知识讲解-函数及其表示方法-提高

知识讲解-函数及其表示方法-提高
知识讲解-函数及其表示方法-提高

函数及其表示方法

编稿:丁会敏审稿:王静伟

【学习目标】

(1)会用集合与对应的语言刻画函数;会求一些简单函数的定义域和值域,初步掌握换元法的简单运用.

(2)能正确认识和使用函数的三种表示法:解析法,列表法和图象法.了解每种方法的优点.在实际情境中,会根据不同的需要选择恰当的方法表示函数;

(3)求简单分段函数的解析式;了解分段函数及其简单应用.

【要点梳理】

要点一、函数的概念

1.函数的定义

设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.

记作:y=f(x),x∈A.

其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.

要点诠释:

(1)A、B集合的非空性;(2)对应关系的存在性、唯一性、确定性;(3)A中元素的无剩余性;(4)B中元素的可剩余性。

2.构成函数的三要素:定义域、对应关系和值域

①构成函数的三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全—致,即称这两个函数相等(或为同一函数);

②两个函数相等当且仅当它们的定义域和对应关系完全—致,而与表示自变量和函数值的字母无关.

3.区间的概念

(1)区间的分类:开区间、闭区间、半开半闭区间;

(2)无穷区间;

(3)区间的数轴表示.

区间表示:

x a x b a b

<<= {x|a≤x≤b}=[a,b];

{|}(,);

(]

x a x b a b

{|},

≤<=;

x a x b a b

{|},

<≤=;[)

(][)

≤=∞≤=+∞.

{|}-,; {|},

x x b b x a x a

要点二、函数的表示法

1.函数的三种表示方法:

解析法:用数学表达式表示两个变量之间的对应关系.优点:简明,给自变量求函数值.

图象法:用图象表示两个变量之间的对应关系.优点:直观形象,反应变化趋势.

列表法:列出表格来表示两个变量之间的对应关系.优点:不需计算就可看出函数值.

2.分段函数:

分段函数的解析式不能写成几个不同的方程,而应写函数几种不同的表达式并用个左大括号括起来,并分别注明各部分的自变量的取值情况.

要点三、映射与函数

1.映射定义:

设A、B是两个非空集合,如果按照某个对应法则f,对于集合A中的任何一个元素,在集合B中都有

唯一的元素和它对应,这样的对应叫做从A到B的映射;记为f:A→B.

象与原象:如果给定一个从集合A到集合B的映射,那么A中的元素a对应的B中的元素b叫做a的象,a叫做b的原象.

要点诠释:

(1)A中的每一个元素都有象,且唯一;

(2)B中的元素未必有原象,即使有,也未必唯一;

(3)a的象记为f(a).

2.函数与映射的区别与联系:

设A、B是两个非空数集,若f:A→B是从集合A到集合B的映射,这个映射叫做从集合A到集合B的函数,记为y=f(x).

要点诠释:

(1)函数一定是映射,映射不一定是函数;

(2)函数三要素:定义域、值域、对应法则;

(3)B中的元素未必有原象,即使有原象,也未必唯一;

(4)原象集合=定义域,值域=象集合.

3.函数定义域的求法

(1)确定函数定义域的原则

①当函数是以解析式的形式给出时,其定义域就是使函数解析式有意义的自变量的取值的集合.具体地讲,就是考虑分母不为零,偶次根号的被开方数、式大于或等于零,零次幂的底数不为零以及我们在后面学习时碰到的所有有意义的限制条件.

②当函数是由实际问题给出时,其定义域不仅要考虑使其解析式有意义,还要有实际意义.

③当函数用表格给出时,函数的定义域是指表格中实数x的集合。

(2)抽象函数定义域的确定

f x表示的函数,而没有具体解析式的函数类型,求抽象函数的定义域问题,关

所谓抽象函数是指用()

键是注意对应法则。在同一对应法则的作用下,不论接受法则的对象是什么字母或代数式,其制约条件是一致的,都在同一取值范围内。

要点诠释:

求函数的定义域,一般是转化为解不等式或不等式组的问题,注意定义域是一个集合,其结果必须用集合或区间来表示.

4.函数值域的求法

实际上求函数的值域是个比较复杂的问题,虽然给定了函数的定义域及其对应法则以后,值域就完全确定了,但求值域还是特别要注意讲究方法,常用的方法有:

观察法:通过对函数解析式的简单变形,利用熟知的基本函数的值域,或利用函数的图象的“最高点”和“最低点”,观察求得函数的值域;

配方法:对二次函数型的解析式可先进行配方,在充分注意到自变量取值范围的情况下,利用求二次函数的值域方法求函数的值域;

判别式法:将函数视为关于自变量的二次方程,利用判别式求函数值的范围,常用于一些“分式”函数等;此外,使用此方法要特别注意自变量的取值范围;

换元法:通过对函数的解析式进行适当换元,将复杂的函数化归为几个简单的函数,从而利用基本函数的取值范围来求函数的值域.

求函数的值域没有通用的方法和固定的模式,除了上述常用方法外,还有最值法、数形结合法等.总之,求函数的值域关键是重视对应法则的作用,还要特别注意定义域对值域的制约.

【典型例题】

类型一、函数的概念

例1.已知集合{}1,2,3A =,{}4,5B =,则从A 到B 的函数()f x 有个.

【答案】8

,利用列表方法确定函数的个数.

【总结升华】函数的定义(特别是它的“取元任意性,取值唯一性”)是解决某些问题的关键. 举一反三:

【变式1】下列各问的对应关系是否是给出的实数集R 上的一个函数?为什么? (1):f x →

2

,0,x x R x

≠∈; (2):g x →y ,2,,y x x N y R =∈∈;

(3):h *A B N ==,对任意的,x A ∈|3|x x →-.

【解析】(1)对于任意一个非零实数2,x x

被x 唯一确定,所以当0x ≠时,x →2

x

是函数,可表示为2

()(0)f x x x

=

≠. (2)当4x =时,24y =,得2y =或2y =-,不是有唯一值和x 对应,所以x →y (2y x =)不是函数. (3)不是,因为当3x =时,在集合B 中不存在数值与之对应. 【高清课程:函数的概念与定义域 356673 例2】

例2.下列函数f (x )与g (x )是否表示同一个函数,为什么? (1)0

)1x ()x (f -=;1)x (g = (2)x )x (f =;2x )x (g =

(3)2

x )x (f =;2

)1x ()x (g += (4)|x |)x (f =;2x )x (g =

【思路点拨】对于根式、分式、绝对值式,要先化简再判断,在化简时要注意等价变形,否则等号不成立.

【答案】(1)不是(2)不是(3)不是(4)是 【解析】

(1)()()f x g x 与的定义域不同,前者是{}|1,x x x R ≠∈,后者是{}|0,x x x R ≠∈,因此是不同的函数;

(2)()||g x x =,因此()()f x g x 与的对应关系不同,是不同的函数;

(3)()()f x g x 与的对应关系不同,因此是不相同的函数; (4)()()f x g x 与的定义域相同,对应关系相同,是同一函数.

【总结升华】函数概念含有三个要素,即定义域,值域和对应法则f ,其中核心是对应法则f ,它是函数关系的本质特征.只有当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一函数,换言之就是:

(1)定义域不同,两个函数也就不同; (2)对应法则不同,两个函数也是不同的.

(3)即使定义域和值域都分别相同的两个函数,它们也不一定是同一函数,因为函数的定义域和值域不能唯一地确定函数的对应法则.

举一反三:

【变式1】判断下列命题的真假

(1)y=x-1与1

x 1

x y 2+-=是同一函数;

(2)2x y =

与y=|x|是同一函数;

(3)2

33)x (y )x (y ==与是同一函数;

(4)?????<+≥-=)

0x (x x )0x (x x )x (f 22与g(x)=x 2

-|x|是同一函数.

【解析】从函数的定义及三要素入手判断是否是同一函数,有(1)、(3)是假命题,(2)、(4)是真命题.

类型二、函数定义域的求法

例3.求下列函数的定义域(用区间表示). (1)2

-1

()-3x f x x =

(2)()f x =

(3)()f x =. 【思路点拨】由定义域概念可知定义域是使函数有意义的自变量的取值范围. (1)是分式,只要分母不

为0即可;(2)是二次根式,需根式有意义;(3)只要使得根式和分式都有意义即可.

