(完整word版)高中数学选择填空题专项训练

合集下载

(完整word版)高中数学选择填空题专项训练.docx

(完整word版)高中数学选择填空题专项训练.docx

综合小测 1一、选择题1.函数 y=2x+1 的图象是2.△ ABC 中, cosA= 5 , sinB=3,则 cosC 的值为135A.5656 16 16B. -C.-D.656565653.过点( 1, 3)作直线 l ,若 l 经过点( a,0)和 (0,b),且 a,b ∈N* ,则可作出的l 的条数为A.1B.2C.3D. 多于 34.函数 f( x)=log x(a > 0 且 a ≠ 1)对任意正实数 x,y 都有aA. f(x · y)=f(x) · f(y)B. f(x · y)=f( x)+f(y)C.f(x+y)=f(x)· f(y)D. f(x+y)=f(x)+f(y)5.已知二面角 α— l — β的大小为 60°, b 和 c 是两条异面直线,则在下列四个条件中,能使 b 和 c 所成的角为 60°的是A. b ∥ α,c ∥ βB.b ∥ α,c ⊥ βC.b ⊥ α,c ⊥ βD. b ⊥ α,c ∥ β6.一个等差数列共 n 项,其和为 90,这个数列的前 10 项的和为 25,后 10 项的和为 75,则项数 n 为 ( )A.14B.16C.18D.207.某城市的街道如图,某人要从A 地前往B 地,则路程最短的走法有 A.8 种B.10 种C.12 种D.32 种8.若 a,b 是异面直线, a α,b β ,α∩ β=l ,则下列命题中是真命题的为A. lC.l 与 a 、 b 分别相交至多与 a 、 b 中的一条相交B. l 与 a 、 b 都不相交D. l 至少与 a 、 b 中的一条相交9.设 F1, F2是双曲线x2- y2=1的两个焦点,点P 在双曲线上,且PF1· PF2=0,则4| PF1 |· | PF2 |的值等于A.2B.22C.4D.810.f(x)=(1+2 x)m+(1+3x) n(m,n∈ N*) 的展开式中x 的系数为13,则 x2的系数为A.31B.40C.31 或 40D.71 或 8011.从装有 4 粒大小、形状相同,颜色不同的玻璃球的瓶中,随意一次倒出若干粒玻璃球(至少一粒),则倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率A. 小B. 大C.相等D. 大小不能确定12.如右图, A、B、C、D 是某煤矿的四个采煤点, l 是公路,图中所标线段为道路, ABQP、BCRQ 、CDSR 近似于正方形 .已知 A、B、 C、 D 四个采煤点每天的采煤量之比约为 5∶1∶ 2∶3,运煤的费用与运煤的路程、所运煤的重量都成正比 .现要从 P、Q、R、S 中选出一处设立一个运煤中转站,使四个采煤点的煤运到中转站的费用最少,则地点应选在A. P 点B. Q 点C.R 点D. S点题号1234567891011答案二、填空题13.抛物线 y2=2x 上到直线x- y+3=0 距离最短的点的坐标为_________.14.一个长方体共一顶点的三个面的面积分别是 2 , 3 , 6 ,这个长方体对角线的长是 _________.15.设定义在R 上的偶函数f(x)满足f(x+1)+ f(x)=1, 且当x∈[ 1,2]时, f(x)=2 - x,则f(8.5)=_________.综合小测 2一、选择题:A F1.如图,点 O 是正六边形 ABCDEF 的中心,则以图中点 A 、B 、C、OD、 E、F、O 中的任意一点为始点,与始点不同的另一点为终点的所B E 有向量中,除向量OA 外,与向量 OA 共线的向量共有A .3 个B. 5 个C. 7 个 D . 9 个C D2.已知曲线C:y2=2px 上一点 P 的横坐标为4,P 到焦点的距离为5,则曲线 C 的焦点到准线的距离为1A .2B. 1C. 2 D . 413.若 (3a2- 2a 3) n展开式中含有常数项,则正整数n 的最小值是A .4B . 5C. 6 D . 84.从 5 名演员中选 3 人参加表演,其中甲在乙前表演的概率为3311A .20B.10C.20D.105.抛物线y2=a(x+1) 的准线方程是x= - 3,则这条抛物线的焦点坐标是A. (3, 0)B.( 2, 0)C.( 1, 0)D.( -1, 0)6.已知向量m a, b,向量m n ,且 m n ,则 n 的坐标可以为A. (a,-b)B. (-a,b)C. (b,-a)D. (-b,-a)7. 如果S={x|x=2n+1, n∈ Z}, T={x|x=4n± 1, n∈ Z} , 那么A.S TB.T SC.S=TD.S ≠T8.有 6 个座位连成一排,现有 3 人就坐,则恰有两个空座位相邻的不同坐法有A .36 种B. 48 种C. 72 种D. 96 种9.已知直线l 、 m,平面α、β,且 l⊥α ,mβ.给出四个命题:(1)若α∥β,则l⊥m;(2)若 l ⊥ m,则α∥β ;(3)若α⊥β,则 l∥ m;(4) 若 l∥ m,则α⊥β,其中正确的命题个数是A.4B.1C.3D.210.已知函数 f(x) = log 2(x2- ax+ 3a)在区间 [2,+∞)上递增,则实数 a 的取值范围是()A.( -∞, 4)B.( - 4, 4]C.(-∞,- 4)∪ [2,+∞)D.[ -4, 2)11.4 只笔与 5 本书的价格之和小于22 元,而 6 只笔与 3 本书的价格之和大于24 元,则2 只笔与3 本书的价格比较()A .2 只笔贵B. 3 本书贵C.二者相同D.无法确定12.若是锐角, sin1,则 cos的值等于63261B.261231231A.66C.4D.3题号123456789101112答案二、填空题:13.在等差数列{ a n}中,a1 = 1,第 10 项开始比 1 大,则公差 d 的取值范围是__________ .2514.已知正三棱柱ABC — A1B 1C1,底面边长与侧棱长的比为 2 : 1,则直线AB1与CA1所成的角为.15.若sin 20, sincos1sin1cos,化简 cossinsin= _________ .11cos16.已知函数f( x)满足: f(p+q)= f(p)f(q) , f(1)=3 ,则f 2 (1) f (2) f 2 ( 2) f (4) f 2 (3) f (6) f 2 (4) f (8).f (1) f (3) f ( 5) f (7)=综合小测 3一、选择题:1.设集合 P={3 , 4,5} , Q={4 ,5,6, 7} ,定义 P★ Q={ (a, b) | a P, b Q} 则P★Q中元素的个数为()A .3B. 7C. 10 D . 121x2e 3的部分图象大致是()2.函数y2A B C D3.在(1x)5(1 x)6(1 x) 7的展开式中,含x4项的系数是首项为- 2 ,公差为3的等差数列的()A .第 13 项B.第 18 项C.第 11 项 D .第 20 项4.有一块直角三角板ABC ,∠ A=30 °,∠ C=90°, BC 边在桌面上,当三角板所在平面与桌面成45°角时, AB 边与桌面所成的角等于()A .arcsin 6B.C. D .arccos10 46445.若将函数y f ( x) 的图象按向量 a 平移,使图象上点P 的坐标由( 1, 0)变为( 2,2),则平移后图象的解析式为A .y f ( x1)2B.C.y f ( x1)2D.()y f (x1)2y f (x1)26.直线x cos140y sin 40 10 的倾斜角为()A .40°B. 50°C. 130° D . 140°7.一个容量为 20 的样本,数据的分组及各组的频数如下:( 10,20 ],2;(20, 30 ],3;( 30, 40 ],4;( 40, 50 ],5;( 50, 60 ], 4;( 60,70 ], 2. 则样本在区间(10, 50 ]上的频率为()A .0.5B . 0.7C . 0.25D . 0.058.在抛物线 y 2 4x 上有点 M ,它到直线 y x 的距离为4 2 ,如果点 M 的坐标为( m, n ),且 m, nR , 则 m()的值为1nB . 1C . 2D . 2A .2x2y21(a, bR )的离心率 e [ 2,2] ,在两条渐近线所构成的角9.已知双曲线b 2a 2中,设以实轴为角平分线的角为,则 的取值范围是()A . [, ] B . [, ] C . [ , 2]D . [ 2, )6 23 22 3310.按 ABO 血型系统学说, 每个人的血型为 A ,B ,O ,AB 型四种之一, 依血型遗传学,当且仅当父母中至少有一人的血型是 AB 型时,子女的血型一定不是O 型,若某人的血型为 O 型,则父母血型的所有可能情况有()A .12 种B . 6 种C . 10 种D . 9 种11.正四面体的四个顶点都在一个球面上,且正四面体的高为 4,则球的表面积为 ()A .16( 12-6 3)B . 18C .36D . 64(6- 4 2)12.一机器狗每秒钟前进或后退一步,程序设计师让机器狗以前进 3 步,然后再后退 2步的规律移动 .如果将此机器狗放在数轴的原点,面向正方向,以1 步的距离为 1 单位长移动,令 P ( n )表示第 n 秒时机器狗所在位置的坐标,且P ( 0) =0,则下列结论中错 . 误的是( ) .A .P ( 3)=3B . P ( 5)=5C . P ( 101) =21D . P ( 101) <P(104) 二、填空题:13.在等比数列 { a n }中,a 3 a 8 124, a 4 a 7512 ,且公比 q 是整数,则 a 10 等于.x214.若 y2,则目标函数 z x3y 的取值范围是.xy 62 cot 21, 那么 (1 sin )( 2 cos ).15.已知sin116.取棱长为 a 的正方体的一个顶点,过从此顶点出发的三条棱的中点作截面,依次进行下去,对正方体的所有顶点都如此操作,所得的各截面与正方体各面共同围成一个多面体 .则此多面体: ①有 12 个顶点;②有 24 条棱;③有 12 个面;④表面积为3a 2 ;⑤体积为5a3.以上结论正确的是.(要求填上的有正确结论的序号)6综合小测 4一、选择题1.满足 |x-1|+|y- 1|≤ 1 的图形面积为A.1B. 2C.2D.42.不等式 |x+log3x|<|x|+|log x|的解集为3A.(0 ,1)B.(1, +∞ )C.(0,+ ∞ )D.(-∞ ,+∞ )3.已知双曲线的焦点到渐近线的距离等于右焦点到右顶点的距离的 2 倍,则双曲线的离心率 e 的值为A. 25C.3D.2 B.34.一个等差数列n1项的平均值是5,若从中抽取一项,余下项{ a } 中,a =- 5,它的前 11的平均值是 4,则抽取的是A. a11B.a10C.a9D.a8-1等于5.设函数 f(x)=log a x(a>0,且 a≠ 1)满足 f(9)=2,则 f (log 92)A.2B. 21D. ±2 C.26.将边长为 a 的正方形ABCD 沿对角线 AC 折起,使得 BD=a,则三棱锥 D —ABC 的体积为A. a3B. a3C. 3 a3D. 2 a361212127.设 O、A、B、C 为平面上四个点,OA =a,OB =b,OC =c,且 a+b+c=0 ,a·b=b·c=c·a=-1,则 |a|+|b|+|c|等于A.22B.23C.32D.338.