高中数学选择、填空题专题练习(一)

合集下载

高中数学平面向量基础提高练习题含答案【选择填空精选50题难度分类】(最新)

高中数学平面向量基础提高练习题含答案【选择填空精选50题难度分类】(最新)

高中数学 平面向量 选择填空题精选50道一、选择题(共36题)【基础题】1. 下列物理量:①质量;②速度;③位移;④力;⑤加速度;⑥路程;⑦密度;⑧功;⑨电流强度;⑩摩擦系数,其中不是向量的有( )A. 4个B. 5个C. 6个D. 7个2. 下列六个命题中正确的是 ( )①两个向量相等,则它们的起点相同,终点相同; ②若丨a 丨=丨b 丨,则a =b ; ③若AB →=DC →,则ABCD 是平行四边形; ④平行四边形ABCD 中,一定有AB →=DC →;⑤若m =n ,n =k ,则m =k ; ⑥若a ∥b ,b ∥c ,则a ∥c. A. ①②③ B. ④⑤ C. ④⑤⑥ D. ⑤⑥3. 以下说法错误的是( )A .零向量与任一非零向量平行 B.零向量与单位向量的模不相等 C.平行向量方向相同 D.平行向量一定是共线向量4. 已知B 是线段AC 的中点,则下列各式正确的是( ) (A )AB →=-BC → (B )AC →=21BC →(C )BA →=BC → (D )BC →=21AC → 5. 下列四式不能化简为AD →的是()(A )(AB →+CD →)+BC → (B )(AD →+MB →)+(BC →+CM →)(C )MB →+AD →-BM →(D )OC →-OA →+CD →6、已知向量等于则MN ON OM 21),1,5(),2,3(--=-=( ) A .)1,8(B .)1,8(-C .)21,4(-D .)21,4(-7、已知向量),2,1(),1,3(-=-=则23--的坐标是()A .)1,7(B .)1,7(--C .)1,7(-D .)1,7(-8. 与向量a=(-5,4)平行的向量是( )A.(-5k,4k )B.(-k 5,-k4) C.(-10,2) D.(5k,4k)9. 已知),1,(),3,1(-=-=x 且∥b ,则x 等于( ) A .3B .3-C .31D .31-10.已知→a =()1,21,→b =(),2223-,下列各式正确的是( )(A ) 22⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛→→b a (B ) →a ·→b =1 (C ) →a =→b (D ) →a 与→b 平行11. 在四边形ABCD 中,AB →=DC →,且AC →·BD →=0,则四边形ABCD 是()(A ) 矩形 (B ) 菱形 (C ) 直角梯形 (D ) 等腰梯形【中等难度】12、下面给出的关系式中正确的个数是()① 00 =⋅a ②a b b a ⋅=⋅③22a a =④)()(c b a c b a⋅=⋅⑤b a b a ⋅≤⋅(A) 0 (B) 1 (C) 2 (D) 313. 已知ABCD 为矩形,E 是DC 的中点,且−→−AB =→a ,−→−AD =→b ,则−→−BE =( )(A ) →b +→a 21 (B ) →b -→a 21 (C ) →a +→b 21 (D ) →a -→b 2114.已知ABCDEF 是正六边形,且−→−AB =→a ,−→−AE =→b ,则−→−BC =( )(A ) )(21→→-b a(B ))(21→→-a b(C ) →a +→b 21 (D ))(21→→+b a15. 设a ,b 为不共线向量, AB →=a +2b , BC →=-4 a -b ,CD →=-5 a -3 b ,则下列关系式中正确的是( )(A )AD →=BC → (B )AD →=2BC → (C )AD →=-BC → (D )AD →=-2BC →16. 设→1e 与→2e 是不共线的非零向量,且k →1e +→2e 与→1e +k →2e 共线,则k 的值是()(A ) 1 (B ) -1 (C ) 1± (D ) 任意不为零的实数17. 在ABC ∆中,M 是BC 的中点,AM=1,点P 在AM 上且满足-2PA PM =,则()PA PB PC ⋅+等于( ) A.49 B.43 C.43- D. 49-18. 已知a 、b 均为单位向量,它们的夹角为60°,那么丨a +3b 丨=( )A .7B .10C .13D .419.已知| |=4, |b |=3, 与b 的夹角为60°,则| +b |等于()。

高中数学必修一练习题目( 带答案)

高中数学必修一练习题目( 带答案)

人教A 版·数学单元综合测试单元综合测试一(第一章)时间:120分钟 分值:150分1.集合{1,2,3}的所有真子集的个数为( ) A .3 B .6 C .7 D .82.下列五个写法,其中错误..写法的个数为( ) ①{0}∈{0,2,3};②Ø {0};③{0,1,2}⊆{1,2,0};④0∈Ø;⑤0∩Ø=Ø A .1 B .2 C .3 D .4 C3.使根式x -1与x -2分别有意义的x 的允许值集合依次为M 、F ,则使根式x -1+x -2有意义的x 的允许值集合可表示为( ) A .M ∪F B .M ∩F C .∁M F D .∁F M4.已知M ={x |y =x 2-2},N ={y |y =x 2-2},则M ∩N 等于( ) A .N B .M C .R D .Ø5.函数y =x 2+2x +3(x ≥0)的值域为( ) A .R B .[0,+∞) C .[2,+∞) D .[3,+∞)6.等腰三角形的周长是20,底边长y 是一腰的长x 的函数,则y 等于( ) A .20-2x (0<x ≤10) B .20-2x (0<x <10) C .20-2x (5≤x ≤10) D .20-2x (5<x <10)7.用固定的速度向图1甲形状的瓶子注水,则水面的高度h 和时间t 之间的关系是图1乙中的( )甲乙图18.已知y =f (x )是定义在R 上的奇函数,则下列函数中为奇函数的是( ) ①y =f (|x |) ②y =f (-x ) ③y =xf (x ) ④y =f (x )+x A .①③ B .②③ C .①④ D .②④9.已知0≤x ≤32,则函数f (x )=x 2+x +1( )A .有最小值-34,无最大值B .有最小值34,最大值1C .有最小值1,最大值194D .无最小值和最大值10.已知函数f (x )的定义域为[a ,b ],函数y =f (x )的图象如图2甲所示,则函数f (|x |)的图象是图2乙中的( )甲乙图211.若偶函数f (x )在区间(-∞,-1]上是增函数,则( )A .f (-32)<f (-1)<f (2)B .f (-1)<f (-32)<f (2)C .f (2)<f (-1)<f (-32)D .f (2)<f (-32)<f (-1)12.(2009·四川高考)已知函数f (x )是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有xf (x +1)=(1+x )f (x ),则f ⎣⎡⎦⎤f (52)的值是( ) A .0 B.12 C .1 D.52第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.设全集U ={a ,b ,c ,d ,e },A ={a ,c ,d },B ={b ,d ,e },则∁U A ∩∁U B =________. 14.设全集U =R ,A ={x |x ≥1},B ={x |-1≤x <2},则∁U (A ∩B )=________.15.已知函数f (x )=x 2+2(a -1)x +2在区间(-∞,3]上为减函数,求实数a 的取值范围为________.16.若f (x )=(m -1)x 2+6mx +2是偶函数,则f (0)、f (1)、f (-2)从小到大的顺序是__________.三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分) 17.(10分)设A ={x |-2≤x ≤5},B ={x |m -1≤x ≤2m +1}, (1)当x ∈N *时,求A 的子集的个数;(2)当x ∈R 且A ∩B =Ø时,求m 的取值范围.18.(12分)已知集合A ={-1,1},B ={x |x 2-2ax +b =0},若B ≠Ø且B ⊆A ,求a ,b 的值.19.(12分)已知函数f (x )=xax +b(a ,b 为常数,且a ≠0),满足f (2)=1,方程f (x )=x 有唯一实数解,求函数f (x )的解析式和f [f (-4)]的值.20.(12分)已知函数f (x )=4x 2-4ax +(a 2-2a +2)在闭区间[0,2]上有最小值3,求实数a 的值.21.(12分)某公司需将一批货物从甲地运到乙地,现有汽车、火车两种运输工具可供选22.(12分)已知f (x )的定义域为(0,+∞),且满足f (2)=1,f (xy )=f (x )+f (y ),又当x 2>x 1>0时,f (x 2)>f (x 1).(1)求f (1)、f (4)、f (8)的值;(2)若有f (x )+f (x -2)≤3成立,求x 的取值范围.单元综合测试二(第二章)时间:120分钟 分值:150分1.计算log 225·log 322·log 59的结果为( ) A .3 B .4 C .5 D .62.设f (x )=⎩⎪⎨⎪⎧2e x -1,x <2,log 3(x 2-1),x ≥2,则f (f (2))的值为( ) A .0 B .1 C .2 D .3 C3.如果log 12x >0成立,则x 应满足的条件是( )A .x >12 B.12<x <1C .x <1D .0<x <14.函数f (x )=log 3(2-x )在定义域区间上是( ) A .增函数 B .减函数 C .有时是增函数有时是减函数 D .无法确定其单调5.某种放射性元素,100年后只剩原来的一半,现有这种元素1克,3年后剩下( ) A .0.015克 B .(1-0.5%)3克C .0.925克 D.1000.125克6.函数y =log 2x 与y =log 12x 的图象( )A .关于原点对称B .关于x 轴对称C .关于y 轴对称D .关于y =x 对称7.函数y =lg(21-x-1)的图象关于( )A .x 轴对称B .y 轴对称C .原点对称D .y =x 对称8.设a >b >c >1,则下列不等式中不正确的是( ) A .a c >b c B .log a b >log a cC .c a >c bD .log b c <log a c9.已知f (x )=log a (x +1)(a >0且a ≠1),若当x ∈(-1,0)时,f (x )<0,则f (x )是( ) A .增函数 B .减函数 C .常数函数 D .不单调的函数 10.设a =424,b =312,c =6,则a ,b ,c 的大小关系是( ) A .a >b >c B .b <c <a C .b >c >a D .a <b <c11.若方程a x =x +a 有两解,则a 的取值范围为( ) A .(1,+∞) B .(0,1)C .(0,+∞)D .Ø 12.已知f (x )是偶函数,它在(0,+∞)上是减函数,若f (lg x )>f (1),则x 的取值范围是( )A .(110,1)B .(0,110)∪(1,+∞)C .(110,10) D .(0,1)∪(0,+∞)第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.若函数f (x )=a x (a >0,且a ≠1)的反函数的图象过点(2,-1),则a =________. 14.方程log 2(x -1)=2-log 2(x +1)的解为________.15.设函数f 1(x )=x 12,f 2(x )=x -1,f 3(x )=x 2,则f 1(f 2(f 3(2007)))=________.16.设0≤x ≤2,则函数y =4x -12-3·2x +5的最大值是________,最小值是________.三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知a =(2+3)-1,b =(2-3)-1,求(a +1)-2+(b +1)-2的值. 18.(12分)已知关于x 的方程4x ·a -(8+2)·2x +42=0有一个根为2,求a 的值和方程其余的根.19.(12分)已知f (x )=2x -12x +1,证明:f (x )在区间(-∞,+∞)上是增函数.20.(12分)已知偶函数f (x )在x ∈[0,+∞)上是增函数,且f (12)=0,求不等式f (log a x )>0(a >0,且a ≠1)的解集.21.(12分)已知函数f (x )对一切实数x ,y 都满足f (x +y )=f (y )+(x +2y +1)x ,且f (1)=0, (1)求f (0)的值; (2)求f (x )的解析式;(3)当x ∈[0,12]时,f (x )+3<2x +a 恒成立,求a 的范围.22.(12分)设函数f (x )=log a (1-ax),其中0<a <1.(1)求证:f (x )是(a ,+∞)上的减函数; (2)解不等式f (x )>1.单元综合测试三(第三章)时间:120分钟 分值:150分1.二次函数f (x )=2x 2+bx -3(b ∈R )的零点个数是( ) A .0 B .1 C .2 D .42.函数y =1+1x的零点是( )A .(-1,0)B .-1C .1D .03.下列给出的四个函数f (x )的图象中能使函数y =f (x )-1没有零点的是( )4.若函数y =f (x )在区间(-2,2)上的图象是连续不断的曲线,且方程f (x )=0在(-2,2)上仅有一个实数根,则f (-1)·f (1)的值( )A .大于0B .小于0C .无法判断D .等于零5.函数f (x )=e x -1x的零点所在的区间是( )A .(0,12)B .(12,1)C .(1,32)D .(32,2)6.方程log 12x =2x -1的实根个数是( )A .0B .1C .2D .无穷多个7.某产品的总成本y (万元)与产量x (台)之间的函数关系式是y =0.1x 2-11x +3000,若每台产品的售价为25万元,则生产者的利润取最大值时,产量x 等于( )A .55台B .120台C .150台D .180台8.已知α是函数f (x )的一个零点,且x 1<α<x 2,则( ) A .f (x 1)f (x 2)>0 B .f (x 1)f (x 2)<0 C .f (x 1)f (x 2)≥0 D .以上答案都不对9.某城市为保护环境,维护水资源,鼓励职工节约用水,作出了如下规定:每月用水不超过8吨,按每吨2元收取水费,每月超过8吨,超过部分加倍收费,某职工某月缴费20元,则该职工这个月实际用水( )A .10吨B .13吨C .11吨D .9吨10.某工厂6年来生产甲种产品的情况是:前3年年产量的增大速度越来越快,后3年年产量保持不变,则该厂6年来生产甲种产品的总产量C 与时间t (年)的函数关系图象为( )11.函数f (x )=|x 2-6x +8|-k 只有两个零点,则( ) A .k =0 B .k >1 C .0≤k <1 D .k >1,或k =0A .(0.6,1.0)B .(1.4,1.8)C .(1.8,2.2)D .(2.6,3.0) 第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.用二分法求方程x 3-2x -5=0在区间(2,4)上的实数根时,取中点x 1=3,则下一个有根区间是__________.14.已知函数f (x )=ax 2-bx +1的零点为-12,13,则a =__________,b =__________.15.以墙为一边,用篱笆围成一长方形的场地,如图1.已知篱笆的总长为定值l ,则这块场地面积y 与场地一边长x 的关系为________.图116.某化工厂生产一种溶液,按市场要求杂质含量不超过0.1%,若初时含杂质2%,每过滤一次可使杂质含量减少13,至少应过滤________次才能达到市场要求?(已知lg2=0.3010,lg3=0.4771)三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知二次函数f (x )的图象过点(0,3),它的图象的对称轴为x =2,且f (x )的两个零点的平方和为10,求f (x )的解析式.18.(12分)求方程x 2+2x =5(x >0)的近似解(精确度0.1). 19.(12分)要挖一个面积为800 m 2的矩形鱼池,并在四周修出宽分别为1 m,2 m 的小路,试求鱼池与路的占地总面积的最小值.20.(12分)某农工贸集团开发的养殖业和养殖加工生产的年利润分别为P 和Q (万元),这两项利润与投入的资金x (万元)的关系是P =x 3,Q =103x ,该集团今年计划对这两项生产共投入资金60万元,其中投入养殖业为x 万元,获得总利润y (万元),写出y 关于x 的函数关系式及其定义域.21.(12分)已知某种产品的数量x (百件)与其成本y (千元)之间的函数关系可以近似用y =ax 2+bx +c(1)(2)已知每件这种产品的销售价为200元,求利润函数p =p (x );(3)据利润函数p =p (x )确定盈亏转折时的产品数量.(即产品数量等于多少时,能扭亏为盈或由盈转亏)22.(12分)某企业常年生产一种出口产品,根据需求预测:进入21世纪以来,前8年在正常情况下,该产品产量将平衡增长.已知2000年为第一年,头4年年产量f (x )(万件)如表所示:x 1 2 3 4 f (x ) 4.00 5.58 7.00 8.44(1)画出2000~(2)建立一个能基本反映(误差小于0.1)这一时期该企业年产量发展变化的函数模型,并求之.(3)2006年(即x =7)因受到某外国对我国该产品反倾销的影响,年产量应减少30%,试根据所建立的函数模型,确定2006年的年产量应该约为多少?单元综合测试四(必修1综合检测)时间:120分钟 分值:150分题号1 2 3 4 5 6 7 8 9 10 11 12 答案1.集合A ={1,2},B ={1,2,3},C ={2,3,4},则(A ∩B )∪C =( ) A .{1,2,3} B .{1,2,4} C .{2,3,4} D .{1,2,3,4}2.如图1所示,U 表示全集,用A ,B 表示阴影部分正确的是( )图1A .A ∪B B .(∁U A )∪(∁U B )C .A ∩BD .(∁U A )∩(∁U B )3.若f (x )=1-2x ,g (1-2x )=1-x 2x 2(x ≠0),则g ⎝⎛⎭⎫12的值为( ) A .1 B .3 C .15 D .304.设函数f (x )=⎩⎨⎧(x +1)2(x <1),4-x -1(x ≥1),则使得f (-1)+f (m -1)=1成立的m 的值为( )A .10B .0,-2C .0,-2,10D .1,-1,115.若x =6是不等式log a (x 2-2x -15)>log a (x +13)的一个解,则该不等式的解集为( ) A .(-4,7) B .(5,7) C .(-4,-3)∪(5,7) D .(-∞,-4)∪(5,+∞)6.若函数f (x )=12x +1,则该函数在(-∞,+∞)上是( )A .单调递减无最小值B .单调递减有最大值C .单调递增无最大值D .单调递增有最大值7.方程(13)x =|log 3x |的解的个数是( )A .0B .1C .2D .3 8.下列各式中,正确的是( )A .(-43)23<(-54)23B .(-45)13<(-56)13C .(12)12>(13)12D .(-32)3>(-43)39.生物学指出:生态系统在输入一个营养级的能量中,大约10%的能量能够流到下一个营养级,在H 1→H 2→H 3这个食物链中,若能使H 3获得10 kJ 的能量,则需H 1提供的能量为( )A .105 kJB .104 kJC .103 kJD .102 kJ10.如图3(1)所示,阴影部分的面积S 是h 的函数(0≤h ≤H ),则该函数的图象是如图3(2)所示的( )图311.函数f (x )在(-1,1)上是奇函数,且在(-1,1)上是减函数,若f (1-m )+f (-m )<0,则m 的取值范围是( )A .(0,12) B .(-1,1)C .(-1,12)D .(-1,0)∪(1,12)12.(2009·山东卷)定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧ log 2(1-x ),f (x -1)-f (x -2),x ≤0x >0,则f (2009)的值为( )A .-1B .0C .1D .2第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分) 13.log 2716log 34的值是________.14.若函数y =kx +5kx 2+4kx +3的定义域为R ,则实数k 的取值范围为__________.15.已知全集U ={x |x ∈R },集合A ={x |x ≤1或x ≥3},集合B ={x |k <x <k +1,k ∈R },且(∁U A )∩B =Ø,则实数k 的取值范围是________.16.麋鹿是国家一级保护动物,位于江苏省中部黄海之滨的江苏大丰麋鹿国家级自然保护区成立于1986年,第一年(即1986年)只有麋鹿100头,由于科学的人工培育,这种当初快要灭绝的动物只数y (只)与时间x (年)的关系可近似地由关系式y =a log 2(x +1)给出,则到2016年时,预测麋鹿的只数约为________.三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)用定义证明:函数g (x )=kx(k <0,k 为常数)在(-∞,0)上为增函数.18.(12分)已知集合P ={x |2≤x ≤5},Q ={x |k +1≤x ≤2k -1},当P ∩Q =Ø时,求实数k 的取值范围.19.(12分)已知f (x )为一次函数,且满足4f (1-x )-2f (x -1)=3x +18,求函数f (x )在[-1,1]上的最大值,并比较f (2007)和f (2008)的大小.20.(12分)已知函数f (x )=ax 2-2ax +2+b (a ≠0),若f (x )在区间[2,3]上有最大值5,最小值2.(1)求a,b的值;(2)若b<1,g(x)=f(x)-mx在[2,4]上单调,求m的取值范围.21.(12分)设函数y=f(x),且lg(lg y)=lg3x+lg(3-x).(1)求f(x)的解析式和定义域;(2)求f(x)的值域;(3)讨论f(x)的单调性.22.(12分)已知函数f(x)=lg(4-k·2x)(其中k为实数),(1)求函数f(x)的定义域;(2)若f(x)在(-∞,2]上有意义,试求实数k的取值范围.答案及详细解析单元测试一(第一章)时间:120分钟分值:150分1.集合{1,2,3}的所有真子集的个数为()A.3 B.6C.7 D.8解析:含一个元素的有{1},{2},{3},共3个;含两个元素的有{1,2},{1,3},{2,3},共3个;空集是任何非空集合的真子集,故有7个.答案:C2.下列五个写法,其中错误..写法的个数为()①{0}∈{0,2,3};②Ø {0};③{0,1,2}⊆{1,2,0};④0∈Ø;⑤0∩Ø=ØA.1 B.2C.3 D.4解析:②③正确.答案:C3.使根式x-1与x-2分别有意义的x的允许值集合依次为M、F,则使根式x-1+x-2有意义的x的允许值集合可表示为()A.M∪F B.M∩F C.∁M F D.∁F M解析:根式x-1+x-2有意义,必须x-1与x-2同时有意义才可.答案:B4.已知M={x|y=x2-2},N={y|y=x2-2},则M∩N等于()A.N B.M C.R D.Ø解析:M={x|y=x2-2}=R,N={y|y=x2-2}={y|y≥-2},故M∩N=N.答案:A5.函数y=x2+2x+3(x≥0)的值域为()A.R B.[0,+∞) C.[2,+∞) D.[3,+∞) 解析:y=x2+2x+3=(x+1)2+2,∴函数在区间[0,+∞)上为增函数,故y≥(0+1)2+2=3.答案:D6.等腰三角形的周长是20,底边长y是一腰的长x的函数,则y等于()A.20-2x(0<x≤10) B.20-2x(0<x<10)C.20-2x(5≤x≤10) D.20-2x(5<x<10)解析:C=20=y+2x,由三角形两边之和大于第三边可知2x>y=20-2x,x>5.答案:D7.用固定的速度向图1甲形状的瓶子注水,则水面的高度h和时间t之间的关系是图1乙中的()甲乙图1解析:水面升高的速度由慢逐渐加快. 答案:B8.已知y =f (x )是定义在R 上的奇函数,则下列函数中为奇函数的是( ) ①y =f (|x |) ②y =f (-x ) ③y =xf (x ) ④y =f (x )+x A .①③ B .②③ C .①④ D .②④解析:因为y =f (x )是定义在R 上的奇函数,所以f (-x )=-f (x ).①y =f (|x |)为偶函数;②y =f (-x )为奇函数;③令F (x )=xf (x ),所以F (-x )=(-x )f (-x )=(-x )·[-f (x )]=xf (x ).所以F (-x )=F (x ).所以y =xf (x )为偶函数;④令F (x )=f (x )+x ,所以F (-x )=f (-x )+(-x )=-f (x )-x =-[f (x )+x ].所以F (-x )=-F (x ).所以y =f (x )+x 为奇函数.答案:D9.已知0≤x ≤32,则函数f (x )=x 2+x +1( )A .有最小值-34,无最大值B .有最小值34,最大值1C .有最小值1,最大值194 D .无最小值和最大值解析:f (x )=x 2+x +1=(x +12)2+34,画出该函数的图象知,f (x )在区间[0,32]上是增函数,所以f (x )min =f (0)=1,f (x )max =f (32)=194.答案:C10.已知函数f (x )的定义域为[a ,b ],函数y =f (x )的图象如图2甲所示,则函数f (|x |)的图象是图2乙中的( )甲乙图2解析:因为y =f (|x |)是偶函数,所以y =f (|x |)的图象是由y =f (x )把x ≥0的图象保留,再关于y 轴对称得到的.答案:B11.若偶函数f (x )在区间(-∞,-1]上是增函数,则( )A .f (-32)<f (-1)<f (2)B .f (-1)<f (-32)<f (2)C .f (2)<f (-1)<f (-32)D .f (2)<f (-32)<f (-1)解析:由f (x )是偶函数,得f (2)=f (-2),又f (x )在区间(-∞,-1]上是增函数,且-2<-32<-1,则f (2)<f (-32)<f (-1). 答案:D12.(2009·四川高考)已知函数f (x )是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有xf (x +1)=(1+x )f (x ),则f ⎣⎡⎦⎤f (52)的值是( ) A .0 B.12 C .1 D.52解析:令x =-12,则-12f (12)=12f (-12),又∵f (12)=f (-12),∴f (12)=0;令x =12,12f (32)=32f (12),得f (32)=0;令x =32,32f (52)=52f (32),得f (52)=0;而0·f (1)=f (0)=0,∴f ⎣⎡⎦⎤f (52)=f (0)=0,故选A.答案:A第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.设全集U ={a ,b ,c ,d ,e },A ={a ,c ,d },B ={b ,d ,e },则∁U A ∩∁U B =________. 解析:∁U A ∩∁U B =∁U (A ∪B ),而A ∪B ={a ,b ,c ,d ,e }=U . 答案:Ø14.设全集U =R ,A ={x |x ≥1},B ={x |-1≤x <2},则∁U (A ∩B )=________. 解析:A ∩B ={x |1≤x <2},∴∁R (A ∩B )={x |x <1或x ≥2}. 答案:{x |x <1或x ≥2}15.已知函数f (x )=x 2+2(a -1)x +2在区间(-∞,3]上为减函数,求实数a 的取值范围为________.解析:函数f (x )的对称轴为x =1-a ,则由题知:1-a ≥3即a ≤-2. 答案:a ≤-216.若f (x )=(m -1)x 2+6mx +2是偶函数,则f (0)、f (1)、f (-2)从小到大的顺序是__________.解析:∵f (x )=(m -1)x 2+6mx +2是偶函数,∴m =0.∴f (x )=-x 2+2.∴f (0)=2,f (1)=1,f (-2)=-2,∴f (-2)<f (1)<f (0). 答案:f (-2)<f (1)<f (0)三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分) 17.(10分)设A ={x |-2≤x ≤5},B ={x |m -1≤x ≤2m +1}, (1)当x ∈N *时,求A 的子集的个数;(2)当x ∈R 且A ∩B =Ø时,求m 的取值范围. 解:(1)∵x ∈N *且A ={x |-2≤x ≤5},∴A ={1,2,3,4,5}.故A 的子集个数为25=32个. (2)∵A ∩B =Ø,∴m -1>2m +1或2m +1<-2或m -1>5, ∴m <-2或m >6.18.(12分)已知集合A ={-1,1},B ={x |x 2-2ax +b =0},若B ≠Ø且B ⊆A ,求a ,b 的值.解:(1)当B =A ={-1,1}时,易得a =0,b =-1; (2)当B 含有一个元素时,由Δ=0得a 2=b , 当B ={1}时,由1-2a +b =0,得a =1,b =1当B ={-1}时,由1+2a +b =0,得a =-1,b =1.19.(12分)已知函数f (x )=xax +b(a ,b 为常数,且a ≠0),满足f (2)=1,方程f (x )=x 有唯一实数解,求函数f (x )的解析式和f [f (-4)]的值.解:∵f (x )=xax +b且f (2)=1,∴2=2a +b .又∵方程f (x )=x 有唯一实数解.∴ax 2+(b -1)x =0(a ≠0)有唯一实数解.故(b -1)2-4a ×0=0,即b =1,又上式2a +b =2,可得:a =12,从而f (x )=x 12x +1=2xx +2,∴f (-4)=2×(-4)-4+2=4,f (4)=86=43,即f [f (-4)]=43.20.(12分)已知函数f (x )=4x 2-4ax +(a 2-2a +2)在闭区间[0,2]上有最小值3,求实数a 的值.解:f (x )=4⎝⎛⎭⎫x -a22+2-2a . (1)当a2<0即a <0时,f (x )min =f (0)=a 2-2a +2=3,解得:a =1- 2.(2)0≤a 2≤2即0≤a ≤4时,f (x )min =f ⎝⎛⎭⎫a 2=2-2a =3,解得:a =-12(舍去). (3)a2>2即a >4时,f (x )min =f (2)=a 2-10a +18=3,解得:a =5+10, 综上可知:a 的值为1-2或5+10.21.(12分)某公司需将一批货物从甲地运到乙地,现有汽车、火车两种运输工具可供选解:设甲、乙两地距离为x 千米(x >0),选用汽车、火车运输时的总支出分别为y 1和y 2. 于是y 1=8x +1000+(x50+2)×300=14x +1600,y 2=4x +1800+(x100+4)×300=7x +3000.令y 1-y 2<0得x <200.①当0<x <200时,y 1<y 2,此时应选用汽车;②当x =200时,y 1=y 2,此时选用汽车或火车均可; ③当x >200时,y 1>y 2,此时应选用火车.故当距离小于200千米时,选用汽车较好;当距离等于200千米时,选用汽车或火车均可;当距离大于200千米时,选用火车较好.22.(12分)已知f (x )的定义域为(0,+∞),且满足f (2)=1,f (xy )=f (x )+f (y ),又当x 2>x 1>0时,f (x 2)>f (x 1).(1)求f (1)、f (4)、f (8)的值;(2)若有f (x )+f (x -2)≤3成立,求x 的取值范围.解:(1)f (1)=f (1)+f (1),∴f (1)=0,f (4)=f (2)+f (2)=1+1=2,f (8)=f (2)+f (4)=2+1=3.(2)∵f (x )+f (x -2)≤3,∴f [x (x -2)]≤f (8),又∵对于函数f (x )有x 2>x 1>0时f (x 2)>f (x 1),∴f (x )在(0,+∞)上为增函数.∴⎩⎪⎨⎪⎧x >0x -2>0x (x -2)≤8⇒2<x ≤4.∴x 的取值范围为(2,4].单元综合测试二(第二章)时间:120分钟 分值:150分1.计算log 225·log 322·log 59的结果为( ) A .3 B .4 C .5 D .6解析:原式=lg25lg2·lg22lg3·lg9lg5=2lg5lg2·32lg2lg3·2lg3lg5=6.答案:D2.设f (x )=⎩⎪⎨⎪⎧2e x -1,x <2,log 3(x 2-1),x ≥2,则f (f (2))的值为( ) A .0 B .1 C .2 D .3解析:f (2)=log 3(22-1)=1,f (f (2))=2e 1-1=2e 0=2. 答案:C3.如果log 12x >0成立,则x 应满足的条件是( )A .x >12 B.12<x <1C .x <1D .0<x <1 解析:由对数函数的图象可得. 答案:D4.函数f (x )=log 3(2-x )在定义域区间上是( ) A .增函数 B .减函数 C .有时是增函数有时是减函数 D .无法确定其单调解析:由复合函数的单调性可以判断,内外两层单调性相同则为增函数,内外两层的单调性相反则为减函数.答案:B5.某种放射性元素,100年后只剩原来的一半,现有这种元素1克,3年后剩下( ) A .0.015克 B .(1-0.5%)3克C .0.925克 D.1000.125克解析:设该放射性元素满足y =a x (a >0且a ≠1),则有12=a 100得a =(12)1100.可得放射性元素满足y =[(12)1100]x =(12)x 100.当x =3时,y =(12)3100=100(12)3=1000.125.答案:D6.函数y =log 2x 与y =log 12x 的图象( )A .关于原点对称B .关于x 轴对称C .关于y 轴对称D .关于y =x 对称 解析:据图象和代入式判定都可以做出判断,故选B. 答案:B7.函数y =lg(21-x-1)的图象关于( )A .x 轴对称B .y 轴对称C .原点对称D .y =x 对称 解析:f (x )=lg(21-x -1)=lg 1+x 1-x ,f (-x )=lg 1-x 1+x =-f (x ),所以y =lg(21-x-1)关于原点对称,故选C.答案:C8.设a >b >c >1,则下列不等式中不正确的是( ) A .a c >b c B .log a b >log a c C .c a >c b D .log b c <log a c解析:y =x c在(0,+∞)上递增,因为a >b ,则a c >b c ;y =log a x 在(0,+∞)上递增,因为b >c ,则log a b >log a c ;y =c x 在(-∞,+∞)上递增,因为a >b ,则c a >c b .故选D.答案:D9.已知f (x )=log a (x +1)(a >0且a ≠1),若当x ∈(-1,0)时,f (x )<0,则f (x )是( ) A .增函数 B .减函数 C .常数函数 D .不单调的函数解析:由于x ∈(-1,0),则x +1∈(0,1),所以a >1.因而f (x )在(-1,+∞)上是增函数. 答案:A10.设a =424,b =312,c =6,则a ,b ,c 的大小关系是( ) A .a >b >c B .b <c <a C .b >c >a D .a <b <c 解析:a =424=12243,b =12124,c =6=1266.∵243<124<66, ∴12243<12124<1266,即a <b <c . 答案:D11.若方程a x =x +a 有两解,则a 的取值范围为( ) A .(1,+∞) B .(0,1) C .(0,+∞) D .Ø解析:分别作出当a >1与0<a <1时的图象. (1)当a >1时,图象如下图1,满足题意.图1 图2(2)当0<a <1时,图象如上图2,不满足题意. 答案:A 12.已知f (x )是偶函数,它在(0,+∞)上是减函数,若f (lg x )>f (1),则x 的取值范围是( )A .(110,1)B .(0,110)∪(1,+∞)C .(110,10) D .(0,1)∪(0,+∞)解析:由于f (x )是偶函数且在(0,+∞)上是减函数,所以f (-1)=f (1),且f (x )在(-∞,0)上是增函数,应有⎩⎪⎨⎪⎧x >0,-1<lg x <1,解得110<x <10.答案:C第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.若函数f (x )=a x (a >0,且a ≠1)的反函数的图象过点(2,-1),则a =________.解析:由互为反函数关系知,f (x )过点(-1,2),代入得a -1=2⇒a =12.答案:1214.方程log 2(x -1)=2-log 2(x +1)的解为________.解析:log 2(x -1)=2-log 2(x +1)⇔log 2(x -1)=log 24x +1,即x -1=4x +1,解得x =±5(负值舍去),∴x = 5.答案: 515.设函数f 1(x )=x 12,f 2(x )=x -1,f 3(x )=x 2,则f 1(f 2(f 3(2007)))=________.解析:f 1(f 2(f 3(2007)))=f 1(f 2(20072))=f 1((20072)-1)=[(20072)-1]12=2007-1.答案:1200716.设0≤x ≤2,则函数y =4x -12-3·2x +5的最大值是________,最小值是________.解析:设2x =t (1≤t ≤4),则y =12·4x -3·2x +5=12t 2-3t +5=12(t -3)2+12.当t =3时,y min =12;当t =1时,y max =12×4+12=52.答案:52 12三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知a =(2+3)-1,b =(2-3)-1,求(a +1)-2+(b +1)-2的值.解:(a +1)-2+(b +1)-2=(12+3+1)-2+(12-3+1)-2=(3+32+3)-2+(3-32-3)-2=16(7+432+3+7-432-3)=16[(7+43)(2-3)+(7-43)(2+3)]=16×4=23.18.(12分)已知关于x 的方程4x ·a -(8+2)·2x +42=0有一个根为2,求a 的值和方程其余的根.解:将x =2代入方程中, 得42·a -(8+2)·22+42=0,解得a =2. 当a =2时,原方程为 4x ·2-(8+2)2x +42=0, 将此方程变形化为2·(2x )2-(8+2)·2x +42=0. 令2x =y ,得2y 2-(8+2)y +42=0.解得y =4或y =22.当y =4时,即2x=4,解得x =2;当y =22时,2x =22,解得x =-12.综上,a =2,方程其余的根为-12.19.(12分)已知f (x )=2x -12x +1,证明:f (x )在区间(-∞,+∞)上是增函数.证明:设任意x 1,x 2∈(-∞,+∞)且x 1<x 2,则f (x 1)-f (x 2)=2x 1-12x 1+1-2x 2-12x 2+1=(2x 1-1)(2x 2+1)-(2x 2-1)(2x 1+1)(2x 1+1)(2x 2+1)=2x 1-2x 2-(2x 2-2x 1)(2x 1+1)(2x 2+1)=2(2x 1-2x 2)(2x 1+1)(2x 2+1).∵x 1<x 2,∴2x 1<2x 2,即2x 1-2x 2<0.∴f (x 1)<f (x 2).∴f (x )在区间(-∞,+∞)上是增函数.20.(12分)已知偶函数f (x )在x ∈[0,+∞)上是增函数,且f (12)=0,求不等式f (log a x )>0(a >0,且a ≠1)的解集.解:f (x )是偶函数,且f (x )在[0,+∞)上递增,f (12)=0,∴f (x )在(-∞,0)上递减,f (-12)=0,则有log a x >12,或log a x <-12.(1)当a >1时,log a x >12,或log a x <-12,可得x >a ,或0<x <aa ;(2)当0<a <1时,log a x >12,或log a x <-12,可得0<x <a ,或x >aa.综上可知,当a >1时,f (log a x )>0的解集为(0,aa )∪(a ,+∞);当0<a <1时,f (log a x )>0的解集为(0,a )∪(aa,+∞).21.(12分)已知函数f (x )对一切实数x ,y 都满足f (x +y )=f (y )+(x +2y +1)x ,且f (1)=0, (1)求f (0)的值; (2)求f (x )的解析式;(3)当x ∈[0,12]时,f (x )+3<2x +a 恒成立,求a 的范围.解:(1)令x =1,y =0,则f (1)=f (0)+(1+1)×1,∴f (0)=f (1)-2=-2. (2)令y =0,则f (x )=f (0)+(x +1)x ,∴f (x )=x 2+x -2.(3)由f (x )+3<2x +a ,得a >x 2-x +1.设y =x 2-x +1,则y =x 2-x +1在(-∞,12]上是减函数,所以y =x 2-x +1在[0,12]上的范围为34≤y ≤1,从而可得a >1.22.(12分)设函数f (x )=log a (1-ax),其中0<a <1.(1)求证:f (x )是(a ,+∞)上的减函数; (2)解不等式f (x )>1.解:(1)证明:设任意x 1,x 2∈(a ,+∞)且x 1<x 2,则f (x 1)-f (x 2)=log a (1-a x 1)-log a (1-ax 2)=log a 1-a x 11-a x 2=log a 1-a x 2+a x 2-ax 11-a x 2=log a ⎣⎢⎡⎦⎥⎤1+a x 2-a x 11-a x 2=log a (1+ax 1-ax 2x 1x 2-ax 1)=log a [1+a (x 1-x 2)x 1(x 2-a )].∵x 1,x 2∈(a ,+∞)且x 1<x 2,∴x 1-x 2<0,0<a <x 1<x 2,x 2-a >0.∴a (x 1-x 2)x 1(x 2-a )<0,∴1+a (x 1-x 2)x 1(x 2-a )<1,又∵0<a <1,∴log a [1+a (x 1-x 2)x 1(x 2-a )]>0,∴f (x 1)>f (x 2),所以f (x )=log a (1-a x )在(a ,+∞)上为减函数.(2)因为0<a <1,所以f (x )>1⇔log a (1-ax )>log a a ⇔⎩⎨⎧1-ax >0,①1-ax<a .②解不等式①,得x >a 或x <0.解不等式②,得0<x <a 1-a .因为0<a <1,故x <a 1-a ,所以原不等式的解集为{x |a <x <a1-a}.单元综合测试三(第三章)时间:120分钟 分值:150分1.二次函数f (x )=2x 2+bx -3(b ∈R )的零点个数是( ) A .0 B .1 C .2 D .4解析:∵Δ=b 2+4×2×3=b 2+24>0,∴函数图象与x 轴有两个不同的交点,从而函数有2个零点. 答案:C2.函数y =1+1x的零点是( )A .(-1,0)B .-1C .1D .0解析:令1+1x=0,得x =-1,即为函数零点.答案:B3.下列给出的四个函数f (x )的图象中能使函数y =f (x )-1没有零点的是( )解析:把y =f (x )的图象向下平移1个单位后,只有C 图中图象与x 轴无交点. 答案:C4.若函数y =f (x )在区间(-2,2)上的图象是连续不断的曲线,且方程f (x )=0在(-2,2)上仅有一个实数根,则f (-1)·f (1)的值( )A .大于0B .小于0C .无法判断D .等于零解析:由题意不能断定零点在区间(-1,1)内部还是外部. 答案:C5.函数f (x )=e x -1x的零点所在的区间是( )A .(0,12)B .(12,1)C .(1,32)D .(32,2)解析:f (12)=e -2<0, f (1)=e -1>0,∵f (12)·f (1)<0,∴f (x )的零点在区间(12,1)内.答案:B6.方程log 12x =2x -1的实根个数是( )A .0B .1C .2D .无穷多个解析:方程log 12x =2x -1的实根个数只有一个,可以画出f (x )=log 12x 及g (x )=2x -1的图象,两曲线仅一个交点,故应选B.答案:B7.某产品的总成本y(万元)与产量x(台)之间的函数关系式是y=0.1x2-11x+3000,若每台产品的售价为25万元,则生产者的利润取最大值时,产量x等于() A.55台B.120台C.150台D.180台解析:设产量为x台,利润为S万元,则S=25x-y=25x-(0.1x2-11x+3000)=-0.1x2+36x-3000=-0.1(x-180)2+240,则当x=180时,生产者的利润取得最大值.答案:D8.已知α是函数f(x)的一个零点,且x1<α<x2,则()A.f(x1)f(x2)>0 B.f(x1)f(x2)<0C.f(x1)f(x2)≥0 D.以上答案都不对解析:定理的逆定理不成立,故f(x1)f(x2)的值不确定.答案:D9.某城市为保护环境,维护水资源,鼓励职工节约用水,作出了如下规定:每月用水不超过8吨,按每吨2元收取水费,每月超过8吨,超过部分加倍收费,某职工某月缴费20元,则该职工这个月实际用水()A.10吨B.13吨C.11吨D.9吨解析:设该职工该月实际用水为x吨,易知x>8.则水费y=16+2×2(x-8)=4x-16=20,∴x=9.答案:D10.某工厂6年来生产甲种产品的情况是:前3年年产量的增大速度越来越快,后3年年产量保持不变,则该厂6年来生产甲种产品的总产量C与时间t(年)的函数关系图象为()答案:A11.函数f(x)=|x2-6x+8|-k只有两个零点,则()A.k=0 B.k>1C.0≤k<1 D.k>1,或k=0解析:令y1=|x2-6x+8|,y2=k,由题意即要求两函数图象有两交点,利用数形结合思想,作出两函数图象可得选D.答案:DA.(0.6,1.0) B.(1.4,1.8)C.(1.8,2.2) D.(2.6,3.0)解析:设f(x)=2x-x2,由表格观察出x=1.8时,2x>x2,即f(1.8)>0;在x=2.2时,2x<x2,即f(2.2)<0.综上知f(1.8)·f(2.2)<0,所以方程2x=x2的一个根位于区间(1.8,2.2)内.答案:C第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.用二分法求方程x3-2x-5=0在区间(2,4)上的实数根时,取中点x1=3,则下一个有根区间是__________.解析:设f (x )=x 3-2x -5,则f (2)<0,f (3)>0,f (4)>0,有f (2)f (3)<0,则下一个有根区间是(2,3).答案:(2,3)14.已知函数f (x )=ax 2-bx +1的零点为-12,13,则a =__________,b =__________.解析:由韦达定理得-12+13=b a ,且-12×13=1a.解得a =-6,b =1.答案:-6 115.以墙为一边,用篱笆围成一长方形的场地,如图1.已知篱笆的总长为定值l ,则这块场地面积y 与场地一边长x 的关系为________.图1解析:由题意知场地的另一边长为l -2x ,则y =x (l -2x ),且l -2x >0,即0<x <l2.答案:y =x (l -2x )(0<x <l2)16.某化工厂生产一种溶液,按市场要求杂质含量不超过0.1%,若初时含杂质2%,每过滤一次可使杂质含量减少13,至少应过滤________次才能达到市场要求?(已知lg2=0.3010,lg3=0.4771)解析:设过滤n 次才能达到市场要求,则2%(1-13)n ≤0.1%即(23)n ≤0.12,∴n lg 23≤-1-lg2, ∴n ≥7.39,∴n =8. 答案:8三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知二次函数f (x )的图象过点(0,3),它的图象的对称轴为x =2,且f (x )的两个零点的平方和为10,求f (x )的解析式.解:设二次函数f (x )=ax 2+bx +c (a ≠0).由题意知:c =3,-b2a=2.设x 1,x 2是方程ax 2+bx +c =0的两根,则x 21+x 22=10,∴(x 1+x 2)2-2x 1x 2=10,∴(-b a )2-2c a =10,∴16-6a=10,∴a =1.代入-b2a=2中,得b =-4.∴f (x )=x 2-4x +3.18.(12分)求方程x 2+2x =5(x >0)的近似解(精确度0.1). 解:令f (x )=x 2+2x -5(x >0). ∵f (1)=-2,f (2)=3,∴函数f (x )的正零点在区间(1,2)内.取(1,2)中点x 1=1.5,f (1.5)>0.取(1,1.5)中点x 2=1.25,f (1.25)<0. 取(1.25,1.5)中点x 3=1.375,f (1.375)<0.取(1.375,1.5)中点x 4=1.4375,f (1.4375)<0.取(1.4375,1.5). ∵|1.5-1.4375|=0.0625<0.1,∴方程x 2+2x =5(x >0)的近似解为x =1.5(或1.4375). 19.(12分)要挖一个面积为800 m 2的矩形鱼池,并在四周修出宽分别为1 m,2 m 的小路,试求鱼池与路的占地总面积的最小值.解:设所建矩形鱼池的长为x m ,则宽为800xm ,于是鱼池与路的占地面积为y =(x +2)(800x +4)=808+4x +1600x =808+4(x +400x )=808+4[(x -20x )2+40].当x =20x,即x =20时,y 取最小值为968 m 2.答:鱼池与路的占地最小面积是968 m 2.20.(12分)某农工贸集团开发的养殖业和养殖加工生产的年利润分别为P 和Q (万元),这两项利润与投入的资金x (万元)的关系是P =x 3,Q =103x ,该集团今年计划对这两项生产共投入资金60万元,其中投入养殖业为x 万元,获得总利润y (万元),写出y 关于x 的函数关系式及其定义域.解:投入养殖加工生产业为60-x 万元.由题意可得,y =P +Q =x 3+10360-x ,由60-x ≥0得x ≤60,∴0≤x ≤60,即函数的定义域是[0,60].21.(12分)已知某种产品的数量x (百件)与其成本y (千元)之间的函数关系可以近似用y =ax 2+bx +c(1)(2)已知每件这种产品的销售价为200元,求利润函数p =p (x );(3)据利润函数p =p (x )确定盈亏转折时的产品数量.(即产品数量等于多少时,能扭亏为盈或由盈转亏)解:(1)将表格中相关数据代入y =ax 2+bx +c ,得⎩⎪⎨⎪⎧36a +6b +c =104100a +10b +c =160,400a +20b +c =370解得a =12,b =6,c =50.所以y =f (x )=12x 2+6x +50(x ≥0).(2)p =p (x )=-12x 2+14x -50(x ≥0).(3)令p (x )=0,即-12x 2+14x -50=0,解得x =14±46,即x 1=4.2,x 2=23.8,故4.2<x <23.8时,p (x )>0;x <4.2或x >23.8时,p (x )<0, 所以当产品数量为420件时,能扭亏为盈; 当产品数量为2380件时由盈变亏.22.(12分)某企业常年生产一种出口产品,根据需求预测:进入21世纪以来,前8年在正常情况下,该产品产量将平衡增长.已知2000年为第一年,头4年年产量f (x )(万件)如表所示:(1)画出2000~(2)建立一个能基本反映(误差小于0.1)这一时期该企业年产量发展变化的函数模型,并求之.(3)2006年(即x =7)因受到某外国对我国该产品反倾销的影响,年产量应减少30%,试根据所建立的函数模型,确定2006年的年产量应该约为多少?解:图2(1)散点图如图2:(2)设f (x )=ax +b .由已知得⎩⎪⎨⎪⎧a +b =43a +b =7,解得a =32,b =52,∴f (x )=32x +52.检验:f (2)=5.5,|5.58-5.5|=0.08<0.1; f (4)=8.5,|8.44-8.5|=0.06<0.1.∴模型f (x )=32x +52能基本反映产量变化.(3)f (7)=32×7+52=13,由题意知,2006年的年产量约为13×70%=9.1(万件),即2006年的年产量应约为9.1万件.单元综合测试四(必修1综合检测)时间:120分钟 分值:150分题号1 2 3 4 5 6 7 8 9 10 11 12 答案1.集合A ={1,2},B ={1,2,3},C ={2,3,4},则(A ∩B )∪C =( ) A .{1,2,3} B .{1,2,4} C .{2,3,4} D .{1,2,3,4}解析:∵A ∩B ={1,2},∴(A ∩B )∪C ={1,2,3,4}. 答案:D2.如图1所示,U 表示全集,用A ,B 表示阴影部分正确的是( )图1A .A ∪B B .(∁U A )∪(∁U B )C .A ∩BD .(∁U A )∩(∁U B )解析:由集合之间的包含关系及补集的定义易得阴影部分为(∁U A )∩(∁U B ). 答案:D3.若f (x )=1-2x ,g (1-2x )=1-x 2x 2(x ≠0),则g ⎝⎛⎭⎫12的值为( ) A .1 B .3 C .15 D .30解析:g (1-2x )=1-x 2x 2,令12=1-2x ,则x =14,∴g ⎝⎛⎭⎫12=1-116116=15,故选C. 答案:C4.设函数f (x )=⎩⎨⎧(x +1)2(x <1),4-x -1(x ≥1),则使得f (-1)+f (m -1)=1成立的m 的值为( )A .10B .0,-2C .0,-2,10D .1,-1,11解析:因为x <1时,f (x )=(x +1)2,所以f (-1)=0.当m -1<1,即m <2时,f (m -1)=m 2=1,m =±1.当m -1≥1,即m ≥2时,f (m -1)=4-m -2=1,所以m =11.答案:D5.若x =6是不等式log a (x 2-2x -15)>log a (x +13)的一个解,则该不等式的解集为( ) A .(-4,7) B .(5,7) C .(-4,-3)∪(5,7) D .(-∞,-4)∪(5,+∞)解析:将x =6代入不等式,得log a 9>log a 19,所以a ∈(0,1).则⎩⎪⎨⎪⎧x 2-2x -15>0,x +13>0,x 2-2x -15<x +13.解得x ∈(-4,-3)∪(5,7).答案:C6.若函数f (x )=12x +1,则该函数在(-∞,+∞)上是( )A .单调递减无最小值B .单调递减有最大值C .单调递增无最大值D .单调递增有最大值解析:2x+1在(-∞,+∞)上递增,且2x +1>0,∴12x +1在(-∞,+∞)上递减且无最小值. 答案:A7.方程(13)x =|log 3x |的解的个数是( )A .0B .1C .2D .3 解析:图2在平面坐标系中,画出函数y 1=(13)x 和y 2=|log 3x |的图象,如图2所示,可知方程有两个解.答案:C8.下列各式中,正确的是( )A .(-43)23<(-54)23B .(-45)13<(-56)13C .(12)12>(13)12D .(-32)3>(-43)3解析:函数y =x 23在(-∞,0)上是减函数,而-43<-54,∴(-43)23>(-54)23,故A 错;函数y =x 13在(-∞,+∞)上是增函数,而-45>-56,∴(-45)13>(-56)13,故B 错,同理D错.答案:C9.生物学指出:生态系统在输入一个营养级的能量中,大约10%的能量能够流到下一个营养级,在H 1→H 2→H 3这个食物链中,若能使H 3获得10 kJ 的能量,则需H 1提供的能量为( )A .105 kJB .104 kJC .103 kJD .102 kJ解析:H 1⎝⎛⎭⎫1102=10,∴H 1=103. 答案:C10.如图3(1)所示,阴影部分的面积S 是h 的函数(0≤h ≤H ),则该函数的图象是如图3(2)所示的( )图3解析:当h =H2时,对应阴影部分的面积小于整个图形面积的一半,且随着h 的增大,S随之减小,故排除A ,B ,D.答案:C11.函数f (x )在(-1,1)上是奇函数,且在(-1,1)上是减函数,若f (1-m )+f (-m )<0,则m的取值范围是( )A .(0,12) B .(-1,1)C .(-1,12)D .(-1,0)∪(1,12)解析:f (1-m )<-f (-m ),∵f (x )在(-1,1)上是奇函数,∴f (1-m )<f (m ),∴1>1-m >m >-1,解得0<m <12,即m ∈(0,12).答案:A12.(2009·山东卷)定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧ log 2(1-x ),f (x -1)-f (x -2),x ≤0x >0,则f (2009)的值为( )A .-1B .0C .1D .2解析:由题意可得:x >0时,f (x )=f (x -1)-f (x -2),从而f (x -1)=f (x -2)-f (x -3). 两式相加得f (x )=-f (x -3),f (x -6)=f [(x -3)-3]=-f (x -3)=f (x ), ∴f (2009)=f (2003)=f (1997)=…=f (5)=f (-1)=log 22=1. 答案:C第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分) 13.log 2716log 34的值是________.解析:log 2716log 34=23log 34log 34=23.答案:2314.若函数y =kx +5kx 2+4kx +3的定义域为R ,则实数k 的取值范围为__________.解析:kx 2+4kx +3恒不为零.若k =0,符合题意,k ≠0,Δ<0,也符合题意.所以0≤k <34.答案:⎩⎨⎧⎭⎬⎫k ⎪⎪0≤k <34 15.已知全集U ={x |x ∈R },集合A ={x |x ≤1或x ≥3},集合B ={x |k <x <k +1,k ∈R },且(∁U A )∩B =Ø,则实数k 的取值范围是________.解析:∁U A ={x |1<x <3},又(∁U A )∩B =Ø, ∴k +1≤1或k ≥3, ∴k ≤0或k ≥3.答案:(-∞,0]∪[3,+∞)16.麋鹿是国家一级保护动物,位于江苏省中部黄海之滨的江苏大丰麋鹿国家级自然保护区成立于1986年,第一年(即1986年)只有麋鹿100头,由于科学的人工培育,这种当初快要灭绝的动物只数y (只)与时间x (年)的关系可近似地由关系式y =a log 2(x +1)给出,则到2016年时,预测麋鹿的只数约为________.解析:当x =1时,y =a log 22=a =100,∴y =100log 2(x +1), ∵2016-1986+1=31,即2016年为第31年, ∴y =100log 2(31+1)=500, ∴2016年麋鹿的只数约为500. 答案:500三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)。