【答案】(1

)(,()-∞+∞U U ;(2)8

,3??+∞????

;(3)(]6,2-. 【解析】 (1)

21()3

x f x x -=

-的定义域为x 2

-3

≠0

(,()x ∴≠∴-∞+∞U U 定义域为:;

(2)88()-80,,33f x x x ??

=≥≥

∴+∞????

3得,定义域为;

(3)(]202() 6,2

60-6

x x f x x x -≥≤??=∴-??+>>??得定义域为. 【总结升华】使解析式有意义的常见形式有①分式分母不为零;②偶次根式中,被开方数非负.当函数

解析式是由多个式子构成时,要使这多个式子对同一个自变量x 有意义,必须取使得各式有意义的各个不等式的解集的交集,因此,要列不等式组求解.

举一反三:

【变式1】求下列函数的定义域(用区间表示):

(1)3f (x)|x 1|2=

--;(2)1

f (x)x 1

=-;

(3)()f x =【答案】(1)(-∞,-1)∪(-1,3)∪(3,+∞);(2)[)3,1(1,)-?+∞;(3)[]0,1. 【解析】

(1)当|x-1|-2=0,即x=-1或x=3时,

3

|x 1|2

--无意义,当|x-1|-2≠0,即x ≠-1且x ≠3时,分式

有意义,所以函数的定义域是(-∞,-1)∪(-1,3)∪(3,+∞);

(2)要使函数有意义,须使x 10

x 3x 1x 30-≠?≥-≠?+≥?

,即且,所以函数的定义域是[)3,1(1,)-?+∞;

(3)要使函数有意义,须使1x 0,

x 0.

-≥??

≥?,所以函数的定义域为[]0,1.

【总结升华】小结几类函数的定义域:

(1)如果f(x)是整式,那么函数的定义域是实数集R ;

(2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合;

(3)如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合;

(4)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合;(即求各集合的交集)

(5)满足实际问题有意义.

例4.(1)已知函数()f x 的定义域为[1,2],求函数(21)y f x =+的定义域; (2)已知函数(21)y f x =+的定义域[1,2],求函数()f x 的定义域;

(3)已知函数(21)y f x =+的定义域[1,2],求函数(21)y f x =-的定义域.

【思路点拨】(1)若()f x 的定义域为a x b ≤≤,则在[]()f g x 中,()a g x b ≤≤,从中解得x 的取值范围即为[]()f g x 的定义域.(2)若[]()f g x 的定义域为m x n ≤≤,则由m x n ≤≤确定的

()g x 的范围即为()f x 的定义域.

【答案】(1)[1,12

];(2)[3,5];(3)[2,3].

【解析】(1)设21x t +=,由于函数()y f t =定义域为[1,2],,故12t ≤≤,即1212x ≤+≤,解得1

02

x ≤≤

所以函数(21)y f x =+的定义域为[1,12

].

(2)设21x t +=,因为12x ≤≤,所以3215x ≤+≤,即35t ≤≤,函数()y f t =的定义域为[3,5] .由此得函数()y f x =的定义域为[3,5] .

(3)因为函数(21)y f x =+的定义域为[1,2],即12x ≤≤,所以3215x ≤+≤,所以函数()y f x =的定义域为[3,5],由3215x ≤-≤,得23x ≤≤,所以函数(21)y f x =-的定义域为[2,3] .

【总结升华】求抽象函数的定义域,一要理解定义域的含义是x 的取值范围;二要运用整体思想,也就是在同一对应关系f 下括号内的范围是一样的.

举一反三:

【变式1】已知(1)f x +的定义域为[)2,3-,求1

(2)f x

+的定义域. 【答案】11,,32????

-∞+∞ ??????

U

【解析】Q (1)f x +的定义域为[)2,3-,∴23x -≤<,∴114x -≤+<,∴1

124x

-≤+<,解得:12x >或

13x ≤-,所以1(2)f x +的定义域为11,,32????

-∞+∞ ??????

U .

例5.已知函数

y =

的定义域为R ,求实数a 的取值范围.

【思路点拨】确定a 的取值范围,使之对任意x R ∈,都有2430ax ax ++≠,即方程2430ax ax ++=无

实根.

【答案】30,4??

????

【解析】

当0a =时,2430ax ax ++≠对任意x R ∈恒成立.

当0a ≠时,要使2430ax ax ++≠恒成立,即方程2430ax ax ++=无实根.只需判别式

2(4)124(43)0a a a a ?=-=-<,于是304

a <<

. 综上,a 的取值范围是30,4??

????

.

【总结升华】(1)函数有意义,分母2430ax ax ++≠恒成立,转化为0a ≠时,二次方程2430ax ax ++=无实根是关键一步.(2)由于判别式是对二次方程的实系数而言,所以这里应分0a =、0a ≠两种情况讨论.(3)本题是求定义域的逆向问题,即已知函数的定义域求解析式中所含字母的取值范围.

类型三、求函数的值及值域

例6. 已知f(x)=2x 2

-3x-25,g(x)=2x-5,求:

(1)f(2),g(2); (2)f(g(2)),g(f(2)); (3)f(g(x)),g(f(x))

【思路点拨】根据函数符号的意义,可以知道f(g(2))表示的是函数f(x)在x=g(2)处的函数值,其它同理可得.

【答案】(1)-23,-1;(2)-20,-51;(3)8x 2-46x+40,4x 2

-6x-55. 【解析】

(1)f(2)=2×22

-3×2-25=-23;g(2)=2×2-5=-1;

(2)f(g(2))=f(-1)=2×(-1)2

-3×(-1)-25=-20;g(f(2))=g(-23)=2×(-23)-5=-51;

(3)f(g(x))=f(2x-5)=2×(2x-5)2-3×(2x-5)-25=8x 2

-46x+40;

g(f(x))=g(2x 2-3x-25)=2×(2x 2-3x-25)-5=4x 2

-6x-55.

【总结升华】求函数值时,遇到本例题中(2)(3)(这种类型的函数称为复合函数,一般有里层函数与外层函数之分,如f(g(x)),里层函数就是g(x),外层函数就是f(x),其对应关系可以理解为

()(())g f x g x f g x ??→??→,类似的g(f(x))为()(())f g x f x g f x ??→??→,类似的函数,需要先求

出最里层的函数值,再求出倒数第二层,直到最后求出最终结果.

7. 求值域(用区间表示):(1)y=x 2

-2x+4,①[]4,1x ∈--;②[]2,3x ∈-;

2-2

(2)()-23; (3)()3

x f x x x f x x =+=

+. 【答案】(1)[3,12];(2))

2,?+∞?

;(3)(-∞,1)∪(1,+∞).

【解析】(1)法一:配方法求值域.

2224(1)3y x x x =-+=-+,①当[]4,1x ∈--时,max min 28,7y y ==,∴值域为[7,28];②当

[]2,3x ∈-时,max min 12,3y y ==,∴值域为[3,12].

法二:图象法求值域

二次函数图象(如下图)的开口向上,对称轴为1x =,所以函数在区间(],1-∞上单调递减,在区间

[)1,+∞上单调递增.所以①当[]4,1x ∈--时,值域为[7,28];②当[]2,3x ∈-时,值域为[3,12].

(2))

22-23(-1)22,2,y x x x ?=+=+≥∴+∞?值域为;

(3)-23-555

1-,0,13333

x x y y x x x x +=

==≠∴≠++++Q ,∴函数的值域为(-∞,1)∪(1,+∞). 【总结升华】(1)求函数的值域问题关键是将解析式作变形,通过观察或利用熟知的基本函数的值域,

逐步推出函数的值域.

(2)求函数的值域没有固定的方法和模式,要靠自己经验的积累,掌握规律.求函数的值域不但要重视对应关系(解析式)的作用,而且要注意定义域对值域的制约作用.别忘了,函数的图象在求函数的值域中也起着十分重要的作用.

举一反三:

【变式1】 求下列函数的值域:

(1)1y x =;(2)213

x y x +=-;(3)22

11x y x -=+;(4)2

54y x x =+-. 【答案】(1)[)1,+∞;(2){}|2y y ≠;(3)(]1,1-;(4)[]0,3.