将函数 y= f( x)sinx 的图象向右平移个单位,再作关于 x 轴的对称曲线,得到函数4y=1- 2sin2 x 的图象,则f(x)是A.cosxB.2cosxC.sinxD.2sin x9.椭圆 x2y 2 =1 上一点 P 到两焦点的距离之积为 m ,当 m 取最大值时, P 点坐标259为A. ( 5, 0),(- 5,0)B.( 2 ,32 )( 5, 3 2 )52 2 2C.( 5 2 , 3 )(-5 2, 3) D.( 0,- 3)( 0,3)22 22P 箱中有红球 1 个,白球 9 个, Q 箱中有白球 7 个,(P 、 Q 箱中所有的球除.现随意从 P 箱中取出 3 个球放入 Q 箱,将 Q 箱中的球充分搅匀后, 再 3个球放入 P 箱,则红球从 P 箱移到 Q 箱,再从 Q 箱返回 P 箱中的A.19 C.1 35B.100D.100511.如图,正方体ABCD — A 1B 1C 1D 1 中,点 P 在侧面1 1及其边界上运动, 并且总是保持1BCC B AP ⊥BD ,则动点 P的轨迹是A . 线段B 1CB. 线段 BC 1C . BB 1 中点与 CC 1 中点连成的线段D. BC 中点与 11中点连成的线段B C题号 1答案二、填空题2 3 4 5 6 7 8 9 10 1112.已知 (2 x x 2 p)6 的展开式中,不含 x 的项是 20 , 则 p 的值是 ______.2713.点 P 在曲线 y=x 3- x+ 2上移动,设过点 P 的切线的倾斜角为, 则 的取值范围3是 _____.14.在如图的 1× 6 矩形长条中涂上红、黄、蓝三种颜色,每种颜色限涂两格, 且相邻两格不同色, 则不同的涂色方案有 ______种 .颜色外完全相同)从 Q 箱中随意取出概率等于10.已知能是①矩形;②直角梯形;③菱形;④正方形中的______(写出所有可能图形的序号).综合小测 5一、选择题1.在数列 { a n }中, a 11, a n 1a n 2 1则此数列的前 4 项之和为 ()A .0B . 1C . 2D .- 22.函数 ylog 2 x log x (2x) 的值域是()A . (, 1]B . [3,)C . [ 1,3]D . (, 1] [3, )3.对总数为 N 的一批零件抽取一个容量为30 的样本,若每个零件被抽取的概率为1 ,4则 N 的值( )A .120B . 200C . 150D . 1004.若函数 yf (x)的图象和 ysin( x)的图象关于点 P( ,0)对称 ,则 f ( x) 的表达4 4式是( )A . cos(x) B . cos(x4) C .cos(x)D . cos(x)4445.设 (ab)n 的展开式中,二项式系数的和为256,则此二项展开式中系数最小的项是()A .第 5 项B .第 4、 5 两项C .第 5、6 两项D .第 4、 6 两项6.已知 ab0,全集 UR,集合 M{ x | bxa b}, N { x | abx a} ,2P { x | bx ab }, 则 P, M , N 满足的关系是( )A . P MNB .C . PM(C U N )D .P MNP (C U M )N7. 从湖中打一网鱼,共M 条,做上记号再放回湖中,数天后再打一网鱼共有n 条,其中有 k 条有记号,则能估计湖中有鱼()n k条M kA .M条B.M C.n条 D .n条k n k M8.函数f (x) | x |,如果方程f ( x) a 有且只有一个实根,那么实数 a 应满足()A .a<0B. 0<a<1C. a=0 D . a>19.设M (cos xcosx,sin x sinx)( x R) 为坐标平面内一点,O 为坐标原点,3535记 f(x)=|OM| ,当 x 变化时,函数f(x)的最小正周期是()A .30πB. 15πC. 30 D . 1510.若函数 f (x)x3ax2bx 7 在 R 上单调递增,则实数 a, b 一定满足的条件是()A .a23b 0B.a23b 0C.a23b 0 D .a23b 1题号12345678910答案二、填空题:11.“面积相等的三角形全等”的否命题是命题(填“真”或者“假”)12 .已知tan3(1 m)且3(tan tan m) tan0, ,为锐角,则的值为13.某乡镇现有人口 1 万,经长期贯彻国家计划生育政策,目前每年出生人数与死亡人数分别为年初人口的 0.8%和 1.2%,则经过 2 年后,该镇人口数应为万 . (结果精确到 0.01)14.(理 )“渐升数”是指每个数字比其左边的数字大的正整数(如34689) .则五位“渐升数”共有个,若把这些数按从小到大的顺序排列,则第100个数为.10 / 21综合小测 6一、选择题1. 给出两个命题: p :|x|=x 的充要条件是 x 为正实数; q :存在反函数的函数一定是单调函数,则下列哪个复合命题是真命题()A .p 且 qB . p 或 q┐┐C . p 且 qD . p 或 q2.给出下列命题:其中正确的判断是( )A. ①④B. ①②C.②③D. ①②④3.抛物线 y=ax 2(a<0) 的焦点坐标是 ()A. (0, a)B.(0,1 ) C.(0,-1 ) D.( - 1 ,0)44a4a4a4.计算机是将信息转换成二进制进行处理的,二进制即“逢2 进 1”如( 1101) 2 表示二进制数,将它转换成十进制形式是1× 23+1× 22+0 ×21 +1× 20=13 ,那么将二进制数转换成十进制形式是 ( )A.2 17- 2B.216- 2C.216- 1D.2 15- 15.已知 f(cosx)=cos3x,则 f(sin30 °)的值是 ( )A.1B.3C.0D. - 124,当 x ∈[- 3,-1]时,记 f(x)的最大值6.已知 y=f(x)是偶函数,当 x>0 时, f(x)=x+x为 m ,最小值为 n ,则 m - n 等于()A.2B.1C.3D.32(x3)2 y 2 =1 上的动点,则△7.已知两点 A (- 1,0), B ( 0, 2),点 P 是椭圆42PAB 面积的最大值为()A.4+ 2 3B.4+ 32C.2+ 2 3D.2+ 3232328.设向量 a=(x 1 ,y 1),b=(x 2,y 2),则下列为 a 与 b 共线的充要条件的有 ()①存在一个实数λ ,使得 a=λb 或 b=λa ;② |a· b|=|a|· |b|;③x1y1;④ (a+b)∥ (a- b). x2y2A.1 个B.2 个C.3 个D.4个9. 如图,点 P 是球 O 的直径 AB 上的动点, PA=x,过点 P 且与 AB 垂直的截面面积记为 y,则 y=1)f(x)的大致图象是(210.三人互相传球,由甲开始发球,并作为第一次传球,经过 5 次传球后,球仍回到甲手中,则不同的传球方式共有()A.6 种B.10 种C.8 种D.16 种11.已知点 F 1、 F2分别是双曲线x2y2=1 的左、右焦点,过F1且垂直于 x 轴的直a2b2线与双曲线交于A、B 两点,若△ ABF 2为锐角三角形,则该双曲线的离心率 e 的取值范围是()A.(1,+ ∞)B.(1, 3 )C.( 2 -1,1+ 2 )D.(1,1+ 2 )题号1234567891011答案二、填空题12.方程 log 2|x|=x2- 2 的实根的个数为 ______.13.1996 年的诺贝尔化学奖授予对发现C60有重大贡献的三位科学家.C60是由 60 个 C 原子组成的分子,它结构为简单多面体形状.这个多面体有 60 个顶点,从每个顶点都引出3 条棱,各面的形状分为五边形或六边形两种,则 C60分子中形状为五边形的面有______个,形状为六边形的面有 ______个 .14.在底面半径为 6 的圆柱内,有两个半径也为 6 的球面,两球的球心距为13,若作一个平面与两个球都相切,且与圆柱面相交成一椭圆,则椭圆的长轴长为______.15.定义在 R 上的偶函数 f(x)满足 f(x+1)= - f( x),且在[- 1,0]上是增函数,给出下列关于 f(x)的判断:① f(x)是周期函数;② f(x)关于直线 x=1 对称;③ f(x)在[ 0, 1]上是增函数;④ f(x)在[ 1, 2]上是减函数;⑤出所有正确判断的序号).f(2)= f(0),其中正确判断的序号为____________( 写综合小测 7一、选择题1.准线方程为x 3的抛物线的标准方程为()A .y26x B.y212 x C.y26x D .y212x2.函数y sin 2x 是()A .最小正周期为π的奇函数B.最小正周期为π的偶函数C.最小正周期为2π的奇函数D.最小正周期为2π的偶函数3.函数y x21( x0) 的反函数是()A .y x1(x 1)B .y x 1(x1)C.y x1(x1) D.y x1(x 1) 4.已知向量 a(2,1), b(x, 2)且a b与2a b 平行,则 x 等于()A .- 6B. 6C.- 4 D . 45.a1是直线ax( 2a1) y 1 0和直线 3x ay 3 0 垂直的()A .充分而不必要的条件B.必要而不充分的条件C.充要条件D.既不充分又不必要的条件6.已知直线 a、 b 与平面α,给出下列四个命题①若 a∥ b, b α,则 a∥α ;②若 a∥α, bα,则 a∥ b ;③若 a∥α, b∥α,则 a∥ b;④a⊥α, b∥α,则 a⊥ b.其中正确的命题是()A .1 个B. 2 个C. 3 个 D . 4 个7.函数y sin x cos x, x R 的单调递增区间是()A.[ 2k,2k3]( k Z )B.[2k3,2k]( k Z )4444C.[2k,2k]( k Z )D.[k3, k]( k Z )82288.设集合 M= { y | y 2 x , x R}, N { y | y x21, x R}, 则 M N 是()A .B.有限集C. M D . N9.已知函数f ( x)满足2 f (x) f (11,则 f ( x) 的最小值是())| x |x2B. 2C.22D .2 2A .3310.若双曲线x2y21的左支上一点P( a, b)到直线y x 的距离为2, 则 a +b的值为()A .1B.1C.- 2 D . 22211.若一个四面体由长度为1, 2,3 的三种棱所构成,则这样的四面体的个数是()A .2B. 4C. 6 D . 812.某债券市场常年发行三种债券, A 种面值为 1000 元,一年到期本息和为 1040 元; B 种贴水债券面值为1000 元,但买入价为960 元,一年到期本息和为1000 元; C 种面值为1000 元,半年到期本息和为1020元. 设这三种债券的年收益率分别为a, b, c,则 a, b, c 的大小关系是()A .a c且a b B.a b cC.a c b D.c a b题号123456789101112答案二、填空题13.某校有初中学生 1200 人,高中学生900 人,老师120 人,现用分层抽样方法从所有师生中抽取一个容量为N 的样本进行调查,如果应从高中学生中抽取60 人,那么N=.14.在经济学中,定义Mf ( x) f ( x1) f ( x), 称Mf ( x)为函数 f (x) 的边际函数,某企业的一种产品的利润函数P(x)x330x 21000( x[10,25]且 x N *),则它的边际函数 MP( x)=.(注:用多项式表示)15.已知a,b,c分别为△ ABC 的三边,且3a23b 23c 22ab0,则 tanC.16 .已知下列四个函数:①y log 1 ( x2); ②y3 2 x1; ③ y 1x2 ; ④2y3( x2) 2 .