高中数学排列组合专题练习题

高中数学排列组合专题练习题

高中数学排列组合专题练习题一、选择题1、从 5 名男同学和 4 名女同学中选出 3 名男同学和 2 名女同学,分别担任 5 种不同的职务,不同的选法共有()A 5400 种B 18000 种C 7200 种D 14400 种解析:第一步,从 5 名男同学中选出 3 名,有\(C_{5}^3\)种选法;第二步,从 4 名女同学中选出 2 名,有\(C_{4}^2\)种选法;第三步,将选出的 5 名同学进行排列,有\(A_{5}^5\)种排法。

所以不同的选法共有\(C_{5}^3 × C_{4}^2 × A_{5}^5 = 10×6×120 =7200\)种,故选 C。

2、有 5 本不同的书,其中语文书 2 本,数学书 2 本,物理书 1 本。

若将其并排摆放在书架的同一层上,则同一科目书都不相邻的放法种数是()A 24B 48C 72D 96解析:先排语文书有\(A_{2}^2 = 2\)种排法,再在语文书的间隔(含两端)处插数学书有\(A_{3}^2 = 6\)种插法,最后将物理书插入 4 个间隔中的一个有 4 种方法。

所以共有\(2×6×4 = 48\)种排法,故选 B。

3、从 0,1,2,3,4,5 这 6 个数字中,任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为()A 300B 216C 180D 162解析:分两类情况讨论:第一类:取出的偶数含 0。

偶数 0 和另外一个偶数的取法有\(C_{2}^1\)种,奇数的取法有\(C_{3}^2\)种。

0 在个位时,其他三个数字全排列,有\(A_{3}^3\)种;0 不在个位时,0 有 2 种位置,其他三个数字全排列,有\(2×A_{2}^1×A_{2}^2\)种。

此时共有\(C_{2}^1×C_{3}^2×(A_{3}^3 + 2×A_{2}^1×A_{2}^2) = 108\)种。

2020年最新高考数学--以圆或隐圆为背景的选择填空题(解析版)

2020年最新高考数学--以圆或隐圆为背景的选择填空题(解析版)

专题一 压轴选择填空题第4关 以圆或隐圆为背景的选择填空题【名师综述】直线与圆是高中数学的C 级知识点,是高中数学中数形结合思想的典型体现.近年来,高考对直线与圆的命题,既充分体现自身知识结构体系的命题形式多样化,又保持与函数或不等式或轨迹相结合的命题思路,呈现出“综合应用,融会贯通”的特色,充分彰显直线与圆的交汇价值.【典例解剖】类型一 以动点轨迹为圆考查直线与圆、圆与圆位置关系典例1.(2020上海控江中学高三月考)设三角形ABC 是位于平面直角坐标系xOy 的第一象限中的一个不等边三角形,该平面上的动点P 满足:222222||||||||||||PA PB PC OA OB OC ++=++,已知动点P 的轨迹是一个圆,则该圆的圆心位于三角形ABC 的( ) A .内心 B .外心C .重心D .垂心【答案】C 【解析】【分析】可设(,)P x y ,()11,A x y ()22,B x y ,()33,C x y ,由222222||||||||||||PA PB PC OA OB OC ++=++列出关系式,由P 的轨迹为圆,求出圆心坐标即可【详解】设(,)P x y ,()11,A x y ()22,B x y ,()33,C x y ,由222222||||||||||||PA PB PC OA OB OC ++=++得:222222222222112233112233()()()()()()x x y y x x y y x x y y x y x y x y -+-+-+-+-+-=+++++ 展开整理,得22123123332()2()0x y x x x x y y y y +-++-++=.∴2222123123123123111[()][()][()()]339x x x x y y y y x x x y y y -+++-++=+++++. ∴圆的圆心坐标为1231(()3x x x ++,1231())3y y y ++,为三角形ABC 的重心,故选C .【名师点睛】本题考查直线与圆的综合应用,圆的轨迹方程的求法,重心坐标公式的应用,计算量偏大,化简时需进行整体代换,简化运算难度,属于中档题. 【举一反三】(2020上海洋泾中学高三月考)已知定圆C :()2245x y -+=,其圆心为()4,0C ,点A 为圆C 所在平面内一定点,点P 为圆C 上一个动点,若线段PA 的中垂线与直线PC 交于点Q ,则动点Q 的轨迹可能为______.(写出所有正确的序号)(1)椭圆;(2)双曲线;(3)抛物线;(4)圆;(5)直线;(6)一个点. 【答案】(1)(2)(4)(6) 【解析】(1)若点A 在圆C 外部,=QA QC PC AC ->Q 点的轨迹是以,A C 为焦点的双曲线;(2)若点A 在圆上,则C Q ,点重合,如图,点Q 点的轨迹为点C ;(3)若点A 在圆内部且不为圆心,则QA QC PC +==AC <Q 点的轨迹是以,A C 为焦点的椭圆;(4)若点A 在圆内部且为圆心,,A C 重合时,Q 为半径PA 的中点,所以点Q 是以C 为半径的圆.综上所述,Q 点的轨迹可能是(1)(2)(4)(6)四种情况 答案为:(1)(2)(4)(6)类型二 以圆中直角三角形建立函数关系式或方程或不等式典例2.(2020上海师大附中期中)已知点A ,B ,C 在圆221x y +=上运动,且AB ⊥BC ,若点P 的坐标为(2,0),则PA PB PC ++u u u r u u u r u u u r 的最大值为( )A .6B .7C .8D .9【答案】B 【解析】由题意,AC 为直径,所以24437PA PB PC PO PB PB ++=+≤+≤+=u u u r u u u r u u u r u u u r u u u r u u u r,当且仅当点B 为(-1,0)时,PA PB PC ++u u u r u u u r u u u r取得最大值7,故选B .考点:直线与圆的位置关系、平面向量的运算性质 【名师点睛】与圆有关的最值问题是命题的热点内容,它着重考查数形结合与转化思想.由平面几何知识知,圆上的一点与圆外一定点距离最值在定点和圆心连线与圆的两个交点处取到.圆周角为直角的弦为圆的半径,平面向量加法几何意义这些小结论是转化问题的关键. 【举一反三】1.(2020上海七宝中学高三月考)已知a b v v 、是平面内两个互相垂直的单位向量,且此平面内另一向量c v 在满足()()340a c b c +-=v v v v,均能使c b k -≤v v 成立,则k 的最小值是_________.【答案】52【解析】【分析】根据题意,()()()1,0,0,1,,a b c x y v v v===,利用()()340a c b c +⋅-=r r r r ,求得,x y 的关系,利用圆的几何性质,再求出c b -vv 的最大值,从而求出k 的最小值.【详解】因为a b v v 、是平面内两个互相垂直的单位向量,所以可设 ()()()1,0,0,1,,a b c x y v v v ===, ()33,a c x y ∴+=+r r ,()4,4b c x y -=--r r,又()()340a c b c +⋅-=r r r r ,()()340x x y y ∴-++-=,即()22325224x y ⎛⎫++-= ⎪⎝⎭, 它表示的圆心在3,22M ⎛⎫- ⎪⎝⎭,半径为52的圆,c b -v v 表示圆上的点到(0,1)B 的距离,圆心M 到点(0,1)B 的距离为d =c b ∴-r r 的最大值为52=,要使c b k -≤r r 恒成立,52k ≥,即k 的最小值是52,故答案为52.【名师点睛】本题主要考查向量模的几何意义、轨迹方程的应用以及圆的几何意义,考查了转化思想的应用,属于难题.转化是数学解题的灵魂,合理的转化不仅仅使问题得到了解决,还可以使解决问题的难度大大降低,本题将不等式恒成立问题转化为圆上动点到定点距离的最值问题是解题的关键. 类型三 利用数形结合揭示与刻画直线与圆、圆与圆位置关系典例3.(2020上海青浦中学月考)在平面直角坐标系中,记d 为点()cos ,sin P θθ到直线20x my --=的距离,当θ、m 变化时,d 的最大值为( ) A .1 B .2 C .3 D .4【答案】C 【解析】【分析】P 为单位圆上一点,而直线20x my --=过点()2,0A ,则根据几何意义得d 的最大值为1OA +. 【详解】22cos sin 1θθ+=∴Q ,P 为单位圆上一点,而直线20x my --=过点()2,0A , 所以d 的最大值为1213OA +=+=,选C . 【名师点睛】与圆有关的最值问题主要表现在求几何图形的长度、面积的最值,求点到直线的距离的最值,求相关参数的最值等方面.解决此类问题的主要思路是利用圆的几何性质将问题转化. 【举一反三】(2020上海徐汇区一模)若圆221:1C x y +=和圆222:680C x y x y k +---=没有公共点,则实数k 的取值范围是( ) A .(9,11)-B .(25,9)--C .(,9)(11,)-∞-+∞UD .(25,9)(11,)--+∞U【答案】D【解析】化圆C 2:x 2+y 2﹣6x ﹣8y ﹣k =0为(x ﹣3)2+(y ﹣4)2=25+k ,则k >﹣25,圆心坐标为(3,4), 圆C 1:x 2+y 2=1的圆心坐标为(0,0),半径为1.要使圆C 1:x 2+y 2=1和圆C 2:x 2+y 2﹣6x ﹣8y ﹣k =0没有公共点,则|C 1C 2|1或|C 1C 2|1,即51或51,解得﹣25<k <﹣9或k >11. ∴实数k 的取值范围是(﹣25,﹣9)∪(11,+∞),故选D .【精选名校模拟】1.(2020上海七宝中学月考)已知实数x 、y 满足:22(2)1x y +-=,ω=的取值范围是( )A .B .[1,2]C .(0,2]D .2【答案】B 【解析】【分析】构造直线0x +=,过圆上一点P 作直线的垂线PM 2sin POM =∠,求出sin POM ∠的范围即可得出.【详解】设(,)P x y 为圆22(2)1x y +-=上的任意一点,则P 到直线0x +=的距离PM =P 到原点的距离OP =22sin PMPOM OP==∠. 设圆22(2)1x y +-=与直线y kx =1=,解得k =,POM ∴∠的最小值为30︒,最大值为90︒,1sin 12POM ∴∠剟,12sin 2POM ∴∠剟,故选B .【名师点睛】本题主要考查直线与圆的位置关系,距离公式的应用,解题关键是数形结合思想的应用,能阅读出ω=2.(2020上海南模中学高三月考)设1x 、2x 是关于x 的方程220x mx m m ++-=的两个不相等的实数根,那么过两点211(,)A x x ,222(,)B x x 的直线与圆()2211x y -+=的位置关系是( )A .相离.B .相切.C .相交.D .随m 的变化而变化.【答案】D 【解析】22212121,ABx x k x x x x -==+∴-Q 直线AB 的方程为21121()()y x x x x x -=+-. 即1212()y x x x x x =+-,所以直线AB的方程为22,y mx m m d =-+-===因为2240,4()0,03m m m m ∆>∴-->∴<<, 所以221999225,(),(,),()()161616256t g t t t t g t g m =>∴=+∈+∞>=令,所以1615d =<=,所以直线AB 与圆可能相交,也可能相切,也可能相离. 3.(2020上海一模冲刺练)若对于任意角θ,都有cos (2)sin 1x y θθ+-=,则直线:cos (2)sin 1l x y θθ+-=围成的正多边形的最小面积是( )A.B .4C.D .不确定【答案】D 【解析】【分析】先根据点()02P ,到直线cos (2)sin 1x y θθ+-=的距离为1,确定直线为以()02,为圆心,1为半径的圆的切线,再取特殊直线运算否定ABC 即得选项. 【详解】由对于任意角θ,都有cos (2)sin 1x y θθ+-=,则点()02P ,到直线cos (2)sin 1x y θθ+-=1=,即此直线为以()02,为圆心,1为半径的圆的切线, 当三条切线如图所示时,则正三角形ABC 的面积11233S =⨯⨯=, 即存在直线:cos (2)sin 1l x y θθ+-=,即选项A ,B ,C 错误,故选D .4.(2020上海交大附中月考)数学中有许多形状优美、寓意美好的曲线,曲线C :221||x y x y +=+就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C ; ③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是 A .① B .②C .①②D .①②③【答案】C 【解析】【分析】将所给方程进行等价变形确定x 的范围可得整点坐标和个数,结合均值不等式可得曲线上的点到坐标原点距离的最值和范围,利用图形的对称性和整点的坐标可确定图形面积的范围.【详解】由221x y x y +=+得,221y x y x -=-,2222||3341,10,2443x x x y x ⎛⎫-=-- ⎪⎝⎭厔, 所以x 可为的整数有0,-1,1,从而曲线22:1C x y x y +=+恰好经过(0,1),(0,-1),(1,0),(1,1),(-1,0),(-1,1)六个整点,结论①正确.由221x y x y +=+得,222212x y x y +++…,解得222x y +≤,所以曲线C 上任意一点到原点的距离都.结论②正确.如图所示,易知()()()()0,1,1,0,1,1,,0,1A B C D -, 四边形ABCD 的面积13111122ABCD S =⨯⨯+⨯=,很明显“心形”区域的面积大于2ABCD S ,即“心形”区域的面积大于3,说法③错误,故选C .5.(2020上海浦东复旦附中高三月考)在平面直角坐标系中,A ,B 分别是 x 轴和 y 轴上的动点,若以 AB 为直径的圆 C 与直线 240x y +-= 相切,则圆 C 面积的最小值为___ . 【答案】45π【解析】由题意,圆心C 到原点的距离与到直线的距离相等,所以面积最小时,圆心在原点到直线的垂线中点上,则d =r =,45S π=. 6.(2020上海二中高三期中考试)若定义域均为D 的三个函数f (x ),g (x ),h (x )满足条件:对任意x ∈D ,点(x ,g (x )与点(x ,h (x )都关于点(x ,f (x )对称,则称h (x )是g (x )关于f (x )的“对称函数”.已知g (x )f (x )=2x+b ,h (x )是g (x )关于f (x )的“对称函数”,且h (x )≥g (x )恒成立,则实数b 的取值范围是_____.【答案】)+∞ 【解析】【分析】根据对称函数的定义,结合h (x )≥g (x )恒成立,转化为点到直线的距离d≥1,利用点到直线的距离公式进行求解即可【详解】∵x ∈D ,点(x ,g (x )) 与点(x ,h (x ))都关于点(x ,f (x ))对称,∴g (x )+h (x )=2f (x ), ∵h (x )≥g (x )恒成立,∴2f (x )=g (x )+h (x )≥g (x )+g (x )=2g (x ),即f (x )≥g (x )恒成立, 作出g (x )和f (x )的图象,则g (x )在直线f (x )的下方或重合, 则直线f (x )的截距b >0,且原点到直线y=2x+b 的距离d≥1,1=≥⇒b ≤,即实数b 的取值范围是+∞),故答案为:)+∞.7.(2020上海育才中学高三月考)已知平面直角坐标系中两点12(,)A a a 、12(,)B b b ,O 为原点,有122112AOB S a b a b ∆=-.设11(,)M x y 、22(,)N x y 、33(,)P x y 是平面曲线2224x y x y +=-上任意三点,则12212332T x y x y x y x y =-+-的最大值为________【答案】20. 【解析】【分析】将圆的方程化为标准方程,得出圆心坐标和半径长,由题意得12212332T x y x y x y x y =-+-12212332222OMN OPN OMNP x y x y x y x y S S S ∆∆≤-+-=+=四边形,转化为圆内接四边形中正方形的面积最大,即可得出T 的最大值.【详解】将圆的方程化为标准方程得()()22125x y -++=,圆心坐标为()1,2-122123321221233222OMN OPN T x y x y x y x y x y x y x y x y S S ∆∆∴=-+-≤-+-=+2OMNP S =四边形,由于圆内接四边形中,正方形的面积最大,所以当四边形OMNP 为正方形时,T =所以2220T ≤⨯=,故答案为:20.8.(2020上海浦东新区高三期末)若函数2y ax a =+存在零点,则实数a 的取值范围是________.【答案】 【解析】【分析】将函数2y ax a =+()()2,()f x a x g x =+=像,观察图像得出实数a 的取值范围.【详解】设()()2,()f x a x g x =+=2y ax a =+存在零点等价于()()2,()f x a x g x =+=函数()()2f x a x =+的图像恒过点(2,0)-,当其和函数()g x =a ==,所以()()2,()f x a x g x =+=03a ≤≤,故答案为:.9.(2020永安三中高三期中考试)若曲线y =y x b =+始终有交点,则b 的取值范围是_______.【答案】[-【解析】由题设可知x b +=b x =有解,令借cos ,[0,]x θθπ=∈,则sin θ=,所以sin cos )4b πθθθ=-=-,由于0θπ≤≤,故3444πππθ-≤-≤,结合正弦函数的图像可知sin()124πθ-≤-≤,则)[4b πθ=-∈-,应填答案[-. 【名师点睛】解答本题的思路是依据题设条件将其转化为方程x b +=进而分离参数b x ,然后通过三角换元将其转化为求函数sin cos )4b πθθθ=-=-的值域问题,最后借助正弦函数的图像求出其值域使得问题获解.10.(2020上海四中高三期中考试)若点()1,1P 为圆2260x y x +-=的弦MN 的中点,则弦MN 所在直线方程为________. 【答案】210x y --=【解析】因为(1,1)P 为圆2260x y x +-=的弦MN 的中点,所以圆心坐标为()3,0,31201MN k -=-=-,MN 所在直线方程为()121y x -=-,化简为210x y --=,故答案为210x y --=. 11.(2020上海华师大二附中高三月考)设1234,,,a a a a R ∈,且14231a a a a -=,则代数式222212341324a a a a a a a a +++++的最小值为______.【解析】【分析】由222212341324a a a a a a a a +++++结构特征,构造向量12(,)OA a a a ==u u u r r ,34(,)OB b a a ==u u u r r,设,a b r r 的夹角为θ,14231,,a a a a a b -=r r 不共线,0θπ<<,222212341324a a a a a a a a +++++=22||||2||||a b a b a b a b ++⋅≥+⋅r r r r r r r r ,转化为求2||||a b a b +⋅r r r r的最小值,由14231a a a a -=,可得1||||,sin a b θ=r r cos sin a b θθ⋅=r r ,转化求2cos cos 2sin sin sin θθθθθ++=的最小值,即为(sin ,cos )M θθ与点(0,2)P -连线的斜率最小值,即可得结果.【详解】设12(,)OA a a a ==u u u r r ,34(,)OB b a a ==u u u r r,设,a b r r的夹角为θ,14231,,a a a a a b -=r r 不共线,0θπ<<,222212341324a a a a a a a a +++++=22||||2||||a b a b a b a b ++⋅≥+⋅r r r r r r r r,sin θ===1||||||||a b a b ==r r , 1cos ||||,sin sin a b a b θθθ=⋅=r r r r ,2||||a b a b +⋅r r r r 2cos cos 2sin sin sin θθθθθ+=+= ① 设(sin ,cos )M θθ,(0θπ<<),(0,2)P -,①式表示点(0,2)P -与单位圆(y 轴右侧)的点M 连线斜率,当PM12.(2020上海建平中学高三期中)已知a v 、b v 、2c v是平面内三个单位向量,若a b ⊥v v ,则4232a c a b c +++-v v v v v的最小值是________【答案】【解析】【分析】设2(,)c e x y ==r r ,(1,0)a =r ,(0,1)b =r ,将问题转化为求|2||64|a e a b e +++-r r r r r的最小值,再证明|2||2|a e a e +=+r r r r ,从而将原问题转化为求|2||64|a e a b e +++-r r r r r的最小值. 【详解】令2c e =r r,设(1,0)a =r ,(0,1)b =r ,e r 对应的点C 在单位圆上,所以问题转化为求|2||64|a e a b e +++-r r r r r的最小值.因为2222(2)(2)330a e a e e a +-+=-=r r r r r r ,所以|2||2|a e a e +=+r r r r ,所以|64||2|a e a b e ++-=+r r r rr ,表示C 点到点(2,0)-和(6,4)的距离之和,过点(2,0)-和(6,4)的直线为220x y -+=,原点到直线220x y -+=1=<,所以与单位圆相交,所以|2||64|a e a b e +++-r r r r r的最小值为:点(2,0)-和(6,4)之间的距离,即13.(2020上海高三模拟考试)已知关于t 的一元二次方程2(2)2()0(,)t i t xy x y i x y R ++++-=∈,当方程有实数根时,则实数t 的取值范围________. 【答案】[4,0]- 【解析】【分析】根据方程有实数根,再结合复数相等,建立条件关系可得点的轨迹为以()1,1-为半径的圆,再结合直线t y x =-与圆的位置关系即可得解.【详解】因为关于t 的一元二次方程2(2)2()0(,)t i t xy x y i x y R ++++-=∈有实数根,得222()0t t xy t x y i +++++=,由复数相等的充要条件可得:2220t t xy t x y ⎧++=⎨+-=⎩,消t 得22(1)(1)2x y -++=,则所求点的轨迹为以()1,1-为半径的圆,直线t y x =-≤,解得40t -≤≤,故答案为[4,0]-.14.(2020上海南模中学高三期中)在平面直角坐标系中,记曲线C 为点(2cos 1,2sin 1)P θθ-+的轨迹,直线20x ty -+=与曲线C 交于A 、B 两点,则||AB 的最小值为________.【答案】【解析】 【分析】由2121x cos y sin θθ=-⎧⎨=+⎩消去θ得(x +1)2+(y ﹣1)2=4,得曲线C 的轨迹是以C (﹣1,1)为圆心,2为半径的圆,再根据勾股定理以及圆的性质可得弦长的最小值. 【详解】 由2121x cos y sin θθ=-⎧⎨=+⎩消去θ得(x +1)2+(y ﹣1)2=4,∴曲线C 的轨迹是以C (﹣1,1)为圆心,2为半径的圆, 又直线20x ty -+=恒过点D ()2,0-,且此点在圆内部 故当CD AB ⊥时|AB |最短,∴|AB |==故答案为:15.(2020上海青浦中学高三月考)已知AC 、BD 为圆()()22:1216O x y -+-=的两条相互垂直的弦,垂足为121,2M n n ⎛⎫+- ⎪⎝⎭则四边形ABCD 的面积n S 的极限值为___________.【答案】32 【解析】 【分析】由题意可得四边形ABCD 的面积n S 的表达式:2n AC BDS ⨯=,由于点121,2M nn ⎛⎫+- ⎪⎝⎭的极限位置是圆心,且此时四边形面积取到极限值,此时几何图形形状可求得面积的极限 【详解】由题可知,AC 、BD 为圆()()22:1216O x y -+-=的两条相互垂直的弦,垂足为121,2M n n ⎛⎫+- ⎪⎝⎭,由2n AC BDS ⨯=,由点121,2M nn ⎛⎫+- ⎪⎝⎭的极限位置是圆心()1,2,此时AC 、BD 都是直径,故n S 的极限值为22r ,4r =,n S 的极限值为32,圆内接四边形恰好为正方形 故答案为:32.16.(2020上海建平中学高三月考)在ABC ∆中,2BC =,45A ∠=︒,B Ð为锐角,点O 是ABC ∆外接圆的圆心,则OA BC ⋅u u u v u u u v的取值范围是______.【答案】(2,- 【解析】【分析】建立适当的直角坐标系,写出各点的坐标,进一步利用向量的数量积,将问题转化成求三角函数的值域问题,从而得到OA BC ⋅u u u r u u u r的取值范围.【详解】如图所示:||2BC =,90BOC ∠=°,45CAB ∠=︒,由于B Ð为锐角,则点A 只能在左半圆上,设AOB θ∠=,则)A θθ3()22ππθ<<,B ,C ,所以OA θ=u u u r )θ,(BC =u u u r ,2cos 2sin )4OA BC πθθθ⋅=-+=-u u u r u u u r ,因为322ππθ<<,所以5444πππθ<-<,则sin()124πθ-<-≤,所以2)4πθ-<-≤故答案为:(2,-.17.(2020上海松江区一模)若实数,0a b >,满足abc a b c =++,221a b +=,则实数c 的最小值为________【答案】- 【解析】【分析】先由题意,根据基本不等式,得到12≤ab ,得出112-≤-ab ,再由221a b +=,得到()212+-=a b ab ,根据abc a b c =++得()()()()22233+==+-+-+a b c a b a b a b ,令=+t a b ,根据题意得到(=+∈t a b ,由函数单调性,得到3=-y t t的最值,进而可求出结果. 【详解】因为,0a b >,221a b +=,所以2212a b ab +=≥,即12≤ab ,当且仅当a b =时,取等号;因此111122-≤-=-ab , 又221a b +=,所以22212++=+a b ab ab ,即()212+-=a b ab ,由abc a b c =++得1+=-a b c ab ,所以()()()()22233+==+-+-+a b c a b a b a b ,令=+t a b,因为+===a b ,当且仅当a b =时取等号.所以(=+∈t a b , 又易知函数3=-y tt在(t ∈上单调递增,因此32=-≤=-y tt,因此()()2233==≥=-+--+ca b ta b t即实数c的最小值为-,故答案为:-18.(2020江苏盐城中学月考)在平面直角坐标系xOy中,已知点()2,2A,E、F为圆()()22:114C x y-+-=上的两动点,且EF=,若圆C上存在点P,使得,0AE AF mCP m+=>u u u r u u u r u u u r,则m的取值范围为________.【答案】1⎤-⎦【解析】取EF中点为M,连接AM,则2+=u u u r u u u r u u u u rAE AF AM,又圆()()22:114C x y-+-=上存在点P,使得,0AE AF mCP m+=>u u u r u u u r u u u r,所以2=u u u u r u u u rAM mCP,因此22==u u u u r u u u rAM m CP m,即=u u u u rm AM;因为E、F为圆()()22:114C x y-+-=上的两动点,且EF=1==CM,设(,)M x y1=,即()()22111x y-+-=即为动点M的轨迹;所以AMu u u u r表示圆()()22111x y-+-=上的点与定点()2,2A之间的距离,因此11-≤≤+u u u urAC AM AC,11≤≤u uu u rAM11≤≤m,故答案为:1⎤⎦.。