【解析】(1)0,11≥≥Q ,即所求函数的值域为[)1,+∞;

(2)213x y x +=

-2672(3)772333x x x x x -+-+===+---,7

03

x ≠-Q ,2y ∴≠,即函数的值域为

{}|2y y ≠;

(3)2211x y x -=+2

2

11x

=-++ Q 函数的定义域为R

22211,021x x ∴+≥∴<≤+,2

2

1111x

∴-<-+≤+,(]1,1y ∴∈-,即函数的值域为(]1,1-.

(4)y =Q

20(2)99x ≤--+≤Q ∴所求函数的值域为[]0,3.

类型四、映射与函数

【高清课程:函数的概念与定义域 356673 例1】

例8. 判断下列对应哪些是从集合A 到集合B 的映射,哪些是从集合A 到集合B 的函数?

(1)A={直角坐标平面上的点},B={(x ,y )|,x R y R ∈∈},对应法则是:A 中的点与B 中的(x ,y )对应.

(2)A={平面内的三角形},B={平面内的圆},对应法则是:作三角形的外接圆; (3)A=N ,B={0,1},对应法则是:除以2的余数;

(4)A={0,1,2},B={4,1,0},对应法则是f :2x y x =→

(5)A={0,1,2},B={0,1,12

},对应法则是f :x 1y x =→ 【思路点拨】根据映射定义分析是否满足“A 中任意”和“B 中唯一”.

【解析】 (1)是映射,不是函数,因为集合A 、B 不是数集,是点集;

(2)是映射,集合A 中的任意一个元素(三角形),在集合B 中都有唯一的元素(该三角形的外接圆)与之对应,这是因为不共线的三点可以确定一个圆;不是函数.

(3)是映射,也是函数,函数解析式为0,(2)

()1,(21)

x n f x x n =?=?

=+?.

(4)是映射,也是函数.

(5)对于集合A 中的元素“0”,由对应法则“取倒数”后,在集合B 中没有元素与它对应,所以不是映射,也不是函数.

【总结升华】判断一个对应是不是映射和函数,要根据映射和函数的定义去判断,函数一定是映射,反过来,映射不一定是函数,从数集到数集的映射才是函数.

举一反三:

【变式1】下列对应哪些是从A 到B 的映射?是从A 到B 的一一映射吗?是从A 到B 的函数吗?

(1)A=N ,B={1,-1},f :x →y=(-1)x

; (2)A=N ,B=N +,f :x →y=|x-3|; (3)A=R ,B=R ,;x

1x

1y x :f -+=

→ (4)A=Z ,B=N ,f :x →y=|x|; (5)A=N ,B=Z ,f :x →y=|x|; (6)A=N ,B=N ,f :x →y=|x|.

【答案】(1)、(4)、(5)、(6)是从A 到B 的映射也是从A 到B 的函数,但只有(6)是从A 到B 的一一映射;(2)、(3)不是从A 到B 的映射也不是从A 到B 的函数.

类型五、函数解析式的求法 例9. 求函数的解析式

(1)已知()f x 是二次函数,且(0)2,(1)()1f f x f x x =+-=-,求()f x ; (2)若f(2x-1)=x 2

,求f(x);

(3)已知3()2()3f x f x x +-=+,求()f x . 【答案】(1)213

()222

f x x x =

-+;(2)21()(

)2

x f x +=;

(3)3

()5f x x =+. 【解析】求函数的表达式可由两种途径.

(1)设2()(0)f x ax bx c a =++≠,由(0)2,f =得2c =

由(1)()1f x f x x +-=-,得恒等式2ax+a+b=x-1,得1

3

,22

a b ==-

,故所求函数的解析式为213

()222

f x x x =

-+. (2) ∵f(2x-1)=x 2

,∴令t=2x-1,则1

2

t x +=

22

11()(

),()()22

t x f t f x ++∴=∴= (3)因为3()2()3f x f x x +-=+,①

x 用x -代替得3()2()3f x f x x -+=-+,② 由①②消去()f x -,得3()5

f x x =+.

【总结升华】(1)解析式类型已知的,如本例(1),一般用待定系数法,对于二次函数问题要注意对一般式2y ax bx c =++,顶点式2()y a x h k =-+和两点式12()()y a x x x x =--的选择.

(2)已知[()]f g x 求()f x 的问题,方法一是用配凑法;方法二是用换元法,如本例(2).

(3)函数方程问题,需建立关于()f x 的方程组,如本例(3),若函数方程中同时出现()f x 、1()f x

,则一般x 用

1

x

代之,构造另一个方程. 举一反三:

【变式1】 已知f(x+1)=x 2

+4x+2,求f(x).

【答案】f(x)=x 2

+2x-1.

【解析】(1)(法1)f(x+1)=x 2

+4x+2=(x+1)2

+2(x+1)-1

∴f(x)=x 2

+2x-1;

(法2)令x+1=t ,∴x=t-1,∴f(t)=(t-1)2+4(t-1)+2=t 2

+2t-1

∴f(x)=x 2

+2x-1;

(法3)设f(x)=ax 2

+bx+c 则

f(x+1)=a(x+1)2

+b(x+1)+c

∴a(x+1)2+b(x+1)+c=x 2

+4x+2

1x 2x )x (f 1c 2b 1a 2c b a 4b a 21a 2-+=∴??

?

??-===??????=++=+=∴;

【总结升华】求函数解析式常用方法:

(1)换元法;(2)配凑法;(3)定义法;(4)待定系数法等.注意:用换元法解求对应法则问题时,要关注新变元的范围.

类型六、函数的图象

例10.作出下列函数的图象.

(1)1({21012})y x x =-∈--,,,,;

(2)211

x y

x +

=-;(3)2

|2|1y x x =-+. 【思路点拨】先把要画的函数图象进行变形,依据所学习过的基本函数图象,通过函数图象的平移、对称和翻折得到要求的图象。

【解析】(1){21012}x ∈--Q ,,,,,∴图象为一条直线上5个孤立的点;如下图(1).

(2)213

211x y x x +=

=+

--Q , ∴先作函数3y x =的图象,把它向右平移一个单位得到函数3

1y x =-的图象,再把它向上平移两个单

位便得到函数21

1

x y x +=-的图象.如下图(2).

(3)先作2

2y x x =-的图象,保留x 轴上方的图象,再把x 轴下方的图象对称翻到x 轴上方.再把它向上平移1个单位,即得到2

|2|1y x x =-+的图象,如下图所示(3).

类型七、分段函数 例11. 设函数3,100,

()[(5)],100,x x f x f f x x -≥?=?

+

求(89)f .

【思路点拨】这是分段函数与复合函数式的变换问题,需要反复进行数值代换. 【答案】:98 【解析】

(89)((94))(((99)))f f f f f f == =((((104))))f f f f =(((101)))f f f =((98))(((103)))f f f f f ==((100))f f =(97)((102))(99)f f f f == =

((104))(101)98f f f ==.

【总结升华】分段函数问题往往需要进行分类讨论,根据分段函数在其定义域内每段的解析式不同,然后分别解决,即分段函数问题,分段解决.

例12.如图所示,等腰梯形ABCD 的两底分别为

02,,45AD a BC a BAD ==∠=,

作直线MN AD ⊥交AD 于M ,交折线ABCD 于N .设,AM x =试将梯形ABCD 位于直线MN 左侧的面积y 表示为x 的

函数.

【思路点拨】此题是应用型问题,要求函数的表达式()y f x =,这样就需准确揭示,x y 之间的变化关系.依题意,可知随着直线MN 的移动,点N 分别落在梯形ABCD 的边AB 、BC 及CD 边上,有三种情况,所以需要分类解答.

【答案】2

22

21(0)221

3()28221532(2)242a x x a a y ax x a x ax a a x a ?≤≤??

?=-<≤??

?-+-<≤??

【解析】

作BH AD ⊥,H 为垂足,CG AD ⊥,G 为垂足,依题意,则有03,,452

2

a

AH AG a A D ==∠=∠= (1)当M 位于点H 的左侧时,N AB ∈,

由于0,45,AM x A MN x =∠=∴=

21(0)22

AMN a y S x x ?∴==

≤≤ (2)当M

位于点H 、G 之间时,由于

,,,22

a a AM x AH BN x ==

=- 2113

()()2222822

AMNB

a a a a y S x x ax x a ??∴==?+-=-<≤????直角梯形 (3)当M 位于点G 的右侧时,

由于,2,AM x DM MN a x ===-

211

(2)(2)222

ABCD a y S S a a a x ?∴=-=

?+--MDN 梯形 =22231

(44)42

a a ax x --+

=221532(2)242

x ax a a x a -+-<≤

综上有2

22

21(0)221

3()28221532(2)242a x x a a y ax x a x ax a a x a ?≤≤??