其中 象不 第一象限的函数有.(注:把你 符合条件的函数的序号都填上)综合小测8一、1. 直x cosy 1 0 的 斜角的取 范 是()A.0,B. 0,C., 3D.0,3,24 4442. 方程xlg x3的根 α,[ α ]表示不超 α的最大整数,[ α ]是()A . 1B . 2C . 3D . 43. 若“ p 且 q ”与“ p 或 q ”均 假命 , ( )A. 命 “非 p ”与“非 q ”的真 不同B. 命 “非 p ”与“非 q ”至少有一个是假命C. 命 “非 p ”与“ q ”的真 相同D. 命 “非 p ”与“非 q ”都是真命4. 1!, 2!, 3!,⋯⋯, n !的和 S nn(),S 的个位数是A . 1B . 3C . 5D . 75. 有下列命 ①AB BCAC = 0 ;② a b c = a c b c ;③若 a = ( m ,4),| a | = 23 的充要条件是 m = 7 ;④若 AB 的起点 A(2,1) , 点 B( 2,4) ,BA 与 x 正向所 角的余弦 是4, 其中正确命 有 ( )个5A.0B.1C.2D.36. 左下 中 , 阴影部分的面 是 ( )A.16B.18C.20D.22yx 4D 1C1B 14A 1·N·R- 2P ·D·My2Q ·C2 xBA7. 如右上 , 正四棱柱 ABCD – A 1B 1C 1D 1 中,AB=3,BB 1=4.1 的 段 PQ 在棱 AA 1 上移 , 3 的 段 MN 在棱 CC 上移 ,点 R 在棱 BB 上移 , 四棱 R – PQMN 的体 是()118. 用 1, 2, 3, 4 这四个数字可排成必须含有重复数字的四位数有()..A.265 个B.232 个C.128 个D.24个9.已知定点A(1,1) , B(3,3) ,动点P在 x 轴正半轴上,若APB取得最大值,则 P 点的坐标()A.( 2 ,0) B.( 3,0) C.( 6,0) D. 这样的点P不存在10.设 a 、b 、 x 、y均为正数,且 a 、b 为常数,x 、y为变量.若 x y 1 ,则 axby的最大值为 ()a b a b1a b D.( a b) 2A. B.2C.2211.如图所示,在一个盛水的圆柱形容器内的水面以下,有一个用细线吊着的下端开了一个很小的孔的充满水的薄壁小球,当慢慢地匀速地将小球从水下向水面以上拉动时,圆柱形容器内水面的高度h 与时间 t 的函数图像大致是()h h h hO t1 23t O t1 t2t3t O t1t2 3tO t1 t2t3tt t tA B C D12.4 个茶杯和 5 包茶叶的价格之和小于22 元 , 而 6 个茶杯和 3 包茶叶的价格之和大于 24,则 2 个茶杯和 3 包茶叶的价格比较()A.2 个茶杯贵B.2 包茶叶贵C. 二者相同D.无法确定二、填空题13.对于在区间 [ a ,b ]上有意义的两个函数 f ( x) 和 g (x) ,如果对任意 x[ a, b] ,均有f ( x)g( x)1, 那么我们称f (x)和 g( x)在 [ a, b ] 上是接近的.若函数y x 23x 2 与y 2x3在[a , b ]上是接近的,则该区间可以是.14.在等差数列 a n中 , 已知前20 项之和S20170 , 则a6a9a11a16.15.如图,一广告气球被一束入射角为的平行光线照射,其投影是长半轴长为 5 的椭,制作个广告气球至少需要的面料.16. 由y 2 及 x y x 1 成几何形的面是.综合小测 9一、1.集合 A={ x|x=2 k,k∈ Z}, B={ x|x=2k+1,k∈ Z}, C={ x|x=4k+1,k∈ Z}, 又 a∈ A,b∈ B,有A. a+b∈ AB. a+b∈BC.a+b∈ CD.a+b 不属于 A, B,C 中的任意一个2.已知 f(x)=sin( x+),g(x)=cos( x-), f(x) 的象22A. 与 g(x)的象相同B. 与 g(x)的象关于 y 称C.向左平移个位,得到g(x)的象D. 向右平移个位,得到 g(x)的象223.原点的直与x2+y2+4x+3=0 相切,若切点在第三象限,直的方程是A. y= 3 xB. y=- 3 xC.y=3D. y=-3 x x 334.函数 y=1-1下列法正确的是,x 1A. y 在 (- 1,+∞ )内增B. y 在 (-1,+ ∞ )内减C.y 在 (1,+ ∞ )内增D. y 在 (1,+ ∞ )内减5.已知直 m,n 和平面,那么 m∥ n 的一个必要但非充分条件是A. m∥ ,n∥B.m⊥,n⊥C.m∥且 nD.m,n 与成等角6.在 100 个零件中,有一品20 个,二品30 个,三品 50 个,从中抽取 20 个作本:①采用随机抽法,将零件号00,01,02,⋯, 99,抽出 20 个;②采用系抽法,将所有零件分成20 ,每 5 个,然后每中随机抽取 1 个;③采用分抽法,随机从一品中抽取 4 个,二品中抽取 6 个,三品中抽取10 个;A. 不采取哪种抽方法,1 100 个零件中每个被抽到的概率都是5B. ①②两种抽方法,100 个零件中每个被抽到的概率都是1,③并非如此C.①③两种抽样方法,这 100 个零件中每个被抽到的概率都是1,②并非如此5D.采用不同的抽样方法,这100 个零件中每个被抽到的概率各不相同7.曲线 y=x 3 在点 P 处的切线斜率为 k ,当 k=3 时的 P 点坐标为A.( - 2,- 8)B.( - 1,- 1),(1,1)C.(2,8)1 1D.(- ,-)288.已知 y=log a (2- ax)在[ 0, 1]上是 x 的减函数,则 a 的取值范围是A.(0 , 1)B.(1 ,2)C.(0, 2)D.[ 2,+∞ )19.已知 lg3,lg(sin x - ),lg(1 -y)顺次成等差数列,则2A. y 有最小值11,无最大值B. y 有最大值1,无最小值12C.y 有最小值11,最大值 1D. y 有最小值- 1,最大值 11210.若 OA =a , OB =b ,则∠ AOB 平分线上的向量 OM 为a bB.a bA.| b |(), 由 OM 决定| a || a || b |a bD.| b | a | a | bC.b || a | | b || a 11.一对共轭双曲线的离心率分别是 e 1 和 e 2,则 e 1+e 2 的最小值为 A. 2B.2C.2 2D.412.式子 1 22 32n 2的值为lim222nC 2C 3C nA.0B.1C.2D.3二、填空题13.从 A={ a ,a ,a ,a } 到 B={ b ,b ,b ,b } 的一一映射中,限定a 的象不能是b ,且 b12 34123411 4的原象不能是 a 4 的映射有 ___________个 .14.椭圆 5x 2- ky 2=5 的一个焦点是 (0, 2),那么 k=___________.15.已知无穷等比数列首项为 2,公比为负数, 各项和为 S ,则 S 的取值范围是 _______.16.已知 a n 是 (1+ x)n 的展开式中 x 2的系数,则 lim (111) =___________.na 2 a 3a n综合小测 10一、选择题1.(理)全集设为 U ,P 、S 、T 均为 U 的子集,若P (U T )=( U T )S 则( )A . PT S SB . P =T = SC . T = UD . P U S = T( 文 ) 设 集 合 M { x | x m0} , N{ x | x 22x 8 0} , 若 U = R , 且UMN,则实数 m 的取值范围是()A .m <2B . m ≥2C . m ≤ 2D . m ≤ 2 或 m ≤ - 42.(理)复数( 55i) 3 (3 4i ) ( )4 3iA .10 5i 10 5B . 10 5 10 5iC . 10 5 10 5iD . 10 5 10 5i(文)点 M ( 8, - 10),按 a 平移后的对应点M 的坐标是( - 7, 4),则 a =( )A .( 1, - 6)B .( - 15, 14)C .(- 15, - 14)D .(15, - 14)3.已知数列 { a n } 前 n 项和为 S n1 59 13 1721( 1) n 1( 4n 3) ,则S 15S22S 31 的值是()A .13B . - 76C . 46D .764.若函数 f ( )(x 3 )33 x a x的递减区间为 (,33),则 a 的取值范围是 ( )A .a > 0B . - 1< a <0C . a >1D .0< a < 15.与命题“若 a M 则 b M ”的等价的命题是( )A .若 a M ,则 b MB .若 b M ,则 a MC .若 a M ,则 b MD .若 b M ,则 a M6.(理)在正方体 ABCDA 1B 1C 1D 1 中, M ,N 分别为棱 AA 1 和 BB 1 之中点,则 sin( CM , D 1N )的值为()A .1B . 45C .25D .295 93(文)已知三棱锥S- ABC 中, SA , SB ,SC 两两互相垂直,底面 ABC 上一点 P 到三个面 SAB , SAC , SBC 的距离分别为2 ,1,6 ,则 PS 的长度为( )A .9B .5C .7D . 37.在含有 30 个个体的总体中,抽取一个容量为5 的样本,则个体 a 被抽到的概率为()A .1B.1C.1D .5 306x2568.(理)已知抛物线C:y mx2与经过 A( 0, 1), B( 2, 3)两点的线段AB 有公共点,则m 的取值范围是()A .(, 1][3 ,)B. [3,)C.(, 1]D. [- 1, 3](文)设 x R ,则函数 f (x)(1| x |)(1x) 的图像在x轴上方的充要条件是()A .- 1< x< 1B. x< - 1 或 x> 1C.x< 1D. - 1< x<1 或 x< - 19.若直线 y= kx+ 2与双曲线 x2y 2 6 的右支交于不同的两点,则k 的取值范围是()A .(15 , 15 )B.(0,15)C.(15, 0) D .(15, 1)33333 10. a, b, c (0,+∞)且表示线段长度,则a, b,c 能构成锐角三角形的充要条件是()A .a2b2c2B .| a2b2 | c2C.| a b | c | a b | D .| a2b2 | c 2a2b211.今有命题 p、q,若命题 S 为“ p 且 q”则“或”是“”的()A .充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件12.(理)函数y x 4153x 的值域是()A .[1, 2]B. [0, 2]C.( 0,3] D .[1,3](文)函数 f (x) 与g(x) (76)x2图像关于直线x- y 0对称,则 f ( 4 x)的=单调增区间是()A .( 0, 2)B .( - 2, 0)C.( 0,+∞)D.( - ∞, 0)二、填空题13.等比数列{ a n}的前 n 项和为S n,且某连续三项正好为等差数列{ b n } 中的第1,5, 6 项,则lim Sn 2________.n na114.若lim ( x2x 1 x k ) 1,则k=________.x15.有 30 个顶点的凸多面体,它的各面多边形内角总和是________.16.长为 l ( 0< l< 1 )的线段 AB 的两个端点在抛物线y x2上滑动,则线段AB 中点 M 到 x 轴距离的最小值是________.21 / 21。

