指数函数与对数函数知识点总结

合集下载

指数函数和对数函数知识点总结

指数函数和对数函数知识点总结

指数函数和对数函数知识点总结适用于高一应届学习及高三一轮复习指数函数和对数函数知识点总结及练习题一.指数函数(一)指数及指数幂的运算a am ar as ar s (ar)s ars (ab)r arbr(二)指数函数及其性质1.指数函数的概念:一般地,形如y a(a 0且a 1)叫做指数函数。

xmn二.对数函数(一)对数1.对数的概念:一般地,如果a N(a 0且a 1),那么x叫做以a为底N的对数,记作x logaN,其中a叫做底数,N叫做真数,logaN叫做对数式。

2.指数式与对数式的互化幂值真数xax log指数对数适用于高一应届学习及高三一轮复习3.两个重要对数(1)常用对数:以10为底的对数lgN(2)自然对数:以无理数e 2.***** 为底的对数lnN(二)对数的运算性质(a 0且a 1,M 0,N 0)①logaM logaN logaMN ②logaM logaN loga③logaM nlogaM ④换底公式:logab 关于换底公式的重要结论:①logamb(三)对数函数1.对数函数的概念:形如y logax(a 0且a 1)叫做对数函数,其中x 是自变量。

M Nnlogcb(c 0且c 1)logcannlogab ②logab logba 1 m适用于高一应届学习及高三一轮复习基本初等函数练习题1.已知集合M { 1,1},N {x|12x 1 4,x Z},则M∩N=()2A.{-1,1}B.{0}C.{-1}D.{-1,0} 2.设11b1a() () 1,则()333abaaabbaabaaA.a a bB.a b aC.a a bD.a b a 3.设y1 40.9,y2 80.48,y3 () 1.5,则()12A.y3 y1 y2B.y2 y1 y3C.y1 y3 y2D.y3 y1 y2 4.若()122a 11()3 2a,则实数a的取值范围是()211A.(1,+∞)B.(,+∞)C.(-∞,1)D.(-∞,)221-5.方程3x1=的解为()9A.x=2B.x=-2C.x=1D.x=-1116.已知实数a,b满足等式(a=()b,则下列五个关系式:①0ba;②ab0;③0ab;23④ba0;⑤a=b。

指数对数函数基本知识点

指数对数函数基本知识点

指数对数函数基本知识点指数函数和对数函数是高中数学紧密相关的数学概念,对于理解和运用多种数学问题都是至关重要的。

下面将从定义、性质、图像和应用等几个方面进行详细介绍。

一、指数函数指数函数的定义是f(x)=a^x,其中a是一个正实数且a≠1,x是实数。

指数函数的特点包括:1.a^0=1,a^1=a。

2.指数函数的定义域是整个实数集。

3.当a>1时,指数函数是严格递增的;当0<a<1时,指数函数是严格递减的。

4.指数函数的图像可以分成两种情况:当a>1时,图像在x轴的右侧逐渐向上增长;当0<a<1时,图像在x轴的右侧逐渐向下降低;当a=1时,图像是一条水平直线。

二、对数函数对数函数的定义是f(x)=log_a(x),其中a是一个正实数且a≠1,x是正实数。

对数函数的特点包括:1. log_a(1)=0,log_a(a)=12.对数函数的定义域是正实数集。

3.当a>1时,对数函数是严格递增的;当0<a<1时,对数函数是严格递减的。

4.对数函数的图像可以分成两种情况:当a>1时,图像在y轴的右侧逐渐向上增长;当0<a<1时,图像在y轴的右侧逐渐向下降低;当a=1时,图像是一条水平直线。

三、指数函数和对数函数的性质1. 反函数性质:指数函数和对数函数互为反函数,即a^log_a(x)=x,log_a(a^x)=x。

2. 对数与指数的互化性质:log_a(x)=y等价于 a^y=x。

3.对于任意的正实数a,b和任意实数x,有如下几个基本性质:-a^x*a^y=a^(x+y)- (a^x)^y = a^(xy)- (ab)^x = a^x * b^x-a^(-x)=1/(a^x)-(a/b)^x=a^x/b^x- log_a(xy) = log_a(x) + log_a(y)- log_a(x^y) = y * log_a(x)- log_a(1/x) = -log_a(x)- log_a(x/y) = log_a(x) - log_a(y)四、指数和对数函数的图像指数函数和对数函数的图像可以通过制作表格来得到,然后连接各个点形成曲线图。

高中人教A版必修一指数函数与对数函数知识点总结

高中人教A版必修一指数函数与对数函数知识点总结

高中人教A版必修一指数函数与对数函数知识点总结指数函数和对数函数是高中数学中的重要概念,它们经常出现在各种高考试题中。

下面对高中人教A版必修一中的指数函数和对数函数的知识点进行总结:一、指数函数的定义和性质:1.指数函数的定义:设a是一个正数且不等于1,x是任意实数,则形如y=a^x的函数称为指数函数。

2.指数函数的性质:(1)当a>1时,指数函数y=a^x是递增函数。

(2)当0<a<1时,指数函数y=a^x是递减函数。

(3)当a>0且不等于1时,指数函数y=a^x的图象经过点(0,1)。

(4)当a>1时,指数函数y=a^x的图象在y轴的右半部分无上界,且在x轴的左半部分无下界;当0<a<1时,指数函数y=a^x的图象在y轴的右半部分无下界,且在x轴的左半部分无上界。

(5)指数函数y=a^x的图象经过点(1,a)。

二、对数函数的定义和性质:1. 对数函数的定义:设a是一个大于0且不等于1的实数,b是一个正数,则形如y=log_a^b的函数称为对数函数。

2.对数函数的性质:(1) 对数函数y=log_a^b的定义域是(0,+∞),值域是(-∞,+∞)。

(2) 当0<a<1时,对数函数y=log_a^b是递增函数。

(3) 当a>1时,对数函数y=log_a^b是递减函数。

(4) 对数函数y=log_a^b的图象经过点(a,1)。

(5) 对数函数y=log_a^b是指数函数y=a^x的反函数,即y=log_a^b等价于b=a^y。

三、指数方程和对数方程:1.指数方程:形如a^x=b的等式称为指数方程。

(1)指数方程的解法:当指数方程左右两边的底数相等时,可取对数得到对数方程,再解对数方程得到解;当指数方程左右两边的指数相等时,可取对数得到对数方程,再解对数方程得到解。

2. 对数方程:形如log_a^b=c的等式称为对数方程。

(1)对数方程的解法:根据对数的定义,可将对数方程化为指数方程,再解指数方程得到解。

高中数学必修一指数函数对数函数知识点

高中数学必修一指数函数对数函数知识点

高中数学必修一指数函数对数函数知识点高中数学必修一中,指数函数和对数函数是重要的知识点。

指数函数是一种以指数为自变量的函数,形式为y = a^x,其中a为底数,x为指数。

而对数函数是指数函数的逆运算,形式为y = loga(x),其中a为底数,x为真数。

以下是关于指数函数和对数函数的具体知识点。

一、指数函数的图像和性质1.指数函数的基本形式:-y=a^x,其中a>0且a≠12.指数函数的基本性质:-当0<a<1时,指数函数呈现递减的图像;-当a>1时,指数函数呈现递增的图像;-当a=1时,指数函数为常数函数y=1二、对数函数的图像和性质1.对数函数的基本形式:- y = loga(x),其中a > 0且a≠12.对数函数的基本性质:- 对数函数与指数函数互为反函数,即loga(a^x) = x,a^loga(x) = x;-对数函数的图像关于直线y=x对称;-对数函数的定义域为正实数集,值域为实数集。

三、指数函数和对数函数的运算性质1.指数函数的运算性质:-a^x*a^y=a^(x+y);- (a^x)^y = a^(xy);- (ab)^x = a^x * b^x;-a^0=1,其中a≠0。

2.对数函数的运算性质:- loga(xy) = loga(x) + loga(y);- loga(x^y) = y * loga(x);- loga(x/y) = loga(x) - loga(y);- loga(1) = 0,其中a≠0。