?=-<≤??

?-+-<≤??

【总结升华】(1)由实际问题决定的分段函数,要写出它的解析式,就是根据实际问题需要分成几类,就分成几段,求解析式时,先分段分别求出它的解析式,在综合在一起即可.

(2)注意分段函数的解析式,最后要把各段综合在一起写成一个函数,分段函数是一个函数,不要把它误认为是几个函数.

举一反三:

【变式1】如图,在边长为4的正方形ABCD 的边上有一点P ,沿着边线BCDA 由B (起点)向A (终点)运动.设点P 运动的路程为x ,APB ?的面积为y . (1)求y 与x 之间的函数关系式; (2)画出()y f x =的图象.

【解析】(1)2,04,8,48,224,812.x x y x x x ≤≤??

=<≤??-+<≤?

(2)当P 点在BC 边上运动时,即当04x ≤≤时,1

42;2

y x x =?= 当P 点在CD 边上运动时,即当48x <≤时,1

448;2y =

??= 当P 点在DA 边上运动时,即当812x <≤时,1

4(12)2(12)2242

y x x x =??-=-=-+,故为分段

函数.

专题13幂函数知识点归纳

3 幂函数知识点归纳 一、 幂函数定义:对于形如:() x f x α=,其中α为常数.叫做幂函数 定义说明: 1、 定义具有严格性,x α 系数必须是1,底数必须是x 2、 α取值是R . 3、 《考试标准》要求掌握α=1、2、3、?、-1五种情况 二、 幂函数的图像 幂函数的图像是由α决定的,可分为五类: 1)1α>时图像是竖立的抛物线.例如:()2x f x = 2)=1α时图像是一条直线.即() x f x = 3)01α<< 时图像是横卧的抛物线.例如()1 2 x f x = 4)=0α时图像是除去(0,1)的一条直线.即() 0x f x =(0x ≠) 5)0α<时图像是双曲线(可能一支).例如 ()-1 x f x = 具备规律: ①在第一象限内x=1的右侧:指数越大,图像相对位置越高(指大图高) ②幂指数互为倒数时,图像关于y=x 对称 ③结合以上规律,要求会做出任意一种幂函数图像 练习:做出下列函数的图像: 1、1α> ①3 y x =或53y x = ②2y x =或43y x = ③32y x =或74 y x = 2、01α<< ①13y x = ②23y x = ③12 y x = 3、0α< ①2 y x -= ②1 y x -= ③32 y x - = ④43 y x =— 三、 幂函数的性质 y=x

3 幂函数的性质要结合图像观察,随着α取值范围的变化,性质有所不同。 1、 定义域、值域与α有关,通常化分数指数幂为根式求解 2、 奇偶性要结合定义域来讨论 3、 单调性:α>0时,在(0,+∞)单调递增:α=0无单调性;α<0时,在(0,+∞)单调递减 4、 过定点:α>0时,过(0,0)、(1,1)两点;α≤0时,过(1,1) 5、 由 ()0 x f x α=>可知,图像不过第四象限 四、 幂函数类型题归纳 (一) 定义应用: 1、下列函数是幂函数的是 ______ ①21()y x -= ②22y x = ③21 (1)y x -=+ ④0 y x = ⑤1y = 2、若幂函数()y f x = 的图像过点2????? ,则函数()y f x =的解析式为______. 3、已知函数()() 22 1 44m m f x m m x --=--是幂函数,且经过原点,则实数m 的值为__________. 4、已知函数()()2 2 k k f x x k Z -++=∈满足()()23f f <,则k 的值为________ ,函数()f x 的 解析式为__________ 5、设1112,1,,,,1,2,3232a ? ? ∈--- ???? ,已知幂函数()f x x α=是偶函数,且在区间()0,+∞上是减函数,则满足要求的α值的个数是__________. 6、设()y f x =和()y g x =是两个不同的幂函数,集合()(){} |M x f x g x ==,则集合M 中 元素的个数是( ) (A)1或2或0 (B) 1或2或3(C)1或2或3或4 (D)0或1或2或3 (二) 图像及性质应用 1、 右图为幂函数y x α =在第一象限的图像,则 ,,,a b c d 的大小关系是 ( ) ()A a b c d >>> ()B b a d c >>> d y=x ()C a b d c >>> ()D a d c b >>> 2、如图:幂函数n m y x =(m 、n N ∈,且m 、n 互质)的图象在第一,二象限,且不经过原点,则有 ( ) ()A m 、n 为奇数且 1m n < ()B m 为偶数,n 为奇数,且1m n > ()C m 为偶数,n 为奇数,且1m n < b c

知识讲解-函数的单调性-基础

函数的单调性 【学习目标】 1.理解函数的单调性定义; 2.会判断函数的单调区间、证明函数在给定区间上的单调性; 3.学会运用单调性的定义求函数的最大(小)值。 【要点梳理】 要点一、函数的单调性 1.增函数、减函数的概念 一般地,设函数f(x)的定义域为A ,区间D A ?: 如果对于D 内的任意两个自变量的值x 1、x 2,当x 1f(x 2),那么就说f(x)在区间D 上 是减函数. 要点诠释: (1)属于定义域A 内某个区间上; (2)任意两个自变量12,x x 且12x x <; (3)都有1212()()(()())f x f x f x f x <>或;

(4)图象特征:在单调区间上增函数的图象从左向右是上升的,减函数的图象从左向右是下降的. 2.单调性与单调区间 (1)单调区间的定义 如果函数f(x)在区间D 上是增函数或减函数,那么就说函数f(x)在区间D 上具有单调性,D 称为函 数f(x)的单调区间. 函数的单调性是函数在某个区间上的性质. 要点诠释: ①单调区间与定义域的关系----单调区间可以是整个定义域,也可以是定义域的真子集; ②单调性是通过函数值变化与自变量的变化方向是否一致来描述函数性质的; ③不能随意合并两个单调区间; ④有的函数不具有单调性. (2)已知解析式,如何判断一个函数在所给区间上的单调性? 3.证明函数单调性的步骤 (1)取值.设12x x ,是()f x 定义域内一个区间上的任意两个量,且12x x ; (2)变形.作差变形(变形方法:因式分解、配方、有理化等)或作商变形; (3)定号.判断差的正负或商与1的大小关系; (4)得出结论. 4.函数单调性的判断方法

知识讲解 三角函数的性质及其应用 提高

三角函数的性质及其编稿:李霞审稿:孙永钊 【考纲要求】 1、了解函数sin()yAx????的物理意义;能画出sin()yAx????的图象,了解参数 A,?,?对函数图象变化的影响. 2、了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题. 【知识络】 【考点梳理】 考点一、函数sin()yAx????(0A?,0??)的图象的作法 1.五点作图法: 作sin()yAx????的简图时,常常用五点法,五点的取法是设tx????,由t取0、 2?、?、32?、2?来求相应的x值及对应的y值,再描点作图。 2.图象变换法: (1)振幅变换:把sinyx?的图象上各点的纵坐标伸长(A>1)或缩短(00)或向右(?<0)平行移动|?|个单位,得到sin()yAx???的图象; (3)周期变换:把sin()yAx???的图象上各点的横坐标缩短(ω>1)或伸长(0<ω<1)到原来的?1倍(纵坐标不变),可得到sin()yAx????的图象. (4)若要作sin()yAxb????,可将sin()yAx???的图象向上(0)b?或向下(0)b? 平移b个单位,可得到sin()yAxb????的图象.记忆方法仍为“左加右减,上正下负,纵伸(A>1)横缩(ω>1)”。 要点诠释: 由sinyx?的图象利用图象变换作函数sin()yAx????的图象时要特别注意:当周期