高中数学必修一第一章单元测试卷及答案2套

高中数学必修一第一章单元测试卷及答案2套

高中数学必修一第一章单元测试卷及答案2套测试卷一(时间:120分钟 满分:150分) 第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合M ={0,1,2,3,4},N ={1,3,5},P =M ∩N ,则P 的子集共有( ) A .2个 B .4个 C .6个 D .8个2.下列各组函数表示相等函数的是( )A .y =x 2-9x -3与y =x +3B .y =x 2-1与y =x -1 C .y =x 0(x ≠0)与y =1(x ≠0) D .y =2x +1(x ∈Z )与y =2x -1(x ∈Z )3.设M ={1,2,3},N ={e ,g ,h },从M 至N 的四种对应方式如下图所示,其中是从M 到N 的映射的是( )4.已知全集U =R ,集合A ={x |2x 2-3x -2=0},集合B ={x |x >1},则A ∩(∁U B )=( ) A .{2}B .{x |x ≤1} C.⎩⎨⎧⎭⎬⎫-12 D .{x |x ≤1或x =2}5.函数f (x )=x|x |的图象是( )6.下列函数是偶函数的是( ) A .y =x B .y =2x 2-3 C .y =1xD .y =x 2,x ∈0,1]7.已知偶函数f (x )在(-∞,-2]上是增函数,则下列关系式中成立的是( )A .f ⎝ ⎛⎭⎪⎫-72<f (-3)<f (4)B .f (-3)<f ⎝ ⎛⎭⎪⎫-72<f (4)C .f (4)<f (-3)<f ⎝ ⎛⎭⎪⎫-72D .f (4)<f ⎝ ⎛⎭⎪⎫-72<f (-3) 8.已知反比例函数y =k x的图象如图所示,则二次函数y =2kx 2-4x +k 2的图象大致为( )9.函数f (x )是定义在0,+∞)上的增函数,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的取值范围是( )A.⎝ ⎛⎭⎪⎫13,23B.⎣⎢⎡⎭⎪⎫13,23C.⎝ ⎛⎭⎪⎫12,23 D.⎣⎢⎡⎭⎪⎫12,23 10.若函数f (x )为奇函数,且当x >0时,f (x )=x -1,则当x <0时,有( )A .f (x )>0B .f (x )<0C .f (x )·f (-x )≤0D .f (x )-f (-x )>011.已知函数f (x )是定义在-5,5]上的偶函数,f (x )在0,5]上是单调函数,且f (-3)<f (1),则下列不等式中一定成立的是( )A .f (-1)<f (-3)B .f (2)<f (3)C .f (-3)<f (5)D .f (0)>f (1)12.函数f (x )=ax 2-x +a +1在(-∞,2)上单调递减,则a 的取值范围是( )A .0,4]B .2,+∞) C.⎣⎢⎡⎦⎥⎤0,14 D.⎝ ⎛⎦⎥⎤0,14 第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.如图,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f (f (3))的值等于________.14.已知集合A ={x |x ≥2},B ={x |x ≥m },且A ∪B =A ,则实数m 的取值范围是________.15.若函数f (x )=x 2+a +1x +ax为奇函数,则实数a =________.16.老师给出一个函数,请三位同学各说出了这个函数的一条性质: ①此函数为偶函数; ②定义域为{x ∈R |x ≠0}; ③在(0,+∞)上为增函数.老师评价说其中有一个同学的结论错误,另两位同学的结论正确.请你写出一个(或几个)这样的函数________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知集合A ={x |-3≤x ≤4},B ={x |2m -1<x <m +1},且B ⊆A .求实数m 的取值范围.18.(本小题满分12分)已知函数f (x )的解析式为f (x )=⎩⎪⎨⎪⎧3x +5x ≤0,x +50<x ≤1,-2x +8x >1.(1)求f ⎝ ⎛⎭⎪⎫32,f ⎝ ⎛⎭⎪⎫1π,f (-1)的值; (2)画出这个函数的图象; (3)求f (x )的最大值.19.(本小题满分12分)已知函数f (x )是偶函数,且x ≤0时,f (x )=1+x1-x ,求:(1)f (5)的值; (2)f (x )=0时x 的值; (3)当x >0时f (x )的解析式.20.(本小题满分12分)已知函数f (x )=x +a x,且f (1)=10. (1)求a 的值;(2)判断f (x )的奇偶性,并证明你的结论;(3)函数在(3,+∞)上是增函数,还是减函数?并证明你的结论.21.(本小题满分12分)已知函数y =f (x )是二次函数,且f (0)=8,f (x +1)-f (x )=-2x +1. (1)求f (x )的解析式;(2)求证:f (x )在区间1,+∞)上是减函数.22.(本小题满分12分) 已知函数f (x )=ax +b 1+x 2是定义在(-1,1)上的奇函数,且f ⎝ ⎛⎭⎪⎫12=25. (1)确定函数f (x )的解析式;(2)当x ∈(-1,1)时判断函数f (x )的单调性,并证明; (3)解不等式f (2x -1)+f (x )<0.答案1.B 解析:P =M ∩N ={1,3},故P 的子集有22=4个,故选B.2.C 解析:A 中两个函数定义域不同;B 中y =x 2-1=|x |-1,所以两函数解析式不同;D 中两个函数解析式不同,故选C.解题技巧:判定两个函数是否相同时,就看定义域和对应法则是否完全一致,完全一致的两个函数才算相同.3.C 解析:A 选项中,元素3在N 中有两个元素与之对应,故不正确;同样B ,D 选项中集合M 中也有一个元素与集合N 中两个元素对应,故不正确;只有C 选项符合映射的定义.4.C 解析:A =⎩⎨⎧⎭⎬⎫-12,2,∁U B ={x |x ≤1},则A ∩(∁U B )=⎩⎨⎧⎭⎬⎫-12,故选C.5.C 解析:由于f (x )=x |x |=⎩⎪⎨⎪⎧1,x >0,-1,x <0,所以其图象为C.6.B 解析:A 选项是奇函数;B 选项为偶函数;C ,D 选项的定义域不关于原点对称,故为非奇非偶函数.7.D 解析:∵f (x )在(-∞,-2]上是增函数,且-4<-72<-3,∴f (4)=f (-4)<f ⎝ ⎛⎭⎪⎫-72<f (-3),故选D. 8.D 解析:由反比例函数的图象知k <0,∴二次函数开口向下,排除A ,B ,又对称轴为x =1k<0,排除C.9.D 解析:根据题意,得⎩⎪⎨⎪⎧2x -1≥0,2x -1<13,解得12≤x <23,故选D.10.C 解析:f (x )为奇函数,当x <0时,-x >0, ∴f (x )=-f (-x )=-(-x -1)=x +1, ∴f (x )·f (-x )=-(x +1)2≤0.11.D 解析:易知f (x )在-5,0]上单调递增,在0,5]上单调递减,结合f (x )是偶函数可知,故选D.12.C 解析:由已知得,⎩⎪⎨⎪⎧a >0,12a≥2,∴0<a ≤14,当a =0时,f (x )=-x +1为减函数,符合题意,故选C.13.2 解析:由图可知f (3)=1,∴f (f (3))=f (1)=2. 14.2,+∞) 解析:∵A ∪B =A ,即B ⊆A , ∴实数m 的取值范围为2,+∞).15.-1 解析:由题意知,f (-x )=-f (x ),即x 2-a +1x +a -x =-x 2+a +1x +a x,∴(a +1)x =0对x ≠0恒成立, ∴a +1=0,a =-1. 16.y =x2或y =⎩⎪⎨⎪⎧1-x ,x >0,1+x ,x <0或y =-2x(答案不唯一)解析:可结合条件来列举,如:y =x2或y =⎩⎪⎨⎪⎧1-x ,x >01+x ,x <0或y =-2x.解题技巧:本题为开放型题目,答案不唯一,可结合条件来列举,如从基本初等函数中或分段函数中来找.17.解:∵B ⊆A ,①当B =∅时,m +1≤2m -1, 解得m ≥2;②当B ≠∅时,有⎩⎪⎨⎪⎧-3≤2m -1,m +1≤4,2m -1<m +1,解得-1≤m <2.综上得,m 的取值范围为{m |m ≥-1}. 18.解:(1)∵32>1,∴f ⎝ ⎛⎭⎪⎫32=-2×32+8=5, ∵0<1π<1,∴f ⎝ ⎛⎭⎪⎫1π=1π+5=5π+1π.∵-1<0,∴f (-1)=-3+5=2. (2)如图:在函数y =3x +5的图象上截取x ≤0的部分,在函数y =x +5的图象上截取0<x ≤1的部分,在函数y =-2x +8的图象上截取x >1的部分.图中实线组成的图形就是函数f (x )的图象.(3)由函数图象可知,当x =1时,f (x )的最大值为6. 19.解:(1)f (5)=f (-5)=1-51--5=-46=-23.(2)当x ≤0时,f (x )=0即为1+x1-x =0,∴x =-1,又f (1)=f (-1),∴f (x )=0时x =±1.(3)当x >0时,f (x )=f (-x )=1-x 1+x ,∴x >0时,f (x )=1-x1+x .20.解:(1)f (1)=1+a =10,∴a =9.(2)∵f (x )=x +9x ,∴f (-x )=-x +9-x =-⎝ ⎛⎭⎪⎫x +9x =-f (x ),∴f (x )是奇函数.(3)设x 2>x 1>3,f (x 2)-f (x 1)=x 2+9x 2-x 1-9x 1=(x 2-x 1)+⎝⎛⎭⎪⎫9x 2-9x1=(x 2-x 1)+9x 1-x 2x 1x 2=x 2-x 1x 1x 2-9x 1x 2,∵x 2>x 1>3,∴x 2-x 1>0,x 1x 2>9,∴f (x 2)-f (x 1)>0,∴f (x 2)>f (x 1),∴f (x )=x +9x在(3,+∞)上为增函数.21.(1)解:设f (x )=ax 2+bx +c ,∴f (0)=c ,又f (0)=8,∴c =8. 又f (x +1)=a (x +1)2+b (x +1)+c , ∴f (x +1)-f (x )=a (x +1)2+b (x +1)+c ]-(ax 2+bx +c ) =2ax +(a +b ).结合已知得2ax +(a +b )=-2x +1.∴⎩⎪⎨⎪⎧2a =-2,a +b =1.∴a =-1,b =2.∴f (x )=-x 2+2x +8. (2)证明:设任意的x 1,x 2∈1,+∞)且x 1<x 2, 则f (x 1)-f (x 2)=(-x 21+2x 1+8)-(-x 22+2x 2+8) =(x 22-x 21)+2(x 1-x 2) =(x 2-x 1)(x 2+x 1-2). 又由假设知x 2-x 1>0, 而x 2>x 1≥1, ∴x 2+x 1-2>0,∴(x 2-x 1)(x 2+x 1-2)>0,f (x 1)-f (x 2)>0,f (x 1)>f (x 2).∴f (x )在区间1,+∞)上是减函数. 22.解:(1)由题意可知f (-x )=-f (x ), ∴-ax +b 1+x 2=-ax +b 1+x 2,∴b =0.∴f (x )=ax1+x2.∵f ⎝ ⎛⎭⎪⎫12=25,∴a =1. ∴f (x )=x1+x2.(2)f (x )在(-1,1)上为增函数. 证明如下:设-1<x 1<x 2<1,则f (x 1)-f (x 2)=x 11+x21-x 21+x 22=x 1-x 21-x 1x 21+x 211+x 22, ∵-1<x 1<x 2<1,∴x 1-x 2<0,1-x 1x 2>0, 1+x 21>0,1+x 22>0, ∴x 1-x 21-x 1x 21+x 211+x 22<0. ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). ∴f (x )在(-1,1)上为增函数.(3)∵f (2x -1)+f (x )<0,∴f (2x -1)<-f (x ), 又f (x )是定义在(-1,1)上的奇函数, ∴f (2x -1)<f (-x ), ∴⎩⎪⎨⎪⎧-1<2x -1<1,-1<-x <1,2x -1<-x ,∴0<x <13.∴不等式f (2x -1)+f (x )<0的解集为⎝ ⎛⎭⎪⎫0,13. 解题技巧:在求解抽象函数中参数的范围时,往往是利用函数的奇偶性与单调性将“f ”符号脱掉,转化为解关于参数不等式(组).测试卷二(时间:120分钟 满分:150分) 第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知函数y =1-x 2x 2-3x -2的定义域为( )A .(-∞,1]B .(-∞,2]C.⎝⎛⎭⎪⎫-∞,-12∩⎝ ⎛⎦⎥⎤-12,1 D.⎝⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎦⎥⎤-12,12.已知a ,b 为两个不相等的实数,集合M ={a 2-4a ,-1},N ={b 2-4b +1,-2},映射f :x →x 表示把集合M 中的元素x 映射到集合N 中仍为x ,则a +b 等于( )A .1B .2C .3D .43.已知f (x )=⎩⎪⎨⎪⎧2x -1x ≥2,-x 2+3x x <2,则f (-1)+f (4)的值为( )A .-7B .3C .-8D .44.已知集合A ={-1,1},B ={x |mx =1},且A ∪B =A ,则m 的值为( ) A .1 B .-1 C .1或-1D .1或-1或05.函数f (x )=cx 2x +3⎝ ⎛⎭⎪⎫x ≠-32,满足f (f (x ))=x ,则常数c 等于( ) A .3 B .-3 C .3或-3D .5或-36.若函数f (x )的定义域为R ,且在(0,+∞)上是减函数,则下列不等式成立的是( )A .f ⎝ ⎛⎭⎪⎫34>f (a 2-a +1)B .f ⎝ ⎛⎭⎪⎫34<f (a 2-a +1)C .f ⎝ ⎛⎭⎪⎫34≥f (a 2-a +1)D .f ⎝ ⎛⎭⎪⎫34≤f (a 2-a +1)7.函数y =x |x |,x ∈R ,满足( )A .既是奇函数又是减函数B .既是偶函数又是增函数C .既是奇函数又是增函数D .既是偶函数又是减函数8.若f (x )是偶函数且在(0,+∞)上是减函数,又f (-3)=1,则不等式f (x )<1的解集为( )A .{x |x >3或-3<x <0}B .{x |x <-3或0<x <3}C .{x |x <-3或x >3}D .{x |-3<x <0或0<x <3}9.已知f (x )=3-2|x |,g (x )=x 2-2x ,F (x )=⎩⎪⎨⎪⎧gx ,若f x ≥g x ,f x ,若f x <g x .则F (x )的最值是( )A .最大值为3,最小值为-1B .最大值为7-27,无最小值C .最大值为3,无最小值D .既无最大值,又无最小值10.定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈0,+∞)(x 1≠x 2),有f x 2-f x 1x 2-x 1<0,则( )A .f (3)<f (-2)<f (1)B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2) 11.已知y =f (x )与y =g (x )的图象如下图:则F (x )=f (x )·g (x )的图象可能是下图中的( )12.设f (x )是R 上的偶函数,且在(-∞,0)上为减函数.若x 1<0,且x 1+x 2>0,则( ) A .f (x 1)>f (x 2)B .f (x 1)=f (x 2)C .f (x 1)<f (x 2)D .无法比较f (x 1)与f (x 2)的大小第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上) 13.已知集合M ={-2,3x 2+3x -4,x 2+x -4},若2∈M ,则满足条件的实数x 组成的集合为________.14.若函数f (x )=kx 2+(k -1)x +2是偶函数,则f (x )的递减区间是________. 15.已知函数f (x )满足f (x +y )=f (x )+f (y ),(x ,y ∈R ),则下列各式恒成立的是________.①f (0)=0;②f (3)=3f (1);③f ⎝ ⎛⎭⎪⎫12=12f (1);④f (-x )·f (x )<0.16.若函数f (x )=x 2-(2a -1)x +a +1是(1,2)上的单调函数,则实数a 的取值范围为________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)设集合A 为方程-x 2-2x +8=0的解集,集合B 为不等式ax -1≤0的解集. (1)当a =1时,求A ∩B ;(2)若A ⊆B ,求实数a 的取值范围.18.(本小题满分12分)设全集为R ,A ={x |3<x <7},B ={x |4<x <10}, (1)求∁R (A ∪B )及(∁R A )∩B ;(2)C ={x |a -4≤x ≤a +4},且A ∩C =A ,求a 的取值范围.19.(本小题满分12分) 函数f (x )=2x -1x +1,x ∈3,5].(1)判断单调性并证明; (2)求最大值和最小值.20.(本小题满分12分)已知二次函数f (x )=-x 2+2ax -a 在区间0,1]上有最大值2,求实数a 的值.21.(本小题满分12分)已知函数f (x )的值满足f (x )>0(当x ≠0时),对任意实数x ,y 都有f (xy )=f (x )·f (y ),且f (-1)=1,f (27)=9,当0<x <1时,f (x )∈(0,1).(1)求f (1)的值,判断f (x )的奇偶性并证明; (2)判断f (x )在(0,+∞)上的单调性,并给出证明; (3)若a ≥0且f (a +1)≤39,求a 的取值范围.22.(本小题满分12分) 已知函数f (x )=x 2+a x(x ≠0). (1)判断f (x )的奇偶性,并说明理由;(2)若f (1)=2,试判断f (x )在2,+∞)上的单调性.答案1.D 解析:由题意知,⎩⎪⎨⎪⎧1-x ≥0,2x 2-3x -2≠0,解得⎩⎪⎨⎪⎧x ≤1,x ≠-12且x ≠2.故选D.2.D 解析:∵集合M 中的元素-1不能映射到N 中为-2,∴⎩⎪⎨⎪⎧a 2-4a =-2,b 2-4b +1=-1.即⎩⎪⎨⎪⎧a 2-4a +2=0,b 2-4b +2=0.∴a ,b 为方程x 2-4x +2=0的两根,∴a +b =4.3.B 解析:f (4)=2×4-1=7,f (-1)=-(-1)2+3×(-1)=-4,∴f (-1)+f (4)=3,故选B.4.D 解析:∵A ∪B =A ,∴B ⊆A ,∴B =∅或B ={-1}或B ={1}.则m =0或-1或1.解题技巧:涉及到B ⊆A 的问题,一定要分B =∅和B ≠∅两种情况进行讨论,其中B =∅的情况易被忽略,应引起足够的重视.5.B 解析:f (f (x ))=cf x 2fx +3=x ,f (x )=3x c -2x =cx2x +3,得c =-3. 6.C 解析:∵f (x )在(0,+∞)上是减函数,且a 2-a +1=⎝ ⎛⎭⎪⎫a -122+34≥34>0,∴f (a2-a +1)≤f ⎝ ⎛⎭⎪⎫34. 解题技巧:根据函数的单调性,比较两个函数值的大小,转化为相应的两个自变量的大小比较.7.C 解析:由f (-x )=-f (x )可知,y =x |x |为奇函数.当x >0时,y =x 2为增函数,而奇函数在对称区间上单调性相同.8.C 解析:由于f (x )是偶函数,∴f (3)=f (-3)=1,f (x )在(-∞,0)上是增函数,∴当x >0时,f (x )<1即为f (x )<f (3),∴x >3,当x <0时,f (x )<1即f (x )<f (-3),∴x <-3.综上知,故选C.9.B 解析:作出F (x )的图象,如图实线部分,则函数有最大值而无最小值,且最大值不是3,故选B.10.A 解析:若x 2-x 1>0,则f (x 2)-f (x 1)<0,即f (x 2)<f (x 1),∴f (x )在0,+∞)上是减函数,∵3>2>1,∴f (3)<f (2)<f (1). 又f (x )是偶函数,∴f (-2)=f (2), ∴f (3)<f (-2)<f (1),故选A.11.A 解析:由图象知y =f (x )与y =g (x )均为奇函数,∴F (x )=f (x )·g (x )为偶函数,其图象关于y 轴对称,故D 不正确.在x =0的左侧附近,∵f (x )>0,g (x )<0,∴F (x )<0, 在x =0的右侧附近,∵f (x )<0,g (x )>0,∴F (x )<0.故选A. 12.C 解析:∵x 1<0且x 1+x 2>0,∴-x 2<x 1<0. 又f (x )在(-∞,0)上为减函数, ∴f (-x 2)>f (x 1).而f (x )又是偶函数,∴f (-x 2)=f (x 2). ∴f (x 1)<f (x 2).13.{-3,2} 解析:∵2∈M ,∴3x 2+3x -4=2或x 2+x -4=2,解得x =-2,1,-3,2,经检验知,只有-3,2符合元素的互异性,故集合为{-3,2}.14.(-∞,0] 解析:∵f (x )是偶函数,∴f (-x )=kx 2-(k -1)x +2=kx 2+(k -1)x +2=f (x ). ∴k =1.∴f (x )=x 2+2,其递减区间为(-∞,0]. 15.①②③ 解析:令x =y =0得,f (0)=0; 令x =2,y =1得,f (3)=f (2)+f (1)=3f (1); 令x =y =12得,f (1)=2f ⎝ ⎛⎭⎪⎫12,∴f ⎝ ⎛⎭⎪⎫12=12f (1);令y =-x 得,f (0)=f (x )+f (-x ).即f (-x )=-f (x ), ∴f (-x )·f (x )=-f (x )]2≤0.16.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪a ≥52或a ≤32 解析:函数f (x )的对称轴为x =2a -12=a -12,∵函数在(1,2)上单调, ∴a -12≥2或a -12≤1,即a ≥52或a ≤32.解题技巧:注意分单调递增与单调递减两种情况讨论. 17.解:(1)由-x 2-2x +8=0,解得A ={-4,2}. 当a =1时,B =(-∞,1]. ∴A ∩B ={}-4. (2)∵A ⊆B ,∴⎩⎪⎨⎪⎧-4a -1≤0,2a -1≤0,∴-14≤a ≤12,即实数a 的取值范围是⎣⎢⎡⎦⎥⎤-14,12.18.解:(1)∁R (A ∪B )={x |x ≤3或x ≥10}, (∁R A )∩B ={x |7≤x <10}.(2)由题意知,∵A ⊆C ,∴⎩⎪⎨⎪⎧a +4≥7,a -4≤3,解得3≤a ≤7,即a 的取值范围是3,7].19.解:(1)f (x )在3,5]上为增函数.证明如下: 任取x 1,x 2∈3,5]且x 1<x 2. ∵ f (x )=2x -1x +1=2x +1-3x +1=2-3x +1,∴ f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫2-3x 1+1-⎝ ⎛⎭⎪⎫2-3x 2+1 =3x 2+1-3x 1+1=3x 1-x 2x 1+1x 2+1,∵ 3≤x 1<x 2≤5,∴ x 1-x 2<0,(x 2+1)(x 1+1)>0, ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), ∴ f (x )在3,5]上为增函数. (2)根据f (x )在3,5]上单调递增知,f (x )]最大值=f (5)=32, f (x )]最小值=f (3)=54.解题技巧:(1)若函数在闭区间a ,b ]上是增函数,则f (x )在a ,b ]上的最大值为f (b ),最小值为f (a ).(2)若函数在闭区间a ,b ]上是减函数,则f (x )在a ,b ]上的最大值为f (a ),最小值为f (b ).20.解:由f (x )=-(x -a )2+a 2-a ,得函数f (x )的对称轴为x =a . ①当a <0时,f (x )在0,1]上单调递减,∴f (0)=2, 即-a =2,∴a =-2.②当a >1时,f (x )在0,1]上单调递增,∴f (1)=2, 即a =3.③当0≤a ≤1时,f (x )在0,a ]上单调递增,在a,1]上单调递减, ∴f (a )=2,即a 2-a =2,解得a =2或-1与0≤a ≤1矛盾. 综上,a =-2或a =3.21.解:(1)令x =y =-1,f (1)=1.f (x )为偶函数.证明如下:令y =-1,则f (-x )=f (x )·f (-1),∵f (-1)=1,∴f (-x )=f (x ),f (x )为偶函数. (2)f (x )在(0,+∞)上是增函数.设0<x 1<x 2,∴0<x 1x 2<1,f (x 1)=f ⎝ ⎛⎭⎪⎫x 1x 2·x 2=f ⎝ ⎛⎭⎪⎫x 1x 2·f (x 2),Δy =f (x 2)-f (x 1)=f (x 2)-f ⎝ ⎛⎭⎪⎫x 1x 2f (x 2)=f (x 2)⎣⎢⎡⎦⎥⎤1-f ⎝ ⎛⎭⎪⎫x 1x 2.∵0<f ⎝ ⎛⎭⎪⎫x 1x 2<1,f (x 2)>0,∴Δy >0,∴f (x 1)<f (x 2),故f (x )在(0,+∞)上是增函数. (3)∵f (27)=9,又f (3×9)=f (3)×f (9)=f (3)·f (3)·f (3)=f (3)]3, ∴9=f (3)]3,∴f (3)=39, ∵f (a +1)≤39,∴f (a +1)≤f (3), ∵a ≥0,∴a +1≤3,即a ≤2, 综上知,a 的取值范围是0,2].22.解:(1)当a =0时,f (x )=x 2,f (-x )=f (x ). ∴函数f (x )是偶函数.当a ≠0时,f (x )=x 2+a x(x ≠0),而f (-1)+f (1)=2≠0,f (-1)-f (1)=-2a ≠0,∴ f (-1)≠-f (1),f (-1)≠f (1).∴ 函数f (x )既不是奇函数也不是偶函数.(2)f (1)=2,即1+a =2,解得a =1,这时f (x )=x 2+1x.任取x 1,x 2∈2,+∞),且x 1<x 2,则f (x 1)-f (x 2)=⎝⎛⎭⎪⎫x 21+1x 1-⎝⎛⎭⎪⎫x 22+1x 2=(x 1+x 2)(x 1-x 2)+x 2-x 1x 1x 2=(x 1-x 2)⎝⎛⎭⎪⎫x 1+x 2-1x 1x 2,由于x 1≥2,x 2≥2,且x 1<x 2,∴ x 1-x 2<0,x 1+x 2>1x 1x 2,f (x 1)<f (x 2),故f (x )在2,+∞)上单调递增.解题技巧:本题主要考查函数奇偶性的判断和函数单调性的判断.本题中由于函数解析式中含有参数,所以在判断函数奇偶性时需要根据参数的不同取值进行分类讨论;第(2)问中则需要根据f (1)=2先确定参数的值,再根据函数单调性的定义判断函数的单调性.。

高中数学总复习知识点专题讲解与练习1集合、复数、逻辑

高中数学总复习知识点专题讲解与练习1集合、复数、逻辑

高中数学总复习知识点专题讲解与练习专题1集合、复数、逻辑一、单项选择题1.(2021·华大新高考联盟5月)已知集合M={(x,y)|x-y=0},N={(x,y)|y=x3},则M∩N 中元素的个数为()A.0 B.1 C.2 D.3答案 D解析因为直线y=x与曲线y=x3交于(-1,-1),(0,0),(1,1)三点,所以M∩N中有3个元素.故选D.2.(2021·安徽六校联考)设全集为实数集R,集合P={x|x≤1+2,x∈R},集合Q={1,2,3,4},则图中阴影部分表示的集合为()A.{4} B.{3,4}C.{2,3,4} D.{1,2,3,4}答案 B解析本题考查集合的表示方法.因为全集为U=R,集合P={x|x≤1+2,x∈R},Q ={1,2,3,4},所以∁U P={x|x>1+2,x∈R},所以图中阴影部分表示的集合为(∁U P)∩Q ={3,4}.故选B.3.(2021·湖北八市联考)1943年19岁的曹火星在平西根据地进行抗日宣传工作,他以切身经历创作了歌曲《没有共产党就没有中国》,后毛泽东主席将歌曲改名为《没有共产党就没有新中国》.2021年是中国共产党建党100周年.仅从逻辑学角度来看,“没有共产党就没有新中国”这句歌词中体现了“有共产党”是“有新中国”的( )A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件答案 B4.(2021·山东临沂一模)如图,若向量OZ →对应的复数为z ,且|z |=5,则1z-=( )A.15+25i B .-15-25i C.15-25i D .-15+25i答案 D解析 由题意,设z =-1+b i(b >0),则|z |=1+b 2=5,解得b =2,即z =-1+2i ,所以1z -=1-1-2i =-1+2i (-1-2i )(-1+2i )=-1+2i 5=-15+25i.故选D. 5.(2021·唐山市三模)已知i 是虚数单位,a ∈R ,若复数a -i 1-2i为纯虚数,则a =( ) A .-2 B .2 C .-12 D.12 答案 A解析 由题意a -i 1-2i =(a -i )(1+2i )(1-2i )(1+2i )=a -i +2a i +21+4=a +25+2a -15i.又因为a -i 1-2i 为纯虚数,所以⎩⎪⎨⎪⎧a +25=0,2a -15≠0,解得a =-2.故选A. 6.(2021·江西九江三校联考)已知f (x )=sin x -tan x ,命题p :∃x 0∈⎝⎛⎭⎪⎫0,π2,f (x 0)<0,则( )A .p 是假命题,綈p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )≥0 B .p 是假命题,綈p :∃x 0∈⎝⎛⎭⎪⎫0,π2,f (x )≥0 C .p 是真命题,綈p :∀x ∈⎝⎛⎭⎪⎫0,π2,f (x )≥0 D .p 是真命题,綈p :∃x 0∈⎝⎛⎭⎪⎫0,π2,f (x )≥0 答案 C解析 当x ∈⎝ ⎛⎭⎪⎫0,π2时,sin x -tan x <0,可知命题p 是真命题.綈p :∀x ∈⎝⎛⎭⎪⎫0,π2,f (x )≥0.故选C.7.若向量a =(a -1,2),b =(b ,4),则“a ∥b ”是“a =1,b =0”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案 B解析 由a ∥b 可知4(a -1)-2b =0,即2a -b =2,推不出“a =1,b =0”;而a =1,b =0,满足2a -b =2,可推出“a ∥b ”.故选B.8.(2021·皖南八校第三次联考,理)设集合A ={x |y =log 2(x +1)},B ={y |y =sin x ,x ∈R },且(∁R A )∩B =( )A .∅B .{-1}C .(-1,1]D .[-1,1]答案 B解析 A =(-1,+∞),B =[-1,1],∁R A =(-∞,-1],可得(∁R A )∩B ={-1}.故选B.9.(2021·重庆月考)已知复数z 的共轭复数是z -,若z -3z -=1+2i ,则|z |=( ) A.22 B.12 C.52 D.52答案 A解析 设z =a +b i(a ,b ∈R ),则z -=a -b i ,由题意,-2a +4b i =1+2i ,则a =-12,b =12,所以|z |=a 2+b 2=22.故选A.10.(2021·江淮十校质量检测,理)下列命题中,真命题是( )A .∀x ∈R ,∃n ∈N *,使得n <x 2B .sin 2x +2sin x ≥3(x ≠k π,k ∈Z )C .函数f (x )=2x -x 2有两个零点D .a >1,b >1是ab >1的充分不必要条件答案 D解析 当x =0时,没有正整数小于0,A 错误;当sin x =-1时,sin 2x +2sin x =-1,B错误;f (x )=2x -x 2有三个零点(2,4,还有一个小于0),C 错误;(这时就可选D)当a >1,b >1时,一定有ab >1,但当a =-2,b =-3时,ab =6>1也成立.故D 正确.11.若命题“∃x ∈R ,使得3x 2+2ax +1<0”是假命题,则实数a 的取值范围是( )A .(-3,3)B .(-∞,-3)∪[3,+∞)C.[-3,3] D.(-∞,-3)∪(3,+∞)答案 C解析命题“∃x∈R,使得3x2+2ax+1<0”是假命题,即“∀x∈R,3x2+2ax+1≥0”是真命题,故Δ=4a2-12≤0,解得-3≤a≤ 3.故选C.12.已知p:2xx-1<1,q:(x-a)(x-3)>0,p为q的充分不必要条件,则a的取值范围是()A.[1,+∞) B.(1,+∞) C.[0,+∞) D.(-1,+∞) 答案 A解析根据题意,对于p:2xx-1<1,解可得-1<x<1,即不等式的解集为(-1,1).若p为q的充分不必要条件,则(-1,1)是不等式(x-a)(x-3)>0解集的真子集.当a>3时,解得q:x>a或x<3,满足条件;当a<3时,解得q:x>3或x<a,即a≥1;当a=3时,不等式化为(x-3)2>0,解得x>3或x<3满足条件,综上a≥1,即a的取值范围为[1,+∞).故选A.二、多项选择题13.已知集合A={x∈N||x|≤3},B={a,1},若A∩B=B,则实数a的值可以是() A.0 B.1 C.2 D.3答案ACD解析∵A∩B=B,∴B⊆A,又A ={x ∈N |-3≤x ≤3}={0,1,2,3},B ={a ,1},∴a =0,2,3.14.(2021·石家庄一模)设z 为复数,则下列命题中正确的是( )A .|z |2=z z -B .z 2=|z |2C .若|z |=1,则|z +i|的最大值为2D .若|z -1|=1,则0≤|z |≤2 答案 ACD解析 设复数z =a +b i(a ∈R ,b ∈R ),|z |2=a 2+b 2,z ·z -=(a +b i)·(a -b i)=a 2+b 2,故A 正确;z 2=(a +b i)2=a 2-b 2+2ab i ,|z |2=a 2+b 2,故B 错误;|z |=1,表示z 对应的点Z 在单位圆上,|z +i|表示点z 对应的点与(0,-1)的距离.故|z +i|的最大值为2,故C 正确;|z -1|=1表示z 对应的点Z 在以(1,0)为圆心,1为半径的圆上,|z |表示z 对应的点Z 与原点(0,0)的距离,故0≤|z |≤2,D 正确.故选ACD.15.a <0,b <0的一个必要条件为( )A .a +b <0B .(a +1)2+(b +3)2=0 C.a b >0 D.a b <0答案 AC三、填空题16.(2021·石家庄二质检)已知i 为虚数单位,复数z =1-i 2 0211-i 2 018,则z 的虚部为________. 答案 -12解析 i 2 021=i 4×505+1=i ,i 2 018=i 4×504+2=i 2=-1,∴复数z =1-i 2 0211-i 2 018=1-i 1-(-1)=12-12i ,则z 的虚部为-12.17.设函数f (x )=(m 2-1)sin x cos x -cos 2x (m ∈R ),则“f (x )为偶函数”的一个充分不必要条件是________.答案 m =1(或m =-1)解析 f (x )=(m 2-1)sin x cos x -cos 2x =m 2-12sin 2x -cos 2x (m ∈R ). 若m =±1,则f (x )=-cos 2x 是偶函数,若f (x )为偶函数,则f (-x )=f (x ),所以m 2-12sin 2(-x )-cos 2(-x )=m 2-12·sin 2x -cos 2x ,即(m 2-1)sin 2x =0对任意x ∈R 恒成立,所以m =±1.故“m =±1”是“f (x )为偶函数”的充要条件.所以“f (x )为偶函数”的一个充分不必要条件是m =1(也可以填m =-1).18.已知下列命题:①到两定点(-1,0),(1,0)距离之和等于1的点的轨迹为椭圆;②∃x ∈N ,x 2-2x -1≤0;③已知a =(2,3,m ),b =(2n ,6,8),则“a ,b 为共线向量”是“m +n =6”的必要不充分条件.其中假命题有________.答案 ①③解析 对于命题①:到两定点(-1,0),(1,0)距离之和等于1的点不存在,故命题①是假命题;对于命题②:解不等式x 2-2x -1≤0,得1-2≤x ≤1+2,又∵x ∈N ,∴x =0或1或2,∴∃x ∈N ,使得x 2-2x -1≤0,故命题②是真命题;对于命题③:已知a =(2,3,m ),b =(2n ,6,8),若a ,b 为共线向量,则⎩⎨⎧2n =4,8=2m ,∴⎩⎨⎧m =4,n =2,∴m+n=6,反之若m+n=6,则m不一定为4,n不一定为2,∴“a,b为共线向量”是“m+n=6”的充分不必要条件,∴命题③是假命题.19.【多选题】已知M,N为R的两个不等的非空子集,若M∩(∁R N)=∅,则下列结论正确的是()A.∃x∈N,使得x∈M B.∃x∈N,使得x∉MC.∀x∈M,都有x∈N D.∀x∈N,都有x∈M答案ABC解析对于D,∵M∩(∁R N)=∅,∴M是N的真子集或M,N相等,又M,N不相等且非空,∴M是N的非空真子集.∴不能保证∀x∈N,都有x∈M.20.设a,b均为单位向量,则“cos〈a,b〉<0”是“|a-b|=|2a+b|”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案 B解析记条件p:cos〈a,b〉<0,条件q:|a-b|=|2a+b|,|a-b|=|2a+b|左右平方得a2-2a·b+b2=4a2+4a·b+b2⇒3a2=-6a·b,a,b均为单位向量,则3=-6cos〈a,b〉,则|a-b|=|2a+b|可以推出cos〈a,b〉=-12<0,但cos〈a,b〉<0不能得到cos〈a,b〉=-12,即q⇒p,但p推不出q,p是q的必要不充分条件.故选B.1.已知集合A={4,a},B={1,a2},a∈R,则A∪B不可能是() A.{-1,1,4} B.{1,0,4}C .{1,2,4}D .{-2,1,4}答案 A解析 若A ∪B 含3个元素,则a =1或a =a 2或a 2=4,当a =1时,不满足集合元素的互异性,当a =0,a =2或a =-2时满足题意.∴A ∪B 不可能是{-1,1,4}.故选A.2.(2021·山东临沂一模)已知全集U =A ∪B =(0,4],A ∩∁U B =(2,4],则集合B =( )A .(-∞,2]B .(-∞,2)C .(0,2]D .(0,2)答案 C解析 因为U =A ∪B =(0,4],A ∩∁U B =(2,4],所以B =∁U (A ∩∁U B )=(0,2].故选C.3.已知集合M ={y |y =2x +1,x ∈R },集合N ={x |-x 2+5x +6>0},则M ∩N =( )A .(-2,3)B .(0,6)C .(6,+∞)D .(1,6)答案 D解析 ∵M ={y |y >1},N ={x |-1<x <6},∴M ∩N =(1,6).故选D.4.(2021·长郡十五校联考(二))已知复数z 满足:z 2=74+6i(i 为虚数单位),且z 在复平面内对应的点位于第三象限,则复数z -的虚部为( )A .2iB .3 C.32 D.32i答案 C解析 设z =a +b i(a ,b ∈R ),∴z 2=a 2-b 2+2ab i =74+6i ,∴⎩⎪⎨⎪⎧a 2-b 2=74,2ab =6,∵a <0,b <0,∴a =-2,b =-32,∴z =-2-32i ,∴z -=-2+32i.故选C.5.(2021·潍坊市二模)已知集合A ={x |y =ln(x -1)},集合B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y |y =⎝ ⎛⎭⎪⎫12x ,x >-2,则A ∩B=( )A .∅B .[1,4)C .(1,4)D .(4,+∞)答案 C解析 ∵A ={x |x >1},B ={y |0<y <4},∴A ∩B =(1,4).故选C.6.(2021·湖南期中试卷)设(-1+2i)x =y -1-6i ,x ,y ∈R ,则|x -y i|=( )A .6B .5C .4D .3答案 B解析 因为(-1+2i)x =y -1-6i ,所以⎩⎨⎧2x =-6,-x =y -1,解得⎩⎨⎧x =-3,y =4,所以|x -y i|=|-3-4i|=(-3)2+(-4)2=5.故选B.7.(2021·江淮十校质量检测,理)已知集合U =[-5,4],A ={x |x2-2x ≤0},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x +2x ≤0,则(∁U A )∩B =( )A .∅B .[0,2]C .[-2,0)D .[-2,2]答案 C解析 由题知A =[0,2],B =[-2,0),所以A ∩B =∅,B ⊆(∁U A ),(∁U A )∩B =B =[-2,0).故选C.8.(2021·长沙市一中模拟(一))若复数z =(1+a i)·(1-i)的模等于2,其中i 为虚数单位,则实数a 的值为( )A .-1B .0C .1D .±1答案 D解析 因为z =(1+a i)·(1-i)=1-i +a i -a i 2=(1+a )+(a -1)i ,则|z |=(1+a )2+(a -1)2=2a 2+2=2,解得a =±1.9.(2021·哈师大第三次理考)设全集U ={1,2,3,4,5,6},且U 的子集可表示由0,1组成的6位字符串,如:{2,4}表示的是自左向右的第2个字符为1,第4个字符为1,其余字符均为0的6位字符串010100,并规定,空集表示的字符串为000000;对于任意两集合A ,B ,我们定义集合运算A -B ={x |x ∈A 且x ∉B },A *B =(A -B )∪(B -A ).若A ={2,3,4,5},B ={3,5,6},则A *B 表示的6位字符串是( )A .101010B .011001C .010101D .000111答案 C10.(2021·东北三校第二次联考)定义集合运算:A *B ={z |z =xy ,x ∈A ,y ∈B }.设A ={1,2},B ={1,2,3},则集合A *B 的所有元素之和为( )A .16B .18C .14D .8答案 A解析 因为A ={1,2},B ={1,2,3},所以A *B ={1,2,3,4,6},所以A *B 的所有元素之和为1+2+3+4+6=16.故选A.11.(2021·南昌市一模)已知角α是△ABC 的一个内角,则“sin α=12”是“cos α=32”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 B解析 因为角α是△ABC 的一个内角,所以α∈(0,π).由sin α=12可得α=π6或α=5π6,此时cos α=32或cos α=-32.由cos α=32可得α=π6,此时sin α=12.所以“sin α=12”是“cosα=32”的必要不充分条件.故选B.12.(2021·吉林五校联考)已知α⊥β,α∩β=l,n⊂α,m⊂β,则“m⊥n”是“m⊥l”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B解析在如图所示的正方体中,设平面ABCD为α,平面ADD1A1为β,AD1为m,AB为n,AD为l,则n⊥β,而m⊂β,所以n⊥m,但是m与l不垂直,所以m⊥n不是m⊥l 的充分条件;因为α⊥β,α∩β=l,m⊂β,m⊥l,则m⊥α,所以m⊥n,所以m⊥n 是m⊥l的必要条件.于是m⊥n是m⊥l的必要不充分条件.故选B.13.(2021·辽宁锦州第一次联考)若命题“∃x0∈R,使得x02+(a-1)x0+1<0”是假命题,则实数a的取值范围是()A.1≤a≤3 B.-1≤a≤3 C.-3≤a≤3 D.-1≤a≤1答案 B解析由特称命题“∃x0∈R,使得x02+(a-1)x0+1<0”是假命题,可知该命题的否定“∀x∈R,x2+(a-1)x+1≥0”是真命题.则对于方程x2+(a-1)x+1=0,有Δ=(a-1)2-4≤0,解得-1≤a≤3.故选B.14.【多选题】(2021·八省八校联考)下列命题中正确的是()A .∃x ∈(0,+∞),⎝ ⎛⎭⎪⎫12x >⎝ ⎛⎭⎪⎫13xB .∀x ∈(0,1),log 12x >log 13x C .∀x ∈⎝ ⎛⎭⎪⎫0,12,⎝ ⎛⎭⎪⎫12x >x 12 D .∃x ∈⎝ ⎛⎭⎪⎫0,13,⎝ ⎛⎭⎪⎫12x >log 13x 答案 ABC解析 对于A ,分别画出y =⎝ ⎛⎭⎪⎫12x ,y =⎝ ⎛⎭⎪⎫13x 的图象如图1所示,由图可知,当x ∈(0,+∞)时,⎝ ⎛⎭⎪⎫12x >⎝ ⎛⎭⎪⎫13x ,故A 正确.对于B ,分别画出y =log 12x ,y =log 13x 的图象如图2所示,由图可知,当x ∈(0,1)时,log 12x >log 13x ,故B 正确.对于C ,分别画出y =⎝ ⎛⎭⎪⎫12x ,y =x 12的图象如图3所示,由图可知,当x ∈⎝ ⎛⎭⎪⎫0,12时,⎝ ⎛⎭⎪⎫12x >x 12,故C 正确.对于D ,当x ∈⎝ ⎛⎭⎪⎫0,13时,⎝ ⎛⎭⎪⎫12x <⎝ ⎛⎭⎪⎫120=1,log 13x >log 1313=1,所以D 错误.故选ABC. 15.已知f (x )是R 上的奇函数,则“x 1+x 2=0”是“f (x 1)+f (x 2)=0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 本题考查充分条件与必要条件、函数的奇偶性.当f (x )为R 上的奇函数时,若x 1+x 2=0,则有x 1=-x 2,所以f (x 1)=f (-x 2)=-f (x 2),即f (x 1)+f (x 2)=0;若f (x )=0,则当x 1=-1,x 2=2时,f (x 1)+f (x 2)=0,但x 1+x 2≠0,所以“x 1+x 2=0”是“f (x 1)+f (x 2)=0”的充分不必要条件.故选A.16.已知集合A ={x ∈Z |x ≥a },集合B ={x ∈Z |2x ≤4},若A ∩B 只有4个子集,则a 的取值范围是( )A .(-2,-1]B .[-2,-1]C .[0,1]D .(0,1]答案 D分析 A ∩B 只有4个子集,则元素有两个.解析 集合A ={x ∈Z |x ≥a },集合B ={x ∈Z |2x ≤4}={x ∈Z |x ≤2},A ∩B ={x ∈Z |a ≤x ≤2},A ∩B 只有4个子集,则A ∩B 中元素只能有2个,即A ∩B ={1,2},所以0<a ≤1.故选D.评说 结合数轴、动态演示,效果更佳,结果更明显.17.【多选题】“∀x ∈[1,2],ax 2+1≤0”为真命题的必要不充分条件是( )A .a ≤-1B .a ≤-14C.a≤-2 D.a≤0答案BD解析∵∀x∈[1,2],ax2+1≤0,∴ax2≤-1,∴a<0,∵x∈[1,2],∴ax2∈[4a,a],∴a≤-1,∴“∀x∈[1,2],ax2+1≤0”⇒“a≤-1”,“a≤-1”⇒“∀x∈[1,2],ax2+1≤0”.∴“∀x∈[1,2],ax2+1≤0”为真命题的充分必要条件是a≤-1.故必要不充分条件为B、D.18.(2021·浙江适应性试卷)已知a,b∈R,则“a2>b2”是“a>|b|”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B解析若a=-2,b=1,此时a2>b2成立,而a>|b|不成立,而a>|b|时,由不等式的性质,两边平方得,a2>b2,所以“a2>b2”是“a>|b|”的必要不充分条件.故选B.19.(2021·湖北十一校第二次联考)已知非空集合A,B满足以下两个条件:(1)A∪B={1,2,3,4},A∩B=∅;(2)A的元素个数不是A中的元素,B的元素个数不是B中的元素.则有序集合对(A,B)的个数为()A.1 B.2 C.3 D.4答案 B解析若集合A中只有1个元素,则集合B中有3个元素,则1∉A,3∉B,即3∈A,1∈B,此时有1个有序集合对(A,B);同理,若集合B中只有1个元素,则集合A中有3个元素,则3∈B ,1∈A ,此时有1个有序集合对(A ,B );若集合A 中有2个元素,则集合B 中有2个元素,则2∉A ,且2∉B ,不满足条件.所以满足条件的有序集合对(A ,B )的个数为1+1=2.故选B.20.【多选题】下列说法正确的是( )A .设a ,b 为两个非零向量,则“a ·b =|a |·|b |”是“a 与b 共线”的充分不必要条件B .“平面向量a ,b 的夹角是钝角”的充分不必要条件是“a ·b <0”C .已知数列{a n },则“a n ,a n +1,a n +2成等比数列”是“a n +12=a n a n +2”的充要条件D .在三角形ABC 中,“A >B ”的充要条件是“sin A >sin B ”答案 AD解析 若a ·b =|a |·|b |,则a 与b 方向相同;若a 与b 共线,则a 与b 方向相同或相反,不一定有a ·b =|a |·|b |,故A 正确;因为a ·b <0时,〈a ,b 〉∈(90°,180°],所以“a ·b <0”是“平面向量a ,b 的夹角是钝角”的必要不充分条件,故B 错误;由“a n ,a n +1,a n +2成等比数列”,可得“a n +12=a n a n +2”成立,反之不成立,如a n +1=a n =a n +2=0,故C 错误;由A >B 得a >b ,由正弦定理a sin A =b sin B ,得sin A >sin B ,反之也成立,故D 正确.故选AD.21.设p :|x -a |≤3,q :(x +1)(2x -1)≥0,若p 是q 的充分不必要条件,则实数a 的取值范围是________.答案 (-∞,-4]∪⎣⎢⎡⎭⎪⎫72,+∞ 解析 由|x -a |≤3,可得a -3≤x ≤a +3,即p :a -3≤x ≤a +3.由(x +1)(2x -1)≥0,可得x≤-1或x≥12,即q:x≤-1或x≥12.因为p是q的充分不必要条件,所以a+3≤-1或a-3≥12,解得a≤-4或a≥72.故a的取值范围是(-∞,-4]∪⎣⎢⎡⎭⎪⎫72,+∞.。