四、指数函数和对数函数的应用1.指数函数在生活中的应用:-经济增长模型中的应用;-指数衰减与物质的半衰期计算;-大自然中的指数增长现象。

2.对数函数在生活中的应用:-pH值的计算;-放大器的功率增益计算;-数字音乐的音量计算。

综上所述,指数函数和对数函数是高中数学必修一中的重要知识点。

掌握了指数函数和对数函数的基本形式、性质以及运算规律,能够理解其图像特征和在实际问题中的应用。

指数函数与对数函数知识点

指数函数与对数函数知识点

指数函数与对数函数1、n 次方根与分数指数幂、指数幂运算性质(1)若nx a =,则))n x n =⎪⎩为奇数为偶数;()()a n a n ⎧⎪⎨⎪⎩为奇数为偶数;(3)n a =;(4)*0,,,1)m na a m n N n =>∈>且;(5)*0,,1)mn a a m n N n -=>∈>,且;(6)0的正分数指数幂为0,0的负分数指数幂没有意义.(7)()0,,r s r s a a a a r s R +⋅=>∈;(8)()()0,,r s rs a a a r s R =>∈;(9)()()0,0,,r r r ab a b a b r s R =⋅>>∈.2、对数、对数运算性质(1)()log 0,1x a a N x N a a =⇔=>≠;(2)()log 100,1a a a =>≠;(3)()log 10,1a a a a =>≠;(4);()log0,1a N a N a a =>≠;(5)()log 0,1m a a m a a =>≠;(6)()log ()log log 0,1,0,0a a a MN M N a a =+>≠M >N >; (7)()log log log 0,1,0,0a a a M M N a a N=->≠M >N >; (8)()log log 0,1,0n a a M n M a a =⋅>≠M >; (9)换底公式()log log 0,1,0,0,1log c a c b b a a b c c a =>≠>>≠; (10)()log log 0,1,,*m n a a n b b a a n m N m=>≠∈;(11)()1log log 0,1,0,a a M a a M n R n=>≠>∈; (12)()log log log 10,1,0,1,0,1a b c b c a a a b b c c ⋅⋅=>≠>≠>≠.3、指数函数)1,0(≠>=a a a y x 且及其性质:①定义域为(),-∞+∞; ②值域为()0,+∞;③过定点()0,1;④单调性:当1a >时,函数()f x 在R 上是增函数;当01a <<时,函数()f x 在R 上是减函数; ⑤在y 轴右侧,指数函数的图象“底大图高”.4、对数函数)1,0(log ≠>=a a x y a 且及其性质:①定义域为()0,+∞;②值域为(),-∞+∞;③过定点()1,0;④单调性:当1a >时,函数()f x 在()0,+∞上是增函数;当01a <<时,函数()f x 在()0,+∞上是减函数;⑤在直线1=x 的右侧,对数函数的图象“底大图低”.5指数函数x a y =与对数函数)1,0(log ≠>=a a x y a 且互为反函数,它们的图象关于直线x y =对称.6不同函数增长的差异:线性函数模型)0(>+=k b kx y 的增长特点是直线上升,其增长速度不变;指数函数模型)1(>=a a y x 的增长特点是随着自变量的增大,函数值增大的速度越来越快,呈“指数爆炸”状态;对数函数模型)1(log >=a x y a 的增长特点是随着自变量的增大,函数值增大速度越来越慢,即增长速度平缓;幂函数模型)0(>=n x y n 的增长速度介于指数函数和对数函数之间.7函数的零点:在函数)(x f y =的定义域内,使得0)(=x f 的实数x 叫做函数的零点.8零点存在性定理:如果函数()f x 在区间[],a b 上的图象是连续不断的一条曲线,且有()()0f a f b ⋅<,那么函数()y f x =在区间(),a b 内至少有一个零点,即存在(),c a b ∈,使得()0f c =,这个c 也就是方程()0f x =的根.9二分法:对于区间],[b a 上图象连续不断且()()0f a f b ⋅<的函数)(x f y =,通过不断把它的零点所在区间一分为二,使得区间的两个端点逐步逼近零点,进而得到零点近似值的方法.10给定精确度ε,用二分法求函数)(x f y =零点0x 近似值的步骤:⑴确定零点0x 的初始区间[],a b ,验证()()0f a f b ⋅<;⑵求区间[],a b 的中点c ;⑶计算)(c f ,并进一步确定零点所在的区间;①若0)(=c f ,则c 就是函数的零点;②若0)()(<c f a f (此时),(0c a x ∈),则令c b =;③若0)()(<b f c f (此时),(0b c x ∈),则令c a =;⑷判断是否达到精确度ε:若a b ε-<,则得到零点的近似值a (或b );否则重复上面的⑵至⑷.。

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结一、指数函数1、指数函数的定义一般地,函数\(y = a^x\)(\(a > 0\)且\(a ≠ 1\))叫做指数函数,其中\(x\)是自变量,函数的定义域是\(R\)。

需要注意的是,底数\(a\)的取值范围,当\(a = 1\)时,函数就变成了\(y = 1^x = 1\),是一个常函数,不符合指数函数的定义;当\(a < 0\)时,对于某些\(x\)的值,\(a^x\)无意义,比如\((-2)^{\frac{1}{2}}\)就没有实数解。

2、指数函数的图象当\(a > 1\)时,指数函数\(y = a^x\)的图象是上升的,经过点\((0, 1)\),在\(R\)上单调递增;当\(0 < a < 1\)时,指数函数\(y = a^x\)的图象是下降的,经过点\((0, 1)\),在\(R\)上单调递减。

我们可以通过几个特殊的点,比如\((0, 1)\)、\((1, a)\)、\((-1, \frac{1}{a})\)等来大致描绘指数函数的图象。

3、指数函数的性质(1)定义域:\(R\)(2)值域:\((0, +∞)\)(3)恒过定点\((0, 1)\)(4)单调性:当\(a > 1\)时,在\(R\)上单调递增;当\(0 <a < 1\)时,在\(R\)上单调递减(5)函数值的变化情况当\(a > 1\)时,若\(x > 0\),则\(a^x > 1\);若\(x = 0\),则\(a^x = 1\);若\(x < 0\),则\(0 < a^x < 1\)。

当\(0 < a < 1\)时,若\(x > 0\),则\(0 < a^x < 1\);若\(x = 0\),则\(a^x = 1\);若\(x < 0\),则\(a^x > 1\)。

4、指数运算的性质(1)\(a^m × a^n = a^{m + n}\)(2)\(\frac{a^m}{a^n} = a^{m n}\)(\(a ≠ 0\))(3)\((a^m)^n = a^{mn}\)(4)\((ab)^n = a^n b^n\)这些运算性质在化简指数表达式和进行指数运算时经常用到。

指数函数和对数函数知识点总结

指数函数和对数函数知识点总结

指数函数和对数函数知识点总结一、指数函数:1.基本概念:指数函数是形如y=a^x(a>0,且a≠1)的函数,其中a称为底数,x 称为指数,a^x称为底数a的x次幂。

2.基本性质:(1)a^0=1,任何数的0次幂等于1;(2)a^x*a^y=a^(x+y),相同底数的指数幂相乘,底数不变,指数相加;(3)a^x÷a^y=a^(x-y),相同底数的指数幂相除,底数不变,指数相减;(4)(a^x)^y=a^(x*y),指数幂的乘积再乘方,指数相乘;(5)a^(-x)=1/(a^x),任何数的负指数满足倒数规律。

