard
预计到2020年,生物医药占全球药品的比重 将超过1/3,生物质能源占世界能源消费的比 重将达5%左右,生物基材料将替代10%-20%的 化学材料。
生物制造、生物能源、生物环保等一 批新兴产业正在快速形成。
据Ernst&Young研究报告,2010年生 物环境、生物工业处理、生物海洋技术世界市 场规模将达到 134亿美元、327亿美元、288 亿美元。
分子生物学课件重点整理__朱玉贤
分子生物学课件重点整理__朱玉贤一, 名词解释冈崎片段:在DNA复制过程中,前导链能连续合成,而滞后链只能是断续的合成5→'3 '的多个短片段,这些不连续的小片段称为冈崎片段。
复制子:从复制原点到终点,组成一个复制单位,叫复制子复制叉:复制时,解链酶等先将DNA的一段双链解开,形成复制点,这个复制点的形状象一个叉子,故称为复制叉前导链:在DNA复制时,合成方向与复制叉移动的方向一致并连续合成的链为前导链;滞后链:合成方向与复制叉移动的方向相反,形成许多不连续的片段,最后再连成一条完整的DNA链为滞后链。
编码链:与mRNA 序列相同的那条DNA链称为编码链;模板链:将另一条根据碱基互补原则指导mRNA合成的DNA链称为模板链。
结构基因:DNA分子上转录出RNA的区段,称为结构基因转录单元:一段从启动子开始至终止子结束的DNA序列。
启动子:指能被RNA聚合酶识别、结合并启动基因转录的一段DNA序列。
TATA区:酶的紧密结合位点(富含AT碱基,利于双链打开)TTGACA区:提供了RNA聚合酶全酶识别的信号终止子:位于基因的末端,在转录终止点之前有一段回文序列(反向重复序列)约6-20bp。
顺式作用元件:影响自身基因表达活性的非编码DNA序列。
例:启动子、增强子、弱化子增强子:在启动区存在的能增强或促进转录的起始的DNA序列。
转录因子:能直接、间接辨认和结合转录上游区段DNA的蛋白质翻译:指将mRNA链上的核甘酸从一个特定的起始位点开始,按每三个核甘酸代表一个氨基酸的原则,依次合成一条多肽链的过程。
沉默子Silencer:某些基因含有负性调节元件——沉默子,当其结合特异蛋白因子时,对基因转录起阻遏作用 . 绝缘子insulator:通常位于启动子与正调控元件(增强子)或负调控因子(为异染色质)之间的一种调控序列。
其明显特征是能够绝缘或保护启动子免受上游增强子的影响。
负调控:在没有调节蛋白质存在时基因是表达的,加入某种调节蛋白质后基因活性就被关闭,这样的控制系统就叫做负控系统。
现代分子生物学(第4版)-课后思考题答案
现代分子生物学(第4版)-课后思考题答案第一章绪论1.染色体具有哪些作为遗传物质的特征?答:①分子结构相对稳定;②能够自我复制,使亲子代之间保持连续性;③能够指导蛋白质的合成,从而控制整个生命过程;④能够产生可遗传的变异。
2.什么是核小体?简述其形成过程。
答:由DNA和组蛋白组成的染色质纤维细丝是许多核小体连成的念珠状结构。
核小体是由H2A,H2B,H3,H4各两个分子生成的八聚体和由大约200bp的DNA组成的。
八聚体在中间,DNA分子盘绕在外,而H1则在核小体外面核小体的形成是染色体中DNA压缩的第一阶段。
在核小体中DN A盘绕组蛋白八聚体核心,从而使分子收缩至原尺寸的1/7。
200b pDNA完全舒展时长约68nm,却被压缩在10nm的核小体中。
核小体只是DNA压缩的第一步。
核小体长链200bp→核酸酶初步处理→核小体单体200bp→核酸酶继续处理→核心颗粒146bp3简述真核生物染色体的组成及组装过程答:组成:蛋白质+核酸。
组装过程:1,首先组蛋白组成盘装八聚体,DNA缠绕其上,成为核小体颗粒,两个颗粒之间经过DNA连接,形成外径10nm的纤维状串珠,称为核小体串珠纤维;2,核小体串珠纤维在酶的作用下形成每圈6个核小体,外径30nm 的螺线管结构;3,螺线管结构再次螺旋化,形成超螺旋结构;4,超螺线管,形成绊环,即线性的螺线管形成的放射状环。
绊环在非组蛋白上缠绕即形成了显微镜下可见的染色体结构。