变换和相位 sin()yAx???? sin 图象的作法三角函的质其 图象的性 变换的先后顺序不同时,原图象沿x轴的伸缩量有区别. 考点二、sin()yAx????的解析式 1.sin()yAx????的解析式 sin()yAx????(0A?, 0??),[0,)x???表示一个振动量时,A叫做振幅,2T??? 叫做周期,12fT????叫做频率,x???叫做相位,0x?时的相位?称为初相. 2.根据图象求sin()yAx????的解析式 求法为待定系数法,突破口是找准五点法中的第一零点(,0)???. 求解步骤是先由图象求出A与T,再由2T???算出?,然后将第一零点代入0x????求出?. 要点诠释:若图象未标明第一零点,就只能找特殊点用待定系数法计算. 考点三、函数 sin()yAx????(0A?,0??)的性质 1. 定义域: xR?,值域:y∈[-A,A]. 2.周期性: 2T??? 3. 奇偶性:2k?????时为偶函数;k???时为奇函数,kZ?. 4.单调性:单调增区间 :[????????????22,22kk] , kZ? 单调减区间:[????????????232,22kk] , kZ? 5. 对称性:对称中心(????k,0),kZ?;对称轴

对数函数知识点总结(供参考)

对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数,记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 说明:○1 注意底数的限制0>a ,且1≠a ; ○2 x N N a a x =?=log ; ○3 注意对数的书写格式. 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . (二)对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1 M a (log ·=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ; ○ 3 n a M log n =M a log )(R n ∈. 注意:换底公式 a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ;0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log = ; (2)a b b a log 1log =. (二)对数函数 1、对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对数函 数,其中x 是自变量,函数的定义域是(0,+∞). 注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。如:x y 2log 2=,5 log 5x y = 都不是对数函数,而只能称 其为对数型函数. ○ 2 对数函数对底数的限制:0(>a ,且)1≠a . 对数函数·例题解析 例1.求下列函数的定义域: (1)2log x y a =; (2))4(log x y a -=; (3))9(log 2 x y a -=.

指数函数对数函数和幂函数知识点归纳

一、幂函数 1、幂的有关概念 正整数指数幂: ...() n n a a a a n N =∈ 零指数幂: 01(0) a a =≠ 负整数指数幂: 1 (0,) p p a a p N a -=≠∈ 分数指数幂:正分数指数幂的意义是: (0,,,1) m n m n a a a m n N n =>∈> 且 负分数指数幂的意义是: 1 (0,,,1) m n m n m n a a m n N n a a - ==>∈> 且 2、幂函数的定义 一般地,函数 a y x =叫做幂函数,其中x是自变量,a是常数(我们只讨论a是有理数的情况). 3、幂函数的图象 幂函数a y x = 当 11 ,,1,2,3 32 a= 时的图象见左图;当 1 2,1, 2 a=--- 时的图象见上图: 由图象可知,对于幂函数而言,它们都具有下列性质:

a y x =有下列性质: (1)0a >时: ①图象都通过点(0,0),(1,1); ②在第一象限内,函数值随x 的增大而增大,即在(0,)+∞上是增函数. (2)0a <时: ①图象都通过点(1,1); ②在第一象限内,函数值随x 的增大而减小,即在(0,)+∞上是减函数; ③在第一象限内,图象向上与y 轴无限地接近,向右与x 轴无限地接近. (3)任何幂函数的图象与坐标轴至多只有一个交点; (4)任何幂函数图象都不经过第四象限; (5)任何两个幂函数的图象最多有三个交点. 二、指数函数 ①定义:函数)1,0(≠>=a a a y x 且称指数函数, 1)函数的定义域为R ; 2)函数的值域为),0(+∞; 3)当10<a 时函数为增函数. 4)有两个特殊点:零点(0,1),不变点(1,)a . 5)抽象性质: ()()(),()()/()f x y f x f y f x y f x f y +=?-= 三、对数函数 如果b a N =(0a >,1a ≠),那么b 叫做以a 为底N 的对数,记作log a N b = log b a a N N b =?=(0a >,1a ≠,0N >). 1.对数的性质 ()log log log a a a MN M N =+. log log log a a a M M N N =-.

知识讲解_指数函数及其性质_基础

指数函数及其性质 编稿:丁会敏 审稿:王静伟 【学习目标】 1.掌握指数函数的概念,了解对底数的限制条件的合理性,明确指数函数的定义域; 2.掌握指数函数图象: (1)能在基本性质的指导下,用列表描点法画出指数函数的图象,能从数形两方面认识指数函数的性质; (2)掌握底数对指数函数图象的影响; (3)从图象上体会指数增长与直线上升的区别. 3.学会利用指数函数单调性来比较大小,包括较为复杂的含字母讨论的类型; 4.通过对指数函数的概念、图象、性质的学习,培养观察、分析归纳的能力,进一步体会数形结合的思想方法; 5.通过对指数函数的研究,要认识到数学的应用价值,更善于从现实生活中发现问题,解决问题. 【要点梳理】 要点一、指数函数的概念: 函数y=a x (a>0且a ≠1)叫做指数函数,其中x 是自变量,a 为常数,函数定义域为R. 要点诠释: (1)形式上的严格性:只有形如y=a x (a>0且a ≠1)的函数才是指数函数.像23x y =?,12x y =, 31x y =+等函数都不是指数函数. (2)为什么规定底数a 大于零且不等于1: ①如果0a =,则000x x ?>??≤??x x 时,a 恒等于, 时,a 无意义. ②如果0a <,则对于一些函数,比如(4)x y =-,当11 ,,24 x x = =???时,在实数范围内函数值不存在. ③如果1a =,则11x y ==是个常量,就没研究的必要了. 要点诠释:

(1)当底数大小不定时,必须分“1a >”和“01a <<”两种情形讨论。 (2)当01a <<时,,0x y →+∞→;当1a >时,0x y →-∞→。 当1a >时,a 的值越大,图象越靠近y 轴,递增速度越快。 当01a <<时,a 的值越小,图象越靠近y 轴,递减的速度越快。 (3)指数函数x y a =与1 x y a ?? = ??? 的图象关于y 轴对称。 要点三、指数函数底数变化与图像分布规律 (1) ① x y a = ②x y b = ③x y c = ④x y d = 则:0<b <a <1<d <c 又即:x ∈(0,+∞)时,x x x x b a d c <<< (底大幂大) x ∈(-∞,0)时,x x x x b a d c >>> (2)特殊函数 11 2,3, (), ()23 x x x x y y y y ====的图像: 要点四、指数式大小比较方法 (1)单调性法:化为同底数指数式,利用指数函数的单调性进行比较. (2)中间量法 (3)分类讨论法 (4)比较法 比较法有作差比较与作商比较两种,其原理分别为: ①若0A B A B ->?>;0A B A B -,或1A B <即可. 【典型例题】 类型一、指数函数的概念 例1.函数2 (33)x y a a a =-+是指数函数,求a 的值. 【答案】2 【解析】由2 (33)x y a a a =-+是指数函数, 可得2331,0,1, a a a a ?-+=?>≠?且解得12, 01,a a a a ==??>≠?或且,所以2a =. 【总结升华】判断一个函数是否为指数函数: (1)切入点:利用指数函数的定义来判断;

三角函数知识点及例题讲解

三角函数知识点 1.特殊角的三角函数值: (1)平方关系:222222sin cos 1,1tan sec ,1cot csc αααααα+=+=+= (2)倒数关系:sin αcsc α=1,cos αsec α=1,tan αcot α=1, (3)商数关系:sin cos tan ,cot cos sin αα αααα == ) 3、两角和与差的正弦、余弦、正切公式及倍角公式: ()sin sin cos cos sin sin 22sin cos 令αβ αβαβαβααα=±=±???→= ()()2222222cos cos cos sin sin cos 2cos sin 2cos 112sin tan tan 1+cos2tan cos 1tan tan 2 1cos2sin 2 2tan tan 21tan 令 = = αβ αβαβαβααα αα αβα αβααβα αα αα =±=???→=-↓=-=-±±= ?-↓= - (1)巧变角(已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、 两角与其和差角的变换. 如()()ααββαββ=+-=-+,2()()ααβαβ=++-, 2()()αβαβα=+--,22 αβαβ++=?,()( ) 222αββ ααβ+=---等), (2)三角函数次数的降升(降幂公式:21cos 2cos 2αα+=,21cos 2sin 2 α α-=与升幂公 式:21cos 22cos αα+=,21cos 22sin αα-=)。如