高中数学集合练习与答案

高中数学集合练习与答案

高中数学集合练习与答案一、选择题1. 已知集合{}6A x N x =∈<,{}2,xB y y x A ==∈,则A B 中元素的个数是( )A .1B .2C .3D .42.已知集合(){}|10A x x x =-≤,(){}|ln B x y x a ==-,若A B A =,则实数a 的取值范围为( ) A .(),0-∞ B .(],0-∞C .()1,+∞D .[)1,+∞ 3.已知集合,,则( )A .B .C .D .4.已知全集,集合为A .B .C .D .5. 若命题p 为:为A .B .C .D .6.下列命题正确的个数为①梯形一定是平面图形;②若两条直线和第三条直线所成的角相等,则这两条直线平行; ③两两相交的三条直线最多可以确定三个平面; ④如果两个平面有三个公共点,则这两个平面重合. A .0 B .1 C .2 D .37.设集合, ,则( )A .B .C .D . 8. 已知,则( )A .B .C .D .9. 下列有关命题的说法正确的是( )A .命题“若,则”的否命题为“若,则”B .命题“若,则,互为相反数”的逆命题是真命题C .命题“,使得”的否定是“,都有”D .命题“若,则”的逆否命题为真命题10. 设集合,集合,则集合( ) A .B .C .D .11 已知集合,,则=( ) A .B .C .D .12. 【河北省衡水中学2018届高三高考押题(一)理数试题试卷】在等比数列中,“是方程的两根”是“”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件13. 设集合{|2}A x x =<, {}B x x a =,全集U R =,若UA B ⊆,则有( )A .0a =B .2a ≤C .2a ≥D .2a <14. 下列有关命题的说法正确的是( )A .命题“若,则”的否命题为“若,则”B .命题“若,则,互为相反数”的逆命题是真命题C .命题“,使得”的否定是“,都有”D .命题“若,则”的逆否命题为真命题 15. 设集合,,则( )A .B .C .D .16. 已知集合2{6}A x y x x ==-++,集合{1}B x x =≥,则A B =A.{23}x x -≤≤ B {1}x x ≥ C {13}x x ≤≤. D.{2}x x ≥-17.已知全集U=R ,则A .B .C .D .18.集合,,,若,则的取值范围是( )A .B .C .D . 19. 设集合{|1},{|1}A x x B x x =>-=≥,则“x A ∈且x B ∉”成立的充要条件是( )A .11x -<≤B .1x ≤C .1x >-D .11x -<<20.下列命题中的假命题是( )A .B .C .D .21. 已知全集,集合和的关系的韦恳(V enn )图如图所示,则阴影部分所示的集合的元素共有( )A .1个B .2个C .3个D .无穷个22. 设,,a b c R ∈,则“1abc =”是a b c a b c≤+=”的 A .充分条件但不是必要条件, B .必要条件但不是充分条件 C .充分必要条件 D .既不充分也不必要的条件23. 已知集合{|1}A x x =<,{|1x B x e =< },则( ) A .{|1}A B x x ⋂=< B .()R A C B R ⋃=C .{|}A B x x e ⋃=<D .(){|01}R C A B x x ⋂=<< 二、填空题 1.已知下列命题:①命题“2,35x R x x ∀∈+<”的否定是“2,35x R x x ∃∈+<”;②已知,p q 为两个命题,若“p q ∨”为假命题,则“()()p q ⌝⌝∧为真命题”;③“2015a >”是“2017a >”的充分不必要条件;④“若0xy =,则0x =且0y =”的逆否命题为真命题 其中,所有真命题的序号是__________.答案一、选择题1. 已知集合{}6A x N x =∈<,{}2,xB y y x A ==∈,则A B 中元素的个数是( )A .1B .2C .3D .4【答案】C【解析】∵{}6A x N x =∈<, ∴{}0,1,2,3,4,5A =, 又{}2,xB y y x A ==∈, ∴{}1,2,4,8,16,32B =, ∴{}1,2,4AB =,有3个元素,故选:C .2.已知集合(){}|10A x x x =-≤,(){}|ln B x y x a ==-,若A B A =,则实数a 的取值范围为( ) A .(),0-∞ B .(],0-∞C .()1,+∞D .[)1,+∞【答案】A【解析】(){}|1001A x x x x =-≤⇒≤≤(){}|ln B x y x a x a ==-⇒>A B A A B ⋂=⇒⊆所以0a < 故答案选A 3.已知集合,,则( )A .B .C .D .【答案】A 【解析】集合集合,则,故选A.4. 已知全集,集合为A .B .C .D .【解析】因为,所以或.所以.故选B.5.若命题p为:为A.B.C.D.【答案】C【解析】根据的构成方法得,为.故选C.6.下列命题正确的个数为①梯形一定是平面图形;②若两条直线和第三条直线所成的角相等,则这两条直线平行;③两两相交的三条直线最多可以确定三个平面;④如果两个平面有三个公共点,则这两个平面重合.A.0 B.1 C.2 D.3【答案】C分析:逐一判断每个命题的真假,得到正确命题的个数.详解:对于①,由于两条平行直线确定一个平面,所以梯形可以确定一个平面,所以该命题是真命题;对于②,两条直线和第三条直线所成的角相等,则这两条直线平行或异面或相交,所以该命题是假命题;对于③,两两相交的三条直线最多可以确定三个平面,是真命题;对于④,如果两个平面有三个公共点,则这两个平面相交或重合,所以该命题是假命题.故答案为:C.7.设集合,,则()A.B.C.D.【答案】B【解析】A={x|y=log2(2﹣x)}={x|x<2},B={x|x2﹣3x+2<0}={x|1<x<2},则∁A B={x|x≤1},故选:B.8.已知,则()A.B.C.D.【解析】试题分析:因为,,所以,.选.9.下列有关命题的说法正确的是()A.命题“若,则”的否命题为“若,则”B.命题“若,则,互为相反数”的逆命题是真命题C.命题“,使得”的否定是“,都有”D.命题“若,则”的逆否命题为真命题【答案】B【解析】“若,则”的否命题为“若,则”,错误;逆命题是“若则,互为相反数,”,正确;“,使得”的否定是“,都有”,错误;“若,则”为假命题,所以其逆否命题也为假命题,错误,故选B.10.设集合,集合,则集合()A.B.C.D.【答案】C【解析】由题意得,,∴,∴.故选C.11已知集合,,则=()A.B.C.D.【答案】B【解析】由题知,,则故本题答案选.12.在等比数列中,“是方程的两根”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】D【解析】由韦达定理知,则,则等比数列中,则.在常数列或中,不是所给方程的两根.则在等比数列中,“,是方程的两根”是“”的充分不必要条件.故本题答案选.13. 设集合{|2}A x x =<, {}B x x a =,全集U R =,若UA B ⊆,则有( )A .0a =B .2a ≤C .2a ≥D .2a < 【答案】C【解析】(){}2,2,U A C B x a =-=≤,所以2a ≤,故选C.14. 下列有关命题的说法正确的是( )A .命题“若,则”的否命题为“若,则”B .命题“若,则,互为相反数”的逆命题是真命题C .命题“,使得”的否定是“,都有”D .命题“若,则”的逆否命题为真命题【答案】B 【解析】 “若,则”的否命题为“若,则”,错误;逆命题是 “若则,互为相反数,”,正确; “,使得”的否定是“,都有”,错误;“若,则”为假命题,所以其逆否命题也为假命题,错误,故选B.15. 设集合,,则( )A .B .C .D .【答案】B【解析】由题意可得:,则集合=.本题选择B 选项.16. 已知集合2{6}A x y x x ==-++,集合{1}B x x =≥,则A B =A.{23}x x -≤≤ B {1}x x ≥C {13}x x ≤≤. D.{2}x x ≥-【答案】C【解析】由题意知集合2{|60}{|23}A x x x x x =--≤=-≤≤,所以{|13}AB x x =≤≤ ,故选C 。

高中数学必修1所有课时练习(含答案)

高中数学必修1所有课时练习(含答案)