2021年新高考数学选择填空专项练习题一(附答案解析)

2021年新高考数学选择填空专项练习题一(附答案解析)

2021年新高考数学选择填空专项练习题一一、单项选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U=R,集合A={x|x>0},B={x|-3<x<1},则∁U(A∪B)=() A.{x|0<x<1} B.{x|x>-3}C.{x|x≤0或x≥1} D.{x|x≤-3}D[全集U=R,集合A={x|x>0},B={x|-3<x<1},∴A∪B={x|x>-3},∴∁U(A∪B)={x|x≤-3},故选D.]2.已知复数z=4-1-i,则复数z在复平面内对应点的坐标为()A.(-2,-2) B.(-2,2) C.(2,2) D.(2,-2)B[z=4-1-i=-41+i=-4(1-i)(1+i)(1-i)=-4-4i2=-2+2i,对应点的坐标为(-2,2),故选B.]3.若双曲线x2a2-y2b2=1(a>0,b>0)的一条渐近线与直线x-3y+1=0垂直,则该双曲线的离心率为()A.2 B. 5 C.10 D.2 3C[∵双曲线x2a2-y2b2=1(a>0,b>0)的一条渐近线与直线x-3y+1=0垂直.∴双曲线的渐近线方程为y=±3x,∴ba=3,得b2=9a2,c2-a2=9a2,此时,离心率e=ca=10.故选C.]4.高铁、扫码支付、共享单车、网购并称中国“新四大发明”,近日对全国100个城市的共享单车和扫码支付的使用人数进行大数据分析,其中共享单车使用的人数分别为x1,x2,x3,…,x100,它们的平均数为x,方差为s2;其中扫码支付使用的人数分别为3x1+2,3x2+2,3x3+2,…,3x100+2,它们的平均数为x′,方差为s′2,则x′,s′2分别为()A .3x +2,3s 2+2B .3x ,3s 2C .3x +2,9s 2D .3x +2,9s 2+2C [∵数据x 1,x 2,…,x 100的平均数为x ,方差为s 2,根据平均数及方差的性质可知,3x 1+2,3x 2+2,3x 3+2,…,3x 100+2,它们的平均数x ′=3x +2,方差s ′2=9s 2,故选C.]5.如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 为CD 的中点,则三棱锥A -BC 1M 的体积VA -BC 1M =( )A.12B.14C.16D.112C [VA -BC 1M =VC 1-ABM =13S △ABM ·C 1C =13×12AB ×AD ×C 1C =16.故选C.] 6.已知数列{a n }为等比数列,首项a 1=2,数列{b n }满足b n =log 2a n ,且b 2+b 3+b 4=9,则a 5=( )A .8B .16C .32D .64C [设等比数列{a n }的公比为q ,首项a 1=2, ∴a n =2q n -1,∴b n =log 2a n =1+(n -1)log 2q , ∴数列{b n }为等差数列. ∵b 2+b 3+b 4=9, ∴3b 3=9,解得b 3=3.∴a 3=23=8.∴2×q 2=8,解得q 2=4.∴a 5=2×42=32.故选C.]7.已知x =1e 为函数f (x )=x ln(ax )+1的极值点,则a =( )A.12 B .1 C.1e D .2B [f ′(x )=ln(ax )+1,∵x =1e 为函数f (x )=x ln(ax )+1的极值点, ∴ln ⎝ ⎛⎭⎪⎫a ·1e +1=0,解得a =1,经验证a =1时,x =1e 为函数f (x )=x ln(ax )+1的极值点,故选B.]8.(2019·全国卷Ⅲ)已知F 是双曲线C :x 24-y 25=1的一个焦点,点P 在C 上,O 为坐标原点.若|OP |=|OF |,则△OPF 的面积为( )A.32B.52C.72D.92B [由F 是双曲线x 24-y 25=1的一个焦点,知|OF |=3,所以|OP |=|OF |=3. 不妨设点P 在第一象限,P (x 0,y 0),x 0>0,y 0>0,则⎩⎪⎨⎪⎧x 20+y 20=3,x 204-y 205=1,解得⎩⎪⎨⎪⎧x 20=569,y 20=259,所以P ⎝ ⎛⎭⎪⎫2143,53,所以S △OPF =12|OF |·y 0=12×3×53=52.故选B.]9.已知x ∈(0,π),则f (x )=cos 2x +2sin x 的值域为( ) A.⎝ ⎛⎦⎥⎤-1,12 B .(0,22) C.⎝ ⎛⎭⎪⎫22,2 D.⎣⎢⎡⎦⎥⎤1,32 D [由f (x )=cos 2x +2sin x =1-2sin 2x +2sin x , 设sin x =t ,∵x ∈(0,π), ∴t ∈(0,1].∴g (t )=-2⎝ ⎛⎭⎪⎫t -122+32,∴g (t )∈⎣⎢⎡⎦⎥⎤1,32.即f (x )=cos 2x +2sin x 的值域为⎣⎢⎡⎦⎥⎤1,32 .故选D.]10.某市召开的国际数学家大会的会标是以我国古代数学家的弦图为基础设计的.弦图是由四个全等的直角三角形与一个小正方形拼成的一个大正方形(如图).设其中直角三角形中较小的锐角为θ,且tan 2θ=43,如果在弦图内随机抛掷1 000粒黑芝麻(大小差别忽略不计),则落在小正方形内的黑芝麻数大约为( )A .350B .300C .250D .200D[由tan 2θ=43,得2tan θ1-tan2θ=43,解得tan θ=12.设大正方形为ABCD,小正方形为EFGH,如图,则tan θ=BFAF=12,设小正方形边长为a,则AF-aAF=12,即AF=2a,∴大正方形边长为5a,则小正方形与大正方形面积比为a25a2=15.∴在弦图内随机抛掷1 000粒黑芝麻,则落在小正方形内的黑芝麻数大约为1 000×15=200.故选D.]二、多项选择题:本大题共3小题,每小题4分,共12分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得4分,选对但不全的得2分,有选错的得0分.11.设等差数列{a n}的前n项和为S n,且满足S2 018>0,S2 019<0,则下列说法正确的是()A.S1 009最大B.|a1 009|>|a1 010|C.a1 010>0 D.S2 018+S2 019<0ABD[∵S2 018>0,S2 019<0,∴2 018(a1+a2 018)2>0,2 019(a1+a2 019)2=2 019a1 010<0,∴a1 009+a1 010>0,a1 010<0,可得a1 009>0,a1 010<0,|a1 009|>|a1 010|,故A,B都正确,C错误;由等差数列的单调性即可得出:此数列中绝对值最小的项为a1 010,故D正确,故选ABD.]12.已知函数g(x)=(e2x-1)x2e x,若实数m满足g(log5m)-g(log15m)≤2g(2),则()A.g(x)是奇函数B.g(x)是(0,+∞)上的增函数C.实数m的取值范围为(0,25]D.实数m的取值范围为[5,25]ABC [∵g (x )=(e 2x -1)x 2e x=x 2⎝ ⎛⎭⎪⎫e x -1e x ,∴g (-x )=x 2⎝ ⎛⎭⎪⎫1e x -e x =-g (x ),∴g (x )为奇函数.由g (log 5m )-g (log 15m )≤2g (2)得g (log 5m )≤g (2).又当x >0时,y =x 2>0,y =e x-1ex >0,且在(0,+∞)上均为增函数,故g (x )在(0,+∞)上为增函数,又g (x )为奇函数,所以g (x )在R 上为增函数,所以g (log 5m )≤g (2)转化为log 5m ≤2,解得0<m ≤25,故选ABC.] 13.如图,一张矩形白纸ABCD 中,AB =10,AD =102,E ,F 分别为AD ,BC 的中点,现分别将△ABE ,△CDF 沿BE ,DF 折起,且A 、C 在平面BFDE 同侧,则下列命题正确的序号有( )①当平面ABE ∥平面CDF 时,AC ∥平面BFDE ; ②当平面ABE ∥平面CDF 时,AE ∥CD ; ③当A 、C 重合于点P 时,PG ⊥PD ;④当A 、C 重合于点P 时,三棱锥P -DEF 的外接球的表面积为150π. A .① B .② C .③ D .④AD [在△ABE 中,tan ∠ABE =22,在△ACD 中,tan ∠CAD =22,所以∠ABE =∠DAC ,由题意,将△ABE ,△DCF 沿BE ,DF 折起,且A ,C 在平面BEDF 同侧,此时A 、C 、G 、H 四点在同一平面内,平面ABE ∩平面AGHC =AG ,平面CDF ∩平面AGHC =CH ,当平面ABE ∥平面CDF 时,得到AG ∥CH ,显然AG =CH ,所以四边形AGHC 为平行四边形,所以AC ∥GH ,进而可得AC ∥平面BFDE ,故①正确;由于折叠后,直线AE 与直线CD 为异面直线,所以AE 与CD 不平行,故②不正确;当A 、C 重合于点P 时,可得PG =1033,PD =10,又GD =10,∴PG 2+PD 2≠GD 2,所以PG 与PD 不垂直,故③不正确;当A ,C 重合于点P 时,在三棱锥P -DEF 中,△EFD 与△FCD 均为直角三角形,所以DF 为三棱锥P -DEF 的外接球的直径,即R =DF 2=562,所以外接球的表面积为S =4πR 2=4π×⎝⎛⎭⎪⎫5622=150π,故④正确.综上,正确命题的序号为①④,故选AD.] 三、填空题:本大题共4小题,每小题4分,共16分.14.已知m >0,若(1+mx )5的展开式中x 2的系数比x 的系数大30,则m =________.2 [∵m >0,若(1+mx )5的展开式中x 2的系数比x 的系数大30,∴C 25m 2-C 15m =30,求得m =-32(舍去),或m =2.]15.已知两个单位向量a 和b 的夹角为120°,则a ·b =________,a +b 在b 方向上的投影为________.-12 12 [∵|a |=|b |=1,〈a ,b 〉=120°,∴a ·b =-12,b 2=1. ∴(a +b )·b =a·b +b 2=12. ∴a +b 在b 方向上的投影为: |a +b |cos 〈a +b ,b 〉=|a +b |(a +b )·b |a +b ||b |=12.]16.已知函数f (x )=ax 2-1的图象在点A (1,f (1))处的切线与直线x +8y =0垂直,若数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1f (n )的前n 项和为S n ,则S n =________.n2n +1 [函数f (x )=ax 2-1的导数为f ′(x )=2ax ,可得f (x )在x =1处的切线斜率为2a ,切线与直线x +8y =0垂直,可得2a =8,即a =4, 则f (x )=4x 2-1,1f (n )=14n 2-1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,可得S n =121-13+13-15+…+12n -1-12n +1=12⎝ ⎛⎭⎪⎫1-12n +1 =n 2n +1.] 17.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =1,BC =3,点M 在棱CC 1上,当MD 1+MA 取得最小值时,MD 1⊥MA ,则棱CC 1的长为________.322 [∵AB =1,BC =3,∴AC =2,延长DC 到N 使得CN =AC =2,则MA =MN ,设CC 1=h ,连接D 1N 交CC 1于M ′,则MD 1+MA 的最小值为D 1N =h 2+9. ∵M ′C DD 1=CN DN =23,∴CM ′=2h 3,C 1M ′=h 3.∴D 1M ′=D 1C 21+C 1M ′2=1+h 29,AM ′=4+4h 29,又AD 1=3+h 2,M ′A ⊥M ′D 1,∴AD 21=M ′A 2+M ′D 21,即3+h 2=1+h 29+4+4h 29,解得h =322. ]。