(; (3)常值变换主要指“1”的变换(221sin cos x x =+22sec tan tan cot x x x x =-=? tan sin 42 ππ=== 等),. 。 (4)周期性:①sin y x =、cos y x =的最小正周期都是2π;②()sin()f x A x ω?=+和 ()cos()f x A x ω?=+的最小正周期都是2||T π ω=。如 (5)单调性:()sin 2,222y x k k k Z ππππ? ?=-+∈??? ?在上单调递增,在 ()32,222k k k Z ππππ??++∈??? ?单调递减;cos y x =在[]()2,2k k k Z πππ+∈上单调递减,在[]()2,22k k k Z ππππ++∈上单调递增。特别提醒,别忘了k Z ∈! (6)、形如sin()y A x ω?=+的函数: 1几个物理量:A ―振幅;1 f T =―频率(周期的倒数); x ω?+― 相位;?―初相; 2函数sin()y A x ω?=+表达式的确定:A 由周 期确定;?由图象上的特殊点确()sin()(0,0f x A x A ω?ω=+>>,||)2 π?<()f x =_____(答:15()2sin()23 f x x π =+); 3函数sin()y A x ω?=+图象的画法:①“五点法”――设X x ω?=+,令X =0,3,,,222 ππ ππ求出相应的x 值,计算得出五点的坐标,描点后得出图象;②图象变换法:这是作函数简图常用方法。 4函数sin()y A x k ω?=++的图象与sin y x =图象间的关系:①函数sin y x =的图象纵坐标不变,横坐标向左(?>0)或向右(?<0)平移||?个单位得()sin y x ?=+的图象;②函数()si n y x ?=+图象的纵坐标不变,横坐标变为原来的 1 ω ,得到函数 ()sin y x ω?=+的图象;③函数()sin y x ω?=+图象的横坐标不变,纵坐标变为原来的A 倍,得到函数sin()y A x ω?=+的图象;④函数sin()y A x ω?=+图象的横坐标不变,纵坐标向上(0k >)或向下(0k <),得到()sin y A x k ω?=++的图象。要特别注意,若由 ()sin y x ω=得到()sin y x ω?=+的图象,则向左或向右平移应平移| |? ω 个单位,如 (1)函数2sin(2)14 y x π =--的图象经过怎样的变换才能得到sin y x =的图象?

对数函数知识点及典型例题讲解

对数函数知识点及典型例题讲解 1.对数: (1) 定义:如果,那么称为,记作,其中称为对数的底,N称为真数. ①以10为底的对数称为常用对数,记作___________. ②以无理数为底的对数称为自然对数,记作_________. (2) 基本性质: ①真数N为 (负数和零无对数);②;③; ④对数恒等式:. (3) 运算性质: ① log a(MN)=___________________________; ② log a=____________________________; ③ log a M n= (n∈R). ④换底公式:log a N= (a>0,a≠1,m>0,m≠1,N>0) ⑤ . 2.对数函数: ①定义:函数称为对数函数,1) 函数的定义域为( ;2) 函数的值域为; 3) 当______时,函数为减函数,当______时为增函数; 4) 函数与函数互为反函数. ② 1) 图象经过点( ),图象在;2) 对数函数以为渐近线(当时,图象向上无限接近y轴;当时,图象向下无限接近y轴); 4) 函数y=log a x与的图象关于x轴对称. ③函数值的变化特征: ①②③①②③ 例1 计算:(1) (2)2(lg)2+lg·lg5+; (3)lg-lg+lg. 解:(1)方法一利用对数定义求值设=x,则(2+)x=2-==(2+)-1,∴x=-1.方法二利用对数的运算性质求解 = =(2+)-1=-1.

(2)原式=lg(2lg+lg5)+=lg(lg2+lg5)+|lg-1| =lg+(1-lg)=1. (3)原式=(lg32-lg49)-lg8+lg245 = (5lg2-2lg7)-×+ (2lg7+lg5) =lg2-lg7-2lg2+lg7+lg5=lg2+lg5 =lg(2×5)= lg10=. 变式训练1:化简求值. (1)log2+log212-log242-1; (2)(lg2)2+lg2·lg50+lg25; (3)(log32+log92)·(log43+log83). 解:(1)原式=log2+log212-log2-log22=log2 (2)原式=lg2(lg2+lg50)+lg25=2lg2+lg25=lg100=2. (3)原式=( 例2 比较下列各组数的大小. (1)log3与log5;(2)log1.10.7与(3)已知logb<loga<logc,比较2b,2a,2c的大小关系.解:(1)∵log3<log31=0,而log5>log51=0,∴log3<log5. (2)方法一∵0<<1,<,∴0>, ∴, 即由换底公式可得log1.10.7<方法二作出y=与y=的图象. 如图所示两图象与x=相交可知log1.10.7<为减函数,且, ∴b>a>c,而y=2x是增函数,∴2b>2a>2c. 变式训练2:已知0<a<1,b>1,ab>1,则log a的大小关系是() B. C. D. 解: C 例3已知函数f(x)=log a x(a>0,a≠1),如果对于任意x∈[3,+∞)都有|f(x)|≥1成立,试求a的取值范围. 解:当a>1时,对于任意x∈[3,+∞),都有f(x)>0. 所以,|f(x)|=f(x),而f(x)=log a x在[3,+∞)上为增函数, ∴对于任意x∈[3,+∞),有f(x)≥log a3. 因此,要使|f(x)|≥1对于任意x∈[3,+∞)都成立. 只要log a3≥1=log a a即可,∴1<a≤3. 当0<a<1时,对于x∈[3,+∞),有f(x)<0, ∴|f(x)|=-f(x). ∵f(x)=log a x在[3,+∞)上为减函数, ∴-f(x)在[3,+∞)上为增函数. ∴对于任意x∈[3,+∞)都有

幂函数知识点总结与练习题

幂函数 (1)幂函数的定义: 一般地,函数y x α =叫做幂函数,其中x 为自变量,α是常数. ①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限. ②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). ③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限,图象无限接近x 轴与y 轴. ④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当q p α= (其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q p y x =是奇函数,若p 为奇数q 为偶数时,则q p y x =是偶函数,若p 为偶数q 为奇数时,则q p y x =是非奇非偶函数. ⑤图象特征:幂函数,(0,)y x x α =∈+∞,当1α>时,若01x <<,其图象在直线y x =下 方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上

方,若1x >,其图象在直线y x =下方. 幂函数练习题 一、选择题: 1.下列函数中既是偶函数又是(,)-∞0上是增函数的是 ( ) A .y x =43 B .y x =32 C .y x =-2 D .y x =-14 2.函数2 -=x y 在区间]2,2 1[上的最大值是 ( ) A . 4 1 B .1- C .4 D .4- 3.下列所给出的函数中,是幂函数的是 ( ) A .3 x y -= B .3 -=x y C .3 2x y = D .13 -=x y 4.函数3 4x y =的图象是 ( ) A . B . C . D . 5.下列命题中正确的是 ( ) A .当0=α时函数α x y =的图象是一条直线 B .幂函数的图象都经过(0,0)和(1,1)点 C .若幂函数αx y =是奇函数,则α x y =是定义域上的增函数 D .幂函数的图象不可能出现在第四象限 6.函数3 x y =和3 1 x y =图象满足 ( ) A .关于原点对称 B .关于x 轴对称 C .关于y 轴对称 D .关于直线x y =对称 7. 函数R x x x y ∈=|,|,满足 ( ) A .是奇函数又是减函数 B .是偶函数又是增函数 C .是奇函数又是增函数 D .是偶函数又是减函数 8.如图1—9所示,幂函数α x y =在第一象限的图象,比较1,,,,,04321αααα的大小( ) A .102431<<<<<αααα B .104321<<<<<αααα 1α 4α 2α