第一章 集合与函数的概念课时作业(一) 集合的含义姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1.下列给出的对象中,能组成集合的是( ) A .一切很大的数 B .无限接近于0的数 C .美丽的小女孩D .方程x 2-1=0的实数根解析: 选项A ,B ,C 中的对象都没有明确的判断标准,不满足集合中元素的确定性,故A ,B ,C 中的对象都不能组成集合,故选D.答案: D2.设不等式3-2x <0的解集为M ,下列正确的是( ) A .0∈M,2∈M B .0∉M,2∈M C .0∈M,2∉M D .0∉M,2∉M解析: 从四个选项来看,本题是判断0和2与集合M 间的关系,因此只需判断0和2是否是不等式3-2x <0的解即可.当x =0时,3-2x =3>0,所以0不属于M ,即0∉M ;当x =2时,3-2x =-1<0,所以2属于M ,即2∈M . 答案: B3.由a 2,2-a,4组成一个集合A ,A 中含有3个元素,则实数a 的取值可以是( ) A .1 B .-2 C .6 D .2解析: 由题设知,a 2,2-a,4互不相等,即⎩⎪⎨⎪⎧a 2≠2-a ,a 2≠4,2-a ≠4,解得a ≠-2,a ≠1,且a ≠2.当实数a 的取值是6时,三个数分别为36,-4,4,可以构成集合,故选C.答案: C4.已知x ,y ,z 为非零实数,代数式x |x |+y |y |+z |z |+|xyz |xyz的值所组成的集合是M ,则下列判断正确的是( )A .4∈MB .2∈MC .0∉MD .-4∉M解析: 当x ,y ,z 都大于零时,代数式的值为4,所以4∈M ,故选A. 答案: A二、填空题(每小题5分,共10分)5.已知集合A 由方程(x -a )(x -a +1)=0的根构成,且2∈A ,则实数a 的值是________. 解析: 由(x -a )(x -a +1)=0得x =a 或x =a -1, 又∵2∈A ,∴当a =2时,a -1=1,集合A 中的元素为1,2,符合题意; 当a -1=2时,a =3,集合A 中的元素为2,3,符合题意. 综上可知,a =2或a =3. 答案: 2或36.设集合A 是由1,-2,a 2-1三个元素构成的集合,集合B 是由1,a 2-3a ,0三个元素构成的集合,若A =B ,则实数a =________.解析: 由集合相等的概念得⎩⎨⎧a 2-1=0,a 2-3a =-2,解得a =1. 答案: 1三、解答题(每小题10分,共20分)7.已知由方程kx 2-8x +16=0的根组成的集合A 只有一个元素,试求实数k 的值. 解析: 当k =0时,原方程变为-8x +16=0, 所以x =2,此时集合A 中只有一个元素2.当k ≠0时,要使一元二次方程kx 2-8x +16=0有一个实根, 需Δ=64-64k =0,即k =1.此时方程的解为x 1=x 2=4,集合A 中只有一个元素4.综上可知k =0或1.8.已知集合A 含有两个元素a -3和2a -1,若-3∈A ,试求实数a 的值. 解析: ∵-3∈A ,∴-3=a -3或-3=2a -1. 若-3=a -3,则a =0,此时集合A 中含有两个元素-3、-1,符合题意. 若-3=2a -1,则a =-1,此时集合A 中含有两个元素-4,-3,符合题意. 综上所述,a =0或a =-1. 尖子生题库☆☆☆9.(10分)设集合A 中含有三个元素3,x ,x 2-2x . (1)求实数x 应满足的条件; (2)若-2∈A ,求实数x .解析: (1)由集合元素的互异性可得 x ≠3,x 2-2x ≠x 且x 2-2x ≠3, 解得x ≠-1,x ≠0且x ≠3.(2)若-2∈A ,则x =-2或x 2-2x =-2. 由于x 2-2x =(x -1)2-1≥-1, 所以x =-2.课时作业(二) 集合的表示姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1.对集合{1,5,9,13,17}用描述法来表示,其中正确的一个是( ) A .{x |x 是小于18的正奇数} B .{x |x =4k +1,k ∈Z ,且k <5} C .{x |x =4t -3,t ∈N ,且t ≤5} D .{x |x =4s -3,s ∈N +,且s ≤5}解析: A 中小于18的正奇数除给定集合中的元素外,还有3,7,11,15;B 中k 取负数,多了若干元素;C 中t =0时多了-3这个元素,只有D 是正确的.答案: D2.下列集合中,不同于另外三个的是( ) A .{y |y =2} B .{x =2} C .{2} D .{x |x 2-4x +4=0}解析: {x =2}表示的是由一个等式组成的集合,而其他三个集合均表示由元素2组成的集合.答案: B 3.(2012·新课标全国卷)已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x -y ∈A },则B 中所含元素的个数为( )A .3B .6C .8D .10解析: 由x ∈A ,y ∈A 得x -y =0或x -y =±1或x -y =±2或x -y =±3或x -y =±4,故集合B 中所含元素的个数为10个. 答案: D4.给出下列说法:①直角坐标平面内,第一、三象限的点的集合为{(x ,y )|xy >0};②方程x -2+|y +2|=0的解集为{-2,2};③集合{(x ,y )|y =1-x }与{x |y =1-x }是相等的. 其中正确的说法有( ) A .1个 B .2个 C .3个 D .0个解析: 直角坐标平面内,第一、三象限的点的横、纵坐标是同号的,且集合中的代表元素为点(x ,y ),故①正确;方程x -2+|y +2|=0等价于⎩⎨⎧ x -2=0,y +2=0,即⎩⎨⎧x =2,y =-2,解为有序实数对(2,-2),即解集为{(2,-2)}或⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎪⎩⎨⎧ x =2,y =-2,故②不正确;集合{(x ,y )|y =1-x }的代表元素是(x ,y ),集合{x |y =1-x }的代表元素是x ,一个是实数对,一个是实数,故这两个集合不相等,③不正确.故选A.答案: A二、填空题(每小题5分,共10分)5.用列举法写出集合⎩⎨⎧⎭⎬⎫33-x ∈Z | x ∈Z =________.解析: ∵33-x∈Z ,x ∈Z ,∴3能被3-x 整除,即3-x 为3的因数. ∴3-x =±1或3-x =±3, ∴33-x =±3或33-x=±1. 综上可知,-3,-1,1,3满足题意. 答案: {-3,-1,1,3}6.若3∈{m -1,3m ,m 2-1},则m =________. 解析: 由m -1=3,得m =4;由3m =3,得m =1,此时m -1=m 2-1=0,故舍去;由m 2-1=3,得m =±2.经检验,m =4或m =±2满足集合中元素的互异性. 故填4或±2. 答案: 4或±2三、解答题(每小题10分,共20分) 7.用列举法表示下列集合: ①{x ∈N|x 是15的约数};②{(x ,y )|x ∈{1,2},y ∈{1,2}}; ③{(x ,y )|x +y =2且x -2y =4}; ④{x |x =(-1)n ,n ∈N};⑤{(x ,y )|3x +2y =16,x ∈N ,y ∈N}; ⑥{(x ,y )|x ,y 分别是4的正整数约数}. 解析: ①{1,3,5,15}②{(1,1),(1,2),(2,1),(2,2)}(注:防止把{(1,2)}写成{1,2}或{x =1,y =2})③⎩⎨⎧⎭⎬⎫⎝⎛⎭⎫83,-23 ④{-1,1}⑤{(0,8),(2,5),(4,2)}⑥{(1,1),(1,2),(1,4),(2,1),(2,2),(2,4),(4,1),(4,2),(4,4)} 8.用描述法表示下列集合: ①{3,9,27,81};②{-2,-4,-6,-8,-10}. 解析: ①{x |x =3n ,n ∈N *且n ≤4} ②{x |x =-2n ,n ∈N *且n ≤5} 尖子生题库☆☆☆9.(10分)定义集合运算A *B ={z |z =xy ,x ∈A ,y ∈B }.设A ={1,2},B ={0,2},则集合A *B 的所有元素之和是多少?解析: 当x =1或2,y =0时,z =0, 当x =1,y =2时,z =2; 当x =2,y =2时,z =4. ∴A *B ={0,2,4},∴所有元素之和为0+2+4=6.课时作业(三) 集合间的基本关系姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分) 1.下列命题: ①空集没有子集;②任何集合至少有两个子集; ③空集是任何集合的真子集; ④若∅A ,则A ≠∅. 其中正确的有( ) A .0个 B .1个 C .2个D .3个解析: ①错,空集是任何集合的子集,有∅⊆∅;②错,如∅只有一个子集;③错,空集不是空集的真子集;④正确,因为空集是任何非空集合的真子集.答案: B2.已知集合A ={2,-1},集合B ={m 2-m ,-1},且A =B ,则实数m 等于( ) A .2 B .-1 C .2或-1 D .4解析: ∵A =B , ∴m 2-m =2,∴m =2或m =-1. 答案: C3.已知全集U =R ,则正确表示集合U ,M ={-1,0,1},N ={x |x 2+x =0}之间关系的Venn 图是( )解析: 由N ={x |x 2+x =0},得N ={-1,0},则N M U . 答案: B4.下列集合中,结果是空集的为( ) A .{x ∈R |x 2-4=0} B .{x |x >9或x <3} C .{(x ,y )|x 2+y 2=0} D .{x |x >9且x <3}解析: {x ∈R |x 2-4=0}={2,-2},{(x ,y )|x 2+y 2=0}={(0,0)},显然{x |x >9或x <3}不是空集,{x |x >9且x <3}是空集,选D. 答案: D二、填空题(每小题5分,共10分)5.设集合A ={x |1<x <2},B ={x |x <a },若A B ,则实数a 的取值范围为________.解析: 在数轴上表示出两个集合(图略),因为A B ,所以a ≥2. 答案: a ≥26.已知∅{x |x 2-x +a =0},则实数a 的取值范围是________. 解析: ∵∅{x |x 2-x +a =0},∴方程x 2-x +a =0有实根,∴Δ=(-1)2-4a ≥0,a ≤14.答案: a ≤14三、解答题(每小题10分,共20分)7.已知{1}A ⊆{1,2,3},求满足条件的所有的集合A . 解析: 当A 中含有两个元素时, A ={1,2}或A ={1,3};当A 中含有三个元素时,A ={1,2,3}.所以满足已知条件的集合A 是{1,2},{1,3},{1,2,3}.8.已知集合A ={1,3,x 2},B ={x +2,1}.是否存在实数x ,使得B ⊆A ?若存在,求出集合A ,B ;若不存在,说明理由.解析: 假设存在实数x ,使B ⊆A , 则x +2=3或x +2=x 2.(1)当x +2=3时,x =1,此时A ={1,3,1},不满足集合元素的互异性.故x ≠1. (2)当x +2=x 2时,即x 2-x -2=0,故x =-1或x =2. ①当x =-1时,A ={1,3,1},与元素互异性矛盾, 故x ≠-1.②当x =2时,A ={1,3,4},B ={4,1},显然有B ⊆A . 综上所述,存在x =2,使A ={1,3,4},B ={4,1}满足B ⊆A . 尖子生题库☆☆☆9.(10分)设集合A ={x |a -2<x <a +2},B ={x |-2<x <3}. (1)若A B ,求实数a 的取值范围; (2)是否存在实数a 使B ⊆A?解析: (1)借助数轴可得,a 应满足的条件为⎩⎪⎨⎪⎧ a -2>-2,a +2≤3或⎩⎪⎨⎪⎧a -2≥-2,a +2<3.解得:0≤a ≤1. (2)同理可得,a 应满足的条件为⎩⎪⎨⎪⎧a -2≤-2,a +2≥3,得a 无解,所以不存在实数a 使B ⊆A .课时作业(四) 交集、并集姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1.已知集合M ={-1,1,2},集合N ={y |y =x 2,x ∈M },则M ∩N 是( ) A .{1,2,4} B .{1} C .{1,2} D .∅ 解析: ∵M ={-1,1,2},x ∈M , ∴x =-1或1或2. 由y =x 2得y =1或4,∴N ={1,4},M ∩N ={1}. 答案: B 2.设集合A ={x ∈Z |-10≤x ≤-1},B ={ x ∈Z ||x |≤5},则A ∪B 中的元素个数是( ) A .10 B .11 C .15 D .16 解析: A ={-10,-9,-8,-7,-6,…,-1}, B ={-5,-4,-3,-2,-1,0,1,2,3,4,5}, ∴A ∪B ={-10,-9,-8,…,-1,0,1,2,3,4,5},A ∪B 中共16个元素. 答案: D3.已知M ={(x ,y )|x +y =2},N ={(x ,y )|x -y =4},则M ∩N =( ) A .x =3,y =-1 B .(3,-1) C .{3,-1} D .{(3,-1)}解析: M ,N 均为点集,由⎩⎪⎨⎪⎧ x +y =2,x -y =4,得⎩⎪⎨⎪⎧x =3,y =-1,∴M ∩N ={(3,-1)}. 答案: D4.设集合A ={x |-1≤x ≤2},B ={x |0≤x ≤4},则A ∩B 等于( ) A .{x |0≤x ≤2} B .{x |1≤x ≤2} C .{x |0≤x ≤4} D .{x |1≤x ≤4} 解析: 在数轴上表示出集合A 与B ,如下图.则由交集的定义知,A ∩B ={x |0≤x ≤2}. 答案: A二、填空题(每小题5分,共10分)5.设集合A ={x |x ≥0},B ={x |x <1},则A ∪B =________. 解析: 结合数轴分析得A ∪B =R .答案: R6.设集合A ={x |-1<x <2},B ={x |x <a },若A ∩B ≠∅,则a 的取值范围是________. 解析: 利用数轴分析可知,a >-1.答案: a >-1三、解答题(每小题10分,共20分)7.已知M ={1},N ={1,2},设A ={(x ,y )|x ∈M ,y ∈N },B ={(x ,y )|x ∈N ,y ∈M },求A ∩B 和A ∪B .解析: A ∩B ={(1,1)},A ∪B ={(1,1),(1,2),(2,1)}8.已知A ={x |2a ≤x ≤a +3},B ={x |x <-1或x >5},若A ∪B =R ,求a 的取值范围. 解析: 若A ∪B =R ,如图所示,则必有2a ≤-1且a +3≥5,∴a ≤-12且a ≥2,此时a 无解.尖子生题库☆☆☆9.(10分)集合A ={x |-1≤x <3},B ={x |2x -4≥x -2}. (1)求A ∩B ;(2)若集合C ={x |2x +a >0},满足B ∪C =C ,求实数a 的取值范围. 解析: (1)∵B ={x |x ≥2}, ∴A ∩B ={x |2≤x <3}.(2)C =⎩⎨⎧⎭⎬⎫x ⎪⎪x >-a 2, B ∪C =C ⇒B ⊆C , ∴-a2<2,∴a >-4.课时作业(五)补集及综合应用姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1.若全集U={0,1,2,3}且∁U A={2},则集合A的真子集共有()A.3个B.5个C.7个D.8个解析:A={0,1,3},集合A的真子集共有8个.答案: D2.图中的阴影部分表示的集合是()A.A∩(∁U B) B.B∩(∁U A)C.∁U(A∩B) D.∁U(A∪B)解析:阴影部分表示集合B与集合A的补集的交集.因此,阴影部分所表示的集合为B∩(∁U A).答案: B3.已知U为全集,集合M,N⊆U,若M∩N=N,则()A.∁U N⊆∁U M B.M⊆∁U NC.∁U M⊆∁U N D.∁U N⊆M解析:由M∩N=N知N⊆M.∴∁U M⊆∁U N.答案: C4.(2012·山东卷)已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁U A)∪B为()A.{1,2,4} B.{2,3,4}C.{0,2,4} D.{0,2,3,4}解析:∵∁U A={0,4},B={2,4},∴(∁U A)∪B={0,2,4}.答案: C二、填空题(每小题5分,共10分)5.已知全集U=R,集合A={x|-2≤x≤3},B={x|x<-1或x>4},那么集合A∩(∁U B)等于________________________________________________________________________.解析:∁U B={x|-1≤x≤4},A∩(∁U B)={x|-1≤x≤3}.答案:{x|-1≤x≤3}6.已知集合A={x|x≤a},B={x|1≤x≤2},且A∪∁R B=R,则实数a的取值范围是________.解析:∵∁R B=(-∞,1)∪(2,+∞)且A∪∁R B=R,∴{x|1≤x≤2}⊆A,∴a≥2.答案:[2,+∞)三、解答题(每小题10分,共20分)7.已知全集U={x|x≤4},集合A={x|-2<x<3},B={x|-3<x≤3},求∁U A,A∩B,∁U(A∩B),(∁U A)∩B.解析:由下图可知,∁U A ={x |x ≤-2或3≤x ≤4}, A ∩B ={x |-2<x <3},∁U (A ∩B )={x |x ≤-2或3≤x ≤4},(∁U A )∩B ={x |-3<x ≤-2或x =3}.8.已知集合A ={x |2a -2<x <a },B ={x |1<x <2},且A ∁R B ,求a 的取值范围. 解析: ∁R B ={x |x ≤1或x ≥2}≠∅, ∵A ∁R B ,∴分A =∅和A ≠∅两种情况讨论. (1)若A =∅,此时有2a -2≥a ,∴a ≥2. (2)若A ≠∅,则有⎩⎨⎧2a -2<a ,a ≤1或⎩⎪⎨⎪⎧2a -2<a ,2a -2≥2.∴a ≤1.综上所述,a ≤1或a ≥2. 尖子生题库☆☆☆9.(10分)已知集合A ={1,3,-x 3},B ={1,x +2},是否存在实数x ,使得B ∪(∁A B )=A ?实数x 若存在,求出集合A 和B ;若不存在,说明理由.解析: 假设存在x ,使B ∪(∁A B )=A ,∴B A . (1)若x +2=3,则x =1符合题意. (2)若x +2=-x 3,则x =-1不符合题意. ∴存在x =1,使B ∪(∁A B )=A , 此时A ={1,3,-1},B ={1,3}.课时作业(六) 函数的概念姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1.对于函数y =f (x ),以下说法正确的有( )①y 是x 的函数;②对于不同的x ,y 的值也不同;③f (a )表示当x =a 时函数f (x )的值,是一个常量;④f (x )一定可以用一个具体的式子表示出来.A .1个B .2个C .3个D .4个 答案: B2.函数f (x )=⎝⎛⎭⎫x -120+|x 2-1|x +2的定义域为( )A.⎝⎛⎭⎫-2,12 B .(-2,+∞) C.⎝⎛⎭⎫-2,12∪⎝⎛⎭⎫12,+∞ D.⎝⎛⎭⎫12,+∞解析: 要使函数式有意义,必有x -12≠0且x +2>0,即x >-2且x ≠12.答案: C3.已知函数f (x )=x 2+px +q 满足f (1)=f (2)=0,则f (-1)的值是( ) A .5 B .-5 C .6 D .-6解析: 由f (1)=f (2)=0,得⎩⎪⎨⎪⎧1+p +q =0,4+2p +q =0,∴⎩⎪⎨⎪⎧p =-3,q =2,∴f (x )=x 2-3x +2, ∴f (-1)=(-1)2-3×(-1)+2=6. 答案: C4.若函数g (x +2)=2x +3,则g (3)的值是( ) A .9 B .7 C .5 D .3解析: g (3)=g (1+2)=2×1+3=5. 答案: C二、填空题(每小题5分,共10分)5.函数f (x )=x 2-2x +5定义域为A ,值域为B ,则集合A 与B 的关系是________. 解析: 显然二次函数的定义域为A =R , 又∵f (x )=x 2-2x +5=(x -1)2+4≥4, ∴B =[4,+∞),∴A B . 答案: A B6.设f (x )=11+x,则f [f (x )]=________.解析: f [f (x )]=f ⎝ ⎛⎭⎪⎫11+x =11+11+x =x +1x +2(x ≠-1且x ≠-2). 答案:x +1x +2(x ≠-1且x ≠-2) 三、解答题(每小题10分,共20分) 7.判断下列各组函数是否是相等函数. (1)f (x )=(x -2)2,g (x )=x -2;(2)f (x )=x 3+xx 2+1,g (x )=x .解析: (1)∵f (x )=(x -2)2=|x -2|,g (x )=x -2,∴两函数的对应关系不同,故不是相等函数. (2)∵f (x )=x 3+xx 2+1=x ,g (x )=x ,又∵两个函数的定义域均为R ,对应关系相同,故是相等函数.8.已知函数f (x )=6x -1-x +4,(1)求函数f (x )的定义域; (2)求f (-1), f (12)的值.解析: (1)根据题意知x -1≠0且x +4≥0, ∴x ≥-4且x ≠1,即函数f (x )的定义域为[-4,1)∪(1,+∞).(2)f (-1)=6-2--1+4=-3- 3.f (12)=612-1-12+4=611-4=-3811.尖子生题库☆☆☆9.(10分)已知函数f (x )=x 21+x 2.(1)求f (2)与f ⎝⎛⎭⎫12, f (3)与f ⎝⎛⎭⎫13. (2)由(1)中求得结果,你能发现f (x )与f ⎝⎛⎭⎫1x 有什么关系?并证明你的发现. (3)求f (1)+f (2)+f (3)+…+f (2 013)+f ⎝⎛⎭⎫12+f ⎝⎛⎭⎫13+…+f ⎝⎛⎭⎫12 013. 解析: (1)∵f (x )=x 21+x 2,∴f (2)=221+22=45,f ⎝⎛⎭⎫12=⎝⎛⎭⎫1221+⎝⎛⎭⎫122=15, f (3)=321+32=910,f ⎝⎛⎭⎫13=⎝⎛⎭⎫1321+⎝⎛⎭⎫132=110. (2)由(1)发现f (x )+f ⎝⎛⎭⎫1x =1. 证明如下:f (x )+f ⎝⎛⎭⎫1x =x 21+x 2+⎝⎛⎭⎫1x 21+⎝⎛⎭⎫1x 2=x 21+x 2+11+x 2=1. (3)f (1)=121+12=12.由(2)知f (2)+f ⎝⎛⎭⎫12=1,f (3)+f ⎝⎛⎭⎫13=1, …,f (2 013)+f ⎝⎛⎭⎫12 013=1,∴原式=12+1+1+1+…+1 2 012个=2 012+12 =4 0252.课时作业(七) 函数的三种表示法姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1.已知函数f (x )的定义域A ={x |0≤x ≤2},值域B ={y |1≤y ≤2},下列选项中,能表示f (x )的图象的只可能是( )解析: 根据函数的定义,观察图象,对于选项A ,B ,值域为{y |0≤y ≤2},不符合题意,而C 中当0<x <2时,一个自变量x 对应两个不同的y ,不是函数.故选D.答案: D2.已知函数f (2x +1)=3x +2,且f (a )=2,则a 的值等于( ) A .8 B .1 C .5 D .-1解析: 由f (2x +1)=3x +2,令2x +1=t , ∴x =t -12,∴f (t )=3·t -12+2,∴f (x )=3(x -1)2+2,∴f (a )=3(a -1)2+2=2,∴a =1.答案: B3.已知函数f (x )由下表给出,则f (f (3))等于( )x 1 2 3 4 f (x ) 3 2 41A.1 C .3 D .4 解析: ∵f (3)=4,∴f (f (3))=f (4)=1. 答案: A4.(2012·临沂高一检测)函数y =f (x )的图象如图所示,则函数y =f (x )的解析式为( ) A .f (x )=(x -a )2(b -x ) B .f (x )=(x -a )2(x +b ) C .f (x )=-(x -a )2(x +b ) D .f (x )=(x -a )2(x -b )解析: 由图象知,当x =b 时,f (x )=0,故排除B ,C ;又当x >b 时,f (x )<0,故排除D.故应选A.答案: A二、填空题(每小题5分,共10分)5.(2011·济南高一检测)如图,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f ⎝⎛⎭⎫1f (3)的值等于________.解析: ∵f (3)=1,1f (3)=1,∴f ⎝⎛⎭⎫1f (3)=f (1)=2. 答案: 26.已知f (x )是一次函数,且f [f (x )]=4x +3,则f (x )=________.解析: 设f (x )=ax +b (a ≠0),则f [f (x )]=f (ax +b )=a (ax +b )+b =a 2x +ab +b =4x +3,∴⎩⎪⎨⎪⎧ a 2=4,ab +b =3,解得⎩⎪⎨⎪⎧ a =2,b =1,或⎩⎪⎨⎪⎧a =-2,b =-3.故所求的函数为f (x )=2x +1或f (x )=-2x -3. 答案: 2x +1或-2x -3三、解答题(每小题10分,共20分) 7.求下列函数解析式:(1)已知f (x )是一次函数,且满足3f (x +1)-f (x )=2x +9,求f (x ). (2)已知f (x +1)=x 2+4x +1,求f (x )的解析式. 解析: (1)由题意,设函数为f (x )=ax +b (a ≠0), ∵3f (x +1)-f (x )=2x +9, ∴3a (x +1)+3b -ax -b =2x +9, 即2ax +3a +2b =2x +9,由恒等式性质,得⎩⎪⎨⎪⎧2a =2,3a +2b =9,∴a =1,b =3.∴所求函数解析式为f (x )=x +3. (2)设x +1=t ,则x =t -1, f (t )=(t -1)2+4(t -1)+1, 即f (t )=t 2+2t -2.∴所求函数为f (x )=x 2+2x -2.8.作出下列函数的图象: (1)y =1-x ,x ∈Z ;(2)y =x 2-4x +3,x ∈[1,3].解析: (1)因为x ∈Z ,所以图象为一条直线上的孤立点,如图1所示. (2)y =x 2-4x +3=(x -2)2-1, 当x =1,3时,y =0;当x =2时,y =-1,其图象如图2所示.尖子生题库☆☆☆9.(10分)求下列函数解析式.(1)已知2f ⎝⎛⎭⎫1x +f (x )=x (x ≠0),求f (x ); (2)已知f (x )+2f (-x )=x 2+2x ,求f (x ).解析: (1)∵f (x )+2f ⎝⎛⎭⎫1x =x ,将原式中的x 与1x互换, 得f ⎝⎛⎭⎫1x +2f (x )=1x. 于是得关于f (x )的方程组⎩⎨⎧f (x )+2f ⎝⎛⎭⎫1x =x ,f ⎝⎛⎭⎫1x +2f (x )=1x,解得f (x )=23x -x3(x ≠0).(2)∵f (x )+2f (-x )=x 2+2x ,将x 换成-x ,得f (-x )+2f (x )=x 2-2x , ∴将以上两式消去f (-x ),得3f (x )=x 2-6x ,∴f (x )=13x 2-2x .课时作业(八) 分段函数和映射姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分) 1.如图中所示的对应:其中构成映射的个数为( )A .3B .4C .5D .6解析:序号 是否为映射原因① 是 满足取元任意性,成象唯一性 ② 是 满足取元任意性、成象唯一性 ③ 是 满足取元任意性、成象唯一性 ④ 不是 是一对多,不满足成象唯一性 ⑤ 不是 是一对多,不满足成象唯一性 ⑥不是a 3,a 4无象、不满足取元任意性答案: 2.已知函数y =⎩⎪⎨⎪⎧x 2+1 (x ≤0)-2x (x >0),使函数值为5的x 的值是( )A .-2或2B .2或-52C .-2D .2或-2或-52解析: 若x ≤0,则x 2+1=5 解得x =-2或x =2(舍去).若x >0,则-2x =5,∴x =-52(舍去),综上x =-2. 答案: C3.已知映射f :A →B ,即对任意a ∈A ,f :a →|a |.其中集合A ={-3,-2,-1,2,3,4},集合B 中的元素都是A 中元素在映射f 下的对应元素,则集合B 中元素的个数是( )A .7B .6C .5D .4解析: |-3|=|3|,|-2|=|2|,|-1|=1,|4|=4,且集合元素具有互异性,故B 中共有4个元素,∴B ={1,2,3,4}. 答案: D4.已知f (x )=⎩⎪⎨⎪⎧x -5 (x ≥6)f (x +2) (x <6),则f (3)为( )A .3B .2C .4D .5解析: f (3)=f (3+2)=f (5),f (5)=f (5+2)=f (7),∴f (7)=7-5=2.故f (3)=2. 答案: B二、填空题(每小题5分,共10分)5.f (x )=⎩⎪⎨⎪⎧3x +2,x <1x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a =________.解析: ∵f (x )=⎩⎪⎨⎪⎧3x +2 x <1x 2+ax x ≥1,∴f (0)=2,∴f (f (0))=f (2)=4+2a , ∴4+2a =4a ,∴a =2.答案: 26.已知集合A 中元素(x ,y )在映射f 下对应B 中元素(x +y ,x -y ),则B 中元素(4,-2)在A 中对应的元素为________.解析: 由题意知⎩⎪⎨⎪⎧ x +y =4x -y =-2∴⎩⎪⎨⎪⎧x =1y =3答案: (1,3)三、解答题(每小题10分,共20分)7.已知f (x )=⎩⎪⎨⎪⎧x 2, -1≤x ≤11, x >1或x <-1,(1)画出f (x )的图象;(2)求f (x )的定义域和值域.解析: (1)利用描点法,作出f (x )的图象,如图所示. (2)由条件知, 函数f (x )的定义域为R .由图象知,当-1≤x ≤1时,f (x )=x 2的值域为[0,1], 当x >1或x <-1时,f (x )=1,所以f (x )的值域为[0,1].8.如图所示,函数f (x )的图象是折线段ABC ,其中A 、B 、C 的坐标分别为(0,4),(2,0),(6,4).(1)求f (f (0))的值;(2)求函数f (x )的解析式.解析: (1)直接由图中观察,可得 f (f (0))=f (4)=2.(2)设线段AB 所对应的函数解析式为y =kx +b ,将⎩⎪⎨⎪⎧ x =0,y =4与⎩⎪⎨⎪⎧ x =2,y =0代入,得⎩⎪⎨⎪⎧ 4=b ,0=2k +b .∴⎩⎪⎨⎪⎧b =4,k =-2. ∴y =-2x +4(0≤x ≤2).同理,线段BC 所对应的函数解析式为y =x -2(2≤x ≤6).∴f (x )=⎩⎪⎨⎪⎧-2x +4, 0≤x ≤2,x -2, 2<x ≤6.尖子生题库☆☆☆9.(10分)“水”这个曾经被人认为取之不尽,用之不竭的资源,竟然到了严重制约我国经济发展,严重影响人民生活的程度.因为缺水,每年给我国工业造成的损失达2 000亿元,给我国农业造成的损失达1 500亿元,严重缺水困扰全国三分之二的城市.为了节约用水,某市打算出台一项水费政策,规定每季度每人用水量不超过5吨时,每吨水费1.2元,若超过5吨而不超过6吨时,超过的部分的水费按原价的200%收费,若超过6吨而不超过7吨时,超过部分的水费按原价的400%收费,如果某人本季度实际用水量为x (x ≤7)吨,试计算本季度他应交的水费y .(单位:元)解析: 由题意知,当0<x ≤5时,y =1.2x , 当5<x ≤6时,y =1.2×5+(x -5)×1.2×2=2.4x -6. 当6<x ≤7时,y =1.2×5+(6-5)×1.2×2+(x -6)×1.2×4=4.8x -20.4.所以y =⎩⎨⎧1.2x (0<x ≤5)2.4x -6 (5<x ≤6)4.8x -20.4 (6<x ≤7).课时作业(九) 函数的单调性姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1. (2010·北京)给定函数①y =x 12,②y =log 12(x +1),③y =|x -1|,④y =2x +1,其中在区间(0,1)上单调递减的函数的序号是( ) A .①② B .②③ C .③④D .①④答案 B解析 ①函数y =x 12在(0,+∞)上为增函数,故在(0,1)上也为增函数;②y =log 12(x +1)在(-1,+∞)上为减函数,故在(0,1)上也为减函数,③y =|x -1|在(0,1)上为减函数,④y =2x +1在(-∞,+∞)上为增函数,故在(0,1)上也为增函数. 2. 函数f (x )=ln(4+3x -x 2)的单调递减区间是( )A.⎝⎛⎦⎤-∞,32 B.⎣⎡⎭⎫32,+∞ C.⎝⎛⎦⎤-1,32D.⎣⎡⎭⎫32,4答案 D解析 函数f (x )的定义域是(-1,4),u (x )=-x 2+3x +4=-⎝⎛⎭⎫x -322+254的减区间为⎣⎡⎭⎫32,4,∵e>1,∴函数f (x )的单调减区间为⎣⎡⎭⎫32,4.点评 本题的易错点是:易忽略f (x )的定义域.一定注意定义域优先的原则. 3. 若函数y =ax 与y =-bx在(0,+∞)上都是减函数,则y =ax 2+bx 在(0,+∞)上是( )A .增函数B .减函数C .先增后减D .先减后增答案 B解析 ∵y =ax 与y =-bx 在(0,+∞)上都是减函数,∴a <0,b <0,∴y =ax 2+bx 的对称轴方程x =-b2a <0,∴y =ax 2+bx 在(0,+∞)上为减函数.4. 已知奇函数f (x )对任意的正实数x 1,x 2(x 1≠x 2),恒有(x 1-x 2)(f (x 1)-f (x 2))>0,则一定正确的是( )A .f (4)>f (-6)B .f (-4)<f (-6)C .f (-4)>f (-6)D .f (4)<f (-6)答案 C解析 显然(4-6)(f (4)-f (6))>0⇒f (4)<f (6),结合奇函数的定义,得-f (4)=f (-4),-f (6)=f (-6). 故f (-4)>f (-6).二、填空题(每小题5分,共15分)5. 设x 1,x 2为y =f (x )的定义域内的任意两个变量,有以下几个命题:①(x 1-x 2)[f (x 1)-f (x 2)]>0; ②(x 1-x 2)[f (x 1)-f (x 2)]<0; ③f (x 1)-f (x 2)x 1-x 2>0;④f (x 1)-f (x 2)x 1-x 2<0.其中能推出函数y =f (x )为增函数的命题为________.(填序号) 答案 ①③解析 依据增函数的定义可知,对于①③,当自变量增大时,相对应的函数值也增大,所以①③可推出函数y =f (x )为增函数.6. 如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是__________. 答案 ⎣⎡⎦⎤-14,0 解析 (1)当a =0时,f (x )=2x -3,在定义域R 上是单调递增的,故在(-∞,4)上单调递增;(2)当a ≠0时,二次函数f (x )的对称轴为直线x =-1a ,因为f (x )在(-∞,4)上单调递增,所以a <0,且-1a ≥4,解得-14≤a <0.综上所述-14≤a ≤0.点评 本题首先应该对参数a 进行分类讨论,然后再针对a ≠0时的情况,根据二次函数的对称轴与单调区间的位置关系确定参数的取值范围.本题易出现的问题是默认函数f (x 为二次函数,忽略对a 是否为0的讨论.7. 已知函数f (x )=⎩⎪⎨⎪⎧e -x -2 (x ≤0)2ax -1 (x >0)(a 是常数且a >0).对于下列命题:①函数f (x )的最小值是-1; ②函数f (x )在R 上是单调函数;③若f (x )>0在⎣⎡⎭⎫12,+∞上恒成立,则a 的取值范围是a >1; ④对任意的x 1<0,x 2<0且x 1≠x 2,恒有f ⎝⎛⎭⎫x 1+x 22<f (x 1)+f (x 2)2.其中正确命题的序号是________. 答案 ①③④ 解析根据题意可画出草图,由图象可知,①显然正确; 函数f (x )在R 上不是单调函数,故②错误;若f (x )>0在⎣⎡⎭⎫12,+∞上恒成立,则2a ×12-1>0,a >1,故③正确; 由图象可知在(-∞,0)上对任意的x 1<0,x 2<0且x 1≠x 2,恒有f ⎝ ⎛⎭⎪⎫x 1+x 22<f (x 1)+f (x 2)2成立,故④正确. 三、解答题8. (10分)已知函数y =f (x )在[0,+∞)上是减函数,试比较f ⎝⎛⎭⎫34与f (a 2-a +1)的大小.解 ∵a 2-a +1=⎝⎛⎭⎫a -122+34≥34>0, 又∵y =f (x )在[0,+∞)上是减函数, ∴f (a 2-a +1)≤f ⎝⎛⎭⎫34.点评 本题是应用函数单调性的定义来比较函数值的大小,在应用函数单调性的定义时,必须要求自变量的值都在函数的同一单调区间内.课时作业(十) 函数的最大(小)值姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1.函数y =1x 2在区间⎣⎡⎦⎤12,2上的最大值是( ) A.14 B .-1 C .4 D .-4解析: ∵函数y =1x 2在⎣⎡⎦⎤12,2上是减函数, ∴y max =1⎝⎛⎭⎫122=4.答案: C2.函数f (x )=⎩⎪⎨⎪⎧2x +6,(x ∈[1,2])x +7,(x ∈[-1,1))则f (x )的最大值、最小值分别为( )A .10,6B .10,8C .8,6D .以上都不对解析: f (x )在[-1,2]上单调递增,∴最大值为f (2)=10,最小值为f (-1)=6. 答案: A3.已知函数f (x )=-x 2+4x +a ,x ∈[0,1],若f (x )有最小值-2,则f (x )的最大值为( ) A .-1 B .0 C .1 D .2 解析: f (x )=-(x 2-4x +4)+a +4=-(x -2)2+4+a . ∴函数f (x )图象的对称轴为x =2, ∴f (x )在[0,1]上单调递增.又∵f (x )min =-2,∴f (0)=-2,即a =-2.∴f (x )max =f (1)=-1+4-2=1. 答案: C4.当0≤x ≤2时,a <-x 2+2x 恒成立,则实数a 的取值范围是( ) A .(-∞,1] B .(-∞,0) C .(-∞,0] D .(0,+∞)解析: a <-x 2+2x 恒成立,则a 小于函数f (x )=-x 2+2x ,x ∈[0,2]的最小值,而f (x )=-x 2+2x ,x ∈[0,2]的最小值为0,故a <0. 答案: B二、填空题(每小题5分,共10分)5.函数f (x )=xx +2在区间[2,4]上的最大值为________,最小值为________.解析: ∵f (x )=x x +2=x +2-2x +2=1-2x +2,∴函数f (x )在[2,4]上是增函数, ∴f (x )min =f (2)=22+2=12,f (x )max =f (4)=44+2=23.答案: 23 126.在已知函数f (x )=4x 2-mx +1,在(-∞,-2]上递减,在[-2,+∞)上递增,则f (x )在[1,2]上的值域________.解析: 由题意知x =-2是f (x )的对称轴,则m2×4=-2,m =-16,∴f (x )=4x 2+16x +1 =4(x +2)2-15.又∵f (x )在[1,2]上单调递增.f (1)=21, f (2)=49,∴在[1,2]上的值域为[21,49]. 答案: [21,49]三、解答题(每小题10分,共20分)7.已知函数f (x )=x 2-2x +2,x ∈A ,当A 为下列区间时,分别求f (x )的最大值和最小值. (1)A =[-2,0];(2)A =[2,3].解析: f (x )=x 2-2x +2=(x -1)2+1,其对称轴为x=1.(1)A=[-2,0]为函数的递减区间,∴f(x)的最小值是2,最大值是10;(2)A=[2,3]为函数的递增区间,∴f(x)的最小值是2,最大值是5.8.已知函数f(x)=x-1x+2,x∈[3,5],(1)判断函数f(x)的单调性并证明.(2)求函数f(x)的最大值和最小值.解析:(1)任取x1,x2∈[3,5]且x1<x2,则f(x1)-f(x2)=x1-1x1+2-x2-1x2+2=(x1-1)(x2+2)-(x2-1)(x1+2)(x1+2)(x2+2)=x1x2+2x1-x2-2-x1x2-2x2+x1+2(x1+2)(x2+2)=3(x1-x2) (x1+2)(x2+2).∵x1,x2∈[3,5]且x1<x2,∴x1-x2<0,x1+2>0,x2+2>0,∴f(x1)-f(x2)<0,∴f(x1)<f(x2),∴函数f(x)=x-1x+2在x∈[3,5]上为增函数.(2)由(1)知,当x=3时,函数f(x)取得最小值为f(3)=2 5;当x=5时,函数f(x)取得最大值为f(5)=47.尖子生题库☆☆☆9.(10分)如图所示,动物园要建造一面靠墙的两间一样大小的长方形动物笼舍,可供建造围墙的材料总长为30 m,问:每间笼舍的宽度x为多少时,才能使得每间笼舍面积y达到最大?每间笼舍最大面积为多少?解析:设总长为b,由题意知b=30-3x,可得y=12xb,即y=12x(30-3x)=-32(x-5)2+37.5,x∈(0,10).当x=5时,y取得最大值37.5,即每间笼舍的宽度为5 m时,每间笼舍面积y达到最大,最大面积为37.5 m2.课时作业(十一) 函数的奇偶性姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分) 1.函数f (x )=x 2+3的奇偶性是( ) A .奇函数 B .偶函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数 解析: 函数f (x )=x 2+3的定义域为R ,f (-x )=(-x )2+3=x 2+3=f (x ),所以该函数是偶函数,故选B. 答案: B2.下列四个结论:①偶函数的图象一定与y 轴相交; ②奇函数的图象一定通过原点; ③偶函数的图象关于y 轴对称;④既是奇函数又是偶函数的函数是f (x )=0. 其中正确命题的个数为( ) A .1 B .2 C .3 D .4解析: 偶函数的图象关于y 轴对称,但不一定与y 轴相交,如y =1x2,故①错,③对;奇函数的图象不一定通过原点,如y =1x ,故②错;既奇又偶的函数除了满足f (x )=0,还要满足定义域关于原点对称,④错.故选A.答案: A3.已知f (x )=x 5+ax 3+bx -8,且f (-2)=10,则f (2)等于( ) A .-10 B .-18 C .-26 D .10解析: 由函数g (x )=x 5+ax 3+bx 是奇函数,得g (-x )=-g (x ),∵f (2)=g (2)-8,f (-2)=g (-2)-8,∴f (2)+f (-2)=-16.又f (-2)=10,∴f (2)=-16-f (-2)=-16-10=-26. 答案: C4.已知函数f (x )在[-5,5]上是偶函数,f (x )在[0,5]上是单调函数,且f (-3)<f (-1),则下列不等式一定成立的是( )A .f (-1)<f (3)B .f (2)<f (3)C .f (-3)<f (5)D .f (0)>f (1)解析: 函数f (x )在[-5,5]上是偶函数,因此f (x )=f (-x ),于是f (-3)=f (3),f (-1)=f (1),则f (3)<f (1).又∵f (x )在[0,5]上是单调函数,从而函数f (x )在[0,5]上是减函数,观察四个选项,并注意到f (x )=f (-x ),易知只有D 正确. 答案: D二、填空题(每小题5分,共10分)5.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数,则m =________.解析: 当x <0时,-x >0,f (-x )=-(-x )2+2(-x )=-x 2-2x .又∵f (x )为奇函数, ∴f (-x )=-f (x )=-x 2-2x .∴f (x )=x 2+2x =x 2+mx ,∴m =2. 答案: 26.若函数f (x )=ax 2+2在[3-a,5]上是偶函数,则a =________.解析: 由题意可知3-a =-5,∴a =8. 答案: 8三、解答题(每小题10分,共20分)7.已知函数f (x )=ax +b 1+x 2是定义在(-1,1)上的奇函数,且f ⎝⎛⎭⎫12=25,求函数f (x )的解析式. 解析: ∵f (x )是定义在(-1,1)上的奇函数, ∴f (0)=0,即b1+02=0,∴b =0.又f ⎝⎛⎭⎫12=12a 1+14=25,∴a =1, ∴f (x )=x1+x 2.8.已知函数f (x )是定义域为R 的奇函数,当x >0时, f (x )=x 2-2x .(1)求出函数f (x )在R 上的解析式; (2)画出函数f (x )的图象.解析: (1)①由于函数f (x )是定义域为R 的奇函数, 则f (0)=0;②当x <0时,-x >0,∵f (x )是奇函数, ∴f (-x )=-f (x ), ∴f (x )=-f (-x ) =-[(-x )2-2(-x )] =-x 2-2x ,综上:f (x )=⎩⎪⎨⎪⎧x 2-2x , (x >0)0, (x =0)-x 2-2x . (x <0)(2)图象如图:尖子生题库☆☆☆9.(10分)已知函数y =f (x )不恒为0,且对于任意x 、y ∈R ,都有f (x +y )=f (x )+f (y ),求证:y =f (x )是奇函数.证明: 在f (x +y )=f (x )+f (y )中, 令y =-x ,得f (0)=f (x )+f (-x ),令x =y =0,则f (0)=f (0)+f (0),所以f (0)=0. 所以f (x )+f (-x )=0, 即f (-x )=-f (x ), 所以y =f (x )是奇函数.第二章 基本初等函数(Ⅰ)课时作业(十二) 指数与指数幂的运算姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1.5m -2可化为( )A .m -25B .m 52C .m 25D .-m 52答案: A2.当2-x 有意义时,化简x 2-4x +4-x 2-6x +9的结果是( ) A .2x -5 B .-2x -1 C .-1 D .5-2x 解析:2-x 有意义,须有2-x ≥0,即x ≤2,x 2-4x +4-x 2-6x +9 =(x -2)2-(x -3)2=2-x -(3-x ) =-1. 答案: C3.计算0.25-0.5+⎝⎛⎭⎫127-13-416的值为( )A .7B .3C .7或3D .5解析: 0.25-0.5+⎝⎛⎭⎫127-13-416=⎝⎛⎭⎫122×⎝⎛⎭⎫-12+⎝⎛⎭⎫133×⎝⎛⎭⎫-13-424=2+3-2=3. 答案: B4.下列式子中,错误的是( )A .(27a 3)13÷0.3a -1=10a 2B .(a 23-b 23)÷(a 13+b 13)=a 13-b 13C .[(22+3)2(22-3)2]12=-1D.4a 3a 2a =24a 11解析: 对于A ,原式=3a ÷0.3a -1=3a 20.3=10a 2,A 正确; 对于B ,原式=(a 13-b 13)(a 13+b 13)a 13+b 13=a 13-b 13,B 正确;对于C ,原式=[(3+22)2(3-22)2]12=(3+22)·(3-22)=1,这里注意3>22,a12(a ≥0)是正数,C 错误;对于D ,原式=4a 3a 52=4a ·a 56=a 1124=24a 11,D 正确. 答案: C二、填空题(每小题5分,共10分) 5.有下列说法: ①3-27=3;②16的4次方根是±2;③481=±3;④(x +y )2=|x +y |.其中,正确的有________(填上正确说法的序号). 解析: 当n 是奇数时,负数的n 次方根是一个负数,故3-27=-3,故①错误;16的4次方根有两个,为±2,故②正确;481=3,故③错误;(x +y )2是正数,故2(x +y )2=|x +y |,故④正确.答案: ②④6.化简(2a -3b -23)·(-3a -1b )÷(4a -4b -53)得________.解析: 原式=-6a -4b134a -4b -53=-32b 2.答案: -32b 2三、解答题(每小题10分,共20分) 7.计算下列各式:(1)481×923;(2)23×31.5×612. 解析: (1)原式=[34×(343)12]14=(34+23)14=3143×14=376 =363.(2)原式=2×312×⎝⎛⎭⎫3213×(3×22)16=21-13+13×312+13+16=2×3=6.8.计算下列各式:(1)823×100-12×(0.25)-3×⎝⎛⎭⎫1681-34; (2)(2a 23b 12)·(-6a 12b 13)÷(-3a 16·b 56).解析: (1)原式=(23)23×(102)-12×(2-2)-3×⎣⎡⎦⎤⎝⎛⎭⎫234-34 =22×10-1×26×⎝⎛⎭⎫23-3=28×110×⎝⎛⎭⎫323=8625.(2)原式=4a 23+12-16·b 12+13-56=4ab 0=4a . 尖子生题库☆☆☆9.(10分)已知a 12+a -12=5,求下列各式的值:(1)a +a -1;(2)a 2+a -2;(3)a 2-a -2.解析: (1)将a 12+a -12=5两边平方,得a +a -1+2=5,则a +a -1=3.(2)由a +a -1=3两边平方,得a 2+a -2+2=9,则a 2+a -2=7. (3)设y =a 2-a -2,两边平方,得y 2=a 4+a -4-2=(a 2+a -2)2-4=72-4=45, 所以y =±35,即a 2-a -2=±3 5.课时作业(十三) 指数函数及其性质姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1.若集合M ={y |y =2x ,x ∈R },N ={y |y =x 2,x ∈R },则集合M ,N 的关系为( ) A .M N B .M ⊆N C .N M D .M =N 解析: x ∈R ,y =2x >0,y =x 2≥0, 即M ={y |y >0},N ={y |y ≥0}, 所以M N . 答案: A2.函数y =2x +1的图象是( )解析: 函数y =2x的图象是经过定点(0,1)、在x 轴上方且单调递增的曲线,依据函数图象的画法可得函数y =2x +1的图象单调递增且过点(0,2),故选A.答案: A3.指数函数y =b ·a x 在[b,2]上的最大值与最小值的和为6,则a =( ) A .2或-3 B .-3C .2D .-12解析: ∵函数y =b ·a x 为指数函数,∴b =1.当a >1时,y =a x 在[1,2]上的最大值为a 2,最小值为a , 则a 2+a =6,解得a =2或a =-3(舍);当0<a <1时,y =a x 在[1,2]上的最大值为a ,最小值为a 2,则a +a 2=6,解得a =2(舍)或a =-3(舍)综上可知,a =2. 答案: C4.若函数f (x )与g (x )=⎝⎛⎭⎫12x的图象关于y 轴对称,则满足f (x )>1的x 的取值范围是( ) A .RB .(-∞,0)C .(1,+∞)D .(0,+∞)解析: 根据对称性作出f (x )的图象,由图象可知,满足f (x )>1的x 的取值范围为(0,+∞).答案: D二、填空题(每小题5分,共10分)5.函数y =2x -1的定义域是________. 解析: 要使函数y =2x -1有意义,只须使2x -1≥0,即x ≥0,∴函数定义域为[0,+∞). 答案: [0,+∞)6.函数y =a x -2 013+2 013(a >0,且a ≠1)的图象恒过定点____________. 解析: ∵y =a x (a >0且a ≠1)恒过定点(0,1), ∴y =a x -2 013+2 013恒过定点(2 013,2 014). 答案: (2 013,2 014)三、解答题(每小题10分,共20分) 7.下列函数中,哪些是指数函数?(1)y =10x ;(2)y =10x +1;(3)y =-4x ; (4)y =x x ;(5)y =x α(α是常数).解析: (1)y =10x 符合指数函数定义,是指数函数; (2)y =10x +1中指数是x +1而非x ,不是指数函数; (3)y =-4x 中系数为-1而非1,不是指数函数;(4)y =x x 中底数和指数均是自变量x ,不符合指数函数定义,不是指数函数; (5)y =x α中底数是自变量,不是指数函数.8.设f (x )=3x ,g (x )=⎝⎛⎭⎫13x.(1)在同一坐标系中作出f (x )、g (x )的图象;(2)计算f (1)与g (-1),f (π)与g (-π),f (m )与g (-m )的值,从中你能得到什么结论? 解析: (1)函数f (x )与g (x )的图象如图所示:(2)f (1)=31=3,g (-1)=⎝⎛⎭⎫13-1=3;f (π)=3π,g (-π)=⎝⎛⎭⎫13-π=3π;f (m )=3m ,g (-m )=⎝⎛⎭⎫13-m=3m.从以上计算的结果看,两个函数当自变量取值互为相反数时,其函数值相等,即当指数函数的底数互为倒数时,它们的图象关于y 轴对称.尖子生题库☆☆☆9.(10分)(2012·山东高考)若函数f (x )=a x (a >0,a ≠1)在[-1,2]上的最大值为4,最小值为m ,且函数g (x )=(1-4m )x 在[0,+∞)上是增函数,求a .解析: 当a >1时,有a 2=4,a -1=m ,此时a =2,m =12,此时g (x )=-x 为减函数,不合题意.若0<a <1,则a -1=4,a 2=m ,故a =14,m =116,检验知符合题意.。

高中数学专题同步练习训练大全

高中数学专题同步练习训练大全

高中数学专题同步练习训练大全高中数学集合练习题一、填空题.(每小题有且只有一个正确答案,5分×10=50分)1、已知全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 ,6 },那么集合 { 2,7 ,8}是 ( )2 . 如果集合A={x|ax2+2x+1=0}中只有一个元素,则a的值是 ( )A.0B.0 或1C.1D.不能确定3. 设集合A={x|1A.{a|a ≥2}B.{a|a≤1}C.{a|a≥1}.D.{a|a≤2}.5. 满足{1,2,3} M {1,2,3,4,5,6}的集合M的个数是 ( )A.8B.7C.6D.56. 集合A={a2,a+1,-1},B={2a-1,| a-2 |, 3a2+4},A∩B={-1},则a 的值是( )A.-1B.0 或1C.2D.07. 已知全集I=N,集合A={x|x=2n,n∈N},B={x|x=4n,n∈N},则 ( )A.I=A∪BB.I=( )∪BC.I=A∪( )D.I=( )∪( )8. 设集合M= ,则 ( )A.M =NB. M NC.M ND. N9 . 集合A={x|x=2n+1,n∈Z},B={y|y=4k±1,k∈Z},则A与B的关系为( )A.A BB.A BC.A=BD.A≠B10.设U={1,2,3,4,5},若A∩B={2},( UA)∩B={4},( UA)∩( UB)={1,5},则下列结论正确的是( )A.3 A且3 BB.3 B且3∈AC.3 A且3∈BD.3∈A且3∈B二.填空题(5分×5=25分)11 .某班有学生55人,其中音乐爱好者34人,体育爱好者43人,还有4人既不爱好体育也不爱好音乐,则班级中即爱好体育又爱好音乐的有人.12. 设集合U={(x,y)|y=3x-1},A={(x,y)| =3},则 A= .13. 集合M={y∣y= x2 +1,x∈ R},N={y∣ y=5- x2,x∈ R},则M∪N=_ __.14. 集合M={a| ∈N,且a∈Z},用列举法表示集合M=_15、已知集合A={-1,1},B={x|mx=1},且A∪B=A,则m的值为三.解答题.10+10+10=3016. 设集合A={x, x2,y2-1},B={0,|x|,,y}且A=B,求x, y的值17.设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0} ,A∩B=B,求实数a 的值.18. 集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}.(1)若A∩B=A∪B,求a的值;(2)若A∩B,A∩C= ,求a的值.19.(本小题满分10分)已知集合A={x|x2-3x+2=0},B={x|x2-ax+3a-5=0}.若A∩B=B,求实数a的取值范围.20、已知A={x|x2+3x+2 ≥0}, B={x|mx2-4x+m-1 0 ,m∈R}, 若A∩B=φ, 且A∪B=A,求m的取值范围.高中数学数列练习题一、选择题:(本大题共10小题,每小题5分,共50分)1.设数列,,2,,……则2是这个数列的 ( )D.第九项 A.第六项 B.第七项 C.第八项2.若a≠b,数列a,x1,x 2 ,b和数列a,y1 ,y2 , y3,b都是等差数列,则A.2 3B.3 4x2x1 ( ) y2y1C.1D.4 33. 等差数列{an}中,若a3+a4+a5+a6+a7=450 ,则前9项和S9= ( )A.1620B.810C.900D.6754.在-1和8之间插入两个数a,b,使这四个数成等差数列,则 ( )A. a=2,b=5B. a=-2,b=5C. a=2,b=-5D. a=-2,b=-55.首项为24的等差数列,从第10项开始为正数,则公差d的取值范围是( )A.d 888B.d 3C.≤d 3D. d≤3 p= 3336.等差数列{an}共有2n项,其中奇数项的和为90,偶数项的和为72,且a2na133,则该数列的公差为 ( )A.3B.-3C.-2D.-17.在等差数列{an}中,a100,a110,且a11|a10|,则在Sn中最大的负数为( )A.S17B.S18C.S19D.S208.等差数列{an}中,a1=-5,它的前11项的平均值是5,若从中抽取1项,余下的10项的平均值是4,则抽取的是: ( )A.a11B.a10C.a9D.a89.设函数f(x)满足f(n+1)=A.95 2f(n)n_(n∈N)且f(1)=2,则f(20)为 ( ) 2 C.105 D.192B.9710.已知无穷等差数列{a n},前n项和S n 中,S 6 S 8 ,则 ( )A.在数列{a n }中a7 最大;B.在数列{a n }中,a 3 或a 4 最大;C.前三项之和S 3 必与前11项之和S 11 相等;D.当n≥8时,a n 0.二、填空题:(本大题共4小题,每小题5分,共20分)11.集合Mmm6n,nN_,且m60中所有元素的和等于_________.a1a2a3an,则S13_____ 12、在等差数列{an}中,a3a7a108,a4a1114.记Sn 13、已知等差数列{an}中,a7a916,a41,则a16的值是.Sn5n1a=,f(n)n;Tn3n1bn14.等差数列{an}、{bn}、{cn}与{dn}的前n项和分别记为Sn、Tn、Pn、Qn.f(n)cn5n2P=,g(n)n.则的最小值= g(n)dn3n2Qn三、解答题:15.(12分)(1)在等差数列{an}中,d1,a78,求an和Sn; 3(2)等差数列{an}中,a4=14,前10项和S10185.求an;16.(13分)一个首项为正数的等差数列{an},如果它的前三项之和与前11项之和相等,那么该数列的前多少项和最大17.(13分)数列{an}中,a18,a42,且满足an22an1an0|a1||a2||an|,求Sn。

高中数学向量专项练习(含答案)

高中数学向量专项练习(含答案)

高中数学向量专项练习一、选择题1. 已知向量若则()A. B. C. 2 D. 42. 化简+ + + 的结果是()A. B. C. D.3.已知向量, 若与垂直, 则()A. -3B. 3C. -8D. 84.已知向量, , 若, 则()A. B. C. D.5.设向量, , 若向量与平行, 则A. B. C. D.6.在菱形中, 对角线, 为的中点, 则()A. 8B. 10C. 12D. 147.在△ABC中, 若点D满足, 则()A. B. C. D.8.在中, 已知, , 若点在斜边上, , 则的值为().A. 6B. 12C. 24D. 489.已知向量若, 则()A. B. C. D.10.已知向量, , 若向量, 则实数的值为A. B. C. D.11.已知向量, 则A. B. C. D.12.已知向量, 则A. B. C. D.13.的外接圆圆心为, 半径为, , 且, 则在方向上的投影为A. 1B. 2C.D. 314.已知向量, 向量, 且, 则实数等于()A. B. C. D.15.已知平面向量, 且, 则实数的值为()A. 1B. 4C.D.16.是边长为的等边三角形, 已知向量、满足, , 则下列结论正确的是()A. B. C. D.17.已知菱形的边长为, , 则()A. B. C. D.18.已知向量, 满足, , 则夹角的余弦值为( )A. B. C. D.19.已知向量=(1, 3), =(-2, -6), | |= , 若(+ )·=5, 则与的夹角为()A. 30° B. 45° C. 60° D. 120°20.已知向量, 则的值为A. -1B. 7C. 13D. 1121.如图, 平行四边形中, , 则()A. B. C. D.22.若向量 , , 则 =( )A. B. C. D.23.在△ 中, 角 为钝角, , 为 边上的高, 已知 , 则 的取值范围为(A )39(,)410 (B )19(,)210 (C )33(,)54 (D )13(,)2424. 已知平面向量 , , 则向量 ( )A. B. C. D.25.已知向量 , , 则A. (5,7)B. (5,9)C. (3,7)D.(3,9) 26.已知向量 , 且 , 则实数 =( )A. -1B. 2或-1C. 2D. -227.在 中, 若 点 满足 , 则 ( )A. B. C. D.28.已知点 和向量 , 若 , 则点 的坐标为( )A. B. C. D.29.在矩形ABCD 中, 则 ( )A. 12B. 6C.D.30. 已知向量 , ,则 ( ).A. B. C. D.31.若向量 与 共线且方向相同, 则 ( )A. B. C. D.32.设 是单位向量, 且 则 的最小值是( )A. B. C. D.33.如图所示, 是 的边 上的中点, 记 , , 则向量 ( )A. B. C. D.34.如图, 在 是边BC 上的高, 则 的值等于 ( )ADCB35.已知平面向量的夹角为, ()A. B. C. D.36.已知向量且与共线, 则()A. B. C. D.二、填空题37. 在△ABC中, AB=2, AC=1, D为BC的中点, 则=_____________.38.设, , 若, 则实数的值为()A. B. C. D.39.空间四边形中, , , 则()A. B. C. D.40. 已知向量, , 满足, , 若, 则的最大值是 .41. 化简: = .42. 在中, 的对边分别为, 且, , 则的面积为 .43. 已知向量=(1, 2), •=10, | + |=5 , 则| |= .44.如图, 在中, 是中点, , 则.45. 若| |=1, | |=2, = + , 且⊥, 则与的夹角为________。

高中数学必修一各章节同步练习(附答案解析)

高中数学必修一各章节同步练习(附答案解析)