3.常见指数函数:(1)指数函数y=2^x:以2为底的指数函数,可以用来描述2的x 次幂关系,是一种常见的指数型增长函数,图像逐渐向上凸起。

二、对数函数:1.基本概念:对数函数是指y=loga(x),其中a>0,且a≠1,a称为底数,x称为真数,y称为以a为底x的对数。

2.基本性质:(1)loga(1)=0,底数为任何正数时,1的对数都是0;(2)loga(a)=1,底数为任何正数时,底数的对数都是1;(3)loga (x*y) = loga(x) + loga(y),对数相乘,真数取乘积,对数相加;(4)loga (x/y) = loga(x) - loga(y),对数相除,真数取商,对数相减;(5)loga(x^k) = k * loga(x),对数乘方,真数取底数的k次方,对数乘以指数。

3.常见对数函数:(1)常用对数函数:y=log10(x),其中底数为10,对数函数可以简写为y=log(x)。

常用对数函数是以10为底的对数函数,输入一个正实数x,输出满足10^y=x的y值。

(2)自然对数函数:y=ln(x),其中底数为e。

自然对数函数是以e 为底的对数函数,输入一个正实数x,输出满足e^y=x的y值。

三、指数函数与对数函数的关系:四、指数函数与对数函数的应用:1.科学中的指数增长:指数函数常常用于描述原子衰变、细胞分裂和放射性物质的衰变等过程。

指数对数函数基本知识点

指数对数函数基本知识点

指数对数函数基本知识点指数和对数函数是数学中常见的函数类型,应用广泛于科学、工程和金融等领域。

本文将介绍指数函数和对数函数的基本知识点,包括定义、性质和应用等方面。

一、指数函数(Exponential Function)指数函数是以常数e为底数的函数,它的定义如下:f(x)=a^x其中a是常数,称为底数;x是变量,称为指数;f(x)是函数的值。

1.常数e:e=1+1/1!+1/2!+1/3!+…2.指数函数的性质:(1)当x为整数时,指数函数的取值和底数a的幂运算相同;(2)当x为分数时,指数函数的取值是底数a的分数次幂;(3)当x为0时,指数函数的值为1;(4)当x趋近于负无穷时,指数函数的值趋近于0;(5)当x趋近于正无穷时,指数函数的值趋近于正无穷。

3.应用:指数函数在自然科学和金融领域有广泛的应用。

在自然科学中,指数函数可以描述各种自然过程的增长或衰减。

在金融领域中,指数函数可以用来进行复利计算。

二、对数函数(Logarithmic Function)对数函数是指数函数的逆运算,它的定义如下:f(x) = log_a(x)其中a是底数;x是函数的值;f(x)是变量。

1.对数的定义:对数函数中的底数a必须大于0且不等于1,对数函数的定义可以有以下两种形式:(1) 若a>1,则f(x) = log_a(x) 表示x=a^f(x);(2)若0a&0。

3.对数函数的性质:(1) f(x) = log_a(1) = 0;(2) f(x) = log_a(a) = 1;(3)若x1>x2,则f(x1)>f(x2);(4) log_a(x * y) = log_a(x) + log_a(y);(5) log_a(x / y) = log_a(x) - log_a(y);(6) log_a(x^k) = k * log_a(x);(7) 若x > 1,则log_a(x) > 0;若0 < x < 1,则log_a(x) < 0;(8)当x趋近于正无穷时,对数函数的值趋近于无穷。