高一数学填空题精选训练 10含答案解析.docx

高一数学填空题精选训练 10含答案解析.docx

高一数学填空题精选训练(10)1.在正三棱锥S-ABC^,M是SC的中点,且AM 1 SB,底面边长AB = 2很,则正三棱锥S -ABC的体积为,其外接球的表面积为•2.已知在区ABC中,角A, B, C的对边分别为”,b, c,则下列四个论断中正确的是,(把你认为是正确论断的序号都写上)①若cosB = sinB, 0 < B < TI,则B =:或号;②若S=p b = 2,满足条件的三角形恰有一个,贝U a的取值范围是(0,2]③在ABC中,若cosC =咎,bcosA + acosB = 2,则SABC的外接圆面积为9兀④若a = 5, c = 2, 13 ABC的面积S BABC = 4,贝iJcosB = |.3.已知数列{⑶}满足a n+l = | + 7a n - a n>则+ «2020的最大值为.4.已知平面向a,b ,c>满足|a| = 2, |K| = V3, |c| = 1-且(a - c) • (K - c) = 5, a — b与万+ 片夹角余弦值的最小值等于.5.阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作儡锥曲线力一书,阿波罗尼斯圆是他的研究成果之一,指的是:已知动点M与两定点4B的距离之比为人3>0,人去1), 那么点M的轨迹就是阿波罗尼斯圆.下面,我们来研究与此相关的一个问题.已知圆:x2+y2 = l和点4(一§0),点M为圆。

上动点,贝\\2\MA\ + \MB\的最小值为.6.已知向量a = (6,2)与片=(—3,/c)的夹角是钝角,则A的取值范围是.7.设a > 1,若仅有一个常数c使得对于任意的x £ [a, 2a],都有y E [a, a2]满足方程log a x + log a y =c,这时a的取值的集合为.8.已知在锐角AABC中,A = 2B,则s:2B+2的取值范围是____________________ .sinB+cosB9.在平面直角坐标系xOy中,已知是圆C: (x — l)2 + (y —2尸=2的一条弦,且CM 1 CN, F是MN的中点.当弦在圆C上运动时,直线/:% - 3y - 5 = 0上存在两点A, B,使得ZAP。

高中数学测试题及答案doc原创

高中数学测试题及答案doc原创

高中数学测试题及答案doc原创一、选择题(每题4分,共40分)1. 下列哪个选项不是实数集的子集?A. 有理数集B. 整数集C. 无理数集D. 复数集答案:D2. 若函数f(x)=2x+1,则f(-1)的值为:A. -1B. 1C. 3D. -3答案:A3. 一个圆的半径为5,那么它的面积是:A. 25πB. 50πC. 100πD. 25答案:B4. 等差数列{an}的首项a1=3,公差d=2,那么a5的值为:A. 13B. 11C. 9D. 7答案:A5. 已知集合A={1,2,3},B={2,3,4},则A∩B的值为:A. {1}B. {2,3}C. {3,4}D. {1,2,3,4}答案:B6. 函数y=x^2-4x+3的顶点坐标是:A. (2,-1)B. (2,1)C. (-2,1)D. (-2,-1)答案:A7. 一个等腰三角形的两边长分别为3和4,那么它的周长是:A. 10B. 11C. 12D. 13答案:C8. 已知数列{an}满足a1=1,an+1=2an+1,那么a3的值为:A. 7B. 5C. 3D. 1答案:A9. 函数y=1/x的图像关于:A. 原点对称B. y轴对称C. x轴对称D. 直线y=x对称答案:A10. 一个正方体的体积为27,那么它的表面积是:A. 54B. 108C. 216D. 486答案:A二、填空题(每题4分,共20分)1. 若sinα=3/5,且α为锐角,则cosα=______。

答案:4/52. 一个数列的前三项为1,2,4,从第四项开始,每一项是前三项的和,那么这个数列的第五项是______。

答案:73. 已知函数f(x)=x^3-3x+1,求f'(x)=______。

答案:3x^2-34. 一个圆的直径为10,那么它的周长是______。

答案:π*105. 一个等比数列的首项为2,公比为3,那么它的第五项是______。

答案:486三、解答题(每题10分,共40分)1. 已知函数f(x)=x^2-6x+8,求函数的顶点坐标和对称轴。

高中数学填空试题

高中数学填空试题

高中数学填空试题填空题一:已知函数\(f(x)=x^2-2x-3\),求函数在区间\((-∞,∞)\)上的增减区间。

解答:首先,我们求出函数的导函数\(f'(x)\)。

\(f'(x)=(x^2-2x-3)'=2x-2\)然后,我们令导函数等于零,解方程\(2x-2=0\)。

\(2x=2\),\(x=1\)由此可得知,函数的增减区间为\(x<1\)时,\(f(x)\)递减;\(x>1\)时,\(f(x)\)递增。

填空题二:已知直角三角形的一个锐角的正弦值为\(\frac{1}{2}\),则这个锐角的值为\(\_\_\_\_\_\_\)(保留两位小数)。

解答:我们知道,在直角三角形中,正弦值是指对边与斜边的比值。

设该锐角为\(x\),则\(\sin{x}=\frac{1}{2}\)。

由于正弦值在区间\([0°,90°]\)上单调递增,且\(\sin{30°}=\frac{1}{2}\),所以这个锐角的值为\(30°\)。

填空题三:求函数\(y=2x^3-3x^2-4x\)的极值点。

解答:我们首先求出函数的导函数\(y'\)。

\(y'=6x^2-6x-4\)然后,令导函数等于零,解方程\(6x^2-6x-4=0\)。

由方程可以使用因式分解法或者求根公式得到\(x=-\frac{1}{3}, 2\)。

接下来,我们求得二阶导函数\(y''\)。

\(y''=(6x^2-6x-4)'=12x-6\)现在,我们将极值点的横坐标带入二阶导函数,判断极值点的性质。

当\(x=-\frac{1}{3}\)时,\(y''=(-1)^2-6=(-1)-6=-7\),其次二阶导数小于零,所以该点为极大值点。

当\(x=2\)时,\(y''=(2)^2-6=(4)-6=-2\),其次二阶导数小于零,所以该点为极大值点。

高中数学练习题及答案

高中数学练习题及答案

高中数学练习题及答案一、选择题1. 已知函数f(x) = 2x^2 - 3x + 5,求f(2)的值。

A. 9B. 15C. 17D. 192. 一个圆的半径为3,求该圆的面积。

A. 28πB. 9πC. 18πD. 36π3. 已知等差数列{an}的首项a1=2,公差d=3,求第5项a5的值。

A. 17B. 14C. 21D. 204. 直线y = 2x + 1与x轴的交点坐标是什么?A. (-1/2, 0)B. (0, 1)C. (1/2, 0)D. (1, 0)5. 已知三角形ABC的三边长分别为a=3,b=4,c=5,求三角形的面积。

A. 6B. 3√3C. 4√3D. 5√3二、填空题6. 函数y = 3x^3 - 2x^2 + x - 5的导数是______。

7. 已知抛物线y^2 = 4x,求该抛物线的焦点坐标。

8. 一个直角三角形的两条直角边分别为3和4,求斜边的长度。

9. 已知一个球的体积为(4/3)π,求该球的半径。

10. 已知正弦函数sin(x)的周期是2π,求余弦函数cos(x)的周期。

三、解答题11. 已知函数g(x) = x^3 - 6x^2 + 11x - 6,求该函数的极值点。

12. 解不等式:2x^2 - 5x + 2 > 0。

13. 已知点A(1, 2)和点B(4, 6),求直线AB的斜率和方程。

14. 证明:对于任意实数x,等式e^x ≥ x + 1恒成立。

15. 已知函数h(x) = √x,求该函数的定义域和值域。

答案:1. B2. A3. A4. A5. B6. 9x^2 - 4x + 17. 焦点坐标为(1, 0)8. 59. √(3/π)10. 2π11. 极小值点x = 1,极大值点x = 512. x < 1/2 或 x > 213. 斜率k = 2,方程为2x - y - 2 = 014. 证明略15. 定义域为[0, +∞),值域为[0, +∞)本试卷涵盖了高中数学的多个知识点,包括函数、导数、不等式、几何图形、三角函数等,旨在帮助学生全面复习和巩固所学知识。

高考数学选择填空压轴题45道(附答案)

高考数学选择填空压轴题45道(附答案)

,
D.
1,
27 e4
21.已知方程
e x 1
x
e2 x1 x aex1
有三个不同的根,则实数
a

取值范围为( )
A. 1,e
B.
e,
1 2
C. 1,1
D.
1,
1 2
22.函数 f (x) ex1 ex1 a sin (x x R ,e 是自然对数的底数,
a 0 )存在唯一的零点,则实数 a 的取值范围为( )
38.若不等式 x e2x a x ln x 1恒成立,则实数 a 的取值范
围是__________.
39.已知函数 f x ln x e a x b ,其中 e 为自然对数的底
数.若不等式
f
x
0
恒成立,则
b a
的最小值为_______.
40.已知函数
f
(x)
x
2 cos
x
,在区间上
0,
4
A.
0,
2
B.
0,
2
C. (0,2]
D. (0,2)
23.已知 a 0 ,b R ,且 ex a(x 1) b 对 x R 恒成立,则 a2b 的 最大值为( )
A. 1 e5
2
B. 1 e5
3
C. 1 e3
2
D. 1 e3
3
k
24.若关于
x
的不等式
1 x
x
1 27
有正整数解,则实数
16 12
7
4
x
x
3y 6 y
的最小值为________.
8
参考答案,仅供参考

高考数学客观题训练【6套】选择、填空题

高考数学客观题训练【6套】选择、填空题

数学PA高考数学客观题训练【6套】选择、填空题专题练习(一)1.已知全集U=R ,集合)(},021|{},1|{N M C x x x N x x M U则≥-+=≥=( )A .{x |x <2}B .{x |x ≤2}C .{x |-1<x ≤2}D .{x |-1≤x <2}2.设,0,0<>b a 已知),(a b m ∈且0≠m ,则m1的取值范围是: ( )A .)1,1(a b B.)1,1(b a C.)1,0()0,1(a b ⋃ D.),1()1,(+∞⋃-∞ab 3.设)(x f '是函数)(x f 的导函数,)(x f y '=的图象如图所示,则)(x f y =的图象最有可能的是4.直线052)3(057)3()1(2=-+-=-+-++yx m m y m x m 与直线垂直的充要条件是( )A .2-=mB .3=mC .31=-=m m 或D .23-==m m 或5.命题“042,2≤+-∈∀x x R x ”的否定为 ( )(A) 042,2≥+-∈∀x x R x (B) 042,2>+-∈∃x x R x (C)042,2≤+-∉∀x x R x (D) 042,2>+-∉∃x x R x6. 若平面四边形ABCD 满足0AB CD +=,()0AB AD AC -⋅=,则该四边形一定是A .直角梯形B .矩形C .菱形D .正方形7.有一棱长为a 的正方体框架,其内放置一气球,是其充气且尽可能地膨胀(仍保持为球的形状),则气球表面积的最大值为 A .2a πB .22a πC .32a πD .42a π8.若22πβαπ<<<-,则βα-一定不属于的区间是 ( )A .()ππ,- B .⎪⎭⎫⎝⎛-2,2ππ C .()π,0 D . ()0,π-9.等差数列{a n } 中,a 3 =2,则该数列的前5项的和为( ) A .10 B .16C . 20D .3210.不等式10x x->成立的充分不必要条件是 A .10x -<<或1x > B .1x <-或01x << C .1x >-D .1x >二、填空题 (每题5分,满分20分,请将答案填写在题中横线上) 11. 线性回归方程ˆybx a =+必过的定点坐标是________. 12. .在如下程序框图中,已知:x xe x f =)(0,则输出的是__________.13. 如图,一个粒子在第一象限运动,在第一秒末,它从原点运 动到(0,1),接着它按如图所示的x 轴、y 轴的平行方向来 回运动,(即(0,0)→(0,1)→(1,1)→(1,0)→ (2,0)→…),且每秒移动一个单位,那么第2008秒末这 个粒子所处的位置的坐标为______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