第一章 1.1 1.1.1集合的含义与表示基础巩固一、选择题1.在“①高一数学中的难题;②所有的正三角形;③方程x 2-2=0的实数解”中,能够构成集合的是( )A .②B .③C .②③D .①②③[答案] C[解析] 高一数学中的难题的标准不确定,因而构不成集合,而正三角形标准明确,能构成集合,方程x 2-2=0的解也是确定的,能构成集合,故选C.2.已知集合A ={x |x ≤10},a =2+3,则a 与集合A 的关系是( ) A .a ∈A B .a ∉A C .a =A D .{a }∈A[答案] A[解析] 由于2+3<10,所以a ∈A .3.(2015·山东临沂检测)集合{x ∈N *|x -2<3}的另一种表示形式是( ) A .{0,1,2,3,4} B .{1,2,3,4} C .{0,1,2,3,4,5} D .{1,2,3,4,5}[答案] B[解析] 由x -2<3,得x <5,又x ∈N *,所以x =1,2,3,4,即集合的另一种表示形式是{1,2,3,4}.4.方程组⎩⎪⎨⎪⎧3x +y =22x -3y =27的解集是( )A.⎩⎪⎨⎪⎧x =3y =-7B .{x ,y |x =3且y =-7}C .{3,-7}D .{(x ,y )|x =3且y =-7} [答案] D[解析] 解方程组⎩⎪⎨⎪⎧3x +y =22x -3y =27得⎩⎪⎨⎪⎧x =3y =-7,用描述法表示为{(x ,y )|x =3且y =-7},用列举法表示为{(3,-7)},故选D. 5.已知集合S ={a ,b ,c }中的三个元素是△ABC 的三边长,那么△ABC 一定不是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形[答案] D[解析] 由集合中元素的互异性知a ,b ,c 互不相等,故选D.6.已知集合A 是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,则实数m 的值为( )A .2B .3C .0或3D .0或2或3[答案] B[解析] 因为2∈A ,所以m =2或m 2-3m +2=2,解得m =0或m =2或m =3.又集合中的元素要满足互异性,对m 的所有取值进行一一检验可得m =3,故选B.二、填空题7.用符号∈与∉填空:(1)0________N *;3________Z ; 0________N ;(-1)0________N *; 3+2________Q ;43________Q .(2)3________{2,3};3________{(2,3)}; (2,3)________{(2,3)};(3,2)________{(2,3)}. (3)若a 2=3,则a ________R ,若a 2=-1,则a ________R . [答案] (1)∉ ∉ ∈ ∈ ∉ ∈ (2)∈ ∉ ∈ ∉ (3)∈ ∉[解析] (1)只要熟记常用数集的记号所对应的含义就很容易辨别.(2)中3是集合{2,3}的元素;但整数3不是点集{(2,3)}的元素;同样(2,3)是集合{(2,3)}的元素;因为坐标顺序不同,(3,2)不是集合{(2,3)}的元素.(3)平方等于3的数是±3,当然是实数,而平方等于-1的实数是不存在的.8.设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,ba,b ,则b -a =________.[答案] 2[解析] 显然a ≠0,则a +b =0,a =-b ,b a=-1,所以a =-1,b =1,b -a =2. 三、解答题9.已知集合A 含有a -2,2a 2+5a,12三个元素,且-3∈A ,求a 的值. [解析] ∵-3∈A ,则-3=a -2或-3=2a 2+5a , ∴a =-1或a =-32.当a =-1时,a -2=-3,2a 2+5a =-3,不满足集合中元素的互异性,∴a =-1舍去. 当a =-32时,经检验,符合题意.故a =-32.[注意] (1)分类讨论意识的建立.解答含有字母的元素与集合之间关系的问题时,要有分类讨论的意识,如本例按照元素-3与a -2,2a 2+5a,12的关系分类 ,即可做到不重不漏.(2)注意集合中元素的互异性.求解与集合有关的字母参数时,需利用集合元素的互异性来检验所求参数是否符合要求,如本例在求出a 的值后,需代入验证是否满足集合中元素的互异性.10.已知集合A ={x |ax 2-3x +2=0}. (1)若A 是单元素集合,求集合A ;(2)若A 中至少有一个元素,求a 的取值范围.[分析] 将求集合中元素问题转化为方程根问题.(1)集合A 为单元素集合,说明方程有唯一根或两个相等的实数根.要注意方程ax 2-3x +2=0可能不是一元二次方程.(2)至少有一个元素,说明方程有一根或两根.[解析] (1)因为集合A 是方程ax 2-3x +2=0的解集,则当a =0时,A ={23},符合题意;当a ≠0时,方程ax 2-3x +2=0应有两个相等的实数根, 则Δ=9-8a =0,解得a =98,此时A ={43},符合题意.综上所述,当a =0时,A ={23},当a =98时,A ={43}.(2)由(1)可知,当a =0时,A ={23}符合题意;当a ≠0时,要使方程ax 2-3x +2=0有实数根, 则Δ=9-8a ≥0,解得a ≤98且a ≠0.综上所述,若集合A 中至少有一个元素,则a ≤98.[点评] “a =0”这种情况容易被忽视,如“方程ax 2+2x +1=0”有两种情况:一是“a =0”,即它是一元一次方程;二是“a ≠0”,即它是一元二次方程,只有在这种情况下,才能用判别式“Δ”来解决.能力提升一、选择题1.(2015·河北衡水中学期末)下列集合中,不同于另外三个集合的是( )A .{x |x =1}B .{x |x 2=1} C .{1} D .{y |(y -1)2=0}[答案] B[解析] {x |x 2=1}={-1,1},另外三个集合都是{1},选B.2.下列六种表示法:①{x =-1,y =2};②{(x ,y )|x =-1,y =2};③{-1,2};④(-1,2);⑤{(-1,2)};⑥{(x ,y )|x =-1或y =2}.能表示方程组⎩⎪⎨⎪⎧2x +y =0,x -y +3=0的解集的是( )A .①②③④⑤⑥B .②③④⑤C .②⑤D .②⑤⑥[答案] C [解析] 方程组⎩⎪⎨⎪⎧2x +y =0,x -y +3=0的解是⎩⎪⎨⎪⎧x =-1,y =2.故选C.3.已知x ,y ,z 为非零实数,代数式x |x |+y |y |+z |z |+|xyz |xyz的值所组成的集合是M ,则下列判断正确的是( )A .0∉MB .2∈MC .-4∉MD .4∈M[答案] D[解析] 当x >0,y >0,z >0时,代数式的值为4,所以4∈M ,故选D.4.设A ,B 为两个实数集,定义集合A +B ={x |x 1+x 2,x 1∈A ,x 2∈B },若A ={1,2,3},B ={2,3},则集合A +B 中元素的个数为( )A .3B .4C .5D .6[答案] B[解析] 当x 1=1时,x 1+x 2=1+2=3或x 1+x 2=1+3=4;当x 1=2时,x 1+x 2=2+2=4或x 1+x 2=2+3=5;当x 1=3时,x 1+x 2=3+2=5或x 1+x 2=3+3=6.∴A +B ={3,4,5,6},共4个元素.二、填空题5.已知P ={x |2<x <k ,x ∈N ,k ∈R },若集合P 中恰有3个元素,则实数k 的取值范围是________.[答案] {k |5<k ≤6}[解析] x 只能取3,4,5,故5<k ≤6.6.(2015·湖南郴州模拟)用列举法写出集合{33-x ∈Z |x ∈Z }=________.[答案] {-3,-1,1,3} [解析] ∵33-x∈Z ,x ∈Z , ∴3-x 为3的因数. ∴3-x =±1,或3-x =±3. ∴33-x =±3,或33-x=±1. ∴-3,-1,1,3满足题意. 三、解答题7.数集A 满足条件:若a ∈A ,则1+a 1-a ∈A (a ≠1).若13∈A ,求集合中的其他元素.[分析] 已知a ∈A ,1+a 1-a ∈A ,将a =13代入1+a1-a 即可求得集合中的另一个元素,依次,可得集合中的其他元素.[解析] ∵13∈A ,∴1+131-13=2∈A ,∴1+21-2=-3∈A ,∴1-31+3=-12∈A ,∴1-121+12=13∈A . 故当13∈A 时,集合中的其他元素为2,-3,-12.8.若一数集的任一元素的倒数仍在该集合中,则称该数集为“可倒数集”. (1)判断集合A ={-1,1,2}是否为可倒数集; (2)试写出一个含3个元素的可倒数集.[解析] (1)由于2的倒数为12不在集合A 中,故集合A 不是可倒数集.(2)若a ∈A ,则必有1a ∈A ,现已知集合A 中含有3个元素,故必有一个元素有a =1a,即a =±1,故可以取集合A ={1,2,12}或{-1,2,12}或{1,3,13}等.第一章 1.1 1.1.2集合间的基本关系基础巩固一、选择题1.对于集合A,B,“A⊆B”不成立的含义是( )A.B是A的子集B.A中的元素都不是B的元素C.A中至少有一个元素不属于BD.B中至少有一个元素不属于A[答案] C[解析] “A⊆B”成立的含义是集合A中的任何一个元素都是B的元素.不成立的含义是A中至少有一个元素不属于B,故选C.2.下列命题中,正确的有( )①空集是任何集合的真子集;②若A B,B C,则A C;③任何一个集合必有两个或两个以上的真子集;④如果不属于B的元素也不属于A,则A⊆B.A.①②B.②③C.②④D.③④[答案] C[解析] ①空集只是空集的子集而非真子集,故①错;②真子集具有传递性;故②正确;③若一个集合是空集,则没有真子集,故③错;④由韦恩(Venn)图易知④正确,故选C.3.已知集合A={x|x是三角形},B={x|x是等腰三角形},C={x|x是等腰直角三角形},D={x|x是等边三角形},则( )A.A⊆B B.C⊆BC.D⊆C D.A⊆D[答案] B[解析] ∵正方形必为矩形,∴C⊆B.4.下列四个集合中,是空集的是( )A.{0} B.{x|x>8,且x<5}C.{x∈N|x2-1=0} D.{x|x>4}[答案] B[解析] 选项A、C、D都含有元素.而选项B无元素,故选B.5.若集合A⊆{1,2,3},且A中至少含有一个奇数,则这样的集合A有( )A.3个B.4个C.5个D.6个[答案] D[解析] 集合{1,2,3}的子集共有8个,其中至少含有一个奇数的有{1},{3},{1,2},{1,3},{2,3},{1,2,3},共6个.6.设集合A ={x |1<x <2},B ={x |x <a },若A B ,则实数a 的取值范围为( ) A .a ≥2 B .a ≤1 C .a ≥1 D .a ≤2[答案] A[解析] 在数轴上表示出两个集合(图略),因为A B ,所以a ≥2. 二、填空题7.用适当的符号填空:(1){x |x 是菱形}________{x |x 是平行四边形}; {x |x 是三角形}________{x |x 是斜三角形}. (2)Z ________{x ∈R |x 2+2=0}; 0________{0};Ø________{0};N ________{0}. [答案] (1)(2) ∈[解析] (1)判断两个集合之间的关系,可以根据子集的定义来加以判断,特别要注意判断出包含关系后,还要进一步判断是否具有真包含关系.(2)集合{x ∈R |x 2+2=0}中,由于实数范围内该方程无解,因此{x ∈R |x 2+2=0}=Ø;0是集合{0}中的元素,它们之间是属于关系;{0}是含有一个元素0的集合;Ø是不含任何元素的集合,故Ø{0};自然数集N 中含有元素0,但不止0这一个元素.8.(2012·大纲全国改编)已知集合A ={1,2,m 3},B ={1,m },B ⊆A ,则m =________. [答案] 0或2或-1[解析] 由B ⊆A 得m ∈A ,所以m =m 3或m =2,所以m =2或m =-1或m =1或m =0,又由集合中元素的互异性知m ≠1.所以m =0或2或-1.三、解答题9.判断下列集合间的关系:(1)A ={x |x -3>2},B ={x |2x -5≥0}; (2)A ={x ∈Z |-1≤x <3},B ={x |x =|y |,y ∈A }. [解析] (1)∵A ={x |x -3>2}={x |x >5},B ={x |2x -5≥0}={x |x ≥52},∴利用数轴判断A 、B 的关系. 如图所示,AB .(2)∵A ={x ∈Z |-1≤x <3}={-1,0,1,2},B ={x |x =|y |,y ∈A ,∴B ={0,1,2},∴B A .10.已知集合M ={x |x =m +16,m ∈Z },N ={x |x =n 2-13,n ∈Z },P ={x |x =p 2+16,p ∈Z },试确定M ,N ,P 之间的关系.[解析] 解法一:集合M ={x |x =m +16,m ∈Z },对于集合N ,当n 是偶数时,设n =2t (t ∈Z ), 则N ={x |x =t -13,t ∈Z };当n 是奇数时,设n =2t +1(t ∈Z ),则N ={x |x =2t +12-13,t ∈Z }={x |x =t +16,t ∈Z }.观察集合M ,N 可知M N .对于集合P ,当p 是偶数时,设p =2s (s ∈Z ),则P ={x |x =s +16,s ∈Z },当p 是奇数时,设p =2s -1(s ∈Z ),则P ={x |x =2s -12+16,s ∈Z } ={x |x =s -13,s ∈Z }.观察集合N ,P 知N =P . 综上可得:MN =P .解法二:∵M ={x |x =m +16,m ∈Z }={x |x =6m +16,m ∈Z }={x |x =3×2m +16,m ∈Z },N ={x |x =n 2-13,n ∈Z }={x |x =3n -26,n ∈Z }={x |x =3n -1+16,n -1∈Z },P ={x |x =p 2+16,p ∈Z }={x |x =3p +16,p ∈Z },比较3×2m +1,3(n -1)+1与3p +1可知,3(n -1)+1与3p +1表示的数完全相同, ∴N =P,3×2m +1只相当于3p +1中当p 为偶数时的情形, ∴MP =N .综上可知M P =N .能力提升一、选择题1.(2015·瓮安一中高一期末试题)设集合M ={x |x =k 2+14,k ∈Z },N ={x |x =k 4+12,k∈Z },则( )A .M =NB .M NC .M ND .M 与N 的关系不确定[答案] B[解析] 解法1:用列举法,令k =-2,-1,0,1,2…可得M ={…-34,-14,14,34,54…}, N ={…0,14,12,34,1…},∴MN ,故选B.解法2:集合M 的元素为:x =k 2+14=2k +14(k ∈Z ),集合N 的元素为:x =k 4+12=k +24(k ∈Z ),而2k +1为奇数,k +2为整数,∴M N ,故选B.[点评] 本题解法从分式的结构出发,运用整数的性质方便地获解.注意若k 是任意整数,则k +m (m 是一个整数)也是任意整数,而2k +1,2k -1均为任意奇数,2k 为任意偶数.2.(2015·湖北孝感期中)集合A ={(x ,y )|y =x }和B =⎩⎨⎧⎭⎬⎫x ,y |⎩⎪⎨⎪⎧2x -y =1x +4y =5,则下列结论中正确的是( )A .1∈AB .B ⊆AC .(1,1)⊆BD .Ø∈A[答案] B[解析] B =⎩⎨⎧⎭⎬⎫x ,y |⎩⎪⎨⎪⎧2x -y =1x +4y =5={(1,1)},故选B. 3.已知集合A ={1,2},B ={x |ax -2=0},若B ⊆A ,则a 的值不可能是( ) A .0 B .1 C .2 D .3[答案] D[解析] 由题意知,a =0时,B =Ø,满足题意;a ≠0时,由2a∈A ⇒a =1,2,所以a 的值不可能是3.4.集合P ={3,4,5},Q ={6,7},定义P *Q ={(a ,b )|a ∈P ,b ∈Q },则P *Q 的子集个数为( )A .7B .12C .32D .64[答案] D[解析] 集合P *Q 的元素为(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),共6个,故P *Q 的子集个数为26=64.二、填空题5.已知集合M ={x |2m <x <m +1},且M =Ø,则实数m 的取值范围是________. [答案] m ≥1[解析] ∵M =Ø,∴2m ≥m +1,∴m ≥1.6.集合⎩⎨⎧x ,y ⎪⎪⎪⎪ ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y =-x +2,y =12x +2⊆{(x ,y )|y =3x +b },则b =________.[答案] 2[解析] 解方程组⎩⎪⎨⎪⎧y =-x +2y =12x +2得⎩⎪⎨⎪⎧x =0y =2,代入y =3x +b 得b =2. 三、解答题7.设集合A ={-1,1},集合B ={x |x 2-2ax +b =0},若B ≠Ø且B ⊆A ,求实数a 、b 的值.[解析] ∵B 中元素是关于x 的方程x 2-2ax +b =0的根,且B ⊆{-1,1},∴关于x 的方程x 2-2ax +b =0的根只能是-1或1,但要注意方程有两个相等根的条件是Δ=0.∵B ={x |x 2-2ax +b =0}⊆A ={-1,1},且B ≠Ø, ∴B ={-1}或B ={1}或B ={-1,1}. 当B ={-1}时,Δ=4a 2-4b =0且1+2a +b =0,解得a =-1,b =1. 当B ={1}时,Δ=4a 2-4b =0且1-2a +b =0,解得a =b =1. 当B ={-1,1}时,有(-1)+1=2a ,(-1)×1=b ,解得a =0,b =-1.8.设集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1}.(1)若B ⊆A ,求实数m 的取值范围;(2)当x ∈Z 时,求A 的非空真子集个数;(3)当x ∈R 时,不存在元素x 使x ∈A 与x ∈B 同时成立,求实数m 的取值范围.[解析] (1)当m +1>2m -1,即m <2时,B =Ø,满足B ⊆A .当m +1≤2m -1,即m ≥2时,要使B ⊆A 成立,只需⎩⎪⎨⎪⎧ m +1≥-2,2m -1≤5,即2≤m ≤3.综上,当B ⊆A 时,m 的取值范围是{m |m ≤3}.(2)当x ∈Z 时,A ={-2,-1,0,1,2,3,4,5},∴集合A 的非空真子集个数为28-2=254.(3)∵x ∈R ,且A ={x |-2≤x ≤5}, B ={x |m +1≤x ≤2m -1},又不存在元素x 使x ∈A 与x ∈B 同时成立,∴当B =Ø,即m +1>2m -1,得m <2时,符合题意;当B ≠Q ,即m +1≤2m -1,得m ≥2时,⎩⎪⎨⎪⎧ m ≥2,m +1>5,或⎩⎪⎨⎪⎧ m ≥2,2m -1<-2,解得m >4.综上,所求m 的取值范围是{m |m <2或m >4}.第一章 1.1 1.1.3 第一课时并集和交集基础巩固一、选择题1.下面四个结论:①若a ∈(A ∪B ),则a ∈A ;②若a ∈(A ∩B ),则a ∈(A ∪B );③若a ∈A ,且a ∈B ,则a ∈(A ∩B );④若A ∪B =A ,则A ∩B =B .其中正确的个数为( )A .1B .2C .3D .4[答案] C[解析] ①不正确,②③④正确,故选C.2.已知集合M ={x |-3<x ≤5},N ={x |x >3},则M ∪N =( )A .{x |x >-3}B .{x |-3<x ≤5}C .{x |3<x ≤5}D .{x |x ≤5}[答案] A[解析] 在数轴上表示集合M,N,如图所示,则M∪N={x|x>-3}.3.(2015·全国高考卷Ⅰ文科,1题)已知集合A={x|x=3n+2,n∈N},B={6,8,12,14},则集合A∩B中元素的个数为( )A.5 B.4C.3 D.2[答案] D[解析] A∩B={8,14},故选D.4.(2015·浙江省期中试题)集合A={1,2},B={1,2,3},C={2,3,4},则(A∩B)∪C=( )A.{1,2,3} B.{1,2,4}C.{2,3,4} D.{1,2,3,4}[答案] D[解析] A∩B={1,2},(A∩B)∪C={1,2,3,4},故选D.5.若A∪B=Ø,则( )A.A=Ø,B≠ØB.A≠Ø,B=ØC.A=Ø,B=ØD.A≠Ø,B≠Ø[答案] C6.设集合A={x|-1≤x≤2},集合B={x|x≤a},若A∩B=Ø,则实数a的取值集合为( )A.{a|a<2} B.{a|a≥-1}C.{a|a<-1} D.{a|-1≤a≤2}[答案] C[解析] 如图.要使A∩B=Ø,应有a<-1.二、填空题7.若集合A={2,4,x},B={2,x2},且A∪B={2,4,x},则x=________.[答案] 0,1或-2[解析] 由已知得B⊆A,∴x2=4或x2=x,∴x=0,1,±2,由元素的互异性知x≠2,∴x =0,1或-2.8.已知集合A ={x |x ≥5},集合B ={x |x ≤m },且A ∩B ={x |5≤x ≤6},则实数m =________.[答案] 6[解析] 用数轴表示集合A 、B 如图所示.由于A ∩B ={x |5≤x ≤6},得m =6.三、解答题9.设集合A ={a 2,a +1,-3},B ={a -3,2a -1,a 2+1},A ∩B ={-3},求实数a 的值.[解析] ∵A ∩B ={-3},∴-3∈B .∵a 2+1≠-3,∴①若a -3=-3,则a =0,此时A ={0,1,-3},B ={-3,-1,1},但由于A ∩B ={1,-3}与已知A ∩B ={-3}矛盾,∴a ≠0.②若2a -1=-3,则a =-1,此时A ={1,0,-3},B ={-4,-3,2},A ∩B ={-3}.综上可知a =-1.10.已知集合A ={x |-1≤x <3},B ={x |2x -4≥x -2}.(1)求A ∩B ;(2)若集合C ={x |2x +a >0},满足B ∪C =C ,求实数a 的取值范围.[解析] (1)∵B ={x |x ≥2},A ={x |-1≤x <3},∴A ∩B ={x |2≤x <3}.(2)∵C ={x |x >-a 2},B ∪C =C ⇔B ⊆C , ∴-a 2<2,∴a >-4. 能力提升一、选择题1.已知集合M ={-1,0,1},N ={x |x =ab ,a ,b ∈M 且a ≠b },则M ∪N =( )A .{0,1}B .{-1,0}C .{-1,0,1}D .{-1,1} [答案] C[解析] 由题意可知,集合N ={-1,0},所以M ∪N =M .2.若集合M ={(x ,y )|x +y =0},P ={(x ,y )|x -y =2},则M ∩P 等于( )A .(1,-1)B .{x =1或y =-1}C .{1,-1}D .{(1,-1)} [答案] D[解析] M ∩P 的元素是方程组⎩⎪⎨⎪⎧ x +y =0x -y =2的解∴M ∩P ={(1,-1)}.3.(2015·衡水高一检测)若集合A ,B ,C 满足A ∩B =A ,B ∪C =C ,则A 与C 之间的关系为( )A .C AB .AC C .C ⊆AD .A ⊆C [答案] D[解析] ∵A ∩B =A ,∴A ⊆B ,又B ∪C =C ,∴B ⊆C ,∴A ⊆C ,故选D.4.当x ∈A 时,若x -1∉A ,且x +1∉A ,则称x 为A 的一个“孤立元素”,由A 的所有孤立元素组成的集合称为A 的“孤星集”,若集合M ={0,1,3}的孤星集为M ′,集合N ={0,3,4}的孤星集为N ′,则M ′∪N ′=( )A .{0,1,3,4}B .{1,4}C .{1,3}D .{0,3} [答案] D[解析] 由条件及孤星集的定义知,M ′={3},N ′={0},则M ′∪N ′={0,3}.二、填空题5.以下四个推理:①a ∈(A ∪B )⇒a ∈A ;②a ∈(A ∩B )⇒a ∈(A ∪B );③A ⊆A ⇒A ∪B =B ;④A ∪B =A ⇒A ∩B =B .其中正确的为________.[答案] ②③④[解析] ①是错误的,a ∈(A ∪B )时可推出a ∈A 或a ∈B ,不一定推出a ∈A .6.已知集合A ={x |x 2+px +q =0},B ={x |x 2-px -2q =0},且A ∩B ={-1},则A ∪B =________.[答案] {-2,-1,4}[解析] 因为A ∩B ={-1},所以-1∈A ,-1∈B ,即-1是方程x 2+px +q =0和x 2-px -2q =0的解,所以⎩⎪⎨⎪⎧ -12-p +q =0,-12+p -2q =0,解得⎩⎪⎨⎪⎧p =3,q =2, 所以A ={-1,-2},B ={-1,4},所以A ∪B ={-2,-1,4}.三、解答题7.已知A ={x |2a <x ≤a +8},B ={x |x <-1或x >5},A ∪B =R ,求a 的取值范围.[解析] ∵B ={x |x <-1或x >5},A ∪B =R ,∴⎩⎪⎨⎪⎧2a <-1,a +8≥5,解得-3≤a <-12. 8.设A ={x |x 2+8x =0},B ={x |x 2+2(a +2)x +a 2-4=0},其中a ∈R .如果A ∩B =B ,求实数a 的取值范围.[解析] ∵A ={x }x 2+8x =0}={0,-8},A ∩B =B ,∴B ⊆A .当B =Ø时,方程x 2+2(a +2)x +a 2-4=0无解,即Δ=4(a +2)2-4(a 2-4)<0,得a <-2.当B ={0}或{-8}时,这时方程的判别式 Δ=4(a +2)2-4(a 2-4)=0,得a =-2.将a =-2代入方程,解得x =0,∴B ={0}满足.当B ={0,-8}时,⎩⎪⎨⎪⎧ Δ>0,-2a +2=-8,a 2-4=0,可得a =2.综上可得a =2或a ≤-2. [点评] (1)当集合B ⊆A 时,如果集合A 是一个确定的集合,而集合B 不确定,运算时,要考虑B =Ø的情形,切不可漏掉.(2)利用集合运算性质化简集合,有利于准确了解集合之间的关系.第一章 1.1 1.1.3 第二课时补集基础巩固一、选择题1.(2015·重庆三峡名校联盟)设全集I ={1,2,3,4,5},集合A ={2,3,5},集合B ={1,2},则(∁I B )∩A 为( )A .{2}B .{3,5}C .{1,3,4,5}D .{3,4,5}[答案] B[解析] 因为全集I ={1,2,3,4,5},集合B ={1,2},则∁I B ={3,4,5}.所以(∁I B )∩A 为{3,5}.故选B.[易错警示] 本小题的关键是先求出集合B的补集,再求交集.集合的运算是集合关系的基础知识,要理解清楚,可能渗透在一个大题中,不熟练会导致整体看不懂或理解错误.2.设全集U={1,2,3,4,5},A={1,3,5},则∁U A的所有非空子集的个数为( )A.4 B.3C.2 D.1[答案] B[解析] ∵∁U A={2,4},∴非空子集有22-1=3个,故选B.3.若P={x|x<1},Q={x|x>-1},则( )A.P⊆Q B.Q⊆PC.(∁R P)⊆Q D.Q⊆∁R P[答案] C[解析] ∵P={x|x<1},∴∁R P={x|x≥1}.又Q={x|x>-1},∴(∁R P)⊆Q,故选C.4.若全集U={1,2,3,4,5,6},M={2,3},N={1,4},则集合{5,6}等于( )A.M∪N B.M∩NC.(∁U M)∪(∁U M) D.(∁U M)∩(∁U N)[答案] D[解析] ∵M∪N={1,2,3,4},∴(∁U M)∩(∁U N)=∁U(M∪N)={5,6},故选D.5.已知全集U=R,集合A={x|-2≤x≤3},B={x|x<-1或x>4},那么集合A∪(∁U B)等于( )A.{x|-2≤x≤4}B.{x|x≤3,或x≥4}C.{x|-2≤x<-1}D.{x|-1≤x≤3}[答案] A[解析] 由题意可得∁U B={x|-1≤x≤4},A={x|-2≤x≤3},所以A∪(∁U B)={x|-2≤x≤4},故选A.6.已知集合A={x|x<a},B={x|x<2},且A∪(∁R B)=R,则a满足( )A.a≥2B.a>2C.a<2 D.a≤2[答案] A[解析] ∁R B={x|x≥2},则由A∪(∁R B)=R得a≥2,故选A.二、填空题7.已知集合A={3,4,m},集合B={3,4},若∁A B={5},则实数m=________.[答案] 58.U =R ,A ={x |-2<x ≤1或x >3},B ={x |x ≥4},则∁U A =________,∁A B =________.[答案] {x |x ≤-2或1<x ≤3} {x |-2<x ≤1或3<x <4}三、解答题9.已知全集U ={2,3,a 2-2a -3},A ={2,|a -7|},∁U A ={5},求a 的值.[解析] 解法1:由|a -7|=3,得a =4或a =10.当a =4时,a 2-2a -3=5,当a =10时,a 2-2a -3=77∉U ,∴a =4.解法2:由A ∪∁U A =U 知⎩⎪⎨⎪⎧ |a -7|=3a 2-2a -3=5,∴a =4.10.(2015·唐山一中月考试题)已知全集U ={x |x ≤4},集合A ={x |-2<x <3},B ={x |-3≤x ≤2},求A ∩B ,(∁U A )∪B ,A ∩(∁U B ).[分析] 利用数轴,分别表示出全集U 及集合A ,B ,先求出∁U A 及∁U B ,然后求解.[解析] 如图所示,∵A ={x |-2<x <3},B ={x |-3≤x ≤2},∴∁U A ={x |x ≤-2或3≤x ≤4},∁U B ={x |x <-3或2<x ≤4}.∴A ∩B ={x |-2<x ≤2},(∁U A )∪B ={x |x ≤2或3≤x ≤4},A ∩(∁UB )={x |2<x <3}.[点评] (1)数轴与Venn 图有同样的直观功效,在数轴上可以直观地表示数集,所以进行数集的交、并、补运算时,经常借助数轴求解.(2)不等式中的等号在补集中能否取到要引起重视,还要注意补集是全集的子集.能力提升一、选择题1.如图,阴影部分用集合A 、B 、U 表示为( )A .(∁U A )∩BB .(∁U A )∪(∁U B )C .A ∩(∁U B )D .A ∪(∁U B )[答案] C[解析] 阴影部分在A中,不在B中,故既在A中也在∁U B中,因此是A与∁U B的公共部分.2.设S为全集,则下列说法中,错误的个数是( )①若A∩B=Ø,则(∁S A)∪(∁S B)=S;②若A∪B=S,则(∁S A)∩(∁S B)=Ø;③若A∪B=Ø,则A=B.A.0 B.1C.2 D.3[答案] A[解析] 借助文氏图可知,①②正确,对于③于由A∪B=Ø,∴A=Ø,B=Ø,∴A=B,故选A.3.设全集U={1,2,3,4,5},集合S与T都是U的子集,满足S∩T={2},(∁U S)∩T={4},(∁U S)∩(∁U T)={1,5}则有( )A.3∈S,3∈T B.3∈S,3∈∁U TC.3∈∁U S,3∈T D.3∈∁U S,3∈∁U T[答案] B[解析] 若3∈S,3∈T,则3∈S∩T,排除A;若3∈∁U S,3∈T,则3∈(∁U S)∩T,排除C;若3∈∁U S,3∈∁U T,则3∈(∁U S)∩(∁U T),排除D,∴选B,也可画图表示.4.(2008·北京)已知全集U=R,集合A={x|-2≤x≤3},B={x|x<-1或x>4},那么集合A∩(∁U B)等于( )A.{x|-2≤x<4} B.{x|x≤3或x≥4}C.{x|-2≤x<-1} D.{x|-1≤x≤3}[答案] D[解析] ∁U B={x|-1≤x≤4},A∩∁U B={x|-1≤x≤3},故选D.二、填空题5.已知全集为R,集合M={x∈R|-2<x<2},P={x|x≥a},并且M⊆∁R P,则a的取值范围是________.[答案] a≥2[解析] M={x|-2<x<2},∁R P={x|x<a}.∵M⊆∁R P,∴由数轴知a≥2.6.已知U =R ,A ={x |a ≤x ≤b },∁U A ={x |x <3或x >4},则ab =________.[答案] 12[解析] ∵A ∪(∁U A )=R ,∴a =3,b =4,∴ab =12.三、解答题7.已知集合A ={x |x 2+ax +12b =0}和B ={x |x 2-ax +b =0},满足(∁U A )∩B ={2},A ∩(∁U B )={4},U =R ,求实数a ,b 的值.[提示] 由2∈B,4∈A ,列方程组求解.[解析] ∵(∁U A )∩B ={2},∴2∈B ,∴4-2a +b =0.①又∵A ∩(∁U B )={4},∴4∈A ,∴16+4a +12b =0.②联立①②,得⎩⎪⎨⎪⎧ 4-2a +b =0,16+4a +12b =0,解得⎩⎪⎨⎪⎧ a =87,b =-127.经检验,符合题意:∴a =87,b =-127. [点评] 由题目中所给的集合之间的关系,通过分析得出元素与集合之间的关系,是解决此类问题的关键.8.已知全集U =R ,集合A ={x |x <-1},B ={x |2a <x <a +3},且B ⊆∁R A ,求a 的取值范围.[分析] 本题从条件B ⊆∁R A 分析可先求出∁R A ,再结合B ⊆∁R A 列出关于a 的不等式组求a 的取值范围.[解析] 由题意得∁R A ={x |x ≥-1}.(1)若B =Ø,则a +3≤2a ,即a ≥3,满足B ⊆∁R A .(2)若B ≠Ø,则由B ⊆∁R A ,得2a ≥-1且2a <a +3,即-12≤a <3. 综上可得a ≥-12.第一章 1.1 1.1.3 第三课时习题课基础巩固一、选择题1.(2015·全国高考卷Ⅱ文科,1题)已知集合A ={x |-1<x <2},B ={x |0<x <3},则A ∩B =( )A .{x |-1<x <3}B .{x |-1<x <0}C.{x|0<x<2} D.{x|2<x<3}[答案] A[解析] A∪B={x|-1<x<3},故选A.2.设U=R,A={x|x>0},B={x|x>1},则A∩(∁U B)等于( )A.{x|0≤x<1} B.{x|0<x≤1}C.{x|x<0} D.{x|x>1}[答案] B[解析] 画出数轴,如图所示,∁U B={x|x≤1},则A∩∁U B={x|0<x≤1},故选B.3.图中阴影部分所表示的集合是( )A.B∩(∁U(A∪C))B.(A∪B)∪(B∪C)C.(A∪C)∩(∁U B)D.[∁U(A∩C)]∪B[答案] A[解析] 阴影部分位于集合B内,且位于集合A、C的外部,故可表示为B∩(∁U(A∪C)),故选A.4.已知全集U=R,集合A={x|-2≤x≤3},B={x|x<-2或x>4},那么集合(∁U A)∩(∁U B)等于( )A.{x|3<x≤4}B.{x|x≤3或x≥4}C.{x|3≤x<4} D.{x|-1≤x≤3}[答案] A[解析] 方法1:∁U A={x|x<-2或x>3},∁U B={x|-2≤x≤4}∴(∁U A)∩(∁U B)={x|3<x≤4},故选C.方法2:A∪B={x|x≤3或x>4},(∁U A)∩(∁U B)=∁U(A∪B)={x|3<x≤4}.故选A.5.已知集合A={x|-1≤x≤1},B={x|-1≤x≤a},且(A∪B)⊆(A∩B),则实数a=( )A.0 B.1C.2 D.3[答案] B[解析] ∵(A ∪B )⊆(A ∩B ),∴(A ∪B )=(A ∩B ), ∴A =B ,∴a =1.6.设U 为全集,对集合X ,Y 定义运算“*”,X *Y =∁U (X ∩Y ),对于任意集合X ,Y ,Z ,则(X *Y )*Z =( )A .(X ∪Y )∩∁U ZB .(X ∩Y )∪∁U ZC .(∁U X ∪∁U Y )∩ZD .(∁U X ∩∁U Y )∪Z [答案] B[解析] X *Y =∁U (X ∩Y )(X *Y )*Z =∁U [∁U (X ∩Y )∩Z ]=∁U (∁U (X ∩Y ))∪∁U Z =(X ∩Y )∪∁U Z ,故选B. 二、填空题7.(河北孟村回民中学2014~2015学年高一九月份月考试题)U ={1,2},A ={x |x 2+px +q =0},∁U A ={1},则p +q =________.[答案] 0[解析] 由∁U A ={1},知A ={2}即方程x 2+px +q =0有两个相等根2,∴p =-4,q =4,∴p +q =0.8.已知集合A ={(x ,y )|y =2x -1},B ={(x ,y )|y =x +3},若m ∈A ,m ∈B ,则m 为________.[答案] (4,7)[解析] 由m ∈A ,m ∈B 知m ∈(A ∩B ), 由⎩⎪⎨⎪⎧y =2x -1y =x +3,得⎩⎪⎨⎪⎧x =4y =7,∴A ∩B ={(4,7)}.三、解答题9.已知全集U =R ,A ={x |2≤x <5},B ={x |3≤x <7},求: (1)(∁R A )∩(∁R B ) (2)∁R (A ∪B ) (3)(∁R A )∪(∁R B ) (4)∁R (A ∩B )[分析] 在进行集合运算时,充分利用数轴工具是十分有效的手段,此例题可先在数轴上画出集合A 、B ,然后求出A ∩B ,A ∪B ,∁R A ,∁R B ,最后可逐一写出各小题的结果.[解析] 如图所示,可得A ∩B ={x |3≤x <5},A ∪B ={x |2≤x <7}.∁R A ={x |x <2或x ≥5}, ∁R B ={x |x <3或x ≥7}. 由此求得(1)(∁R A )∩(∁R B )={x |x <2或x ≥7}. (2)∁R (A ∪B )={x |x <2或x ≥7}.(3)(∁R A )∪(∁R B )={x |x <2或x ≥5}∪{x <3或x ≥7}={x |x <3或x ≥5}. (4)∁R (A ∩B )={x |x <3或x ≥5}.[点评] 求解集合的运算,利用数轴是有效的方法,也是数形结合思想的体现. 10.已知U =R ,A ={x |x 2+px +12=0},B ={x |x 2-5x +q =0},若(∁U A )∩B ={2},(∁UB )∩A ={4},求A ∪B .[分析] 先确定p 和q 的值,再明确A 与B 中的元素,最后求得A ∪B . [解析] ∵(∁U A )∩B ={2},∴2∈B 且2∉A . ∵A ∩(∁U B )={4},∴4∈A 且4∉B .∴⎩⎪⎨⎪⎧42+4p +12=0,22-5×2+q =0.解得p =-7,q =6,∴A ={3,4},B ={2,3},∴A ∪B ={2,3,4}.能力提升一、选择题1.设A 、B 、C 为三个集合,(A ∪B )=(B ∩C ),则一定有( ) A .A ⊆C B .C ⊆A C .A ≠C D .A =Ø[答案] A[解析] ∵A ∪B =(B ∩C )⊆B , 又B ⊆(A ∪B ),∴A ∪B =B ,∴A ⊆B , 又B ⊆(A ∪B )=B ∩C ,且(B ∩C )⊆B , ∴(B ∩C )=B ,∴B ⊆C ,∴A ⊆C .2.设P ={3,4},Q ={5,6,7},集合S ={(a ,b )|a ∈P ,b ∈Q },则S 中元素的个数为( )A .3B .4C .5D .6[答案] D[解析] S ={(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)}共6个元素,故选D. 3.(2015·陕西模拟)已知全集U ={1,2,3,4,5},集合A ={x |x 2-3x +2=0},B ={x |x =2a ,a ∈A },则集合∁U (A ∪B )中元素的个数为( )A.1 B.2C.3 D.4[答案] B[解析] 因为集合A={1,2},B={2,4},所以A∪B={1,2,4},所以∁U(A∪B)={3,5}.4.设全集U=R,集合A={x|x≤1或x≥3},集合B={x|k<x<k+1,k<2},且B∩(∁U A)≠Ø,则( )A.k<0 B.k<2C.0<k<2 D.-1<k<2[答案] C[解析] ∵U=R,A={x|x≤1或x≥3},∴∁U A={x|1<x<3}.∵B={x|k<x<k+1,k<2},∴当B∩(∁U A)=Ø时,有k+1≤1或k≥3(不合题意,舍去),如图所示,∴k≤0,∴当B∩(∁U A)≠Ø时,0<k<2,故选C.二、填空题5.(2014·福建,理)若集合{a,b,c,d}={1,2,3,4},且下列四个关系:①a=1;②b≠1;③c=2,④d≠4有且只有一个是正确的,则符合条件的有序数组(a,b,c,d)的个数是________.[答案] 6[解析] 根据题意可分四种情况:(1)若①正确,则a=1,b=1,c≠2,d=4,符合条件的有序数组有0个;(2)若②正确,则a≠1,b≠1,c≠2,d=4,符合条件的有序数组为(2,3,1,4)和(3,2,1,4);(3)若③正确,则a≠1,b=1,c=2,d=4,符合条件的有序数组为(3,1,2,4);(4)若④正确,则a≠1,b=1,c≠2,d≠4,符合条件的有序数组为(2,1,4,3),(4,1,3,2),(3,1,4,2).所以共有6个.故答案为6.6.设数集M={x|m≤x≤m+34},N={x|n-13≤x≤n},且M,N都是集合{x|0≤x≤1}的子集,如果把b-a叫做集合{x|a≤x≤b}的“长度”,那么集合M∩N的“长度”的最小值是________.[答案]1 12[解析] 如图,设AB 是一长度为1的线段,a 是长度为34的线段,b 是长度为13的线段,a ,b 可在线段AB 上自由滑动,a ,b 重叠部分的长度即为M ∩N 的“长度”,显然,当a ,b各自靠近线段AB 两端时,重叠部分最短,其值为34+13-1=112.三、解答题7.已知集合A ={x |x 2-ax +a 2-19=0},B ={x |x 2-5x +6=0},C ={x |x 2+2x -8=0},试探求a 取何实数时,(A ∩B )Ø与A ∩C =Ø同时成立.[解析] B ={x |x 2-5x +6=0}={2,3},C ={x |x 2+2x -8=0}={2,-4},由A ∩BØ与A ∩C =Ø同时成立可知,3是方程x 2-ax +a 2-19=0的解,将3代入方程得a 2-3a -10=0,解得a =5或a =-2.当a =5时,A ={x |x 2-5x +6=0}={2,3},此时A ∩C ={2},与此题设A ∩C =Ø矛盾,故不适合.当a =-2时,A ={x |x 2+2x -15=0}={3,-5},此时(A ∩B )Ø与A ∩C =Ø同时成立,则满足条件的实数a =-2.8.设A ,B 是两个非空集合,定义A 与B 的差集A -B ={x |x ∈A ,且x ∉B }. (1)试举出两个数集,求它们的差集;(2)差集A -B 与B -A 是否一定相等?说明理由;(3)已知A ={x |x >4},B ={x |-6<x <6},求A -(A -B )和B -(B -A ). [解析] (1)如A ={1,2,3},B ={2,3,4}, 则A -B ={1}. (2)不一定相等,由(1)B -A ={4},而A -B ={1}, 故A -B ≠B -A .又如,A =B ={1,2,3}时,A -B =Ø,B -A =Ø,此时A -B =B -A ,故A -B 与B -A 不一定相等. (3)因为A -B ={x |x ≥6},B -A ={x |-6<x ≤4}, A -(A -B )={x |4<x <6}, B -(B -A )={x |4<x <6}.第一章 1.2 1.2.1函数的概念基础巩固一、选择题1.下列四种说法中,不正确的是( )A .在函数值域中的每一个数,在定义域中都至少有一个数与之对应B .函数的定义域和值域一定是无限集合C .定义域和对应关系确定后,函数的值域也就确定了D .若函数的定义域中只含有一个元素,则值域也只含有一个元素 [答案] B2.f (x )=1+x +x1-x 的定义域是( )A .[-1,+∞)B .(-∞,-1]C .RD .[-1,1)∪(1,+∞)[答案] D[解析] ⎩⎪⎨⎪⎧1+x ≥01-x ≠0,解得⎩⎪⎨⎪⎧x ≥-1,x ≠1,故定义域为[-1,1)∪(1,+∞),选D.3.各个图形中,不可能是函数y =f (x )的图象的是( )[答案] A[解析] 因为垂直x 轴的直线与函数y =f (x )的图象至多有一个交点,故选A. 4.(2015·曲阜二中月考试题)集合A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从A 到B 的函数是( )A .f x →y =12xB .f x →y =13xC .f x →y =23xD .f x →y =x[答案] C[解析] 对于选项C ,当x =4时,y =83>2不合题意.故选C.5.下列各组函数相同的是( )A .f (x )=x 2-1x -1与g (x )=x +1B .f (x )=-2x 3与g (x )=x ·-2x C .f (x )=2x +1与g (x )=2x 2+xxD .f (x )=|x 2-1|与g (t )=t 2-12[答案] D[解析] 对于A.f (x )的定义域是(-∞,1)∪(1,+∞),g (x )的定义域是R ,定义域不同,故不是相同函数;对于B.f (x )=|x |·-2x ,g (x )=x ·-2x 的对应法则不同;对于C ,f (x )的定义域为R 与g (x )的定义域是{x |x ≠0},定义域不同,故不是相同函数;对于D.f (x )=|x 2-1|,g (t )=|t 2-1|,定义域与对应关系都相同,故是相同函数,故选D.6.函数y =f (x )的图象与直线x =a 的交点个数有( ) A .必有一个 B .一个或两个 C .至多一个 D .可能两个以上[答案] C[解析] 当a 在f (x )定义域内时,有一个交点,否则无交点. 二、填空题 7.已知函数f (x )=11+x,又知f (t )=6,则t =________. [答案] -56[解析] f (t )=1t +1=6.∴t =-568.用区间表示下列数集: (1){x |x ≥1}=________; (2){x |2<x ≤4}=________; (3){x |x >-1且x ≠2}=________.[答案] (1)[1,+∞) (2)(2,4] (3)(-1,2)∪(2,+∞) 三、解答题9.求下列函数的定义域,并用区间表示:(1)y =x +12x +1-1-x ;(2)y =5-x|x |-3.[分析] 列出满足条件的不等式组⇒解不等式组⇒求得定义域[解析] (1)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧x +1≠01-x ≥0,解得x ≤1且x ≠-1,即函数定义域为{x |x ≤1且x ≠-1}=(-∞,-1)∪(-1,1].(2)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧5-x ≥0|x |-3≠0,解得x ≤5,且x ≠±3,即函数定义域为{x |x ≤5,且x ≠±3}=(-∞,-3)∪(-3,3)∪(3,5]. [规律总结] 定义域的求法:(1)如果f (x )是整式,那么函数的定义域是实数集R ;(2)如果f (x )是分式,那么函数的定义域是使分母不为0的实数的集合;(3)如果f (x )为偶次根式,那么函数的定义域是使根号内的式子大于或等于0的实数的集合;(4)如果f (x )是由几个部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的实数的集合.(5)如果函数有实际背景,那么除符合上述要求外,还要符合实际情况. 函数定义域要用集合或区间形式表示,这一点初学者易忽视. 10.已知函数f (x )=x +3+1x +2. (1)求函数的定义域; (2)求f (-3),f (23)的值;(3)当a >0时,求f (a ),f (a -1)的值.[解析] (1)使根式x +3有意义的实数x 的集合是{x |x ≥-3},使分式1x +2有意义的实数x 的集合是{x |x ≠-2},所以这个函数的定义域是{x |x ≥-3}∩{x |x ≠-2}={x |x ≥-3,且x ≠-2}. (2)f (-3)=-3+3+1-3+2=-1; f (23)=23+3+123+2=113+38=38+333. (3)因为a >0,故f (a ),f (a -1)有意义.f (a )=a +3+1a +2;f (a -1)=a -1+3+1a -1+2=a +2+1a +1.能力提升一、选择题1.给出下列从A 到B 的对应:①A =N ,B ={0,1},对应关系是:A 中的元素除以2所得的余数 ②A ={0,1,2},B ={4,1,0},对应关系是f :x →y =x 2③A ={0,1,2},B ={0,1,12},对应关系是f :x →y =1x其中表示从集合A 到集合B 的函数有( )个.( ) A .1 B .2 C .3 D .0[答案] B[解析] 由于③中,0这个元素在B 中无对应元素,故不是函数,因此选B. 2.(2012·高考安徽卷)下列函数中,不满足:f (2x )=2f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +1 D .f (x )=-x [答案] C[解析] f (x )=kx 与f (x )=k |x |均满足:f (2x )=2f (x )得:A ,B ,D 满足条件. 3.(2014~2015惠安中学月考试题)A ={x |0≤x ≤2},B ={y |1≤y ≤2},下列图形中能表示以A 为定义域,B 为值域的函数的是( )[答案] B[解析] A 、C 、D 的值域都不是[1,2],故选B. 4.(2015·盘锦高一检测)函数f (x )=11-2x 的定义域为M ,g (x )=x +1的定义域为N ,则M ∩N =( )A .[-1,+∞)B .[-1,12)C .(-1,12)D .(-∞,12)[答案] B 二、填空题5.若函数f (x )的定义域为[2a -1,a +1],值域为[a +3,4a ],则a 的取值范围是________. [答案] (1,2)[解析] 由区间的定义知⎩⎪⎨⎪⎧2a -1<a +1,a +3<4a⇒1<a <2.6.函数y =f (x )的图象如图所示,那么f (x )的定义域是________;其中只与x 的一个值对应的y 值的范围是________.[答案] [-3,0]∪[2,3] [1,2)∪(4,5] [解析] 观察函数图象可知f (x )的定义域是[-3,0]∪[2,3];只与x 的一个值对应的y 值的范围是[1,2)∪(4,5]. 三、解答题7.求下列函数的定义域: (1)y =31-1-x;(2)y =x +10|x |-x;(3)y =2x +3-12-x +1x.[解析] (1)要使函数有意义,需⎩⎨⎧1-x ≥0,1-1-x ≠0⇔⎩⎪⎨⎪⎧x ≤1,x ≠0⇔x ≤1且x ≠0,所以函数y =31-1-x的定义域为(-∞,0)∪(0,1].(2)由⎩⎪⎨⎪⎧x +1≠0,|x |-x ≠0得⎩⎪⎨⎪⎧x ≠-1,|x |≠x ,∴x <0且x ≠-1,∴原函数的定义域为{x |x <0且x ≠-1}. (3)要使函数有意义,需⎩⎪⎨⎪⎧2x +3≥0,2-x >0,x ≠0.解得-32≤x <2且x ≠0,所以函数y =2x +3-12-x +1x 的定义域为[-32,0)∪(0,2).[点评] 求给出解析式的函数的定义域的步骤为:(1)列出使函数有意义的x 所适合的式子(往往是一个不等式组);(2)解这个不等式组;(3)把不等式组的解表示成集合(或者区间)作为函数的定义域.8.已知函数f (x )=1+x 21-x 2,(1)求f (x )的定义域. (2)若f (a )=2,求a 的值.(3)求证:f ⎝ ⎛⎭⎪⎫1x=-f (x ). [解析] (1)要使函数f (x )=1+x 21-x 2有意义,只需1-x 2≠0,解得x ≠±1,所以函数的定义域为{x |x ≠±1}. (2)因为f (x )=1+x21-x2,且f (a )=2,所以f (a )=1+a 21-a 2=2,即a 2=13,解得a =±33. (3)由已知得f ⎝ ⎛⎭⎪⎫1x =1+⎝ ⎛⎭⎪⎫1x 21-⎝ ⎛⎭⎪⎫1x 2=x 2+1x 2-1,-f (x )=-1+x 21-x 2=x 2+1x 2-1, ∴f ⎝ ⎛⎭⎪⎫1x =-f (x ).第一章 1.2 1.2.2 第一课时函数的表示方法基础巩固一、选择题1.已知y 与x 成反比,且当x =2时,y =1,则y 关于x 的函数关系式为( ) A .y =1xB .y =-1xC .y =2xD .y =-2x[答案] C[解析] 设y =k x ,由1=k 2得,k =2,因此,y 关于x 的函数关系式为y =2x.2.一等腰三角形的周长是20,底边长y 是关于腰长x 的函数,则它的解析式为( ) A .y =20-2xB .y =20-2x (0<x <10)C .y =20-2x (5≤x ≤10)D .y =20-2x (5<x <10)[答案] D[解析] 由题意得y +2x =20,∴y =20-2x .又∵2x >y ,∴2x >20-2x ,即x >5.由y >0,即20-2x >0得x <10,∴5<x <10.故选D.3.设函数f (x )=2x +3,g (x +2)=f (x ),则g (x )的解析式是( ) A .g (x )=2x +1 B .g (x )=2x -1 C .g (x )=2x -3 D .g (x )=2x +7[答案] B[解析] ∵g (x +2)=f (x )=2x +3,∴令x +2=t ,则x =t -2,g (t )=2(t -2)+3=2t -1.∴g (x )=2x -1.4.(2015·安丘一中月考)某同学在一学期的5次大型考试中的数学成绩(总分120分)如下表所示:A .成绩y 不是考试次数x 的函数B .成绩y 是考试次数x 的函数C .考试次数x 是成绩y 的函数D .成绩y 不一定是考试次数x 的函数 [答案] B5.如果二次函数的二次项系数为1,图象开口向上,且关于直线x =1对称,并过点(0,0),则此二次函数的解析式为( )A .f (x )=x 2-1 B .f (x )=-(x -1)2+1 C .f (x )=(x -1)2+1 D .f (x )=(x -1)2-1[答案] D6.(2015·武安中学周测题)若f (x )满足关系式f (x )+2f (1x)=3x ,则f (2)的值为( )。