4. 简述DNA的一,二,三级结构的特征答:DNA一级结构:4种核苷酸的的连接及排列顺序,表示了该DNA分子的化学结构DNA二级结构:指两条多核苷酸链反向平行盘绕所生成的双螺旋结构DNA三级结构:指DNA双螺旋进一步扭曲盘绕所形成的特定空间结构6简述DNA双螺旋结构及其在现代分子生物学发展中的意义(1)DNA双螺旋是由两条互相平行的脱氧核苷酸长链盘绕而成的,多核苷酸的方向由核苷酸间的磷酸二酯键的走向决定,一条是5---3,另一条是3-----5。
分子生物学(朱玉贤第四版)复习纲要
绪论一、名词1、分子生物学 Molecular Biology2、中心法则 Central Dogma二、问答1、简述孟德尔、摩尔根、Avery、沃森和克里克、雅各布和莫诺,尼伦伯格和科拉纳等人对分子生物学发展的贡献2、早期验证遗传物质是DNA的实验有哪些,具体过程是?3、分子生物研究的内容包括哪些?DNA的复制、转录与翻译DNA重组技术基因表达调控研究生物大分子的结构功能研究—结构分子生物学基因(组)、功能基因(组)与生物信息学研究第1章、染色体与DNA第一节、染色体与DNA名词1、DNA双螺旋:两条多核苷酸链反向平行盘绕所生成的双链结构.2、DNA三级结构: DNA 双螺旋进一步扭曲盘绕形成的特定空间结构。
3、核小体:是由核心颗粒(H2A、H2B、H3、H4各两个分子生成的八聚体)和连接区DNA(大约200bpDNA)组成4、卫星DNA:又称随体DNA。
因为真核细胞DNA的一部分是不被转录的异染色质成分,其碱基组成与主体DNA不同,因而可用密度梯度离心。
卫星DNA通常是高度串联重复的DNA5、端粒(Telomere):是位于真核细胞线性染色体末端的特殊结构,由一段重复串联的DNA序列与端粒结合蛋白构成.6、端粒T环结构:端粒形成T环结构使染色体末端封闭起来,免遭破坏.7、单顺反子:真核基因转录产物为单顺反子,即一条mRNA模板只含有一个翻译起始点和一个终止点,因而一个基因编码一条多肽链或RNA链。
8、断裂基因(splitting gene):真核生物结构基因,由若干个和非编码区互相间隔开但又连续镶嵌而成,去除非编码区再连接后,可翻译出由连续组成的完整蛋白质,这些基因称为断裂基因9、间隔基因(Interrupted gene):由于这组基因发生突变时会导致果蝇体节模式发生间隔缺失现象,所以将它们称为间隔基因10、外显子(Exon) 是真核生物基因的一部分,它在剪接(Splicing)后仍会被保存下来,并可在蛋白质生物合成过程中被表达为蛋白质11、内含子(Intron ) 在转录后的加工中,从最初的转录产物除去的内部的核苷酸序列12、单核苷酸多态性 Single Nucleotide Polymorphism,SNP:主要是指在基因组水平上由单个的变异所引起的。
大学分子生物学经典课件第三章-生物信息传递上从DNA到RNA
2024/10/22
38
二、启动子区的识别 RNA聚合酶对启动子的识别是通过与
碱基上的氢键供体和受体在一定距离内互 补,形成氢键而实现的。
启动子的功能既受DNA序列的影响,又 受其构象的影响。
2024/10/22
39
σ70的氨基酸与启动子-10区非模板
链特异碱基的结合
2024/10/22
40
三、RNA聚合酶与启动子区的结合
2024/10/22
11
TFs 帮助RNA聚合酶识别启动子。TFs ( 转录因子)必须先与DNA形成复合物,帮 助RNA聚合酶定位到转录起始的位点。 RNA聚合酶和转录因子在DNA上的定位形成 前起始复合物,由于转录因子的作用复合物 由封闭型转换成开放型。
2024/10/22
12
转录的延伸
正常的延伸中,新的磷酸二酯键在特定的活性 位点进行;
整合进最初两个核苷酸,形成一个 磷酸二酯键,形成三重复合体;
在酶不需要移动时,即可加入9个核 苷酸,但在加入核苷酸过程中,随 时可能释放RNA;
起始成功后,释放出σ 因子。
核心酶、DNA和新生RNA组成转录 延伸复合物。
2024/10/22
28
2024/10/22
RNA聚合酶结合在DNA上时, 其长度会发生变化
二元闭合复合物
二元开链复合物
开链区一般在-9 ~ +13,而酶与启动子结 合的区域主要在其上游。
2024/10/22
41
四、-10区和-35区的最佳距离