16.变量与函数知识讲解

变量与函数 责编:赵炜 【学习目标】 1.知道现实生活中存在变量和常量,变量在变化的过程中有其固有的范围(即变量的取值范围); 2.能初步理解函数的概念;能初步掌握确定常见简单函数的自变量取值范围的基本方法;给出自变量的一个值,会求出相应的函数值. 3.对函数关系的表示法(如解析法、列表法、图象法)有初步认识. 4. 理解函数图象上的点的坐标与其解析式之间的关系,会判断一个点是否在函数的图象上,明确交点坐标反映到函数上的含义. 5. 初步理解函数的图象的概念,掌握用“描点法”画一个函数的图象的一般步骤,对已知图象能读图、识图,从图象解释函数变化的关系. 【要点梳理】 【高清课堂:389341 变量与函数,知识要点】 要点一、变量、常量的概念 在一个变化过程中,我们称数值发生变化的量为变量.数值保持不变的量叫做常量. 要点诠释:一般地,常量是不发生变化的量,变量是发生变化的量,这些都是针对某个变化过程而言的.例如,60s t =,速度60千米/时是常量,时间t 和里程s 为变量. 要点二、函数的定义 一般地,在一个变化过程中. 如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说 x 是自变量,y 是x 的函数. 要点诠释:对于函数的定义,应从以下几个方面去理解: (1)函数的实质,揭示了两个变量之间的对应关系; (2)对于自变量x 的取值,必须要使代数式有实际意义; (3)判断两个变量之间是否有函数关系,要看对于x 允许取的每一个值,y 是否 都有唯一确定的值与它相对应. (4)两个函数是同一函数至少具备两个条件: ①函数关系式相同(或变形后相同); ②自变量x 的取值范围相同. 否则,就不是相同的函数.而其中函数关系式相同与否比较容易注意到,自变 量x 的取值范围有时容易忽视,这点应注意. 要点三、函数值 y 是x 的函数,如果当x =a 时y =b ,那么b 叫做当自变量为a 时的函数值. 要点诠释:对于每个确定的自变量值,函数值是唯一的,但反过来,可以不唯一,即一个函数值对应的自变量可以是多个.比如:2 y x =中,当函数值为4时,自变量x 的值为±2. 要点四、自变量取值范围的确定 使函数有意义的自变量的取值的全体实数叫自变量的取值范围. 要点诠释:自变量的取值范围的确定方法: 首先,要考虑自变量的取值必须使解析式有意义: (1)当解析式是整式时,自变量的取值范围是全体实数; (2)当解析式是分式时,自变量的取值范围是使分母不为零的实数;

知识讲解_已知三角函数值求角

已知三角函数值求角 【学习目标】 1、掌握已知三角函数值求角的解题步骤; 2、要求学生初步(了解)理解反正弦,反余弦,反正切函数的意义,会由已知角的正弦值、余弦值、正切值求出[]π2,0范围内的角,并能用反正弦,反余弦,反正切的符号表示角或角的集合 【要点梳理】 要点一:反正弦,反余弦,反正切函数的定义 (1)一般地,对于正弦函数sin y x =,如果已知函数值[](1,1)y y ∈-,那么在,22ππ?? -???? 上有唯一的x 值 和它对应,记为arcsin x y =(其中11,22y x ππ-≤≤-≤≤).即arcsin y (||1y ≤)表示,22ππ?? -???? 上正弦等于y 的那个角. (2)在区间[]0,π上符合条件cos (11)x y y =-≤≤的角x ,记为arccos x y =. (3)一般地,如果tan ()x y y R =∈,且,22x ππ??∈- ???,那么对每一个正切值y ,在开区间,22ππ?? - ??? 内, 有且只有一个角x ,使tan x y =.符合上述条件的角x ,记为arctan ,(,)22 x y x ππ =∈-. 要点二:已知正弦值、余弦值和正切值,求角 已知角x 的一个三角函数值求角x ,所得的角不一定只有一个,角的个数要根据角的取值范围来确定,这个范围应该在题目中给定,如果在这个范围内有已知三角函数值的角不止一个,解法可以分为以下几步: 第一步,决定角可能是第几象限角. 第二步,如果函数值为正数,则先求出对应的锐角1x ;如果函数值为负数,则先求出与其绝对值对应的锐角1x . 第三步,如果函数值为负数,则可根据x 可能是第几象限角,得出(0,2π)内对应的角;如果它是第二象限角,那么可表示为-1x +π;如果它是第三或第四象限角,那么可表示为1x +π或-1x +2π. 第四步,如果要求(0,2π)以外对应的角,则可利用终边相同的角有相同的三角函数值这一规律写出结果. 【典型例题】 类型一:已知正弦值、余弦值,求角 例1.已知sin 2 x =- ,(1)x ∈[]0,2π,(2)x R ∈,求角x . 【思路点拨】因为所给的正弦值是负数,所以先求出其绝对值对应的锐角,然后在求出其他象限的角. 【解析】 (1)由sin 2 x =- 知x 的正弦值是个负值,所以x 是第三象限或第四象限的角.因为sin 42π=,所 以第三象限的那个角是544π ππ+ = ,第四象限的角是7244 ππ π-=.

对数函数知识点

对数函数知识点 1 ?对数函数的概念 形如y =log a x(a . 0且a = 1)的函数叫做对数函数. 说明:(1) 一个函数为对数函数的条件是: ①系数为1 ; ②底数为大于0且不等于1的正常数; ③自变量为真数? 对数型函数的定义域: 特别应注意的是:真数大于零、底数大于零且不等于1。 2、由对数的定义容易知道对数函数y二log a x(a ? 0,a = 1)是指数函数y=a x(a .0,a=1)的反函数。 反函数及其性质 ①互为反函数的两个函数的图象关于直线y=x对称。 ②若函数y = f(x)上有一点(a,b),则(b,a)必在其反函数图象上,反之若(b, a)在反函数图象上,则(a,b)必在原函数图象上。 ③利用反函数的性质,由指数函数y二a x(a .0,a")的定义域x R,值域y?0, 容易得到对数函数y"og a x(a .0,a=1)的定义域为x 0,值域为R,利用上节学过的 对数概念,也可得出这一点。 3 4

要牢记y = 2X, y =(1)x, y = 10x, y = (£)x的反函数 y =log2X, y =log! x, y =lg x, y =log ! x的图象,并由此归纳出表中结论。 2 10 5、比较大小 比较对数的大小,一般遵循以下几条原则: ①如果两对数的底数相同,则由对数函数的单调性(底数a -1为增;0 :::a :::1为减)比较。 ②如果两对数的底数和真数均不相同,通常引入中间变量进行比较。 ③如果两对数的底数不同而真数相同,女口y = log ai x与y = log a2x的比较(a 0,印=1, a2 0,a2 = 1). 当a, a2 ? 1时,曲线y1比y的图象(在第一象限内)上升得慢,即当x 1时,m;当0:::x”:1时,y1 y2.而在第一象限内,图象越靠近x轴对数函数的底数越大(同[考题2]的含义)当0 ::: a? ::? <1时,曲线y比月2的图象(在第四象限内)下降得快,即当x 1时, y ■■■ y ;当0 ”:x ::: 1时,y1 y即在第四象限内,图象越靠近x轴的对数函数的底数越小。 6、求参数范围 凡是涉及对数的底含参数的问题,要注意对对数的底数的分析,需要分类讨论时,一定 要分类讨论。

幂函数知识点及典型题

幂函数 知识点 一、幂函数的定义 一般地,形如y x α =(R x ∈)的函数称为幂孙函数,其中x 是自变量,α是常数.如1 12 3 4 ,,y x y x y x -===等 都是幂函数 二、幂函数的图像 幂函数n y x =随着n 的不同,定义域、值域都会发生变化,可以采取按性质和图像分类记忆的方法.熟练掌握n y x =,当11 2,1,,,323 n =±±± 的图像和性质,列表如下. ① 它们都过点()1,1,除原点外,任何幂函数图像与坐标轴都不相交,任何幂函数图像都不过第四象限. ② 11 ,,1,2,332a =时,幂函数图像过原点且在[)0,+∞上是增函数. ③ 1 ,1,22 a =---时,幂函数图像不过原点且在()0,+∞上是减函数. ④ 任何两个幂函数最多有三个公共点. 三、幂函数基本性质 (1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1); (2)α>0时,幂函数的图象都通过原点,并且在[0,+∞]上,是增函数 (3)α<0时,幂函数的图象在区间(0,+∞)上是减函数. 四、解题方法总结 1.在研究幂函数的性质时,通常将分式指数幂化为根式形式,负整指数幂化为分式形式再去进行讨论; 2.对于幂函数y =α x ,我们首先应该分析函数的定义域、值域和奇偶性,由此确定图象的位置,即所在象 限,其次确定曲线的类型,即α<0,0<α<1和α>1三种情况下曲线的基本形状,还要注意α=0,±1三个曲线的形状;对于幂函数在第一象限的图象的大致情况可以用口诀来记忆:“正抛负双,大竖小横”,即α>0(α≠1)时图象是抛物线型;α<0时图象是双曲线型;α>1时图象是竖直抛物线型;0<α<1时图象是横卧抛物线型. 典型题 类型一、求函数解析式 例1.已知幂函数2 223 (1)m m y m m x --=--,当(0)x ∈+, ∞时为减函数,则幂函数y =__________. 类型二、比较幂函数值大小 例2.比较下列各组数的大小. (1)4 3 3.14 -与43 π - (2)35 (- 与35 (- (3)比较0.5 0.8 ,0.5 0.9,0.5 0.9 -的大小 类型三、求参数的范围