高 中 数 学必 修 1 精题细作 (选填各50题,解答20题)

高 中 数 学必 修 1 精题细作 (选填各50题,解答20题)

高 中 数 学必 修 1 精题细作 (选填各50题,解答20题)一. 选择题1. 下列各项中,不可以组成集合的是( )A .所有的正数B .等于2的数C .接近于0的数D .不等于0的偶数 2. 如图所示,M ,P ,S 是V 的三个子集,则阴影部分所表示的集合是( )A .(M ∩P )∩SB .(M ∩P )∪SC .(M ∩S )∩(∁S P )D .(M ∩P )∪(∁V S ) 3.设U ={1,2,3,4} ,若B A ⋂={2},(UA)∩B ={4},(UA)∩(UB)={1},则下列结论正确的是( )A.A ∉3且B ∉3 B.A ∈3且B ∉3 C.A ∉3且B ∈3 D.A ∈3且B ∈34. 若集合,,且,则的值为( )A .B .C .或D .或或 5. 若集合,则有( )A .B .C .D .6. 下列命题正确的有( ) (1)很小的实数可以构成集合; (2)集合与集合是同一个集合;(3)这些数组成的集合有个元素; (4)集合是指第二和第四象限内的点集。

A.0个B.1个C.2个D.3个7. 定义集合运算:A *B ={z |z =xy ,x ∈A ,y ∈B }.设A ={1,2},B ={0,2},则集合A *B 的所有元素之和为( )A.0B.2C.3D.68. 已知A ,B 均为集合U ={1,3,5,7,9}的子集,且A ∩B ={3},(∁U B )∩A ={9},则A 等于( ) A.{1,3} B.{3,7,9} C.{3,5,9} D.{3,9} 9. 下列表述中错误的是( )A .若 B.若 C . D.10. 已知全集U =R ,集合M ={x |x 2-4≤0},则∁U M 等于( )A .{x |-2<x <2}B .{x |-2≤x ≤2}C .{x |x <-2或x >2}D .{x |x ≤-2或x ≥2} 11. 已知在x 克%a 的盐水中,加入y 克%b 的盐水,浓度变为%c ,将y 表示成x 的函数关系式( )A .x bc a c y --=B .x cb ac y --=C .x ac b c y --=D .x ac c b y --=12. 下列图中,画在同一坐标系中,函数bx ax y +=2与)0,0(≠≠+=b a b ax y 函数的图象只可能是( )}1,1{-=A }1|{==mx x B A B A =⋃m 11-11-11-0{}{}22(,)0,(,)0,,M x y x y N x y x y x R y R =+==+=∈∈MN M =MN N =MN M =M N =∅{}1|2-=xy y (){}1|,2-=xy y x 3611,,,,0.5242-5(){}R y x xy y x ∈≤,,0|,A B A B A =⊆ 则,B A B B A ⊆=,则 )(B A A)(B A ()()()B C A C B A C U U U =13. 已知二次函数)0()(2>++=a a x x x f ,若0)(<m f ,则)1(+m f 的值为( )A .正数B .负数C .0D .符号与a 有关 14. 集合A ={x |0≤x <3且x ∈N }的真子集的个数是( ) A .16 B .8 C .7D .415. 已知集合A={1,2,3},集合B={4,5,6},映射B A f →:且满足1的象是4,则这样的映射有( )A.2个B.4个C.8个D.9个16. 已知集合A ={a ,b },B ={0,1},则下列对应不是从A 到B 的映射的是( )17. 下列集合A 到集合B 的对应f是映射的是 ( )A 、{}{}1,0,1,1,0,1,A B f=-=-:A 中的数平方;B 、{}{}f B A ,1,0,1,1,0-==:A 中的数开方;C 、,,A Z B Q f==:A 中的数取倒数; D 、,,A RB R f+==:A 中的数取绝对值;18. 函数y =2x +1x -3的值域为( )A .(-∞,43)∪(43,+∞) B .(-∞,2)∪(2,+∞)C .RD .(-∞,23)∪(43,+∞)19. 若集合A ={x |y =x -1},B ={y |y =x 2+2},则A ∩B 等于( )A .[1,+∞)B .(1,+∞)C .[2,+∞)D .(0,+∞) 20. 下列四种说法正确的一个是( ) A .)(x f 表示的是含有x 的代数式B .函数的值域也就是其定义中的数集BC .函数是一种特殊的映射D .映射是一种特殊的函数21. 对于函数y =f (x ),以下说法正确的有( ) ①y 是x 的函数②对于不同的x ,y 的值也不同③f (a )表示当x =a 时函数f (x )的值,是一个常量 ④f (x )一定可以用一个具体的式子表示出来 A .1个 B .2个 C .3个 D .4个22. 若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”,那么函数解析式为y =2x 2-1,值域为{1,7}的“同族函数”共有( )A .10个B .9个C .8个D .4个 23. 下列各组函数中,表示同一个函数的是( )A .y =x -1和y =x 2-1x +1B .y =x 0和y =1C .f (x )=x 2和g (x )=(x +1)2D .f (x )=(x )2x和g (x )=x(x )224. 已知函数23212---=x x x y 的定义域为( ) A .]1,(-∞B .]2,(-∞C .]1,21()21,(-⋂--∞ D . ]1,21()21,(-⋃--∞ 25. 设集合M ={x |0≤x ≤2},N ={y |0≤y ≤2},那么下面的4个图形中,能表示集合M 到集合N 的函数关系的有( )A .①②③④B .①②③C .②③D .②26. 一水池有2个进水口,1个出水口,进出水速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示.(至少打开一个水口)给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水.则正确论断的个数是( )A .0B .1C .2D .327. 若g (x )=1-2x ,f [g (x )]=1-x 2x 2,则f (12)的值为( )A .1B .15C .4D .3028. 某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于..6·时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为( )A .y =[x 10]B .y =[x +310]C .y =[x +410]D .y =[x +510]29. 定义两种运算:a ⊕b =ab ,a ⊗b =a 2+b 2,则函数f (x )=2⊕x (x ⊗2)-2为( )A .奇函数B .偶函数C .既不是奇函数也不是偶函数D .既是奇函数也是偶函数30. 若f (x )是偶函数,且当x ∈[0,+∞)时,f (x )=x -1,则f (x -1)<0的解集是( )A .(-1,0)B .(-∞,0)∪(1,2)C .(1,2)D .(0,2)30.已知函数y =-x 2-2x +3在区间[a,2]上的最大值为154,则a 等于( )A .-32 B.12C .-12 D.12或-3231.(x )=x 3-3x 2-9x +k 在区间[-4,4]上的最大值为10,则其最小值为( ) A .-10 B .-71 C .-15 D .-22 32. 下面说法正确的选项 ( )A .函数的单调区间可以是函数的定义域B .函数的多个单调增区间的并集也是其单调增区间C .具有奇偶性的函数的定义域定关于原点对称D .关于原点对称的图象一定是奇函数的图象 33. 如果函数f (x )在[a ,b ]上是增函数,对于任意的x 1,x 2∈[a ,b ](x 1≠x 2),则下列结论中不正确的是( ) A.f (x 1)-f (x 2)x 1-x 2>0 B .(x 1-x 2)[f (x 1)-f (x 2)]>0C .f (a )<f (x 1)<f (x 2)<f (b ) D.x 1-x 2f (x 1)-f (x 2)>034. 设奇函数f (x )在(0,+∞)上为减函数,且f (1)=0,则不等式f (x )-f (-x )x<0的解集为( )A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(0,1)C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1)35. 函数f (x )=1x-x 的图象关于( )【尝试画出它!】A .y 轴对称B .直线y =-x 对称C .坐标原点对称D .直线y =x 对称36.f (x )是定义在R 上的奇函数,下列结论中,不正确的是( ) A .f (-x )+f (x )=0 B .f (-x )-f (x )=-2f (x )C .f (x )·f (-x )≤0 D.f (x )f (-x )=-137. 若奇函数f (x )在(0,+∞)上是增函数,又f (-3)=0,则{x |x ·f (x )<0}等于( ) A .{x |x >3,或-3<x <0} B .{x |0<x <3,或x <-3} C .{x |x >3,或x <-3} D .{x |0<x <3,或-3<x <0}38. 设集合A =[0,12),B =[12,1],函数f (x )=⎩⎪⎨⎪⎧x +12, x ∈A 2(1-x ), x ∈B ,若x 0∈A ,且f [f (x 0)]∈A ,则x 0的取值范围是( )A .(0,14]B .(14,12]C .(14,12)D .[0,38]39. 函数y=是( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数 D .非奇非偶数 40.化简3(a -b )3+(a -2b )2的结果是( ) A .3b -2a B .2a -3b C .b 或2a -3b D .b 41. lgx+lgy=2lg(x -2y ),则的值的集合是( )A .{1}B .{2}C .{1,0}D .{2,0}42.函数的图象是()xx ++-1912yx 2log x xx y +=43.若0<x <1,则2x ,(12)x,0.2x之间的大小关系是( )A .2x <0.2x <(12)xB .2x <(12)x <0.2xC .(12)x <0.2x <2xD .0.2x<(12)x <2x 44. 已知(a ,b ,c 是常数)的反函数,()A .a =3,b =5,c =-2B .a =3,b =-2,c =5C .a =2,b =3,c =5D .a =2,b =-5,c =345. 设函数:的取值范围是则若0021,1)(,.0,,0,12)(x x f x x x x f x >⎪⎩⎪⎨⎧>≤-=-A .(-1,1)B .(-1,+∞)C .),0()2,(+∞⋃--∞D .),1()1,(+∞⋃--∞ 46. 在下列图象中,二次函数y=ax 2+bx +c 与函数y =(ab)x的图象可能是( )47. 若函数在区间上的最大值是最小值的倍,则的值为( )A B C D48. 下列结论中,正确的个数是( )①当a <0时,()322a =a 3;②na n=|a |(n >0); ③函数y =()122x --(3x -7)0的定义域是(2,+∞);④若100a=5,10b=2,则2a +b =1.A .0B .1C .2D .3 49. 下列各式成立的是( )cx bax x f ++=)(352)(1-+=-x x x f )10(log )(<<=a x x f a ]2,[a a 3a 42224121A.3m 2+n 2=()23m n + B .(b a)2=12a 12bC.6-32=()133- D.34=13250.函数)0,0y a a =>≠的定义域和值域都是[]0,1,则548log log 65aa +=( ) A .1 B .2 C .3 D .4二.填空题1.集合A ={1,2,3,5},当x ∈A 时,若x -1∉A ,x +1∉A ,则称x 为A 的一个“孤立元素”,则A 中孤立元素的个数为____.2.设A 是整数集的一个非空子集,对于k ∈A ,如果k -1∉A ,那么k 是A 的一个“孤立元”.给定S ={1,2,3,4,5,6,7,8},由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有______个.3.设集合A ={-3,0,1},B ={t 2-t +1}.若A ∪B =A ,则t =________. 4.已知集合至多有一个元素,则的取值范围 ;若至少有一个元素,则的取值范围5.设集合A ={x |-1≤x ≤2},B ={x |-1<x ≤4},C ={x |-3<x <2}且集合A ∩(B ∪C )={x |a ≤x ≤b },则a =______,b =______.6.已知集合M ={x |x =k 2+14,k ∈Z },N ={x |x =k 4+12,k ∈Z },若x 0∈M ,则x 0与N 的关系是______7.定义非空集合A 的任何真子集的真子集均为A 的孙集,则集合{2 4 6 8 10} 的孙集个数为____ (推广:对于含n 个元素的集合S 的孙集个数为_______)8.已知A ,B 均为集合U ={1,3,5,7,9}的子集,且A ∩B ={3},(∁U B )∩A ={9},则A 等于____ 9.用符号“”或“”填空 (1)______,______,______(2)(是个无理数) (310.请写出符合下列条件的一个函数表达式 .① 函数在)1,(--∞上递减;②函数具有奇偶性;③函数有最小值3.11.已知函数f (x )=221x x +,那么f (1)+f (2)+f (21)+f (3)+f (31)+f (4)+f (41)=________.12.函数f (x )的定义域为D ,若对于任意x 1,x 2∈D ,当x 1<x 2时,都有f (x 1)≤f (x 2),则称函数f (x )在D 上为非减函数.设函数f (x )在[0,1]上为非减函数,且满足以下三个条件:①f (0)=0;②f (x 3)=12f (x );③f (1-x )=1-f (x ),则f (13)+f (18)=________.13.知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)=________. 14.定义在上的函数对任意的,都有,且当 上}023|{2=+-=x ax x A a a ∈∉0N5N16N1______,_______,______2R Q Q e C Q π-e {}|,,x x a a Q b Q=∈∈(0,)+∞,(0,)x y ∈+∞()()()f x f y f xy +=01x <<时,有,则在上的单调性是 .15.已知f (x )是定义在(0,+∞)上的单调函数,且对任意x >0,有1()(())1f x f f x x⋅+=,求f (x ). 16.函数y =2x +1x -3的值域为___________17.已知函数f (x )=mx 2+(m -3)x +1的图象与x 轴的交点至少有一个在原点右侧,则实数m 的取值范围是_______18. 设a 为实数,若函数y =1x的图象上存在三个不同的点A (1x ,1y ),B (2x ,2y ),C(3x ,3y )满足122331x y x y x y a +=+=+=,则a 的值为_______.19. 已知f (x )是定义在(0,+∞)上的单调函数,且对任意x >0,有1()(())1f x f f x x⋅+=,求f (x )_____20. 设函数f (x )=x 2+ax +b (a ,b ∈R),已知当|x |≤1时,|f (x ) |≤1恒成立,则a −3b 的取值范围是_______.21. 若函数f (x )=x 2+(a +1)x +a x为奇函数,则实数a =________.22. 函数f (x )的定义域为D ,若对于任意x 1,x 2∈D ,当x 1<x 2时,都有f (x 1)≤f (x 2),则称函数f (x )在D上为非减函数.设函数f (x )在[0,1]上为非减函数,且满足以下三个条件:①f (0)=0;②f (x 3)=12f (x );③f (1-x )=1-f (x ),则f (13)+f (18)=________.23. 国家规定个人稿费的纳税办法是:不超过800元的不纳税;超过800元而不超过4000元的按超过800元的14%纳税;超过4000元的按全部稿酬的11%纳税.某人出版了一本书,共纳税420元,则这个人的稿费为________.24. 已知10m =4,10n=9,则3210m n-=________.25. 计算:(1)2log 210+log 20.04=________; (2)lg3+2lg2-1lg1.2=________;(3)lg 23-lg9+1=________;(4) 2log 510+log 50.25+(325-125)÷425=________; (5)log 6112-2log 63+13log 627=________.26. 春天来了,某池塘中的荷花枝繁叶茂,已知每一天新长出荷叶覆盖水面面积是前一天的2倍,若荷叶20天可以完全长满池塘水面,当荷叶刚好覆盖水面面积一半时,荷叶已生长了________天. 27. 已知则用表示28. 已知log a (ab )=1p,则log ab ab=________.()0f x >()f x (0,)+∞1414log 7,log 5,a b ==,a b 35log 28=29. 函数)2(log 221x y -=的定义域是 ,值域是 .30. 2008年5月12日,四川汶川发生里氏8.0级特大地震,给人民的生命财产造成了巨大的损失.里氏地震的等级最早是在1935年由美国加州理工学院的地震学家里特判定的.它与震源中心释放的能量(热能和动能)大小有关.震级M =23lg E -3.2,其中E (焦耳)为以地震波的形式释放出的能量.如果里氏6.0级地震释放的能量相当于1颗美国在二战时投放在广岛的原子弹的能量,那么汶川大地震所释放的能量相当于________颗广岛原子弹. 31. 设函数= 2(x ≤0)的反函数为y =,则函数y =的定义域为________32. 将函数的图象向左平移一个单位,得到图象C 1,再将C 1向上平移一个单位得到图象C 2,作出C 2关于直线y =x 对称的图象C 3,则C 3的解析式为 .33. 设函数f (x )是定义在R 上的奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0的x 的取值范围是________. 34. 设函数,给出四个命题:①时,有成立;②﹥0时,方程,只有一个实数根; ③的图象关于点(0,c )对称;④方程,至多有两个实数根.上述四个命题中所有正确的命题序号是 。

高中数学选择性必修一(人教版)《3.1椭圆练习1》

高中数学选择性必修一(人教版)《3.1椭圆练习1》

椭圆练习1一.选择题1.已知椭圆x 210-m +y 2m -2=1的长轴在y 轴上,若焦距为4,则m 等于( ) A .4B .5C .7D .82.已知△ABC 的顶点B ,C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )A .2 3B .6C .4 3D .123.(2018·全国卷Ⅰ)已知椭圆C :x 2a 2+y 24=1的一个焦点为(2,0),则C 的离心率为( ) A .13B .12C .22D .2234.(2019·北京高考)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为12,则( ) A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b 5.已知椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF ⊥x 轴,直线AB 交y 轴于点P .若AP ―→=2PB ―→,则椭圆的离心率是( ) A .32 B .22C .13D .12二.填空题 6.若焦点在x 轴上的椭圆与x 轴的一个交点到两焦点的距离分别为3和1,则椭圆的标准方程为________.7.已知F 1,F 2是椭圆x 24+y 22=1的左、右焦点,过F 1的直线交椭圆于A ,B 两点,则该椭圆的离心率是________;△ABF 2的周长是________.8.已知中心是坐标原点的椭圆C 过点⎝⎛⎭⎫1,255,且它的一个焦点为(2,0),则C 的标准方程为________.三.简答题9.已知F1,F2是椭圆x2100+y264=1的两个焦点,P是椭圆上任意一点.(1)若∠F1PF2=π3,求△PF1F2的面积;(2)求|PF1|·|PF2|的最大值.10.设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1,F2,线段OF1,OF2的中点分别为B1,B2,且△AB1B2是面积为1的直角三角形.(1)求该椭圆的离心率和标准方程;(2)点M为该椭圆上任意一点,求|MA|的取值范围.。

2021-2022学年湘教版(2019)高中数学选择性必修第一册全册练习作业(解析版)(1)

2021-2022学年湘教版(2019)高中数学选择性必修第一册全册练习作业(解析版)(1)

(解法二)特值法:取 m 1 则 S1 a1 30, S2 a1 a2 100 ,
a2 70 , a3 110 , S3 a1 a2 a3 210 .故选 C.
4.设an 是等差数列,则下列结论中正确的是
A.若 a1 a2 0 ,则 a2 a3 0
B.若 a1 a3 0 ,则 a1 a2 0
则 Sn 取得最大值时 n 的取值为:___________.
【答案】5
【解析】因为 S10 5(a1 a10 ) 0 ,所以 a1 a10 a5 a6 0 ,又 a4 a5 a6 3a5 0 ,
即 a5 0 , 所以 a6 0 ,所以当 n 5 时, Sn 取得最大值.
C. 32
D. 64
【答案】C
【解析】设等比数列 an 的公比为 q (q 0) ,显然 q 1,则有:
S3 S6
a1(1 q3 ) 1 q
a1(1 q6 ) 1 q
7 4 63 4
1 q6
,两式相除可得:
1 q3
9 ,即
(1 q3 )(1 q3 ) 1 q3
1 q3
9,
q
2
, a1
1 4
, a8
1 4
27
32 .故选
C.
4.已知等比数列
an
中,各项都是正数,且
a1

1 2
a3

2a2
成等差数列,则
a9 a10 a7 a8
A. 3 2 2
B.1 2
C.1 2
D. 3 2 2
【答案】A
【解析】
a1,
1 2
a3 ,
2a2
成等差数列, a3
a1
2a2

高中数学经典高考难题集锦(解析版)(1)

高中数学经典高考难题集锦(解析版)(1)

2015年10月18日姚杰的高中数学组卷一•选择题(共11小题)1.( 2014?湖南)若0 v x i< X2< 1,则( )A ..八- J > InX2 - lnx i B..八-「.〜< InX2 - Inx iC. X2J‘ 1> X i「:吨D . X2「—1< X i"3 12.(2005?天津)若函数f (X)=log a (X - ax)(a> 0, a力)在区间(-二0)内单调递增,贝U a的取值范围是()c. D. ' J的反函数图象是(24. ( 2008?天津)设a> i,若对于任意的x€[a, 2a],都有y€[a, a ]满足方程log a x+log a y=3 , 这时a的取值集合为( )A . {a|i < a切B. {a|a 列C. {a|2@3} D . {2 , 3}5. ( 2005?山东)0< a< 1,下列不等式一定成立的是( )A . |log (i+a)(1 - a) |+|log (i-a) (1+a) |>2;B.Ilog (1+a) ( 1 - a)I< Ilog (i-a (1+a) |;C.|log (i+a) (1 - a) +log (i-a) (1+a) |< |log(i+a)(1 - a) |+|log(i-a) (1+a) |;D.|log (i+a)(1 - a) - log(i-a) (1+a) |>|log(i+a) (1 - a) |- |log(i-a( 1+a) |6.( 2005?天津)设f 1(x)是函数f (x) =一(a x-a x) (a> 1 )的反函数,则使 f 1(x)2> 1成立的x的取值范围为( )a2 _ 1 a2 -1 a2-1A .(—二—,+m)B . (- m, —-—) C. ( , , a) D. [a, + ^)上巴上巴b7.( 2004?天津)函数匸;’'■ (- 14V 0)的反函数是( )A. ■ - | ■ 1. ■:.;・」B. ■ - <_' :■: ■:c. 「一二D. :丄…八'& ( 2004?江苏)设k > 1, f (x) =k (x - 1) (x €R).在平面直角坐标系xOy中,函数y=f (x)的图象与x轴交于A点,它的反函数y=f-1( x)的图象与y轴交于B点,并且这两个函数的图象交于P点.已知四边形OAPB的面积是3,贝U k等于( )3 4 £A. 3B.C.D.2 3 5x9. ( 2006?天津)已知函数y=f (x)的图象与函数y=a (a> 0且a力)的图象关于直线y=x对称,记g (x) =f (x) [f (x) +f (2)- 1].若y=g (x)在区间:;.上是增函数,则2实数a的取值范围是( )A . [2 , + ©B . (0, 1 )U( 1 , 2) C.「丄1 D . ■ : . -110 . (2011?湖北)放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:M (t) =M0",其中M0为t=0时铯137的含量.已知t=30时,铯137含量的变化率是-10In2 (太贝克/年),贝U M (60)=( ) A . 5太贝克B . 751 n2太贝克C . 150In2太贝克D . 150太贝克11 . (2014?湖南)某市生产总值连续两年持续增加,第一年的增长率为为q,则该市这两年生产总值的年平均增长率为(:1B-(p+1) (q+1) - 12)(p+1) (q+1)p,第二年的增长率-1.填空题(共12小题)X > 1,12 . (2013?北京)函数的值域为X<113. (2011?湖北)里氏震级 M 的计算公式为:M=lgA - IgA o ,其中A 是测震仪记录的地震 曲线的最大振幅,A o 是相应的标准地震的振幅,假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅 A o 为0.001,则此次地震的震级为 _____________________________ 级;9级地 震的最大的振幅是 5级地震最大振幅的 _______________________ 倍.15. (2006?江苏)不等式----的解集为 _________________ .16. (2005?北京)设函数f (x ) =2x,对于任意的X 1, X 2 (X 1^<2),有下列命题f ( Xi) _ f (、① f ( X 1+X 2)=f ( X 1)?f ( X 2);② f ( X 1?x 2)=f ( X 1)+f ( X 2);③ ——xl _ K2X I + X n f ( X i ) ( Xn )④:'■ ■-■.其中正确的命题序号是17. ( 2004?广东)函数'■ ' ' 1 ・〕 -■11的反函数 f \X )= __________________log (x =3 )18. (2011秋?岳阳楼区校级期末)已知 0vav 1, 0vbv 1,如果' v 1,那么 X 的取值范围为 __________________ .19.(2005?天津)设'',则:'1 ' __________ :: 1的定义域为.2 - x 2 x220. __________________________________________________ (2008?天津)设a > 1,若仅有一个常数 c 使得对于任意的 X €[a , 2a],都有y €[a , a ] 满足方程log a x+log a y=c ,这时a 的取值的集合为 .21.(2002?上海)已知函数 y=f (x )(定义域为 D ,值域为A )有反函数y=f( x ),则方—1程f (x ) =0有解x=a ,且f (x )> x (x €D )的充要条件是 y=f(x )满足 ___________________ .22. (2013?上海)对区间I 上有定义的函数 g (x ),记g (I ) ={y|y=g (x ), x€l}.已知定义—1 -1 -1域为[0 , 3]的函数 y=f (x )有反函数 y=f ( x ),且 f ([0, 1)) =[1 , 2), f (( 2, 4])14. (2007?上海)函数x 2+l »尸 2 x<0的反函数是=[0 , 1).若方程f (x)- x=0 有解X0,贝V x0= ___________________ .x23. (2004?湖南)若直线y=2a 与函数y=|a - 1| (a > 0且a 鬥)的图象有两个公共点,贝Va的取值范围是 __________________ .三•解答题(共7小题)24. (2014秋?沙河口区校级期中)21、设;. —、■ . -11.的大小,并证明你的结论.25. 解不等式I 孑.■1'-.X上 f 、 - 2a+b 26.(2006?重庆)已知定义域为 R 的函数:「一是奇函数.2K+1+a(I)求a , b 的值;(H)若对任意的t€R ,不等式f (t 2- 2t ) +f (2t 2- k)v 0恒成立,求k 的取值范围.b a27. 如果正实数 a , b 满足a =b .且av 1,证明a=b .28.(2011?上海模拟)已知n 为自然数,实数a > 1,解关于x 的不等式1 - (- 2) nlog x - 41o g 2X +121O g 3x ------------------ +n ( - 2 ) n log ------------ z ----- log ( K 2 _a)a a a a J a29. (2010?荔湾区校级模拟)f (x ) =|g '\其中a 是实数,n 是任意自然数且 n支.(I)如果f (x )当x €( - a, 1]时有意义,求a 的取值范围; (H)如果a € (0, 1],证明2f (x )v f (2x )当x 旳时成立.上 r _ l+a x30. (2010?四川)设 f (x) ---------- , a > 0 且 a 为),g (x )是 f (x )的反函数.1 - a求t 的取值范围;(I)设关于x 的方程求;- 3L/-I) (7-x)|门 在区间[2 , 6]上有实数解,n)当a=e, e为自然对数的底数)时,证明:匸訂:厂(川)当Ov aW时,试比较:I :ri|与4的大小,并说明理由. 22015年10月18日姚杰的高中数学组卷参考答案与试题解析一•选择题(共ii小题)1. ( 2014?湖南)若0 v x i< X2< 1,则( )A ..八-心> InX2 - lnx i B..八-山< InX2- Inx i:< X1-C. X2 -,:■ > X1 D .X2 ,'考点:对数的运算性质.专题:导数的综合应用.分析:分别设出两个辅助函数f/ 、X(X)=e +Inx ,Xg (X)=,由导数判断其在(0, 1) 上的单调性,结合已知条件0 < X1 < X2< 1得答案.解答:解:令f (X)=e X- Inx,则f' (x)xe x-l当x趋近于0时,xe X- 1 <0,当x=1时,xe X- 1 > 0,因此在(0, 1) 上必然存在f'(x) =0,因此函数f(乂)在(0,1) 上先递减后递增,故A、B均错误;令g(x)=^_,xX _ X /A_ K'- e 呂 --- 二----x当0v XV 1 时,g' (x) v 0.••• g(x)在(0,1) 上为减函数,■/ 0V X1 V X2V1,•选项C正确而D不正确.故选:C.点评:本题考查利用导数研究函数的单调性,考查了函数构造法,解答此题的关键在于想到构造两个函数,是中档题.3 、f (x) =log a (x - ax) (a> 0, a力)在区间单调性与特LI内单调递2. (2005?天津)若函数增,贝U a的取值范围是(考点:对数函数的殊点.专题:计算题;压轴题. 分析:将函数看作是复合函数,令g( x)=x3 —ax,且g(x) > 0,得x(—_, 0)U,+m),因为函数是高次函数,所以用导数来判断其单调性,再由复合函数同增异减”求得结果.解答:解:设g (x)=x3—ax, g(x)> 0,得x€(-i,0)U(-i,+〜,2g' (x) =3x—a, x € (—:,0)时,g (x)递减,x€ (—i,胡)或x €(i, +m) 时,g(x)递增.•••当a> 1 时,减区间为(- 書0),不合题意,当0 v av 1时,(-..:,0)为增区间.故选B .点评:本题主要考查复合函数的单调性,结论是同增异减,解题时一定要注意定义域.3.(2009?上海)函数^ 的反函数图象是()考点:反函数;函数的图象.专题:常规题型;压轴题.分析:先画出条件中函数式E+J1 - / (- )的图象,再将其图象作关于直线y=x对称的图象即得.解答: 解:作出函数E+J1 - / ( - l<x<0 )的图象,如图,•••互为反函数的两个函数的图象关于直线y=x对称,•••函数E+J1 - / ( - l<x<0 )的反函数图象是:C.点评:考查反函数、反函数的应用、函数的图象等基础知识,考查数形结合思想、化归与转化思想.属于基础题.24.(2008?天津)设a> 1若对于任意的x€[a, 2a],都有y€[a, a ]满足方程log a x+log a y=3 , 这时a 的取值集合为()A . {a|1 v a切B. {a|a 列C. {a|2@3} D . {2 , 3}考点:幕函数的实际应用.专题:压轴题.分析:先由方程log a x+log a y=3解出y,转化为函数的值域问题求. I解.解答:解:易得3、・—在[a,2a]上单调递减,所以2y€ [号,a2]故2:.;:」?a丝故选B .点评:本题考查对数式的运算、反比例函数的值域、集合的关系等问题,难度不大.注意函数和方程思想的应用.5.( 2005?山东)0 v av 1,下列不等式一定成立的是( )A . |log( 1+a)(1 - a) |+|log( 1-a) (1+a) |> 2;B. |log( 1+a)(1 - a) |v |log(1 -a (1+a) |;C . |log (1+a) (1 - a) +log (1 - a (1+a) | v |log( 1+a) (1 - a) |+|log(1 - a) (1+a) |;D. |log (1+a)(1 - a) - log( 1-a) (1+a) |>|log( 1+a (1 - a) |- |log( 1-a (1+a) |考点:对数函数的单调性与特殊点.专题:计算题;压轴题.分析:用特殊值法,来排除不成立的选项即可.解答:解:取满足题设的特殊数值a4,log (1+a) (1 -a)「二 <■- - - 1,0>log (1 -a(1+a ) =,「>1 ,2= - 1,2检验不等式(B ), (C ),(D )均不成 立,故选A点评:本题主要考 查客观题的 解法,可灵活 选择方法,如 特殊法,验证法,数形结合 法等,解题不 但灵活,而且 效率很高.> 1成立的X 的取值范围为(函数的概念、 求反函数的 方法、解指数 方程、解不等 式等知识点, 有一定的综合性;首先由函数f(X )=一 (a x2-a x) (a > 1)求其反函 数,要用到解 指数方程,整 体换元的思 想,将a x 看作 整体解出,然-1-16. ( 2005?天津)设f (x )是函数f (X) (*厂)(a >1 )的反函数,则使f2 a ~~2a C. (I, a) D. [a, + ① 考点:反函数. 专题: 压轴题.A .(―-宀)B .—分析:本题考查反后由f (X )>1构建不等 式解出即可.解:由题意设] X _ -y= (a 一 a2X )整理化简2x c x得 a - 2ya-仁0,解得:a K =y± 佇+1•/ a x> 0, ^Vy 2+1••• X=log a(y+ ■/ I)一 1 • f 1( X ) =log a(x+「)由使f -1 ( X )> 1 得 log a(x+ 7^)> 1•/ a > 1,•x+ ,' I解答:> a由此解得:故选A 本题虽为小题,看似简单,实际上综合性强,用到多方面的知识和方法,更需要一定的运算能力;尤其在求x时难度大些,不仅要用换元思想把a x看作整体求解,还要根据范围舍去7.(2004?天津)函数匸;’'■ (- 14V 0)的反函数是()A. :一■「- --B. - U ”C. 丁「D. V J 】:二丫匚门考点:反函数.专题:计算题;压轴题;方程思想.分析:解方程尸3來_1,根据x的范围,求出x的值,然后x, y 互换,求出函数的反函数.解答:解:函数点评:点评: 尸3八1,可得X2-1=log3y2x =1+log 3y,•••- 1 纟 v 0,尸-^1+10所以函数尸3“ 7(-1 纟v 0 )的反函数是:尸-P 1+ log故选D.本题考查反函数的求法,考查就是能力,是基础题.二(专<4)& ( 2004?江苏)设k > 1, f (x) =k (x - 1) (x €R).在平面直角坐标系xOy中,函数y=f ■ ■ _________________________ ― 1 ■ ■(x)的图象与x轴交于A点,它的反函数y=f ( x)的图象与y轴交于B点,并且这两个函数的图象交于P点.已知四边形OAPB的面积是3,贝U k等于( )考点:专题:分析: 反函数.计算题;压轴题.先根据题意画出图形,由于互为反函数的两个函数的图象关于y=x对称,从而两个函数的图象交于P点必在直线y=x 上.且A, B两点关于y=x 对称,利用四边形OAPB的面积=AB >OP,2求得P( 3, 3) 从而求得k 值.解:根据题意画出图形,如图.解答:由于互为反函数的两个函数的图象关于y=x对称,所以这两个函数的图象交于P点必在直线y=x上. 且A , B两点关于y=x对称,••• AB 丄OP•••四边形OAPB的面积=AB »P=2 2X ■ OP=3•OP=3 T.•P (3, 3) 代入f (x) =k(x- 1)得:故选B .本题主要考 查反函数,反 函数是函数 知识中重要 的一部分内 容.对函数的 反函数的研 究,我们应从函数的角度 去理解反函 数的概念,从 中发现反函 数的本质,并 能顺利地应 用函数与其 反函数间的 关系去解决 相关问题.x9. ( 2006?天津)已知函数 y=f (x )的图象与函数 y=a (a > 0且a 力)的图象关于直线 y=x 对称,记g (x ) =f(x ) [f (x ) +f (2)- 1].若y=g (x )在区间• .上是增函数,则实数a 的取值范围是( ) A . [2 , + © B . (0,1 )U( 1 , 2) C.「丄 1 D . U.- 考点: 指数式与对 数式的互化; 反函数.专题:压轴题. 分析: 先表述出函数f ( x )的解 析式然后代入将函数g(X )表述出 来,然后对底 数a 进行讨论 即可得到答 案.解:已知函数 y=f (x )的图 象与函数 y=a X(a > 0 且 a ^)的图象 关于直线y=x 对称, 则 f (x ) =log a x ,记 g(X )=f ( X )[f ( X )+f (2)-1] = (log a X )2+ (log a 2 - 1) log a X .当a > 1时, 若y=g ( X )在 区间-1' ■上是增函数,y=log a x 为增 函数,令 t=log a x , 切皿£, log a 2],要求 对称轴点评: 解答:2~,矛盾;当0 v av 1 时,若y=g( x) 在区间-1' ■上是增函数,y=log a x 为减函数,令 t=log a x , t€[log a 2,P 迈],要求对称轴解得...,所以实数a 的取值范围是故选D .本题主要考 查指数函数 与对数函数 互为反函 数.这里注意 指数函数和 对数函数的 增减性与底 数的大小有 关,即当底数 大于1时单调 递增,当底数 大于0小于1 时单调递减.10. (2011?湖北)放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减 少,这种现象称为衰变•假设在放射性同位素铯 137的衰变过程中,其含量 M (单位:太 t (单位:年)满足函数关系: M (t ) =M o ",其中M o 为t=0时铯137t=30时,铯137含量的变化率是-10In2 (太贝克/年),贝U M (60)=( ) B . 751 n2太贝克 C . 150In2太贝克 D . 150太贝克考点:有理数指数 幕的运算性 质.专题: 计算题;压轴 题.分析: 由t=30时,铯137含量的点评: 贝克)与时间 的含量.已知A . 5太贝克故选D .本题考查有 理数指数幕 的运算法则, 解题时要注 意导数的合 理运用.11. (2014?湖南)某市生产总值连续两年持续增加,第一年的增长率为为q ,则该市这两年生产总值的年平均增长率为( )p+q (p+1) (q+1) - 1 ■■— . -------------A. ; .B. . C .「丨 D .哎八:…八! - 1解答:变化率是-101 n2 (太贝克/年),先求出 M'( t )=M 0 X,再由 M'(30)=M 0 X(墻诚X=-101 n2,求出M 。