综合小测1一、选择题1.函数y =2x +1的图象是2.△ABC 中,cos A =135,sin B =53,则cos C 的值为 A.6556B.-6556C.-6516D. 65163.过点(1,3)作直线l ,若l 经过点(a ,0)和(0,b ),且a ,b ∈N*,则可作出的l 的条数为A.1B.2C.3D.多于34.函数f (x )=log a x (a >0且a ≠1)对任意正实数x ,y 都有A.f (x ·y )=f (x )·f (y )B.f (x ·y )=f (x )+f (y )C.f (x +y )=f (x )·f (y )D.f (x +y )=f (x )+f (y )5.已知二面角α—l —β的大小为60°,b 和c 是两条异面直线,则在下列四个条件中,能使b 和c 所成的角为60°的是A.b ∥α,c ∥βB.b ∥α,c ⊥βC.b ⊥α,c ⊥βD.b ⊥α,c ∥β6.一个等差数列共n 项,其和为90,这个数列的前10项的和为25,后10项的和为75,则项数n 为 ( )A.14B.16C.18D.207.某城市的街道如图,某人要从A 地前往B 地,则路程最短的走法有A.8种B.10种C.12种D.32种8.若a ,b 是异面直线,a ⊂α,b ⊂β,α∩β=l ,则下列命题中是真命题的为A.l 与a 、b 分别相交B.l 与a 、b 都不相交C.l 至多与a 、b 中的一条相交D.l 至少与a 、b 中的一条相交9.设F 1,F 2是双曲线42x -y 2=1的两个焦点,点P 在双曲线上,且1PF ·2PF =0,则|1PF |·|2PF |的值等于 A.2B.22C.4D.810.f (x )=(1+2x )m +(1+3x )n (m ,n ∈N*)的展开式中x 的系数为13,则x 2的系数为A.31B.40C.31或40D.71或8011.从装有4粒大小、形状相同,颜色不同的玻璃球的瓶中,随意一次倒出若干粒玻璃球(至少一粒),则倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率A.小B.大C.相等D.大小不能确定12.如右图,A 、B 、C 、D 是某煤矿的四个采煤点,l 是公路,图中所标线段为道路,ABQP 、BCRQ 、CDSR 近似于正方形.已知A 、B 、C 、D 四个采煤点每天的采煤量之比约为5∶1∶2∶3,运煤的费用与运煤的路程、所运煤的重量都成正比.现要从P 、Q 、R 、S 中选出一处设立一个运煤中转站,使四个采煤点的煤运到中转站的费用最少,则地点应选在A.P 点B.Q 点C.R 点D.S 点 题号 1 2 3 4 5 6 7 8 9 10 11 答案二、填空题13.抛物线y 2=2x 上到直线x -y +3=0距离最短的点的坐标为_________.14.一个长方体共一顶点的三个面的面积分别是2,3,6,这个长方体对角线的长是_________.15.设定义在R 上的偶函数f (x )满足f (x +1)+f (x )=1,且当x ∈[1,2]时,f (x )=2-x ,则f (8.5)=_________.综合小测2一、选择题:1.如图,点O 是正六边形ABCDEF 的中心,则以图中点A 、B 、C 、D 、E 、F 、O 中的任意一点为始点,与始点不同的另一点为终点的所有向量中,除向量OA 外,与向量OA 共线的向量共有A .3个B . 5个C .7个D . 9个2.已知曲线C :y 2=2px 上一点P 的横坐标为4,P 到焦点的距离为5,则曲线C 的焦点到准线的距离为A . 21B . 1C . 2D . 43.若(3a 2 -312a ) n 展开式中含有常数项,则正整数n 的最小值是A .4B .5C . 6D . 84. 从5名演员中选3人参加表演,其中甲在乙前表演的概率为A . 203B . 103C . 201D . 1015.抛物线y 2=a(x+1)的准线方程是x=-3,则这条抛物线的焦点坐标是 A.(3,0) B.(2,0) C.(1,0) D.(-1,0)6.已知向量()b a m ,=,向量n m ⊥,且n m =,则n 的坐标可以为 A.(a ,-b ) B.(-a ,b ) C.(b ,-a ) D.(-b ,-a )7. 如果S ={x |x =2n +1,n ∈Z },T ={x |x =4n ±1,n ∈Z },那么A.S TB.T SC.S=TD.S ≠T8.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有A .36种B .48种C .72种D .96种EFD OC BA9.已知直线l 、m ,平面α、β,且l ⊥α,m ⊂β.给出四个命题:(1)若α∥β,则l ⊥m ; (2)若l ⊥m ,则α∥β;(3)若α⊥β,则l ∥m ;(4)若l ∥m ,则α⊥β,其中正确的命题个数是A.4B.1C.3D.2 10.已知函数f(x)=log 2(x 2-ax +3a)在区间[2,+∞)上递增,则实数a 的取值范围是( )A.(-∞,4)B.(-4,4]C.(-∞,-4)∪[2,+∞)D.[-4,2)11.4只笔与5本书的价格之和小于22元,而6只笔与3本书的价格之和大于24元,则2只笔与3本书的价格比较( )A .2只笔贵B .3本书贵C .二者相同D .无法确定12.若α是锐角,316sin =⎪⎭⎫⎝⎛-πα,则αcos 的值等于 A.162- B. 162+ C. 132+ D. 132-二、填空题:13.在等差数列{a n }中,a 1=251, 第10项开始比1大, 则公差d 的取值范围是__________.14.已知正三棱柱ABC —A 1B 1C 1,底面边长与侧棱长的比为1:2,则直线AB 1与CA 1所成的角为 .15.若αααcos sin ,02sin ><,化简ααααααcos 1cos 1sin sin 1sin 1cos +-++-= _________.16.已知函数f (x )满足:f (p +q )=f (p )f (q ) ,f (1)=3,则)7()8()4()5()6()3()3()4()2()1()2()1(2222f f f f f f f f f f f f +++++++= .综合小测3一、选择题:1.设集合P={3,4,5},Q={4,5,6,7},定义P ★Q={(},|),Q b P a b a ∈∈则P ★Q 中元素的个数为( ) A .3B .7C .10D .12 2.函数3221x e y -⋅=π的部分图象大致是( )A B C D3.在765)1()1()1(x x x +++++的展开式中,含4x 项的系数是首项为-2,公差为3的等差数列的 ( ) A .第13项 B .第18项 C .第11项 D .第20项4.有一块直角三角板ABC ,∠A=30°,∠C=90°,BC 边在桌面上,当三角板所在平面与桌面成45°角时,AB 边与桌面所成的角等于 ( )A .46arcsinB .6π C .4π D .410arccos5.若将函数)(x f y =的图象按向量a 平移,使图象上点P 的坐标由(1,0)变为(2,2),则平移后图象的解析式为 ( )A .2)1(-+=x f yB .2)1(--=x f yC .2)1(+-=x f yD .2)1(++=x f y6.直线0140sin 140cos =+︒+︒y x 的倾斜角为 ( )A .40°B .50°C .130°D .140°7.一个容量为20的样本,数据的分组及各组的频数如下:(10,20],2;(20,30],3;(30,40],4;(40,50],5;(50,60],4;(60,70],2. 则样本在区间(10,50]上的频率为( )A .0.5B .0.7C .0.25D .0.058.在抛物线x y 42=上有点M ,它到直线x y =的距离为42,如果点M 的坐标为(n m ,),且nmR n m 则,,+∈的值为 ( )A .21 B .1C .2D .29.已知双曲线]2,2[),(12222∈∈=-+e R b a by a x 的离心率,在两条渐近线所构成的角中,设以实轴为角平分线的角为θ,则θ的取值范围是 ( )A .]2,6[ππ B .]2,3[ππ C .]32,2[ππ D .),32[ππ 10.按ABO 血型系统学说,每个人的血型为A ,B ,O ,AB 型四种之一,依血型遗传学,当且仅当父母中至少有一人的血型是AB 型时,子女的血型一定不是O 型,若某人的血型为O 型,则父母血型的所有可能情况有 ( ) A .12种 B .6种 C .10种 D .9种 11.正四面体的四个顶点都在一个球面上,且正四面体的高为4,则球的表面积为( ) A .16(12-6π)3 B .18πC .36πD .64(6-4π)212.一机器狗每秒钟前进或后退一步,程序设计师让机器狗以前进3步,然后再后退2步的规律移动.如果将此机器狗放在数轴的原点,面向正方向,以1步的距离为1单位长移动,令P (n )表示第n 秒时机器狗所在位置的坐标,且P (0)=0,则下列结论中错.误.的是( ) A .P (3)=3 B .P (5)=5C .P (101)=21D .P (101)<P(104)二、填空题:13.在等比数列{512,124,}7483-==+a a a a a n 中,且公比q 是整数,则10a 等于 .14.若⎪⎩⎪⎨⎧≤+≥≥622y x y x ,则目标函数y x z 3+=的取值范围是 .15.已知,1sin 1cot 22=++θθ那么=++)cos 2)(sin 1(θθ . 16.取棱长为a 的正方体的一个顶点,过从此顶点出发的三条棱的中点作截面,依次进行下去,对正方体的所有顶点都如此操作,所得的各截面与正方体各面共同围成一个多面体.则此多面体:①有12个顶点;②有24条棱;③有12个面;④表面积为23a ;⑤体积为365a .以上结论正确的是 .(要求填上的有正确结论的序号) 综合小测4一、选择题1.满足|x -1|+|y -1|≤1的图形面积为A.1B.2C.2D.42.不等式|x +log 3x |<|x |+|log 3x |的解集为 A.(0,1)B.(1,+∞)C.(0,+∞)D.(-∞,+∞) 3.已知双曲线的焦点到渐近线的距离等于右焦点到右顶点的距离的2倍,则双曲线的离心率e 的值为A.2B.35C.3D.24.一个等差数列{a n }中,a 1=-5,它的前11项的平均值是5,若从中抽取一项,余下项的平均值是4,则抽取的是A.a 11B.a 10C.a 9D.a 85.设函数f (x )=log a x (a >0,且a ≠1)满足f (9)=2,则f -1(log 92)等于 A.2B.2C.21 D.±26.将边长为a 的正方形ABCD 沿对角线AC 折起,使得BD =a ,则三棱锥D —ABC 的体积为A.63aB.123a C.3123a D.3122a 7.设O 、A 、B 、C 为平面上四个点,OA =a ,OB =b ,OC =c ,且a +b +c =0,a ·b =b ·c =c ·a =-1,则|a |+|b |+|c |等于A.22B.23C.32D.338.将函数y = f (x )sin x 的图象向右平移4个单位,再作关于x 轴的对称曲线,得到函数y =1-2sin 2x 的图象,则f (x )是A.cos xB.2cos xC.sin xD.2sin x9.椭圆92522y x +=1上一点P 到两焦点的距离之积为m ,当m 取最大值时,P 点坐标为A.(5,0),(-5,0)B.