-10与-35区的距离在16-19 bp之间,否 则会降低启动子的活性。即一旦-10与-35 区间的超螺旋结构发生改变,RNA聚合酶 就难以保持正确的取向。
分子生物学(朱玉贤第四版)复习提纲思维导图 2.染色质与DNA
H1 蛋白质 组蛋白 H2A H2B H3 H4 基因组 概念: C值 C值矛盾 不重复序列 结构基因 rRNA DNA片段重复 染色质(间期)染色体(分裂期) 高度重复序列 结构简练 DNA 原核 转录单元 中度重复序列 tRNA 组蛋白基因 卫星DNA 各2个,八聚体组蛋白核心+H1+200bpDNA 核小体 螺线管 超螺旋 染色单体
一条DNA来自亲本,另一条链新合成 前导链
Ⅰ
DNA聚合酶 Ⅱ Ⅲ 多复制起点,ARS S期 真核生物复制特点
5'→3'聚合酶、3'→5'外切、5'→3'外切
5'→3'聚合酶、3'→5'外切 5'→3'聚合酶、3'→5'外切
复制叉移动速度50bp/s,慢 聚合酶15种以上,αβγδε
端粒酶、端粒
dNTP、Mg2+、模板链、引物、方向5'→3'
重叠基因
断裂基因 端粒 基因组特点:
DNA多态性
真核 多种顺式作用元件 单顺反子 基因组大 重复序列
少量RNA
一级结构
A,T,G,C排列顺序
3',5'-磷酸二酯键
右手螺旋 双螺旋 二级结构 DNA的结构 氢键 左手螺旋 断裂-DNA变性
A-DNA
B-DNA
Z-DNA 增色效应 减色效应 Tm
重新生成-DNA复性 正超 超螺旋 高级结构 拓扑异构酶 负超
复制子 复制叉 复制起点ori 原核:单起点双方向 复制方向 真核:多起点双方向 复制概念 复制速度 θ型 环形DNA 复制方式 D型 线性DNA 半保留复制 复制特点 半不连续复制 后随链 冈琦片段 ori DNA的复制 起始 解旋 引发 复制过程 延伸 原核生物复制特点 终止 Tus蛋白 5'→3' dNTP DNA聚合酶Ⅲ、滑动夹、RNA酶、DNA聚合酶Ⅰ、DNA连接酶 Ter 245bp A、T DNA解旋酶、拓扑异构酶、SSB 引发酶 RNA引物 端粒、端粒酶 滚环
分子生物学课件重点整理朱玉贤
第二章染色体与DNA染色体(chromosome)是细胞在有丝分裂时遗传物质存在的特定形式,是间期细胞染色质结构紧密包装的结果。
真核生物的染色体在细胞生活周期的大部分时间里都是以染色质(chromatin)的形式存在的。
染色质是一种纤维状结构,叫做染色质丝,它是由最基本的单位—核小体(nucleosome)成串排列而成的。
原核生物(prokaryote) :DNA形成一系列的环状附着在非组蛋白上形成类核。
染色体由DNA和蛋白质组成。
蛋白质由非组蛋白和组蛋白(H1,H2A,H2B,H3,H4)DNA和组蛋白构成核小体。
组蛋白的一般特性:P24①进化上的保守性②无组织特异性③肽链氨基酸分布的不对称性:碱性氨基酸集中分布在N端的半条链上。
④组蛋白的可修饰性:甲基化、乙基化、磷酸化及ADP核糖基化等。
⑤H5组蛋白的特殊性:富含赖氨酸(24%)(鸟类、鱼类及两栖类红细胞染色体不含H1而带有H5)组蛋白的可修饰性在细胞周期特定时间可发生甲基化、乙酰化、磷酸化和ADP核糖基化等。
H3、H4修饰作用较普遍,H2B有乙酰化作用、H1有磷酸化作用。
所有这些修饰作用都有一个共同的特点,即降低组蛋白所携带的正电荷。
这些组蛋白修饰的意义:一是改变染色体的结构,直接影响转录活性;二是核小体表面发生改变,使其他调控蛋白易于和染色质相互接触,从而间接影响转录活性。
2、DNA1) DNA的变性和复性■变性(Denaturation) DNA双链的氢键断裂,最后完全变成单链的过程称为变性。
■增色效应(Hyperchromatic effect)在变性过程中,260nm紫外线吸收值先缓慢上升,当达到某一温度时骤然上升,称为增色效应。
■融解温度(Melting temperature ,Tm ) 变性过程紫外线吸收值增加的中点称为融解温度。
生理条件下为85-95℃影响因素:G+C含量,pH值,离子强度,尿素,甲酰胺等■复性(Renaturation)热变性的DNA缓慢冷却,单链恢复成双链。