高中数学选择性必修一专题1 4 空间向量的综合应用 (解析版)

高中数学选择性必修一专题1 4 空间向量的综合应用 (解析版)

2020-2021年高二数学选择性必修一尖子生同步培优题典1.4空间向量的综合应用(解析版)学校:___________姓名:___________班级:___________考号:___________注意事项:本卷共18小题,8道单选题,3道多选题,3道填空题,4道解答题。

一、单项选择题(本题共8小题,每小题满分5分)1.(2020·全国课时练习)如图,已知正三棱柱111ABC A B C -的棱长均为2,则异面直线1A B 与1B C 所成角的余弦值是( )A 3B .12C .14D .0【答案】C【解析】【分析】建立空间直角坐标系,结合空间向量的结论求解异面直线所成角的余弦值即可.【详解】以AC 的中点O 为坐标原点,建立如图所示的空间直角坐标系O xyz -,则:()10,1,2A -,()3,0,0B ,)13,0,2B ,()0,1,0C , 向量()13,1,2A B =-,()13,1,2B C =--, 11cos ,A B B C <>1111A B B C A B B C ⋅=⨯2222=⨯14=. 本题选择C 选项.【点睛】本题主要考查异面直线所成的角的求解,空间向量的应用等知识,意在考查学生的转化能力和计算求解能力.2.(2020·全国课时练习)如图所示,在正四面体A­BCD中,E为棱AD的中点,则CE与平面BCD的夹角的正弦值为( )A 3B.23C.12D3【答案】B【解析】【分析】首先利用正四面体的线与线的位置关系,求出点A在下底面的投影,进一步求出E在下底面的射影位置,最后利用所求出的线段长,通过解直角三角形求得结果.【详解】在正四面体A BCD-中,设棱长为a,E为棱AD的中点,如下图所示过A做AO⊥平面BCD,则O为平面BCD的中心,延长DO交BC于G,过E做EF GD⊥,连接FC,所以ECF∠就是所求的CE与平面BCD的夹角.所以222GD CD CG =-,求得32GD a =, 所以33DO a =,利用222AO AD OD =-,解得63AO a =, 所以66EF a =,32CE a =, 在Rt EFC 中,2sin 3EF ECF CE ∠==,故选B.【点睛】本题主要考查直线与平面所成的角,勾股定理的应用及相关的运算问题,具体的解题步骤与求异面直线所成的角类似,有如下的环节:(1)作--作出斜线与射影所成的角;(2)证--论证所作(或找到的)角就是要求的角;(3)算--常用解三角形的方法(通常是解由垂线段、斜线段、斜线段的射影所组成的直角三角形)求出角;(4)答--回答求解问题. 3.(2020·全国课时练习)已知空间直角坐标系O xyz -中,()1,2,3OA =,()2,1,2OB =,()1,1,2OP =,点Q 在直线OP 上运动,则当QA QB ⋅取得最小值时,点Q 的坐标为( ) A .131,,243⎛⎫ ⎪⎝⎭ B .133,,224⎛⎫ ⎪⎝⎭ C .448,,333⎛⎫ ⎪⎝⎭ D .447,,333⎛⎫ ⎪⎝⎭【答案】C【解析】【分析】设(,,)Q x y z ,根据点Q 在直线OP 上,求得(,,2)Q λλλ,再结合向量的数量积和二次函数的性质,求得43λ=时,QA QB ⋅取得最小值,即可求解. 【详解】设(,,)Q x y z ,由点Q 在直线OP 上,可得存在实数λ使得OQ OP λ=,即(,,)(1,1,2)x y z λ=,可得(,,2)Q λλλ,所以(1,2,32),(2,1,22)QA QB λλλλλλ=---=---,则2(1)(2)(2)(1)(32)(22)2(385)QA QB λλλλλλλλ⋅=--+--+--=-+, 根据二次函数的性质,可得当43λ=时,取得最小值23-,此时448(,,)333Q . 故选:C.【点睛】本题主要考查了空间向量的共线定理,空间向量的数量积的运算,其中解答中根据向量的数量积的运算公式,得出关于λ的二次函数是解答的关键,着重考查运算与求解能力.4.(2020·全国课时练习)圆锥的轴截面SAB 是边长为2的等边三角形,O 为底面的中心,M 为SO 的中点,动点P 在圆锥底面内(包括圆周)若,AM MP ⊥则点P 形成的轨迹的长度为( ) A .76 B .75 C .72 D .74【答案】C【解析】 【分析】建立空间直角坐标系,写出点的坐标,设出动点的坐标,利用向量的坐标公式求出向量坐标,利用向量垂直的充要条件列出方程求出动点P 的轨迹方程,得到P 的轨迹是底面圆的弦,利用勾股定理求出弦长. 【详解】建立空间直角坐标系.设A (0,﹣1,0),B (0,1,0),S (0,03,M (0,03,P (x ,y ,0).于是有AM =(0,1,32),MP =(x ,y ,32-). 由于AM ⊥MP ,所以(0,1,32)•(x ,y ,32-0, 即y 34=,此为P 点形成的轨迹方程,其在底面圆盘内的长度为2371()4-=. 故选C .【点睛】本题考查通过建立坐标系,将求轨迹问题转化为求轨迹方程、考查向量的数量积公式、向量垂直的充要条件、圆的弦长的求法.属中档题5.(2020·全国高二课时练习)如图所示,在四面体P ABC -中,PC ⊥平面ABC ,AB BC CA PC ===,那么二面角B AP C --的余弦值为( )A .22B .33C 7D .57【答案】C【解析】【分析】本题首先可作BD AP ⊥于点D 以及作CE AP ⊥于点E ,然后通过BC BD DE EC =++求出14EC BD ⋅=-,最后根据cos ,EC BD BD EC EC BD ⋅〈〉=⋅以及二面角B AP C --为锐二面角即可得出结果.【详解】如图所示,作BD AP ⊥于点D ,作CE AP ⊥于点E ,设1AB =,则易得22CE =,22EP =,2PA PB ==可以求得144BD =,24ED =.因为BC BD DE EC =++,所以2222222BC BD DE EC BD DE DE EC EC BD =+++⋅+⋅+⋅, 则14EC BD ⋅=-,7cos ,7EC BD BD EC EC BD ⋅〈〉==-⋅, 因为二面角B AP C --为锐二面角,所以二面角B AP C --的余弦值为77, 故答案为:C .【点睛】本题考查二面角的余弦值的求法,考查向量的数量积公式的灵活应用,考查向量加法法则的几何应用,考查数形结合思想,考查推理能力与计算能力,是中档题.6.(2020·全国高二课时练习)如图所示,M ,N 是直角梯形ABCD 两腰的中点,DE AB ⊥于点E ,现将△ADE 沿DE 折起,使二面角A DE B --为45︒,此时点A 在平面BCDE 内的射影恰为点B ,则M ,N 的连线与AE 所成的角的大小为( )A .45︒B .90︒C .135︒D .180︒【答案】B【解析】【分析】 首先根据题意,建立空间直角坐标系,设出边长,求得点的坐标,进而求得向量的坐标,利用向量数量积等于零,得到两向量的夹角为90︒,进而得到异面直线所成角的大小.【详解】建立空间直角坐标系,如图所示:由题意知ABE △为等腰直角三角形.设1CD =,则1BE =,1AB =,2AE =设2BC DE a ==,则(0,0,0)E ,(1,0,1)A ,(1,,0)N a ,(0,2,0)D a ,11,,22M a ⎛⎫ ⎪⎝⎭, 所以11,0,22MN ⎛⎫=- ⎪⎝⎭,(1,0,1)AE =--, 所以11,0,(1,0,1)022MN AE ⎛⎫⋅=-⋅--= ⎪⎝⎭.故AE MN ⊥,从而MN 与AE 所成的角为90︒.故选:B.【点睛】该题考查的是有关立体几何的问题,涉及到的知识点有利用空间向量求异面直线所成角,属于简单题目.7.(2020·全国高二课时练习)已知空间中三点(0,1,0)A ,(2,2,0)B ,(1,3,1)C -,则( ) A .AB 与AC 是共线向量 B .AB 的单位向量是255⎫⎪⎪⎝⎭C .AB 与BC 55D .平面ABC 的一个法向量是(1,2,5)-【答案】D【解析】【分析】根据向量的相关性质判断.【详解】对于A 项,(2,1,0)AB =,(1,2,1)AC =-,所以AB AC λ≠,则AB 与AC 不是共线向量,所以A 项错误;对于B 项,因为(2,1,0)AB =,所以AB 的单位向量为255,,055⎛⎫ ⎪ ⎪⎝⎭,所以B 项错误; 对于C 项,向量(2,1,0)AB =,(3,1,1)BC =-,所以55cos ,11AB BC AB BC AB BC ⋅==-⋅,所以C 项错误; 对于D 项,设平面ABC 的法向量是(,,)n x y z =,因为(2,1,0)AB =,(1,2,1)AC =-,所以00n AB n AC ⎧⋅=⎨⋅=⎩,则2020x y x y z +=⎧⎨-++=⎩,令1x =,则平面ABC 的一个法向量为(1,2,5)n =-,所以D 项正确.故选:D.【点睛】本题考查共线向量的判断,单位向量的求法,夹角的求法,平面法向量的求法,属于空间向量综合题.8.(2020·浙江余杭·高三学业考试)如图,在圆锥SO 中,A ,B 是O 上的动点,BB '是O 的直径,M ,N 是SB 的两个三等分点,()0AOB θθπ∠=<<,记二面角N OA B --,M AB B '--的平面角分别为α,β,若αβ≤,则θ的最大值是( )A .56πB .23πC .2πD .4π 【答案】B【解析】【分析】设底面圆的半径为r ,OS a =,以'B B 所在直线为x 轴,以垂直于'B B 所在直线为y 轴,以OS 所在直线为z 轴建立空间直角坐标系,写出各个点的坐标.利用法向量求得二面角N OA B --与M AB B '--夹角的余弦值.结合αβ≤即可求得θ的取值范围,即可得θ的最大值.【详解】设底面圆的半径为r ,OS a =,以'B B 所在直线为x 轴,以垂直于'B B 所在直线为y 轴,以OS 所在直线为z 轴建立空间直角坐标系,如下图所示:则由()0AOB θθπ∠=<<可得()()()0,0,0,,0,0,0,0,O B r S a ,()()cos ,sin ,0,',0,0A r r B r θθ-M ,N 是SB 的两个三等分点 则22,0,,,0,3333r a r a M N ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭ 所以()2cos ,sin ,0,,0,33r a OA r r ON θθ⎛⎫== ⎪⎝⎭ 设平面NOA 的法向量为()111,,m x y z =则00m OA m ON ⎧⋅=⎨⋅=⎩,代入可得()()()111111,,cos ,sin ,002,,,0,033x y z r r r a x y z θθ⎧⋅=⎪⎨⎛⎫⋅= ⎪⎪⎝⎭⎩化简可得1111cos sin 02033x r y r x r az θθ+=⎧⎪⎨+=⎪⎩ 令11x =,解得11cos 2,sin r y z a θθ=-=- 所以cos 21,,sin r m a θθ⎛⎫=-- ⎪⎝⎭平面OAB 的法向量为()0,0,1n =由图可知, 二面角N OA B --的平面角α为锐二面角,所以二面角N OA B --的平面角α满足cos 1m nm n α⋅==⋅+设二面角M AB B '--的法向量为()222,,k x y z =()2'cos ,sin ,0,cos ,sin ,33r a B A r r r AM r r θθθθ⎛⎫=+=-- ⎪⎝⎭ 则'00k B A k AM ⎧⋅=⎨⋅=⎩代入可得()()()222222,,cos ,sin ,002,,cos ,sin ,033x y z r r r r a x y z r r θθθθ⎧⋅+=⎪⎨⎛⎫⋅--= ⎪⎪⎝⎭⎩化简可得2222222cos sin 02cos sin 033x r x r y r x r az x r y r θθθθ++=⎧⎪⎨--+=⎪⎩ 令21x =,解得221cos 2,sin r y z a θθ--==- 所以1cos 21,,sin r k a θθ--⎛⎫=- ⎪⎝⎭ 平面AB B '的法向量为()0,0,1h =由图可知, 二面角M AB B '--的平面角β为锐二面角,所以二面角M AB B '--的平面角β满足 cos 1k hk h β⋅==⋅⎛+由二面角的范围可知0αβπ≤≤≤结合余弦函数的图像与性质可知cos cos αβ≥即≥化简可得1cos 2θ≤-,且0θπ<< 所以203πθ<≤ 所以θ的最大值是23π 故选:B【点睛】本题考查了空间直角坐标系在求二面角中的综合应用,根据题意建立合适的空间直角坐标系,求得平面的法向量,即可求解.本题含参数较多,化简较为复杂,属于难题.二、多选题(3道小题,每小题满分5分,答漏得3分,答错得0分)9.(2020·全国单元测试)如图,一个结晶体的形状为平行六面体1111ABCD A B C D -,其中,以顶点A 为端点的三条棱长都相等,且它们彼此的夹角都是60°,下列说法中正确的是( )A .()()2212AA AB ADAC ++=B .()10AC AB AD ⋅-= C .向量1B C 与1AA 的夹角是60° D .1BD 与AC 6【答案】AB 【解析】 【分析】直接用空间向量的基本定理,向量的运算对每一个选项进行逐一判断. 【详解】以顶点A 为端点的三条棱长都相等, 它们彼此的夹角都是60°, 可设棱长为1,则11111cos602AA AB AA AD AD AB ⋅=⋅=⋅=⨯⨯︒=()22221111=+2+2+2AA AB AD AA AB AD AA AB AB AD AA AD ++++⋅⋅⋅11113262=+++⨯⨯=而()()()22222222ACAB AD AB AD AB AD =+=++⋅121122362⎛⎫=++⨯=⨯= ⎪⎝⎭, 所以A 正确.()()()11AC AB AD AA AB AD AB AD ⋅-⋅=++-2211AA AB AA AD AB AB AD AD AB AD =⋅-⋅+-⋅+⋅- =0,所以B 正确.向量11B C A D=,显然1AA D △ 为等边三角形,则160AA D ∠=︒.所以向量1A D 与1AA 的夹角是120︒ ,向量1B C 与1AA 的夹角是120︒,则C 不正确 又11=AD AA BD AB +-,AC AB AD =+ 则()211||=2AD AA A B B D =+-,()2||=3AC AB AD =+()()111AD AA AB BD AC AB AD ⋅=+-=+⋅所以11116cos ===6||||23BD AC BD AC BD AC ⋅⋅⨯,,所以D 不正确.故选:AB 【点睛】本题考查空间向量的运算,用向量求夹角等,属于中档题.10.(2020·全国单元测试)(多选题)正方体1111ABCD A B C D -的棱长为1,,,E F G 分别为11,,BC CC BB 的中点.则( )A .直线1D D 与直线AF 垂直B .直线1A G 与平面AEF 平行C .平面AEF 截正方体所得的截面面积为98D .点C 和点G 到平面AEF 的距离相等 【答案】BC 【解析】 【分析】找到AF 在平面11ADD A 内的射影,由三垂线定理可知AF 与1DD 不垂直,故A 错误;易证:平面1//A MG 平面AEF ,由面面平行的性质可得1//AG 平面AEF ,故B 正确;通过延展平面AEF 可得截面四边形1AEFD ,经过计算可知,C 正确;通过反证法,假设成立,推出矛盾,从而证明D 不正确. 【详解】取1DD 的中点N ,连接AN ,则AN 为直线AF 在平面11ADD A 内的射影,AN 与1DD 不垂直,从而AF 与1DD 也不垂直,选项A 错误;取11B C 的中点为M ,连接1,A M GM ,则1//,//A M AE GM EF ,易证:平面1//A MG 平面AEF ,从而1//AG 平面AEF ,选项B 正确; 连接1AD ,1D F ,易知四边形1AEFD 为平面AEF 截正方体所得的截面四边形(如图所示),且15D H AH ==,12A D =,所以1221232(5)()222∆=⨯⨯-=AD H S , 而113948∆==AEFD AD H S S ,从而选项C 正确; 假设点C 与点G 到平面AEF 的距离相等,即平面AEF 将CG 平分,则平面AEF 必过CG 的中点,连接CG 交EF 于点O ,易知O 不是CG 的中点,故假设不成立,从而选项D 错误. 故选:BC 【点睛】本题以正方体为载体,考查了空间中线线、线面的位置关系、点到面的距离、截面面积等立体几何基本知识,考查了运算求解能力和空间想象能力,属于中档题目.11.(2020·山东高三其他)在长方体1111ABCD A B C D -中,23AB =12AD AA ==,,,P Q R 分别是11,,AB BB AC 上的动点,下列结论正确的是( ) A .对于任意给定的点P ,存在点Q 使得1D P CQ ⊥ B .对于任意给定的点Q ,存在点R 使得1D R CQ ⊥ C .当1AR A C ⊥时,1AR D R ⊥D .当113AC A R =时,1//D R 平面1BDC 【答案】ABD 【解析】 【分析】如图所示建立空间直角坐标系,计算142D P CQ b ⋅=-,()12222D R CQ b λλ⋅=--,134AR D R ⋅=-,10D R n ⋅=,得到答案.【详解】如图所示,建立空间直角坐标系,设()2,,0P a ,0,23a ⎡⎤∈⎣⎦,()2,23,Q b ,[]0,2b ∈,设11A R AC λ=,得到()22,23,22R λλλ--,[]0,1λ∈. ()12,,2P a D -=,()2,0,CQ b =,142D P CQ b ⋅=-,当2b =时,1D P CQ ⊥,A 正确;()122,23,2D R λλλ=--,()12222D R CQ b λλ⋅=--,取22bλ=+时,1D R CQ ⊥,B 正确;1AR A C ⊥,则()()12,23,222,23,2212440AR AC λλλλλλ⋅=--⋅--=-+-+=, 14λ=,此时11333313,,,,02222224AR D R ⎛⎫⎛⎫⋅=-⋅-=-≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,C 错误; 113AC A R =,则4234,,333R ⎛⎫ ⎪ ⎪⎝⎭,14232,,333D R ⎛⎫=- ⎪ ⎪⎝⎭,设平面1BDC 的法向量为(),,n x y z =,则100n BD n DC ⎧⋅=⎪⎨⋅=⎪⎩,解得()3,1,3n =-,故10D R n ⋅=,故1//D R 平面1BDC ,D 正确. 故选:ABD .【点睛】本题考查了空间中的线线垂直,线面平行,意在考查学生的计算能力和空间想象能力,推断能力.三、填空题(3道小题,每小题满分5分)12.(2018·上海市控江中学)写出直线210x y ++=的一个法向量n =______.【答案】()21,【解析】 【分析】化直线方程为斜截式,求出直线的斜率,得到直线的一个方向向量,进而可求得直线的一个法向量,得到答案. 【详解】由题意,化直线210x y ++=的方程为斜截式21y x =--,可得直线的斜率为-2,所以直线的一个方向向量为12-(,),所以直线的一个法向量为21(,). 故答案为21(,) 【点睛】本题主要考查了直线的方向向量和法向量的意义、数量积的运算是解题的关键,是基础题. 13.(2020·全国高二课时练习)如图,在棱长为2的正方体1111ABCD A B C D -中,E 为BC 的中点,点P 在线段1D E 上,点P 到直线1CC 的距离的最小值为________.25【解析】 【分析】建立空间直角坐标系,找到1D E 、1CC 法向量,用异面直线1D E 与1CC 的距离公式求得即可. 【详解】点P 到直线1CC 距离的最小值就是异面直线1D E 与1CC 的距离,以点D 为原点,DA ,DC ,1DD 所在直线的方向分别为x 轴、y 轴、z 轴正方向建立空间直角坐标系,则1(0,0,2)D ,(1,2,0)E ,(0,2,0)C ,1(0,2,2)C ,1(1,2,2)D E ∴=-,1(0,0,2)CC =,设1n D E ⊥,1n CC ⊥,(,,)n x y z =, 则12D x y E =+20z -=,120n CC z ⋅==,0z ∴=,取1y =-,则2x =,∴(2,1,0)n ∴=-,又(1,0,0)CE ∴=,异面直线1D E 与1CC 的距离22|||2100|255||2(1)0n CE d n ⋅⨯++===+-+即点P 到直线1CC 距离的最小值为255. 故答案为:255【点睛】求异面直线之间的距离,关键是建立空间直角坐标系,找到法向量,正确运用公式. 14.(2017·浙江余姚中学高二月考)如图,棱长为3的正方体的顶点A 在平面α上,三条棱,,AB AC AD 都在平面α的同侧,若顶点,B C 到平面α的距离分别为2,2,则顶点D 到平面α的距离是______.5【解析】 【分析】求点到平面的距离,建立空间直角坐标系,由顶点,B C 到平面α的距离分别为2,2,利用空间点到平面距离公式,求出平面α的法向量,即可求出结论. 【详解】如图,以O 为坐标原点,建立空间直角坐标系, 则(0,0,0),(3,0,0),(0,3,0),(3,3,0),(3,3,3)O C B A D , 所以(3,0,0),(0,3,0),(0,0,3)BA CA AD ===, 设平面α的一个法向量为(,,)n x y z =, 则点B 到平面α距离为1222|||3|2||BA n x d n x y z ⋅===++,①点C 到平面α距离为1222|||3|2||CA n y d n x y z⋅===++,②由①②可得5||||,||||2y x z x ==, 所以D 到平面α的距离为22253|||||3|253||||2x AD n z n x y z x ⋅===++. 故答案为:5.【点睛】本题考查点到平面的距离,利用空间直角坐标系解题时,正确建立空间坐标系是关键,属于较难题.四、解答题(4道小题,每小题满分10分)15.(2020·安徽高三其他(理))如图1,在直角梯形ABCD 中,//AB CD ,AB AD ⊥,2AD CD AB ==,E ,F 分别为AD ,BC 的中点,若沿着EF 折叠使得2AD AE =如图2所示,连结BC .(1)求证:平面CDEF ⊥平面ABFE ; (2)求二面角C -BF -D 的余弦值. 【答案】(1)证明见解析;(2)2121. 【解析】 【分析】(1)本小题先根据勾股定理判断线线垂直,再证明线面垂直,最后证明面面垂直.(2)本小题根据题意建立空间直角坐标系,再求二面角两个面的法向量,最后根据夹角公式求解即可. 【详解】 (1)E ,F 分别为AD ,BC 的中点,////EF AB CD ∴AB AD ⊥.EF AE ∴⊥,EF DE ⊥2AD =,AE DE =∴222AE DE AD +=DE EF ∴⊥DE ∴⊥平面ABFE DE ⊂平面CDEF∴平面CDEF ⊥平面ABFE .(2)由(1)知,AE ,DE ,EF 两两垂直, 如图建立空间直角坐标系,令1AE =则()0,0,1D ,()1,0,0A ,()1,1,0B ,30,,02F ⎛⎫ ⎪⎝⎭,()0.2,1C .()1,1,1DB =-,30,,12DF ⎛⎫=- ⎪⎝⎭,11,,02FB ⎛⎫=- ⎪⎝⎭,10,,12FC ⎛⎫= ⎪⎝⎭设平面BDF 的法向量为(),,m x y z =,则0m DB m DF ⎧⋅=⎪⎨⋅=⎪⎩,即0320x y z y z +-=⎧⎨-=⎩,令2y =,则3z =,1x =,∴平面BDF 的一个法向量为()1,2,3m =. 设平面BCF 的法向量为(),,n x y z =,则0n FB n FC ⎧⋅=⎪⎨⋅=⎪⎩,即2020x y y z -=⎧⎨+=⎩,令1z =-,则2y =,1x =,∴平面BCF 的一个法向量为()1,2,1n =-. ∴221cos ,21146m n m n m n⋅===⋅⋅ ∵二面角C BF D --为锐二面角设为θ, ∴21cos 21θ=. 【点睛】本题考查通过线线垂直证明面面垂直和借空间向量求二面角的余弦值,是较难题.16.(2020·湖南月考)已知四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,且60ABC ∠=︒,PA ⊥平面ABCD ,E 、M 分别是BC 、PD 上的中点,直线EM 与平面PAD 所成角的正弦值为155,点F 在PC 上移动. (1)证明:无论点F 在PC 上如何移动,平面AEF ⊥平面PAD ; (2)若点F 为PC 的中点,求二面角C AF E --的余弦值. 【答案】(1)证明见解析;(2)155. 【解析】 【分析】(1)本小题先证明ABC 是正三角形,从而证明AE AD ⊥,再证明PA AE ⊥,接着证明AE ⊥平面PAD ,最后平面AEF ⊥平面PAD .(2)本小题先建立空间直角坐标系,再明确AME ∠就是直线EM 与平面PAD 所成的角,求得2AM =、2AP =,并标点,接着求平面AEF 的一个法向量()0,2,1n =-,平面ACF 的一个法向量()3,3,0BD =-,最后求出二面角C AF E --的余弦值为155. 【详解】(1)因为底面ABCD 为菱形,60ABC ∠=︒,所以ABC 是正三角形, 又E 是BC 的中点,所以AE BC ⊥,又//AD BC ,所以AE AD ⊥. 因为PA ⊥平面ABCD ,AE ⊂平面ABCD ,所以PA AE ⊥, 又PA AD A ⋂=,所以AE ⊥平面PAD , 又AE ⊂平面AEF ,所以平面AEF ⊥平面PAD .(2)由(1)得,AE ,AD ,AP 两两垂直,以AE ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图.因为AEF ⊥平面PAD .,所以AME ∠就是直线EM 与平面PAD 所成的角, 在Rt AME △中,由15sin AME ∠=6tan AE AME AM ∠==, 由已知2AB =,则3AE =2AM =所以222PD AM AD AP ==+,即()222222AP =+, 从而2AP =,则()0,0,0A ,()3,1,0B -,()3,1,0C ,()0,2,0D ,()002P ,,,()3,0,0E ,31,,122⎛⎫ ⎪ ⎪⎝⎭F , 所以()3,0,0AE =,31,,122⎛⎫= ⎪ ⎪⎝⎭AF , 设(),,n x y z =是平面AEF 的一个法向量,则30,310.22n AE x n AF x y z ⎧⋅==⎪⎨⋅=++=⎪⎩取1z =,得()0,2,1n =-.又BD ⊥平面ACF ,∴()3,3,0=-BD 是平面ACF 的一个法向量, 所以()()03231015cos ,5523n BDn BD n BD ⨯-+-⨯+⨯⋅===-⨯, 由图可知C AF E --为锐二面角,所以二面角C AF E --的余弦值为155. 【点睛】 本题考查利用线面垂直证明面面垂直,利用空间向量求二面角的余弦值,是偏难题.17.(2020·甘肃城关·兰州一中高三三模(理))已知,图中直棱柱1111ABCD A B C D -的底面是菱形,其中124AA AC BD ===.又点,,,E F P Q 分别在棱1111,,,AA BB CC DD 上运动,且满足:BF DQ =,1CP BF DQ AE -=-=.(1)求证:,,,E F P Q 四点共面,并证明EF ∥平面PQB .(2)是否存在点P 使得二面角B PQ E --的余弦值为55?如果存在,求出CP 的长;如果不存在,请说明理由.【答案】(1)见解析(2)不存在点P 使之成立.见解析【解析】【分析】(1) 在线段,CP DQ 上分别取点,M N ,使得1QN PM ==,进而得到MN PQ 与EF MN 即可.(2) 以O 为原点,分别以,OA OB ,及过O 且与1AA 平行的直线为,,x y z 轴建立空间直角坐标系,再求解平面BPQ 的法向量与平面EFPQ 的法向量,再设BF a =,[]1,3a ∈,再根据二面角的计算方法分析是否存在[]1,3a ∈5即可. 【详解】解:(1)证法1:在线段,CP DQ 上分别取点,M N ,使得1QN PM ==,易知四边形MNQP 是平行四边形,所以MN PQ ,联结,,FM MN NE , 则AE ND =,且AE ND所以四边形ADNE 为矩形,故AD NE ,同理,FM BC AD且NE MF AD ==,故四边形FMNE 是平行四边形,所以EFMN ,所以EF PQ 故,,,E F P Q 四点共面又EF PQ ,EF ⊄平面BPQ ,PQ ⊂平面BPQ ,所以EF 平面PQB .证法2:因为直棱柱1111ABCD A B C D -的底面是菱形,∴AC BD ⊥,1AA ⊥底面ABCD ,设,AC BD 交点为O ,以O 为原点,分别以,OA OB ,及过O 且与1AA 平行的直线为,,x y z 轴建立空间直角坐标系.则有()2,0,0A ,()0,1,0B ,()2,0,0C -,()0,1,0D -,设BF a =,[]1,3a ∈,则()2,0,1E a -,()0,1,F a ,()2,0,1P a -+,()0,1,Q a -,()2,1,1EF =-,()2,1,1QP =-,所以EF PQ ,故,,,E F P Q 四点共面.又EF PQ ,EF ⊄平面BPQ ,PQ ⊂平面BPQ ,所以EF 平面PQB .(2)平面EFPQ 中向量()2,1,1EF =-,()2,1,1EQ =--,设平面EFPQ 的一个法向量为()111,,x y z ,则1111112020x y z x y z -++=⎧⎨--+=⎩,可得其一个法向量为()11,0,2n =. 平面BPQ 中,()2,1,1BP a =--+,()0,2,BQ a =-,设平面BPQ 的一个法向量为()222,,n x y z =,则()2222221020x y a z y az ⎧--++=⎨-+=⎩,所以取其一个法向量()22,2,4n a a =+. 若()1212225cos ,5216n n n n a a ⋅==⋅+++则()2210548a a a +=++, 即有24230a a --=,[]1,3a ∈,解得[]2321,3a =±,故不存在点P 使之成立.【点睛】本题主要考查了根据线线平行证明共面的方法,同时也考查了建立空间直角坐标系确定是否存在满足条件的点的问题.需要根据题意建立合适直角坐标系,再利用空间向量求解二面角的方法,分析是否有参数满足条件等.属于难题.18.(2020·全国高三其他(理))某人设计了一个工作台,如图所示,工作台的下半部分是个正四棱柱ABCD﹣A1B1C1D1,其底面边长为4,高为1,工作台的上半部分是一个底面半径为2的圆柱体的四分之一.(1)当圆弧E2F2(包括端点)上的点P与B1的最短距离为2时,证明:DB1⊥平面D2EF.(2)若D1D2=3.当点P在圆弧E2E2(包括端点)上移动时,求二面角P﹣A1C1﹣B1的正切值的取值范围.【答案】(1)见解析,(2)32623[,]27+-- 【解析】【分析】 (1)以D 为原点,以2,,DA DC DD 的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系D xyz -,可得1120,0DB EF DB ED ⋅=⋅=,从而可证DB 1⊥平面D 2EF ; (2)设(,,4)P a b ,则222,0,0a b a b +=≥≥,所以[2,2]a b +∈,求出平面11PA C 的法向量4(1,1,)3a b n --=,而平面111A B C 的一个法向量(0,0,1)m =,设二面角111P AC B --的大小为θ,则先求出cos θ,从而可得32tan 4a b θ=+-,再由[2,2]a b +∈可得tan θ的范围. 【详解】(1)证明:作PH ⊥平面1111D C B A 于H ,则H 在圆弧EF 上,因为2211PB PH HB =+,所以当1HB 取最小值时,1PB 最小,由圆的对称性可知,1HB 的最小值为42232-=,所以221142PH PB HB =-=如图,以D 为原点,以2,,DA DC DD 的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系D xyz -,则21(0,0,0),(0,0,142),(2,0,1),2,1),(4,4,1)D D E F B +,12(4,4,1),(2,2,0),(2,0,42)DB EF ED ==-=-,因为112424200,420420DB EF DB ED ⋅=-++=⋅=-+=,所以112,DB EF DB ED ⊥⊥,因为EF ⊂平面2D EF ,2ED ⊂平面2D EF ,2ED EF E =, 所以DB 1⊥平面D 2EF ,(2)解:若D 1D 2=3,由(1)知()()()1114,0,1,0,4,1,4,4,1A C B ,设(,,4)P a b ,因为222,0,0a b a b +=≥≥, 设2,2,[0,]2a b πθθθ==∈ 所以2sin()[2,2]4a b πθ+=+∈,111(4,4,0),(4,,3)AC A P a b =-=-,设平面11PA C 的法向量为111(,,)n x y z =,则11111111440(4)30n AC x y n A P a x by z ⎧⋅=-+=⎪⎨⋅=-++=⎪⎩, 令11x =,则4(1,1,)3a b n --=, 取平面111A B C 的一个法向量(0,0,1)m =,设二面角111P AC B --的大小为θ,θ显然是钝角, 则243cos cos ,42()3a b m n m n a b m n θ+-⋅=-=-=+-+, 220,sin 0,sin 1co 242()s 3a b θπθθθ≤≤∴>+-+=-=则3tan []427a b θ=∈--+-,所以二面角111P AC B --的正切值的取值范围为3[]27--, 【点睛】此题考查了利用空间向量证明线面垂直,求二面角,考查了空间想象能力和推理计算能力,属于较难题.。

数学基础题练习题高中

数学基础题练习题高中

数学基础题练习题高中一、选择题(每题3分,共30分)1. 函数f(x)=x^2-4x+3的零点个数是:A. 0个B. 1个C. 2个D. 3个2. 已知集合A={x|x^2-5x+6=0},则集合A的元素个数为:A. 0个B. 1个C. 2个D. 3个3. 若a>0,b>0,且a+b=1,则下列不等式中正确的是:A. ab≤1/4B. ab≥1/4C. ab≤1/2D. ab≥1/24. 函数y=2^x的反函数是:A. y=log2xB. y=2^(-x)C. y=-2^xD. y=1/2^x5. 已知等差数列{an}的前三项和为6,前六项和为15,则该数列的公差d为:A. 1B. 2C. 3D. 46. 圆的方程为(x-2)^2+(y-3)^2=1,该圆的半径为:A. 1B. 2C. 3D. 47. 已知双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的渐近线方程为y=±(b/a)x,则该双曲线的离心率为:A. √2B. √3C. 2D. 38. 已知函数f(x)=x^3-3x+2,求f'(x)的值:A. 3x^2-3B. 3x^2-6x+2C. 3x^2+3x-6D. 3x^2+39. 已知向量a=(2,-1),b=(1,3),则向量a与向量b的点积为:A. 1B. 2C. 3D. 510. 已知直线l的方程为y=2x+1,求该直线的斜率:A. 1/2B. 2C. -2D. -1/2二、填空题(每题4分,共20分)1. 函数f(x)=x^3-3x的单调递增区间为__________。

2. 已知等比数列{bn}的前三项和为7,前六项和为28,则该数列的公比q为__________。

3. 已知抛物线y=x^2-2x+1的顶点坐标为__________。

4. 已知函数y=sin(x)的周期为2π,则函数y=sin(2x)的周期为__________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选择、填空题专题练习(一)
班级: 姓名:
1.已知全集U=R ,集合)(},02
1
|{},1|{N M C x x x N x x M U 则≥-+=≥=
( )
A .{x |x <2}
B .{x |x ≤2}
C .{x |-1<x ≤2}
D .{x |-1≤x <2}
2.设,0,0<>b a 已知),(a b m ∈且0≠m ,则
m
1
的取值范围是: ( ) A .)1,1(a b B.)1,1(b a C.)1,0()0,1(a b ⋃ D.),1
()1,(+∞⋃-∞a
b
3.设)(x f '是函数)(x f 的导函数,)(x f y '=的图象如图所示,则)(x f y =的图象最有可能的是
4.直线052)3(057)3()1(2=-+-=-+-++y x m m y m x m 与直线垂直的充要条件是( )
A .2-=m
B .3=m
C .31=-=m m 或
D .23-==m m 或
5.命题“042,2
≤+-∈∀x x R x ”的否定为 ( )
(A) 042,2
≥+-∈∀x x R x (B) 042,2
>+-∈∃x x R x (C) 042,2
≤+-∉∀x x R x (D) 042,2
>+-∉∃x x R x 6. 若平面四边形ABCD 满足0AB CD +=,()0AB AD AC -⋅=,则该四边形一定是 A .直角梯形 B .矩形 C .菱形 D .正方形
7.有一棱长为a 的正方体框架,其内放置一气球,是其充气且尽可能地膨胀(仍保持为球
的形状),则气球表面积的最大值为
A .2a π
B .22a π
C .32a π
D .42a π
8.若2
2
π
βαπ
<
<<-
,则βα-一定不属于的区间是 ( )
A .()ππ,-
B .⎪⎭

⎝⎛-2,2ππ C .()π,0 D . ()0,π-
9.等差数列{a n } 中,a 3 =2,则该数列的前5项的和为( )
A .10
B .16
C . 20
D .32
C
P
B
O
A
10.不等式1
0x x
-
>成立的充分不必要条件是 A .10x -<<或1x > B .1x <-或01x << C .1x >- D . 1x >
二、填空题 (每题5分,满分20分,请将答案填写在题中横线上)
11. 线性回归方程ˆy
bx a =+必过的定点坐标是________. 12. .在如下程序框图中,已知:x
xe x f =)(0,则输出的是__________.
13. 如图,一个粒子在第一象限运动,在第一秒末,它从原点运 动到(0,1),接着它按如图所示的x 轴、y 轴的平行方向来 回运动,(即(0,0)→(0,1)→(1,1)→(1,0)→ (2,0)→…),且每秒移动一个单位,那么第2008秒末这 个粒子所处的位置的坐标为______。

14. 从以下两个小题中选做一题(只能做其中一个,做两个按得
分最低的记分)
(1)设直线参数方程为⎪⎩
⎪⎨⎧
-=+=t
y t x 23
322(t 为参数),则它的截距式方程为 。

(2)如图AB 是⊙O 的直径,P 为AB 延长线上一点,PC 切
⊙O 于点C ,PC=4,PB=2。

则⊙O 的半径等于 ;


开始 输入f 0 (x )
:0i = 1():()i i f x f x -'=
结束
:1i i =+
i =2008
输出 f i (x )
选择、填空题专题练习(一)
参考答案:
BDCDB CBCAD
11. ),(y x 12. x
x
xe e +2008 13. )44,28( 14.(1) 19
3=+y
x 14(2). 3。

相关文档
最新文档