(223,52)(223,25-) C.(23,225)(-23,225) D.(0,-3)(0,3) 10.已知P 箱中有红球1个,白球9个,Q 箱中有白球7个,(P 、Q 箱中所有的球除颜色外完全相同).现随意从P 箱中取出3个球放入Q 箱,将Q 箱中的球充分搅匀后,再从Q 箱中随意取出3个球放入P 箱,则红球从P 箱移到Q 箱,再从Q 箱返回P 箱中的概率等于A.51 B.1009 C.1001 D.5311.如图,正方体ABCD —A 1B 1C 1D 1中,点P 在侧面BCC 1B 1及其边界上运动,并且总是保持AP ⊥BD 1,则动点P 的轨迹是A . 线段B 1C B. 线段BC 1 C . BB 1中点与CC 1中点连成的线段 D. BC 中点与B 1C 1中点连成的线段题号 1 2 3 4 5 6 7 8 9 10 11 答案二、填空题 12.已知(p x x -22)6的展开式中,不含x 的项是2720,则p 的值是______. 13.点P 在曲线y =x 3-x +32上移动,设过点P 的切线的倾斜角为α,则α的取值范围是_____.14.在如图的1×6矩形长条中涂上红、黄、蓝三种颜色,每种颜色限涂两格,且相邻两格不同色,则不同的涂色方案有______种.15.用一个与正方体各面都不平行的平面去截正方体,截得的截面是四边形的图形可能是①矩形;②直角梯形;③菱形;④正方形中的______(写出所有可能图形的序号).综合小测5一、选择题1.在数列1,1,}{211-==+n n n a a a a 中则此数列的前4项之和为 ( )A .0B .1C .2D .-2 2.函数)2(log log 2x x y x +=的值域是( )A .]1,(--∞B .),3[+∞C .]3,1[-D .),3[]1,(+∞⋃--∞3.对总数为N 的一批零件抽取一个容量为30的样本,若每个零件被抽取的概率为41,则N 的值( )A .120B .200C .150D .1004.若函数)(,)0,4()4sin()(x f P x y x f y 则对称的图象关于点的图象和ππ+==的表达式是( )A .)4cos(π+x B .)4cos(π--x C .)4cos(π+-x D .)4cos(π-x 5.设nb a )(-的展开式中,二项式系数的和为256,则此二项展开式中系数最小的项是( )A .第5项B .第4、5两项C .第5、6两项D .第4、6两项6.已知}|{},2|{,,0a x ab x N ba xb x M R U b a <<=+<<==>>集合全集, N M P ab x b x P ,,},|{则≤<=满足的关系是( )A .N M P ⋃=B .N M P ⋂=C .)(N C M P U ⋂=D .N M C P U ⋂=)(7. 从湖中打一网鱼,共M 条,做上记号再放回湖中,数天后再打一网鱼共有n 条,其中有k 条有记号,则能估计湖中有鱼( )A .条kn M ⋅B .条nk M ⋅C .条kM n ⋅D .条Mk n ⋅8.函数a x f x x f ==)(|,|)(如果方程有且只有一个实根,那么实数a 应满足( )A .a <0B .0<a <1C .a =0D .a >19.设))(5sin3sin,5cos3(cosR x xxxxM ∈++ππππ为坐标平面内一点,O 为坐标原点,记f (x )=|OM|,当x 变化时,函数 f (x )的最小正周期是 ( )A .30πB .15πC .30D .1510.若函数7)(23-++=bx ax x x f 在R 上单调递增,则实数a , b 一定满足的条件是( ) A .032<-b aB .032>-b aC .032=-b aD .132<-b a二、填空题:11.“面积相等的三角形全等”的否命题是 命题(填“真”或者“假”) 12.已知βαβαββαα+=++⋅+=则为锐角且,,,0tan )tan (tan 3)1(3tan m m 的值为13.某乡镇现有人口1万,经长期贯彻国家计划生育政策,目前每年出生人数与死亡人数分别为年初人口的0.8%和1.2%,则经过2年后,该镇人口数应为 万.(结果精确到0.01)14.(理)“渐升数”是指每个数字比其左边的数字大的正整数(如34689).则五位“渐升数”共有 个,若把这些数按从小到大的顺序排列,则第100个数为 .综合小测6一、选择题1. 给出两个命题:p :|x|=x 的充要条件是x 为正实数;q :存在反函数的函数一定是单调函数,则下列哪个复合命题是真命题( )A .p 且qB .p 或qC .┐p 且qD .┐p 或q2.给出下列命题:其中正确的判断是( )A.①④B.①②C.②③D.①②④3.抛物线y =ax 2(a <0)的焦点坐标是( )A.(0,4a ) B.(0,a 41) C.(0,-a41) D.(-a41,0) 4.计算机是将信息转换成二进制进行处理的,二进制即“逢2进1”如(1101)2表示二进制数,将它转换成十进制形式是1×23+1×22+0×21+1×20=13,那么将二进制数转换成十进制形式是( ) A.217-2 B.216-2 C.216-1 D.215-15.已知f (cos x )=cos3x ,则f (sin30°)的值是( )A.1B.23C.0D.-16.已知y =f (x )是偶函数,当x >0时,f (x )=x +x4,当x ∈[-3,-1]时,记f (x )的最大值为m ,最小值为n ,则m -n 等于( )A.2B.1C.3D.23 7.已知两点A (-1,0),B (0,2),点P 是椭圆24)3(22y x +-=1上的动点,则△P AB 面积的最大值为( )A.4+332B.4+223 C.2+332 D.2+223 8.设向量a =(x 1,y 1),b =(x 2,y 2),则下列为a 与b 共线的充要条件的有( )①存在一个实数λ,使得a =λb 或b =λa ;②|a ·b |=|a |·|b |;③2121y yx x =;④(a +b )∥(a -b ). A.1个 B.2个 C.3个 D.4个9. 如图,点P 是球O 的直径AB 上的动点,P A =x ,过点P 且与AB 垂直的截面面积记为y ,则y =21f (x )的大致图象是( )10.三人互相传球,由甲开始发球,并作为第一次传球,经过5次传球后,球仍回到甲手中,则不同的传球方式共有( )A.6种B.10种C.8种D.16种11.已知点F 1、F 2分别是双曲线2222by a x -=1的左、右焦点,过F 1且垂直于x 轴的直线与双曲线交于A 、B 两点,若△ABF 2为锐角三角形,则该双曲线的离心率e 的取值范围是( )A.(1,+∞)B.(1,3)C.(2-1,1+2)D.(1,1+2) 题号 1 2 3 4 5 6 7 8 9 10 11 答案二、填空题12.方程log 2|x |=x 2-2的实根的个数为______.13.1996年的诺贝尔化学奖授予对发现C 60有重大贡献的三位科学家.C 60是由60个C 原子组成的分子,它结构为简单多面体形状.这个多面体有60个顶点,从每个顶点都引出3条棱,各面的形状分为五边形或六边形两种,则C 60分子中形状为五边形的面有______个,形状为六边形的面有______个.14.在底面半径为6的圆柱内,有两个半径也为6的球面,两球的球心距为13,若作一个平面与两个球都相切,且与圆柱面相交成一椭圆,则椭圆的长轴长为______.15.定义在R 上的偶函数f (x )满足f (x +1)=-f (x ),且在[-1,0]上是增函数,给出下列关于f (x )的判断:①f (x )是周期函数;②f (x )关于直线x =1对称;③f (x )在[0,1]上是增函数;④f (x )在[1,2]上是减函数;⑤f (2)=f (0),其中正确判断的序号为____________(写出所有正确判断的序号).综合小测7一、选择题1.准线方程为3=x 的抛物线的标准方程为 ( )A .x y 62-=B .x y 122-= C .x y 62= D .x y 122= 2.函数x y 2sin =是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为2π的奇函数D .最小正周期为2π的偶函数 3.函数)0(12≤+=x x y 的反函数是( )A .)1(1≥+-=x x yB .)1(1-≥+-=x x yC .)1(1≥-=x x y D .)1(1≥--=x x y4.已知向量x -+-==2)2,(),1,2(与且平行,则x 等于 ( )A .-6B .6C .-4D .45.1-=a 是直线03301)12(=++=+-+ay x y a ax 和直线垂直的( ) A .充分而不必要的条件 B .必要而不充分的条件C .充要条件D .既不充分又不必要的条件6.已知直线a 、b 与平面α,给出下列四个命题①若a ∥b ,b ⊂α,则a ∥α; ②若a ∥α,b ⊂α,则a ∥b ; ③若a ∥α,b ∥α,则a ∥b; ④a ⊥α,b ∥α,则a ⊥b. 其中正确的命题是 ( )A .1个B .2个C .3个D .4个 7.函数R x x x y ∈+=,cos sin 的单调递增区间是 ( )A .)](432,42[Z k k k ∈+-ππππB .)](42,432[Z k k k ∈+-ππππC .)](22,22[Z k k k ∈+-ππππ D .)](8,83[Z k k k ∈+-ππππ 8.设集合M=N M R x x y y N R x y y xI 则},,1|{},,2|{2∈+==∈=是( )A .φB .有限集C .MD .N9.已知函数)(,||1)1()(2)(x f x x f x f x f 则满足=-的最小值是 ( ) A .32 B .2C .322 D . 2210.若双曲线122=-y x 的左支上一点P (a ,b )到直线x y =的距离为a 则,2+b 的值为( )A .21-B .21 C .-2 D .211.若一个四面体由长度为1,2,3的三种棱所构成,则这样的四面体的个数是( ) A .2 B .4 C .6 D .812.某债券市场常年发行三种债券,A 种面值为1000元,一年到期本息和为1040元;B种贴水债券面值为1000元,但买入价为960元,一年到期本息和为1000元;C 种面值为1000元,半年到期本息和为1020元. 设这三种债券的年收益率分别为a , b, c ,则a , b, c 的大小关系是 ( ) A .b a c a <=且 B .c b a <<二、填空题13.某校有初中学生1200人,高中学生900人,老师120人,现用分层抽样方法从所有师生中抽取一个容量为N 的样本进行调查,如果应从高中学生中抽取60人,那么N= .14.在经济学中,定义)()(),()1()(x f x Mf x f x f x Mf 为函数称-+=的边际函数,某企业的一种产品的利润函数N x x x x x P ∈∈++-=且]25,10[(100030)(23*),则它的边际函数MP (x )= .(注:用多项式表示) 15.已知c b a ,,分别为△ABC 的三边,且==+-+C ab c b a tan ,02333222则 . 16.已知下列四个函数:①);2(log 21+=x y ②;231+-=x y ③;12x y -=④2)2(3+-=x y .其中图象不经过第一象限的函数有 .(注:把你认为符合条件的函数的序号都填上)综合小测8一、选择题1.