指数函数与对数函数

指数函数与对数函数

一.n 次方根与分数指数幂知识点一 根式的定义(1)a 的n 其中n >1,且n ∈N *.(2)a 的n 次方根的表示①当n②当n④0(3)知识点二 根式的性质(1)(n a )n(2)n a n =02⎩⎨⎧a (n 为奇数),|a |(n 为偶数). 知识点三 分数指数幂的意义(1)a =01n a m (a >0,m ,n ∈N *,n >1),a =1a =021n am (a >0,m ,n ∈N *,n >1).(2)0知识点四 有理数指数幂的运算性质(1)a r a s a >0,r ,s ∈Q ).(2)(a r )s a >0,r ,s ∈Q ).(3)(ab )r a >0,b >0,r ∈Q ).1.n a n 与(n a )n 的区别(1)n a n 是实数a n 的n 次方根,是一个恒有意义的式子,不受n 的奇偶限制,但这个式子的值受n 的奇偶限制.其算法是对a 先乘方,再开方(都是n 次),结果不一定等于a ,当n 为奇数时,n a n =a ;当n 为偶数时,n a n =|a |=⎩⎨⎧a ,a ≥0,-a ,a <0. (2)(n a )n 是实数a 的n 次方根的n 次幂,其中实数a 的取值范围由n 的奇偶决定.若n 为偶数,则a ≥0;若n 为奇数,则a ∈R .其算法是对a 先开方,后乘方(都是n 次),结果恒等于a . 2.分数指数幂的理解(1)分数指数幂是指数概念的又一推广,分数指数幂a 不可理解为m n 个a 相乘,它是根式的一种新的写法.在这样的规定下,根式与分数指数幂是表示相同意义的量,只是形式不同而已.(2)把根式 n a m 化成分数指数幂的形式时,不要轻易对m n 进行约分. 3.在保证相应的根式有意义的前提下,负数也存在分数指数幂,如(-5)=3(-5)2有意义,但(-5)=4(-5)3就没有意义.4.n 次方根的个数及符号的确定(1)正数的偶次方根有两个且互为相反数,任意实数的奇次方根只有一个.(2)根式n a 的符号由根指数n 的奇偶及被开方数a 的符号共同确定:①当n 为偶数时,n a 为非负实数;②当n 为奇数时,n a 的符号与a 的符号一致.二.无理数指数幂及其运算性质知识点一 无理数指数幂(1)对于无理数指数幂,我们只需要了解两点:①它是一个确定的实数;②它是有理数指数幂无限逼近的结果.(2)定义了无理数指数幂之后,幂的指数就由原来的有理数范围扩充到了实数范围.知识点二 实数指数幂的运算性质(1)a r a s a >0,r ,s ∈R ).(2)(a r )s a >0,r ,s ∈R ).(3)(ab )r a >0,b >0,r ∈R ).对于实数a >0,r ,s 有a r ÷a s=a r -s 成立.这是因为a r ÷a s =a r a s =a r ·a -s =a r -s .教材中没有给出此性质,但是它可以由已有公式推导出来.(1)在进行幂和根式的化简时,一般原则是:先将负指数幂化为正指数幂,将小数化为分数,将根式化为分数指数幂,将底数(较大的整数分解质因数)化成指数幂的形式,再利用幂的运算性质在系数、同底数幂间进行运算,达到化简和求值的目的.(2)化简指数幂的几个常用技巧如下:①⎝ ⎛⎭⎪⎫b a -p =⎝ ⎛⎭⎪⎫a b p (ab ≠0); ②a =(a )m ,a =(a )n (a 使式子有意义);③1的代换,如1=a -1a,1=a a (a 使式子有意义)等;④乘法公式的常见变形,如(a +b )(a -b )=a -b ,(a ±b )2=a ±2a b +b ,(a ±b )(a ∓a b +b )=a ±b (a ,b 均使式子有意义). 1.指数幂运算的解题通法 (1)有括号的先算括号里的,无括号的先做指数运算. (2)先乘除后加减,负指数幂化成正指数幂的倒数. (3)底数是负数,先确定符号,底数是小数,先化成分数,底数是带分数,先化成假分数.(4)若是根式,应化为分数指数幂,并尽可能用幂的形式表示,运用指数幂的运算性质来解答.(5)运算结果不能同时含有根式和分数指数幂,也不能既有分母又含有负指数幂,形式力求统一.三.指数函数的概念知识点一指数函数的定义定义域是R.知识点二指数增长模型在实际问题中,经常会遇到指数增长模型:设原有量为N,每次的增长率为p,经过x次增长,该量增长到y,则y形如y=ka x(k∈R,且k≠0;a>0,且a≠1)的函数是刻画指数增长或指数衰减变化规律的非常有用的函数模型.1.指数函数中规定a>0,且a≠1的原因(1)如果a=0,当x>0时,a x恒等于0,没有研究的必要;当x≤0时,a x无意义.(2)如果a<0,例如f(x)=(-4)x,这时对于x=12,14,…,该函数无意义.(3)如果a=1,则y=1x是一个常量,没有研究的价值.为了避免上述各种情况,所以规定a>0,且a≠1.2.判断一个函数是指数函数,要牢牢抓住三点:①底数是大于0且不等于1的常数;②指数函数的自变量必须位于指数的位置上;③a x的系数必须为1.3.求指数函数的解析式常用待定系数法.(1)设指数函数的解析式为f(x)=a x(a>0,且a≠1).(2)利用已知条件求底数a.(3)写出指数函数的解析式.4.常见的几类函数模型(1)指数增长模型设原有量为N,每次的增长率为p,则经过x次增长,该量增长到y,则y =N(1+p)x(x∈N).(2)指数减少模型设原有量为N,每次的减少率为p,则经过x次减少,该量减少到y,则y =N(1-p)x(x∈N).(3)指数型函数把形如y=ka x(k≠0,a>0,且a≠1)的函数称为指数型函数,这是非常有用的函数模型.四.指数函数的图象和性质知识点一指数函数的图象和性质01(1)指数函数在同一直角坐标系中的图象的相对位置与底数大小的关系如图所示,则0<c<d<1<a<b.在y在y即无论在y 轴的左侧还是右侧,底数按逆时针方向递增.(2)实质:指数函数的底数即直线x =1与图象交点的纵坐标,由此也可求指数函数底数的大小.1.由指数函数y =a x (a >0,且a ≠1)的性质知,指数函数y =a x (a >0,且a ≠1)的图象恒过点(0,1),(1,a ),⎝ ⎛⎭⎪⎫-1,1a ,只要确定了这三个点的坐标,即可快速地画出指数函数y =a x (a >0,且a ≠1)的图象.2.底数的大小决定了图象相对位置的高低:不论是a >1,还是0<a <1,在第一象限内底数越大,函数图象越靠近y 轴.(1)当a >b >1时,①若x >0,则a x >b x >1;②若x <0,则1>b x >a x >0.(2)当1>a >b >0时,①若x >0,则1>a x >b x >0;②若x <0,则b x >a x >1.3.与指数函数复合的函数单调性(1)关于指数型函数y =a f (x )(a >0,且a ≠1)的单调性由两点决定,一是底数a >1还是0<a <1;二是f (x )的单调性.它由两个函数y =a u ,u =f (x )复合而成.(2)若y =f (u ),u =g (x ),则函数y =f (g (x ))的单调性有如下特点:=f(u),u=g(x),通过考查f(u)和g(x)的单调性,求出y=f(g(x))的单调性.4.识别指数函数图象问题的注意点(1)根据图象“上升”或“下降”确定底数a>1或0<a<1;(2)在y轴右侧,指数函数的图象从下到上相应的底数由小到大;在y轴左侧,指数函数的图象从下到上相应的底数由大到小;(3)根据“左加右减,上加下减”的原则,确定图象的平移变换,从而确定指数型函数的图象与两坐标轴的交点位置.5.解决指数型函数图象过定点问题的思路指数函数y=a x(a>0,且a≠1)的图象过定点(0,1),据此,可解决形如y=k·a x +c+b(k≠0,a>0,且a≠1)的函数图象过定点的问题,即令x=-c,得y=k+b,函数图象过定点(-c,k+b).6.函数y=a f(x)定义域、值域的求法(1)定义域:形如y=a f(x)形式的函数的定义域是使得f(x)有意义的x的取值集合.(2)值域:①换元,令t=f(x);②求t=f(x)的定义域x∈D;③求t=f(x)的值域t∈M;④利用y=a t的单调性求y=a t,t∈M的值域.提示:(1)通过建立不等关系求定义域时,要注意解集为各不等关系解集的交集.(2)当指数型函数的底数含字母时,在求定义域、值域时要注意分类讨论.7.比较幂的大小的方法(1)同底数幂比较大小时构造指数函数,根据其单调性比较.(2)指数相同底数不同时分别画出以两幂底数为底数的指数函数的图象,当x取相同幂指数时可观察出函数值的大小.(3)底数、指数都不相同时,取与其中一底数相同与另一指数相同的幂与两数比较,或借助“1”与两数比较.(4)当底数含参数时,要按底数a>1和0<a<1两种情况分类讨论.8.解与指数有关的不等式时需注意的问题(1)形如a f(x)>a g(x)的不等式,借助函数y=a t(a>0,且a≠1)的单调性求解,如果a的取值不确定,需分a>1与0<a<1两种情况讨论;(2)形如a f(x)>b的不等式,注意将b化为以a为底的指数幂的形式,再借助y =a t(a>0,且a≠1)的单调性求解;(3)形如a f(x)>b f(x)的形式,利用图象求解.五.对数的概念知识点一对数的概念(1)a>0,且a≠1)叫做真数.(2)两种特殊的对数①常用对数:通常,并把log10Nlg_N;并把log e N ln_N(其中e=2.71828…).知识点二对数与指数的关系(1)对数的基本性质N>0;②1log a1a>0,且a≠1);log a a a>0,且a≠1).(2)两个重要的对数恒等式①a log aN a>0,且a≠1,N>0);②log a a N a>0,且a≠1).1.在对数的概念中规定a>0且a≠1的原因(1)若a<0,则当N为某些值时,x的值不存在,如:x=log(-2)8不存在.(2)若a=0,①当N≠0时,x的值不存在.如:log03(可理解为0的多少次幂是3)不存在;②当N=0时,x可以是任意正实数,是不唯一的,即log00有无数个值.(3)若a=1,①当N≠1时,x的值不存在.如:log13不存在;②当N=1时,x可以为任意实数,是不唯一的,即log11有无数个值.因此规定a>0,且a≠1.2.指数式与对数式互化的方法(1)将指数式化为对数式,只需要将幂作为真数,指数当成对数值,底数不变,写出对数式;(2)将对数式化为指数式,只需将真数作为幂,对数作为指数,底数不变,写出指数式.3.对数式中求值的基本思想和方法(1)基本思想在一定条件下求对数的值,或求对数式中参数字母的值,要注意利用方程思想求解.(2)基本方法①将对数式化为指数式,构建方程转化为指数问题.②利用幂的运算性质和指数的性质计算.4.利用对数性质求解的两类问题的解法(1)求多重对数式的值的解题方法是由内到外,如求log a(log b c)的值,先求log b c的值,再求log a(log b c)的值.(2)已知多重对数式的值,求变量值,应从外到内求,逐步脱去“log”后再求解.5.性质alogaN =N 与logaab =b 的作用(1)a log a N =N 的作用在于能把任意一个正实数转化为以a 为底的指数形式.(2)log a a b =b 的作用在于能把以a 为底的指数转化为一个实数.六.对数的运算知识点一 对数运算性质如果a >0,且a ≠1,M >0,N >0,那么(1)log a (MN )(2)log a M N =(3)log a M n n ∈R ).知识点二 换底公式(1)log ca (2)三个较为常用的推论log ba ③log amb n m a >0,b >0,且均不为1,m ≠0).1.常用结论(1)推广:log a (N 1N 2…N k )=log a N 1+log a N 2+…+log a N k (N k >0,k ∈N *).(2)对数运算性质推导的基本方法:利用对数的定义将对数问题转化为指数问题,再利用幂的运算性质,进行转化变形,然后把它还原为对数问题.(3)对数运算性质的实质就是把积、商、幂的对数运算分别转化为对数的加、减、乘运算,使用时要注意公式的适用条件.(4)只有当式子中所有的对数都有意义时,对数的运算性质才能成立,注意下列式子不一定成立:log a (MN )=log a M ·log a N ,log a (M ±N )=log a M ±log a N ,log a M N=log a Mlog aN ,log a M n =(log a M )n .(5)逆向运用对数的运算性质,可以将几个对数式化为一个对数式,有利于化简,如:lg 5+lg 2=lg 10=1. 2.对数式化简与求值的原则和方法(1)基本原则对数的化简求值一般是正用或逆用公式,对真数进行处理,选哪种策略化简,取决于问题的实际情况,一般本着便于真数化简的原则进行.(2)两种常用的方法①“收”:将同底的两对数的和(差)收成积(商)的对数; ②“拆”:将积(商)的对数拆成同底的两对数的和(差). 3.利用换底公式进行化简求值的原则和技巧4.应用对数的运算性质解对数方程的三种方法(1)定义法:解形如b =log a f (x )(a >0,且a ≠1)的方程时,常借助对数的定义等价转化为f (x )=a b 求解.(2)转化法:适用于同底型,即通过对数的运算把形如log a f (x )=log a g (x )(a >0,且a ≠1)的方程,等价转化为f (x )=g (x ),且⎩⎨⎧f (x )>0,g (x )>0求解.(3)换元法:适用于f (log a x )=0(a >0,且a ≠1)形式的方程的求解问题,这类方程一般可通过设中间变量的方法(换元法)来解. 5.解决对数应用题的一般步骤七.对数函数的概念知识点对数函数x是自变量,1.对数函数的特征(1)log a x的系数是1;(2)log a x的底数是不等于1的正数;(3)log a x的真数仅含自变量x.2.