现代分子生物学要点总结(朱玉贤版)
现代分子生物学要点总结(朱玉贤版)一、绪论两个经典实验1、肺炎球菌在老鼠体内的毒性实验:先将光滑型致病菌(S型)烧煮杀活性以后、以及活的粗糙型细菌(R型)分别侵染小鼠发现这些细菌自然丧失了治病能力;当他们将经烧煮杀死的S型细菌和活的R型细菌混合再感染小鼠时,实验小鼠每次都死亡。
解剖死鼠,发现有大量活的S型细菌。
实验表明,死细菌DNA进行了可遗传的转化,从而导致小鼠死亡。
2、T2噬菌体感染大肠杆菌:当细菌培养基中分别带有35S或32P标记的氨基酸或核苷酸,子代噬菌体就相应含有35S标记的蛋白质或32P标记的核酸。
分别用这些噬菌体感染没有放射性标记的细菌,经过1~2个噬菌体DNA复制周期后进行检测,子代噬菌体中几乎不含带35S标记的蛋白质,但含30%以上的32P标记。
说明在噬菌体传代过程中发挥作用的可能是DNA而不是蛋白质。
基因的概念:基因是产生一条多肽链或功能RNA分子所必需的全部核苷酸序列。
二、染色体与DNA嘌呤嘧啶腺嘌呤鸟嘌呤胞嘧啶尿嘧啶胸腺嘧啶染色体性质:1、分子结构相对稳定;2、能够自我复制,使亲、子代之间保持连续性;3、能指导蛋白质的合成,从而控制生命过程;4、能产生可遗传的变异。
组蛋白一般特性:1、进化上极端保守,特别是H3、H4;2、无组织特异性;3、肽链上氨基酸分布的不对称性;4、存在较普遍的修饰作用;5、富含赖氨酸的组蛋白H5非组蛋白:HMG蛋白;DNA结合蛋白;A24非组蛋白真核生物基因组DNA真核细胞基因组最大特点是它含有大量的重复序列,而且功能DNA序列大多被不编码蛋白质的非功能蛋白质所隔开。
人们把一种生物单倍体基因组DNA的总量称为C值,在真核生物中C值一般是随着生物进化而增加的,高等生物的C值一般大于低等动物,但某些两栖类的C值甚至比哺乳动物还大,这就是著名的C值反常现象。
真核细胞DNA序列可被分为3类:不重复序列、中度重复序列、高度重复序列。
真核生物基因组的特点:1、真核生物基因组庞大,一般都远大于原核生物的基因组;2、真核基因组存在大量的的重复序列;3、真核基因组的大部分为非编码序列,占整个基因组序列的90%以上,这是真核生物与细菌和病毒之间的最主要的区别;4、真核基因组的转录产物为单顺反之;5、真核基因组是断裂基因,有内含子结构;6、真核基因组存在大量的顺式元件,包括启动子、增强子、沉默子等;7、真核基因组中存在大量的DNA多态性;8、真核基因组具有端粒结构。
现代分子生物学第四章
CGU, ACG and CGU
24
wobble hypothesis
1966年,Crick提出摆动假说 (wobble hypothesis),解释 了反密码子中某些稀有成分 (如I,肌苷酸)的配对,以及 许多氨基酸有2个以上密码子 的问题。
• 前两对严格遵守碱基配对原则。
• 第三对碱基有一定的自由度,可以“摆动”,因而
47
氨酰-tRNA合成酶 aminonacyl-tRNA synthetase (ARS )
30
tRNA一级结构(primary structure)
• 长度: 60-95 nt (commonly 76) • 残基: 15 个invariant(恒定) 和 8个 semi-
invariant(半恒定). invariant 和 semi-variant 核苷 的位置在二级结构和三级结构中起着重要的作用。
43
1. 起始tRNA和延伸tRNA • 起始tRNA: 能特异性识别mRNA模板上起 始密码子的tRNA; • 延伸tRNA:其他tRNA统称为延伸tRNA。
44
•真核生物起始tRNA携带甲硫氨酸(Met), •原核生物起始tRNA携带甲酰甲硫氨酸(fMet), •原核生物中Met-tRNAfMet必须首先甲酰化生 成fMet-tRNAfMet才能参与蛋白质的生物合成。
遗传密码: mRNA上每3个核苷酸翻译成多肽链上 的一个氨基酸,这3个核苷酸就称为一 个密码子(三联子密码)。
5
4. 1. 1 三联子密码及其破译
因为mRNA中只有4种核苷酸,蛋白质中有20 种氨基酸:
• 以一种核苷酸代表一种氨基酸是不可能的。 • 若以两种核苷酸作为一个氨基酸的密码(二