直线01cos =+-y x α的倾斜角的取值范围是 ( )A. ⎥⎦⎤⎢⎣⎡2,0πB.[)π,0C.⎥⎦⎤⎢⎣⎡43,4ππD.⎪⎭⎫⎢⎣⎡⋃⎥⎦⎤⎢⎣⎡πππ,434,02.设方程3lg =+x x 的根为α,[α]表示不超过α的最大整数,则[α]是 ( ) A .1 B .2 C .3 D .43.若“p 且q ”与“p 或q ”均为假命题,则 ( )A.命题“非p ”与“非q ”的真值不同B.命题“非p ”与“非q ”至少有一个是假命题C.命题“非p ”与“q ”的真值相同D.命题“非p ”与“非q ”都是真命题 4.设1!,2!,3!,……,n !的和为S n ,则S n 的个位数是 ( )A .1B .3C .5D .7 5.有下列命题①AC BC AB ++=0;②()c b a ⋅+=c b c a ⋅+⋅;③若a =(m ,4),则|a |=23的充要条件是m =7;④若的起点为)1,2(A ,终点为)4,2(-B ,则与x 轴正向所夹角的余弦值是54,其中正确命题有( )个 A.0 B.1 C.2 D.3 6.左下图中,阴影部分的面积是 ( )A.16B.18C.20D.227.如右上图,正四棱柱ABCD –A 1B 1C 1D 1中,AB=3,BB 1=4.长为1的线段PQ 在棱AA 1上移动,长为3的线段MN 在棱CC 1上移动,点R 在棱BB 1上移动,则四棱锥R –PQMN 的体积是( )A.6B.10C.12D.不确定4- · · · · · A 1 D 1 C 1 C N M D P R B AQB 18.用1,2,3,4这四个数字可排成必须..含有重复数字的四位数有 ( ) A.265个 B.232个 C.128个 D.24个9.已知定点)1,1(A ,)3,3(B ,动点P 在x 轴正半轴上,若APB ∠取得最大值,则P 点的坐标( )A .)0,2( B.)0,3( C.)0,6( D.这样的点P 不存在10.设a 、b 、x 、y 均为正数,且a 、b 为常数,x 、y 为变量.若1=+y x ,则byax +的最大值为 ( )A. 2b a +B. 21++b a C. b a + D.2)(2b a +11.如图所示,在一个盛水的圆柱形容器内的水面以下,有一个用细线吊着的下端开了一个很小的孔的充满水的薄壁小球,当慢慢地匀速地将小球从水下向水面以上拉动时,圆柱形容器内水面的高度h 与时间t 的函数图像大致是( )12.4个茶杯和5包茶叶的价格之和小于22元,而6个茶杯和3包茶叶的价格之和大于24,则2个茶杯和3包茶叶的价格比较 ( )A.2个茶杯贵B.2包茶叶贵C.二者相同D.无法确定二、填空题13.对于在区间[a ,b ]上有意义的两个函数)(x f 和)(x g ,如果对任意],[b a x ∈,均有1)()(≤-x g x f ,那么我们称)(x f 和)(x g 在[a ,b ]上是接近的.若函数232+-=x x y 与32-=x y 在[a ,b ] 上是接近的,则该区间可以是 .14.在等差数列{}n a 中,已知前20项之和17020=S ,则=+++161196a a a a . 15.如图,一广告气球被一束入射角为α的平行光线照射,其投影是长半轴长为5的椭h t 1 t 1 t O h t 2 t 3 t 1 t O h t 2 t 3 t 1 t O h t 2 t 3 A BC D t O t 2 t 3圆,则制作这个广告气球至少需要的面料为 . 16.由2≤y 及1+≤≤x y x 围成几何图形的面积是 .综合小测9一、选择题1.集合A ={x |x =2k ,k ∈Z},B ={x |x =2k +1,k ∈Z},C ={x |x =4k +1,k ∈Z},又a ∈A ,b ∈B ,则有 A.a +b ∈AB.a +b ∈BC.a +b ∈CD.a +b 不属于A ,B ,C 中的任意一个2.已知f (x )=sin(x +2π),g (x )=cos(x -2π),则f (x )的图象 A.与g (x )的图象相同B.与g (x )的图象关于y 轴对称C.向左平移2π个单位,得到g (x )的图象 D.向右平移2π个单位,得到g (x )的图象 3.过原点的直线与圆x 2+y 2+4x +3=0相切,若切点在第三象限,则该直线的方程是 A.y =3xB.y =-3xC.y =33xD.y =-33x 4.函数y =1-11-x , 则下列说法正确的是 A.y 在(-1,+∞)内单调递增 B.y 在(-1,+∞)内单调递减 C.y 在(1,+∞)内单调递增D.y 在(1,+∞)内单调递减5.已知直线m ,n 和平面α,那么m ∥n 的一个必要但非充分条件是 A.m ∥α,n ∥αB.m ⊥α,n ⊥αC.m ∥α且n ⊂αD.m ,n 与α成等角6.在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本:①采用随机抽样法,将零件编号为00,01,02,…,99,抽出20个;②采用系统抽样法,将所有零件分成20组,每组5个,然后每组中随机抽取1个;③采用分层抽样法,随机从一级品中抽取4个,二级品中抽取6个,三级品中抽取10个;则A.不论采取哪种抽样方法,这100个零件中每个被抽到的概率都是51 B.①②两种抽样方法,这100个零件中每个被抽到的概率都是51,③并非如此C.①③两种抽样方法,这100个零件中每个被抽到的概率都是51,②并非如此 D.采用不同的抽样方法,这100个零件中每个被抽到的概率各不相同 7.曲线y =x 3在点P 处的切线斜率为k ,当k =3时的P 点坐标为 A.(-2,-8)B.(-1,-1),(1,1)C.(2,8)D.(-21,-81) 8.已知y =log a (2-ax )在[0,1]上是x 的减函数,则a 的取值范围是 A.(0,1)B.(1,2)C.(0,2)D.[2,+∞)9.已知lg3,lg(sin x -21),lg(1-y )顺次成等差数列,则 A.y 有最小值1211,无最大值 B.y 有最大值1,无最小值 C.y 有最小值1211,最大值1D.y 有最小值-1,最大值110.若OA =a ,OB =b ,则∠AOB 平分线上的向量OM 为 A.||||b b a a +B.λ(||||b b a a +),λ由OM 决定 C.||b a ba ++D.||||||||b a ba ab ++11.一对共轭双曲线的离心率分别是e 1和e 2,则e 1+e 2的最小值为 A.2B.2C.22D.412.式子2n2322222C C C 321lim +++++++∞→ΛΛn n 的值为A.0B.1C.2D.3二、填空题13.从A ={a 1,a 2,a 3,a 4}到B ={b 1,b 2,b 3,b 4}的一一映射中,限定a 1的象不能是b 1,且b 4的原象不能是a 4的映射有___________个.14.椭圆5x 2-ky 2=5的一个焦点是(0,2),那么k =___________.15.已知无穷等比数列首项为2,公比为负数,各项和为S ,则S 的取值范围是_______.16.已知a n 是(1+x )n 的展开式中x 2的系数,则)111(lim 32nn a a a +++∞→Λ=___________. 综合小测10一、选择题1.(理)全集设为U ,P 、S 、T 均为U 的子集,若Y P (T U)=(T U)S Y 则( )A .S S T P =Y YB .P =T =SC .T =UD .YP S U=T(文)设集合}0|{≥+=m x x M ,}082|{2<--=x x x N ,若U =R ,且∅=N M UI ,则实数m 的取值范围是( )A .m <2B .m ≥2C .m ≤2D .m ≤2或m ≤-42.(理)复数=+-+ii i 34)43()55(3( ) A .510i 510-- B .i 510510+ C .i 510510- D .i 510510+- (文)点M (8,-10),按a 平移后的对应点M '的坐标是(-7,4),则a =( )A .(1,-6)B .(-15,14)C .(-15,-14)D .(15,-14)3.已知数列}{n a 前n 项和为)34()1(2117139511--++-+-+-=-n S n n Λ,则312215S S S -+的值是( )A .13B .-76C .46D .76 4.若函数)()(3x x a x f --=的递减区间为(33-,33),则a 的取值范围是( ) A .a >0 B .-1<a <0 C .a >1 D .0<a <15.与命题“若M a ∈则M b ∉”的等价的命题是( ) A .若M a ∉,则M b ∉ B .若M b ∉,则M a ∈C .若M a ∉,则M b ∈D .若M b ∈,则M a ∉6.(理)在正方体1111D C B A ABCD -中,M ,N 分别为棱1AA 和1BB 之中点,则sin (CM ,N D 1)的值为( ) A .91 B .554 C .592 D .32(文)已知三棱锥S -ABC 中,SA ,SB ,SC 两两互相垂直,底面ABC 上一点P 到三个面SAB ,SAC ,SBC 的距离分别为2,1,6,则PS 的长度为( )A .9B .5C .7D .37.在含有30个个体的总体中,抽取一个容量为5的样本,则个体a 被抽到的概率为( )A .301 B .61 C .51 D .65 8.(理)已知抛物线C :22++=mx x y 与经过A (0,1),B (2,3)两点的线段AB 有公共点,则m 的取值范围是( )A .-∞(,]1-Y [3,)∞+B .[3,)∞+C .-∞(,]1-D .[-1,3] (文)设R ∈x ,则函数)1|)(|1()(x x x f +-=的图像在x 轴上方的充要条件是( ) A .-1<x <1 B .x <-1或x >1 C .x <1 D .-1<x <1或x <-19.若直线y =kx +2与双曲线622=-y x 的右支交于不同的两点,则k 的取值范围是( )A .315(-,)315B .0(,)315C .315(-,)0D .315(-,)1-10.a ,b ,c ∈(0,+∞)且表示线段长度,则a ,b ,c 能构成锐角三角形的充要条件是( )A .222c b a <+ B .222||c b a <- C .||||b a c b a +<<-D .22222||b a c b a +<<-11.今有命题p 、q ,若命题S 为“p 且q ”则“或”是“”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 12.(理)函数x x y 3154-+-=的值域是( )A .[1,2]B .[0,2]C .(0,]3D .1[,]3 (文)函数)(x f 与xx g )67()(-=图像关于直线x -y =0对称,则)4(2x f -的单调增区间是( ) A .(0,2) B .(-2,0) C .(0,+∞) D .(-∞,0)二、填空题13.等比数列}{n a 的前n 项和为n S ,且某连续三项正好为等差数列}{n b 中的第1,5,6项,则=+∞→12limna S n n ________.14.若1)1(lim 2=-++--∞→k x x x x ,则k =________.15.有30个顶点的凸多面体,它的各面多边形内角总和是________.16.长为l (0<l <1)的线段AB 的两个端点在抛物线2x y =上滑动,则线段AB 中点M到x轴距离的最小值是________.21 / 21。

相关文档
最新文档