判断一个函数是对数函数的方法3.求对数型函数定义域的原则(1)分母不能为0.(2)根指数为偶数时,被开方数非负.(3)对数的真数大于0,底数大于0且不为1.(4)若需对函数进行变形,则需先求出定义域,再对函数进行恒等变形.八.对数函数的图象和性质知识点对数函数的图象和性质01(1)对图象的影响:比较图象与直线y=1的交点,此时直线y=1与对数函数图象交点的坐标为(a,1).交点的横坐标越大,对应的对数函数的底数越大,即沿着直线y=1由左向右看,底数a增大(如图):(2)图象的特点:函数y=log a x(a>0,且a≠1)的图象无限靠近y轴,但永远不会与y轴相交;在同一坐标系内,y=log a x(a>0,且a≠1)的图象与y=log1a x(a>0,且a≠1)的图象关于x轴(即直线y=0)对称.2.对数型函数的图象过定点问题求函数y=m+log a f(x)(a>0,且a≠1)的图象过的定点时,只需令f(x)=1求出x,即得定点为(x,m).3.根据对数函数的图象判断底数大小的方法作直线y=1与所给图象相交,交点的横坐标即为各个底数,依据在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大,可比较底数的大小.4.比较对数值大小的常用方法(1)同底数的利用对数函数的单调性.(2)同真数的利用对数函数的图象或用换底公式转化.(3)底数和真数都不相同时,找中间量.提示:比较数的大小时可先利用性质比较出与0或1的大小.5.一些结论(1)求与对数函数相关的复合函数的值域(最值),关键是根据单调性求解,若需换元,需考虑新元的取值范围.(2)对于形如y=log a f(x)(a>0,且a≠1)的复合函数,其值域的求解步骤如下:①分解成y=log a u,u=f(x)两个函数;②求f(x)的定义域;③求u的取值范围;④利用y=log a u的单调性求解.九.对数函数性质的应用知识点一反函数的概念对数函数y=log a x(a>0,且a≠1)与指数函数y=a x对数函数y=log a x的定义域是指数函数y=a x的03值域,而y =log a x 的值域是y =a x知识点二 指数函数与对数函数的关系R (0,+∞)(1)并非任意一个函数y =f (x )都有反函数,只有定义域和值域满足“一一对应”的函数才有反函数.互为反函数的两个函数的定义域、值域的关系如下表所示:单调性.(3)若一个奇函数存在反函数,则它的反函数也是奇函数. 2.求反函数的步骤(1)求出函数y=f(x)的值域;(2)仅解x,即由y=f(x)解出x=f-1(y);(3)把x=f-1(y)改写成y=f-1(x),并写出函数的定义域(即原函数的值域).2.(1)互为反函数的两个函数的图象关于直线y=x对称.(2)若互为反函数的两个函数是同一个函数,则该函数的图象自身关于直线y =x对称.3.常见的对数不等式的三种类型(1)形如log a x>log a b的不等式,借助y=log a x的单调性求解,如果a的取值不确定,需分a>1与0<a<1两种情况讨论;(2)形如log a x>b的不等式,应将b化为以a为底数的对数式的形式,再借助y=log a x的单调性求解;(3)形如log a x>log b x的不等式,可利用图象求解.4.图象与性质是解决对数函数问题的常用方法对数函数的综合问题,常以对数函数为依托,着重考查对数的运算、对数函数的图象与性质、函数的单调性、奇偶性、值域与最值等,熟悉对数函数的图象与性质及求解函数问题的一般规律和方法是解答这类问题的前提.十.不同函数增长的差异知识点三种函数的性质及增长速度比较一般地,在区间(0,+∞)上,尽管函数y=a x(a>1),y=log a x(a>1)和y=x n(n>0)都是增函数,但它们的增长速度不同,而且不在同一个“档次”上.随着x的增大,y=a x(a>1)的增长速度越来越快,会超过并远远大于y=x n(n>0)的增长速度,而y=log a x(a>1)的增长速度则会越来越慢,总会存在一个x0,当x>x0时,就有log a x<x n<a x.2.常见的函数模型及增长特点(1)线性函数模型线性函数模型y=kx+b(k>0)的增长特点是直线上升,其增长速度不变.(2)指数函数模型指数函数模型y=a x(a>1)的增长特点是随着自变量的增大,函数值增大的速度越来越快,即增长速度急剧,形象地称为“指数爆炸”.(3)对数函数模型对数函数模型y=log a x(a>1)的增长特点是随着自变量的增大,函数值增大的速度越来越慢,即增长速度平缓.3.由图象判断指数函数、对数函数和幂函数的方法根据图象判断增长型的指数函数、对数函数和幂函数时,通常是观察函数图象上升的快慢,即随着自变量的增大,图象最“陡”的函数是指数函数;图象趋于平缓的函数是对数函数.4.几类不同增长的函数模型选择的方法(1)增长速度不变,即自变量增加相同量时,函数值的增量相等,此时的函数模型是一次函数模型.(2)增长速度越来越快,即自变量增加相同量时,函数值的增量越来越大,此时的函数模型是指数函数模型.(3)增长速度越来越慢,即自变量增加相同量时,函数值的增量越来越小,此时的函数模型是对数函数模型.十一.函数的零点与方程的解知识点一函数零点的概念对于一般函数y=f(x)y=f(x)的零点.函数y=f(x)f(x)=0的实数解,也就是函数y=f(x)的图象与x知识点二方程的解与函数零点的关系方程f(x)=0有实数解⇔函数y=f(x函数y=f(x)的图象与x轴知识点三函数零点存在定理如果函数y=f(x)在区间[a,b]<0,那么,函数y=f(x)在区间(a,b)即存在c∈(a,b),c也就是方程f(x)=0的解.1.一些常用结论(1)一个函数y=f(x)在区间(a,b)内有零点必须同时满足:①函数f(x)在区间[a,b]上的图象是一条连续不断的曲线;②f(a)f(b)<0.这两个条件缺一不可.可从函数y=1x 来理解,易知f(-1)f(1)=-1×1<0,但显然y=1x在(-1,1)内没有零点.(2)若函数f(x)在区间[a,b]上的图象是连续不断的,且在两端点处的函数值f(a),f(b)异号,则函数y=f(x)在(a,b)上的图象至少穿过x轴一次,即方程f(x)=0在区间(a,b)内至少有一个实数解c.(3)函数零点存在定理只能判断出零点的存在性,而不能判断出零点的个数.如图①②,虽然都有f(a)f(b)<0,但图①中函数在区间(a,b)内有4个零点,图②中函数在区间(a,b)内仅有1个零点.(4)函数零点存在定理是不可逆的,由f(a)f(b)<0可以推出函数y=f(x)在区间(a,b)内存在零点.但是,已知函数y=f(x)在区间(a,b)内存在零点,不一定推出f(a)f(b)<0.如图③,虽然在区间(a,b)内函数有零点,但f(a)f(b)>0.(5)如果单调函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有f(a)f(b)<0,那么函数y=f(x)在区间(a,b)内有唯一的零点,即存在唯一的c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的实数解.2.求函数零点的方法函数的零点就是对应方程的解,求函数的零点常用以下两种方法:(1)令y=0,方程f(x)=0的解就是函数的零点;(2)画出函数y=f(x)的图象,图象与x轴交点的横坐标就是函数的零点.3.判断函数零点的个数的方法(1)直接求出函数的零点进行判断,即转化为方程f(x)=0解的个数;(2)结合函数图象进行判断,即转化为函数图象与x轴交点个数或两个函数图象交点的个数;(3)借助函数的单调性进行判断.4.确定函数f(x)零点所在区间的常用方法(1)解方程法:当对应方程f(x)=0易解时,可先解方程,再看求得的根是否落在给定区间上.(2)利用函数零点存在定理:首先看函数y=f(x)在区间[a,b]上的图象是否连续,再看是否有f(a)f(b)<0.若有,则函数y=f(x)在区间(a,b)内必有零点.(3)数形结合法:通过观察函数图象与x轴在给定区间上是否有交点来判断.提醒:函数零点存在定理是不可逆的,f(a)f(b)<0⇒函数y=f(x)在区间(a,b)内有零点,但是函数y=f(x)在(a,b)内有零点,不一定能推出f(a)f(b)<0.十二.用二分法求方程的近似解知识点一二分法的概念对于在区间[a,b]y=f(x),通过零点,进而得到零点近似值的方法叫做二分法.知识点二用二分法求函数零点近似值的步骤给定精确度ε,用二分法求函数y=f(x)零点x0的近似值的一般步骤如下:(1)确定零点x0的初始区间[a,b](2)求区间(a,b)(3)计算f(c),并进一步确定零点所在的区间:①若f(c)=0(此时x0=c)②若f(a)f(c)<0(此时x0,则令b=c;③若f(c)f(b)<0(此时x0,则令a=c.(4)判断是否达到精确度ε:若|a-b|<ε,则得到零点近似值a(或b);否则重复步骤(2)~(4).1.一些常用结论1.用二分法求函数零点近似值的方法仅适用于函数的变号零点(曲线通过零点时,函数值的符号变号),对函数的不变号零点(曲线通过零点时,函数值的符号不变号)不适用.如求函数f(x)=(x-1)2的零点近似值就不能用二分法.2.用二分法求函数零点的近似值时,要根据函数的性质尽可能地找到含有零点的更小的区间,这样可以减少用二分法的次数,减少计算量.3.二分法采用逐步逼近的思想,使区间逐步缩小,使函数零点所在的范围逐步缩小,也就是逐渐逼近函数的零点.当区间长度小到一定程度时,就得到近似值.4.由|a-b|<ε,可知区间[a,b]中任意一个值都是零点x0的满足精确度ε的近似值.为了方便,常取区间端点a(或b)作为零点的近似值.精确度与精确到是不一样的概念.比如得数是1.25或1.34,精确到0.1都是通过四舍五入后保留一位小数得1.3.而“精确度为0.1”指零点近似值所在区间[a,b]满足|a-b|<0.1,比如零点近似值所在区间为[1.25,1.34],若精确度为0.1,则近似值可以是1.25,也可以是1.34.5.在第一步中要使区间[a,b]的长度尽量小,且f(a)f(b)<0.6.由函数的零点与相应方程根的关系,我们可用二分法来求方程的近似解.对于求形如f(x)=g(x)的方程的近似解,可以通过移项转化成求形如F(x)=f(x)-g(x)=0的方程的近似解,然后按照用二分法求函数F(x)零点近似值的步骤求解.2.利用二分法求方程近似解的步骤(1)构造函数,利用图象确定方程的根所在的大致区间,通常限制在区间(n,n+1),n∈Z.(2)利用二分法求出满足精确度的方程的根所在的区间M.(3)区间M内的任一实数均是方程的近似解,通常取区间M的一个端点.十三.函数模型的应用知识点建立函数模型解决问题的基本过程1.在实际问题中,有关人口增长、银行利率、细胞分裂等增长率问题常用指数函数模型表示.通常可以表示为y=N(1+p)x(其中N为基础数,p为增长率,x为时间)的形式.解题时,往往用到对数运算,要注意与已知表格中给定的值对应求解.2.有关对数型函数的应用题,一般都会给出函数解析式,要求根据实际情况求出函数解析式中的参数,或给出具体情境,从中提炼出数据,代入解析式求值,然后根据求出的值回答其实际意义.3.数据拟合(1)定义:通过一些数据寻求事物规律,往往是通过绘出这些数据在直角坐标系中的点,观察这些点的整体特征,看它们接近我们熟悉的哪一种函数图象,选定函数形式后,将一些数据代入这个函数的一般表达式,求出具体的函数表达式,再做必要的检验,基本符合实际,就可以确定这个函数基本反映了事物规律,这种方法称为数据拟合.(2)数据拟合的步骤①以所给数据作为点的坐标,在平面直角坐标系中绘出各点;②依据点的整体特征,猜测这些点所满足的函数形式,设其一般形式;③取特殊数据代入,求出函数的具体解析式;④做必要的检验.4.函数y=c·a kx(a,c,k为常数)是一个应用广泛的函数模型,它在电学、生物学、人口学、气象学等方面都有广泛的应用,解决这类给出的指数函数模型的应用题的基本方法是待定系数法,即根据题意确定相关的系数.5.(1)形如y=m log a x+n(a>0,a≠1,m≠0),其特点为当a>1,m>0时,y随自变量x的增大而增大,且函数值增大的速度越来越慢.(2)对于对数型函数模型问题,关键在于熟练掌握对数函数的性质,在认真审题的基础上,分析清楚底数a与1的大小关系,要关注自变量的取值范围.借助于数学模型解决数学问题的同时,实际问题也得以顺利解决,这就是函数模型的作用.知识系统整合1.指数式、对数式的运算、求值、化简、证明等问题主要依据指数幂、对数的运算性质,在进行指数、对数的运算时还要注意相互间的转化.2.指数函数和对数函数的性质及图象特点是这部分知识的重点,而底数a 的不同取值对函数的图象及性质的影响则是重中之重,要熟知a在(0,1)和(1,+∞)两个区间取值时,函数的单调性及图象特点.3.比较几个数的大小是指数函数、对数函数性质的应用,在具体比较时,可以先将它们与零比较,分出正数、负数;再将正数与1比较,分出大于1还是小于1;然后在各类中两两相比较.4.求含有指数函数和对数函数的复合函数的最值或单调区间时,首先要考虑指数函数、对数函数的定义域,再由复合函数的单调性来确定其单调区间,要注意单调区间是函数定义域的子集.其次要结合函数的图象,观察确定其最值或单调区间.5.方程的解与函数的零点:方程f(x)=0有实数解⇔函数y=f(x)有零点⇔函数y=f(x)的图象与x轴有交点.6.零点判断法:如果函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内至少有一个零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的解.注意:由f(a)f(b)<0可判定在(a,b)内至少有一个变号零点c,除此之外,还。