初中函数知识点专题讲解

知识点1函数及其相关概念 1、变量与常量 在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。 一般地,在某一变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一确定的值与它对应,那么就说x 是自变量,y 是x 的函数。 2、函数解析式 用来表示函数关系的数学式子叫做函数解析式或函数关系式。 使函数有意义的自变量的取值的全体,叫做自变量的取值范围。 3、函数的三种表示法及其优缺点 (1)解析法 两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。 (2)列表法 把自变量x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。 (3)图像法 用图像表示函数关系的方法叫做图像法。 4、由函数解析式画其图像的一般步骤 (1)列表:列表给出自变量与函数的一些对应值 (2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点 (3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。 知识点四,正比例函数和一次函数 1、正比例函数和一次函数的概念 一般地,如果b kx y +=(k ,b 是常数,k ≠0),那么y 叫做x 的一次函数。 特别地,当一次函数b kx y +=中的b 为0时,kx y =(k 为常数,k ≠0)。这时,y 叫做x 的正比例函数。 2、一次函数的图像 所有一次函数的图像都是一条直线 3、一次函数、正比例函数图像的主要特征: 一次函数b kx y +=的图像是经过点(0,b )的直线;正比例函数kx y =的图像是经过原点(0,0)的直线。

对数函数知识点

对数函数知识点 1.对数函数的概念 形如 y log a x( a 0且 a 1) 的函数叫做对数函数 . 说明:( 1)一个函数为对数函数的条件是: ①系数为 1; ②底数为大于 0 且不等于 1 的正常数; ③自变量为真数 . 对数型函数的定义域: 特别应注意的是:真数大于零、底数大于零且不等于 1。 2 、 由 对 数 的 定 义 容 易 知 道 对 数 函 数 y log a x (a 0, a 1) 是指数函数 y a x (a 0, a 1) 的反函数。 反函数及其性质 ①互为反函数的两个函数的图象关于直线 y x 对称。 ②若函数 y f ( x) 上有一点 (a, b ) ,则 (b, a) 必在其反函数图象上, 反之若 (b, a) 在反函 数图象上,则 ( a, b) 必在原函数图象上。 ③利用反函数的性质,由指数函数 y a x (a 0, a 1) 的定义域 x R ,值域 y 0 , 容易得到对数函数 y log a x(a 0, a 1) 的定义域为 x 0 ,值域为 R ,利用上节学过的 对数概念,也可得出这一点。 3、.对数函数的图象和性质 定义 y log a x (a 0且 a 1) 底数 a 1 0 a 1 图象 定义域 (0, ) 值域 R 单调性 增函数 减函数 共点性 图象过点 (1,0) ,即 log a 1 函数值x (0,1) y ( ,0); x [1, ) x (0,1) y (0, ); x [1, ) 特征 y [0, ) y ( ,0] 对称性 函数 y log a x 与 y log 1 x 的图象关于 x 轴对称 a 4.对数函数与指数函数的比较 名称 指数函数 对数函数 一般形式 y a x (a 0, a 1) y log a x (a 0, a 1)

指数、对数及幂函数知识点小结及习题

指数函数、对数函数及幂函数 Ⅰ.指数与指数函数 1.指数运算法则:(1)r s r s a a a +=; (2)() s r rs a a =; (3)()r r r ab a b =; (4)m n m n a a =; (5)m n n m a a - = (6),||,n n a n a a n ?=? ?奇偶 2. 指数函数: 【基础过关】 类型一:指数运算的计算题 此类习题应牢记指数函数的基本运算法则,注意分数指数幂与根式的互化,在根式运算或根 指数函数 01 图 象 表达式 x y a = 定义域 R 值 域 (0,)+∞ 过定点 (0,1) 单调性 单调递减 单调递增

式与指数式混合运算时,将根式化为指数运算较为方便 1 、5+的平方根是______________________ 2、 已知2=n a ,16=mn a ,则m 的值为………………………………………………( ) A .3 B .4 C .3 a D .6 a 3、 化简 (b a b +-的结果是………………………………( ) A 、a - 、a a D 、2b a + 4、已知0.001a = ,求:413 3 223 3 8(14a a b a b -÷-+=_________________ 5、已知1 3x x -+=,求(1)1 12 2 x x - +=________________(2)332 2 x x -+=_________________ 6 、若y y x x -+=,其中1,0x y ><,则y y x x --=______________ 类型二:指数函数的定义域、表达式 指数函数的定义域主要涉及根式的定义域,注意到负数没有偶次方根;此外应牢记指数函数的图像及性质 函数) (x f a y =的定义域与)(x f 的定义域相同 1、若集合A={ 113x x y -= },B={ x s A B =?= 则____________________ 2、如果函数()y f x =的定义域是[1,2],那么函数 1(2)x y f -=的定义域是________ 3、下列函数式中,满足f(x+1)=1 2f(x)的是……………………………………………( ) A 、()1 12x + B 、 1 4x + C 、2x D 、

变量与函数 知识讲解

变量与函数 【学习目标】 1.知道现实生活中存在变量和常量,变量在变化的过程中有其固有的范围(即变量的取值范围); 2.能初步理解函数的概念;能初步掌握确定常见简单函数的自变量取值范围的基本方法;给出自变量的一个值,会求出相应的函数值. 3. 理解函数图象上的点的坐标与其解析式之间的关系,会判断一个点是否在函数的图象上,明确交点坐标反映到函数上的含义. 4. 初步理解函数的图象的概念,掌握用“描点法”画一个函数的图象的一般步骤,对已知图象能读图、识图,从图象解释函数变化的关系. 【要点梳理】 要点一、变量、常量的概念 在一个变化过程中,我们称数值发生变化的量为变量.数值保持不变的量叫做常量. 要点诠释:一般地,常量是不发生变化的量,变量是发生变化的量,这些都是针对某个变化过程而言的.例如,60s t =,速度60千米/时是常量,时间t 和里程s 为变量. 要点二、函数的定义 一般地,在一个变化过程中. 如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说 x 是自变量,y 是x 的函数. 要点诠释:对于函数的定义,应从以下几个方面去理解: (1)函数的实质,揭示了两个变量之间的对应关系; (2)对于自变量x 的取值,必须要使代数式有实际意义; (3)判断两个变量之间是否有函数关系,要看对于x 允许取的每一个值,y 是否 都有唯一确定的值与它相对应. (4)两个函数是同一函数至少具备两个条件: ①函数关系式相同(或变形后相同); ②自变量x 的取值范围相同. 否则,就不是相同的函数.而其中函数关系式相同与否比较容易注意到,自变 量x 的取值范围有时容易忽视,这点应注意. 要点三、函数的定义域与函数值 函数的自变量允许取值的范围,叫做这个函数的定义域. 要点诠释:考虑自变量的取值必须使解析式有意义。 (1)当解析式是整式时,自变量的取值范围是全体实数; (2)当解析式是分式时,自变量的取值范围是使分母不为零的实数; (3)当解析式是二次根式时,自变量的取值范围是使被开方数不小于零的实数; (4)当解析式中含有零指数幂或负整数指数幂时,自变量的取值应使相应的底数 不为零; (5)当解析式表示实际问题时,自变量的取值必须使实际问题有意义. y 是x 的函数,如果当x =a 时y =b ,那么b 叫做当自变量为a 时的函数值.在函数用记号()y f x =表示时,()f a 表示当x a =时的函数值. 要点诠释: 对于每个确定的自变量值,函数值是唯一的,但反过来,可以不唯一,即一个函数值对

相关文档
最新文档