(完整版)指数函数与对数函数知识点总结

(完整版)指数函数与对数函数知识点总结
指数函数与对数函数知识点总结
(一)指数与指数幂的运算
1.根式的概念:一般地,如果 ,那么 叫做 的 次方根,其中 >1,且 ∈ *.
当 是奇数时, ,当 是偶数时,
2.分数指数幂
正数的分数指数幂的意义,规定:
3.实数指数幂的运算性质
(1) · ;
(2) ;
(3) .
(二)指数函数及其性质
1、指数函数的概念:一般地,函数 叫做指数函数,其中x是自变量,函数的定义域为R.
(2) =__________
4、设 ,求 的值__________。
5、若 ,则 等于。
6、已知函数 在 上为增函数,则 的取值范围是。
7、设函数 ,若 ,则
8、函数 且 恒过定点。
9、已知函数 在 上的最大值比最小值多 ,求实数 的值。
幂函数(第15份)
1、下列函数中,是幂函数的是( )
A、 B、 C、 D、
(3) =__________
(4) =__________
(5) =__________
(6) =__________
(7) =__________
(8) =__________
2、已知 ,试用 表示下列各对数。
(1) =__________(2) =__________
3、(1)求 的值__________;
f(1.5625)=0.003
f(1.5562)=-0.029
f(1.5500)=-0.060
据此数据,可得方程 的一个近似解(精确到0.01)为
(1) (2) (3)
5、函数 在区间[ ,2]上的最大值为,最小值为。
函数 在区间[ ,2]上的最大值为,最小值为。

高中数学知识点总结指数函数与对数函数的性质

高中数学知识点总结指数函数与对数函数的性质

高中数学知识点总结指数函数与对数函数的性质指数函数与对数函数是高中数学中的重要知识点。

它们在数学和实际问题中广泛应用,并具有独特的性质。

本文将总结指数函数与对数函数的性质,帮助读者更好地理解和应用这两个函数。

一、指数函数的性质指数函数是以底数为常数的指数幂构成的函数。

常见的指数函数形式为f(x) = a^x,其中a为底数。

1. 底数为正数且不等于1时,指数函数的特点如下:a) 当0<a<1时,函数图像在x轴正半轴上递减,并在x轴负半轴上趋近于0。

b) 当a>1时,函数图像在整个定义域上递增,并在x轴负半轴上趋近于0。

c) 当a=1时,函数图像恒为1。

2. 底数a的性质分析:a) 当a>1时,指数函数随着自变量x的增大而增大。

b) 当0<a<1时,指数函数随着自变量x的增大而减小。

c) 当a=1时,指数函数为常数函数f(x) = 1,不随x变化。

二、对数函数的性质对数函数是指以某一常数为底数,对应的指数是自变量的函数。

常见的对数函数形式为f(x) = loga(x),其中a为底数,x为函数的取值范围。

1. 底数为正数且不等于1时,对数函数的特点如下:a) 当0<a<1时,函数图像在定义域内递减。

b) 当a>1时,函数图像在定义域内递增。

2. 底数a的性质分析:a) 当a>1时,对数函数随着自变量x的增大而增大。

b) 当0<a<1时,对数函数随着自变量x的增大而减小。

c) 当a=1时,对数函数为常数函数f(x) = 0,不随x变化。

d) 底数a必须大于0且不等于1,否则对数函数无定义。

三、指数函数与对数函数的关系指数函数和对数函数是互为反函数的关系。

对于同一个底数a和同一个特定正实数x,指数函数和对数函数的关系如下:a) 指数函数f(x) = a^x与对数函数g(x) = loga(x)互为反函数,即f(g(x)) = x,g(f(x)) = x。

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结一、指数函数的定义与性质1. 定义指数函数是以底数a(a>0且a≠1)为底的函数,一般表示为y=a^x,其中a是底数,x是指数,y是函数值。

2. 性质⑴当a>1时,指数函数是递增函数,图像上开;当0<a<1时,指数函数是递减函数,图像下降。

⑵当x=0时,a^0=1。

⑶当a>1时,随着x的增大,函数值y=a^x也会增大;当0<a<1时,随着x的增大,函数值y=a^x会减小。

3. 图像当底数a>1时,指数函数的图像是递增的曲线,图像上翘;当0<a<1时,指数函数的图像是递减的曲线,图像下降。

4. 应用指数函数在科学计算、生物增长、财经复利、工程技术等领域都有着重要的应用。

例如在计算机科学中,指数函数常用于指数衰减算法、指数增长算法等;在生物学中,指数函数常用于描述生物的增长规律;在金融领域中,指数函数用以描述利息的复利增长等。

二、对数函数的定义与性质1. 定义对数函数是指数函数的逆运算,一般表示为y=log_a(x),其中a是底数,x是真数,y是对数。

2. 性质⑴对数函数的定义域为x>0,值域为实数集。

⑵对数函数的图像是单调递增的曲线,在0处没有定义。

⑶特殊情况下,当底数a=10时,我们称为常用对数函数,一般表示为y=log(x);当底数a=e时,我们称为自然对数函数,一般表示为y=ln(x)。

3. 图像对数函数的图像是单调递增的曲线,图像在x轴的右侧。

4. 应用对数函数在科学计算、信息论、统计学、工程技术等领域都有着广泛应用。

例如在信息论中,对数函数用于计算信息量、信息熵等;在统计学中,对数函数用于描述正态分布、伯努利分布等;在工程技术中,对数函数用于解决指数增长问题、指数衰减问题等。

三、指数函数与对数函数的关系1. 反函数关系指数函数与对数函数是一对反函数,它们的定义域和值域互为对方的值域和定义域。

具体而言,对数函数y=log_a(x)中,x=a^y。

指数函数和对数函数知识点总结

指数函数和对数函数知识点总结

指数函数和对数函数知识点总结一、指数函数1.定义:指数函数是以正数为底数、自变量为指数的函数。

一般形式为y=a^x,其中a>0且a≠12.特点:(1)当a>1时,指数函数呈递增趋势;(2)当0<a<1时,指数函数呈递减趋势;(3)a>1时,指数函数的图像在x轴的右侧逐渐上升,称为“增长指数函数”;(4)0<a<1时,指数函数的图像在x轴的右侧逐渐下降,称为“衰减指数函数”;(5)当x=0时,指数函数的值恒为1;(6)指数函数与直线y=0平行(若a>1)或经过点(0,1)(若0<a<1)。

3.基本性质:(1)a^m*a^n=a^(m+n);(2) (a^m)^n = a^(mn);(3) (ab)^m = a^m * b^m;(4)(a/b)^m=a^m/b^m。

二、对数函数1. 定义:对数函数是指以正数a(a>0且a≠1)为底数的对数。

一般形式为y=loga(x),其中x>0。

2.特点:(1)对数函数的定义域为正实数集(0,+∞),值域为实数集;(2) 指数函数y=a^x和对数函数y=loga(x)是互逆运算,即y=loga(a^x) = x,x=loga(a^x) = y;(3)当x>1时,对数函数的值大于0;(4)当0<x<1时,对数函数的值小于0;(5)a>1时,对数函数呈递增趋势;(6)0<a<1时,对数函数呈递减趋势;(7)当x=1时,对数函数的值恒为0;(8)对数函数的图像与直线y=x交于点(1,1)。

三、常用公式与性质1.e与自然对数:(1) e的定义:e=lim(1+1/n)^n,其中n为正整数;(2) 自然对数:ln(x)表示以e为底数的对数函数;(3) 自然对数的性质:ln(e^x)=x,e^(lnx)=x;2.指数方程与对数方程:(1)指数方程:a^x=b,其中a>0且a≠1;(2) 对数方程:loga(x)=b,其中a>0且a≠1;(3)指数方程求解的一般步骤:将方程两边取对数,利用对数的性质求解;(4)对数方程求解的一般步骤:将方程两边以a为底取指数,利用指数函数的性质求解。

指数函数和对数函数知识点总结

指数函数和对数函数知识点总结

指数函数和对数函数知识点总结一、指数函数的定义和性质1.定义:指数函数是以一些正数a为底数的函数,形式为f(x)=a^x,其中a>0且a≠1、指数函数的定义域为实数集R,值域为正数集(0,+∞)。

2.指数函数的性质:(1)当a>1时,指数函数是递增函数;当0<a<1时,指数函数是递减函数。

(2)指数函数的图像在直线y=0上方,且与y轴渐近。

(3) 指数函数的反函数是对数函数,即 f(x) = a^x 的反函数是 g(x) = logₐ(x)。

(4)指数函数的图像在(0,+∞)上是光滑的连续曲线。

3.常见的指数函数:(2)以10为底的指数函数:记作f(x)=10^x。

在计算科学领域中经常使用。

(3)以2为底的指数函数:记作f(x)=2^x。

在计算机科学和信息技术领域中广泛应用。

二、对数函数的定义和性质1. 定义:对数函数是指数函数的反函数,形式为 f(x) = logₐ(x),其中 a>0 且a ≠ 1、对数函数的定义域为正数集(0,+∞),值域为实数集 R。

2.对数函数的性质:(1)对数函数的图像与指数函数的图像关于直线y=x对称。

(2)当0<a<1时,对数函数是递增函数;当a>1时,对数函数是递减函数。

(3)对数函数的图像在x轴正半轴上方,且与x轴渐近。

(4) 对数函数的反函数是指数函数,即 f(x) = logₐ(x) 的反函数是g(x) = a^x。

(5) 对数函数的特殊性质:logₐ(1) = 0,logₐ(a) = 1,logₐ(a^x) = x。

3.常见的对数函数:(2) 以 10 为底的对数函数:记作 f(x) = log₁₀(x)。

在计算科学领域中经常使用。

(3) 以 2 为底的对数函数:记作 f(x) = log₂(x)。

在计算机科学和信息技术领域中广泛应用。

三、指数函数和对数函数的应用1.指数函数的应用:(1)复利计算:复利计算公式中的指数函数可以用来计算存款利息、投资收益等。

指数与对数知识点总结

指数与对数知识点总结

指数与对数知识点总结一、指数(一)指数的定义指数是数学中的一个重要概念,表示一个数自乘若干次的形式。

一般地,对于正整数 n,aⁿ表示 n 个 a 相乘,即aⁿ = a × a ×× a(n 个 a)。

(二)指数的运算性质1、 aᵐ×aⁿ = aᵐ⁺ⁿ(同底数幂相乘,底数不变,指数相加)例如:2³×2²= 2³⁺²= 2⁵= 322、(aᵐ)ⁿ = aᵐⁿ (幂的乘方,底数不变,指数相乘)比如:(2³)²= 2³×²= 2⁶= 643、(ab)ⁿ =aⁿbⁿ (积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘)例如:(2×3)²= 2²×3²= 4×9 = 364、 aᵐ÷aⁿ = aᵐ⁻ⁿ(a ≠ 0,m > n,同底数幂相除,底数不变,指数相减)比如:2⁵÷2³= 2⁵⁻³= 2²= 4(三)指数函数1、定义:一般地,函数 y =aˣ(a > 0 且a ≠ 1)叫做指数函数,其中 x 是自变量,函数的定义域是 R。

2、图像特征:当 a > 1 时,函数图像单调递增,过点(0,1)。

当 0 < a < 1 时,函数图像单调递减,过点(0,1)。

(四)指数方程形如aˣ = b 的方程,其解法通常是将其转化为对数形式求解。

二、对数(一)对数的定义如果aˣ = N(a > 0 且a ≠ 1),那么数 x 叫做以 a 为底 N 的对数,记作 x =logₐN,其中 a 叫做对数的底数,N 叫做真数。

(二)对数的运算性质1、logₐ(MN) =logₐM +logₐN (正数积的对数,等于同一底数的各个因数的对数的和)例如:log₂(4×8) = log₂4 + log₂8 = 2 + 3 = 52、logₐ(M/N) =logₐM logₐN (正数商的对数,等于被除数的对数减去除数的对数)比如:log₃(9/3) = log₃9 log₃3 = 2 1 = 13、logₐMⁿ =nlogₐM (幂的对数等于幂指数乘以底数的对数)例如:log₅2⁵= 5log₅2(三)换底公式logₐb =logₑb /logₑa (其中 e 为自然对数的底数,约等于 2718)(四)常用对数与自然对数1、常用对数:以 10 为底的对数叫做常用对数,简记为 lgN。

指数函数和对数函数复习(有详细知识点和习题详解)

指数函数和对数函数复习(有详细知识点和习题详解)

指数函数和对数函数复习(有详细知识点和习题详解)一、指数的性质一)整数指数幂整数指数幂的概念是指:a的n次方等于a乘以a的n-1次方,其中a不等于0,n为正整数。

另外,a的-n次方等于1除以a的n次方,其中a不等于0,n为正整数。

整数指数幂的运算性质包括:(1)a的m次方乘以a的n次方等于a的m+n次方;(2)a的n次方的m次方等于a的mn次方;(3)a乘以b的n次方等于a的n次方乘以b的n次方。

其中,a除以a的n次方等于a的n-1次方,a的m-n次方等于a的m除以a的n次方,an次方根的概念是指,如果一个数的n次方等于a,那么这个数叫做a的n次方根,记作x=√a。

例如,27的3次方根等于3,-27的3次方根等于-3,32的5次方根等于2,-32的5次方根等于-2.a的n次方根的性质包括:如果n是奇数,则a的n次方根等于a;如果n是偶数且a大于等于0,则a的正的n次方根等于a,a的负的n次方根等于负的a;如果n是偶数且a小于0,则a的n次方根没有意义,即负数没有偶次方根。

二)例题分析例1:求下列各式的值:(1)3的-8次方;(2)(-10)的2次方;(3)4的(3-π)次方;(4)(a-b)的2次方,其中a大于b。

例2:已知a小于b且n大于1,n为正整数,化简n[(a-b)/(a+b)]。

例3:计算:7+40+7-40.例4:求值:(59/24)+(59-45)/24 + 25×(5-2)/24.解:略。

二)分数指数幂1.分数指数幂当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式,例如:$5\sqrt[10]{a^5}=a^{\frac{1}{2}}$,$3\sqrt[12]{a^3}=a^{\frac{1}{4}}$。

当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式,例如:$\sqrt[4]{a^5}=a^{\frac{5}{4}}$。

规定:1)正数的正分数指数幂的意义是$a^{\frac{p}{q}}=\sqrt[q]{a^p}$。

高中数学指数函数与对数函数总结

高中数学指数函数与对数函数总结

指数函数与对数函数总结指数函数与对数函数总结一、 [知识要点]:1. 指数函数y =ax 与对数函数y =a log x 的比较:的比较:定义定义 图象图象 定义域 值域值域 性质性质奇偶性 单调性 过定点值的分布值的分布最值最值y =a x (a>0且a ≠1) 叫指数函数a>1 (-∞,+∞)∞)(0,+∞) 非奇 非偶 增函数(0,1)即a 0=1 x>0时y>1;0<x<1时 0<y<1 无最值无最值0<a<1 减函数x>0时0<y<1; 0<x<1时 y>1 y =a log (a>0且a ≠1) 叫对数函数a>1Oy x(0,+∞) (-∞,+∞)∞) 非奇非偶 增函数 (1,0) 即log a 1=0 x>1时y>0;0<x<1时 y<0 无最值无最值 0<a<1Oy x减函数x>1时y<0;0<x<1时 y>0 对称性函数y =ax 与y =a -x (a>0且a ≠1)关于y 轴对称;函数y =a x 与y =log a x 关于y =x 对称对称 函数y =log a x 与y =1log a x (a>0且a ≠1)关于x 轴对称轴对称 2. 记住常见指数函数的图形及相互关系以及常见对数函数的图形及相互关系及相互关系①②3. 几个注意点几个注意点(1)函数y =a x 与对数函数y =log a x (a>0,a ≠1)互为反函数,从概念、图象、性质去理解它们的区别和联系;(2)比较几个数的大小是对数函数性质应用的常见题型。

数的大小是对数函数性质应用的常见题型。

在具体比较时,可以首在具体比较时,可以首先将它们与零比较,分出正负;正数通常可再与1比较分出大于1还是小于1,然后在各类中间两两相比较;(3)在给定条件下,求字母的取值范围是常见题型,要重视不等式知识及函数单调性在这类问题上的应用。

初中数学指数函数与对数函数的计算知识点总结

初中数学指数函数与对数函数的计算知识点总结

初中数学指数函数与对数函数的计算知识点总结指数函数和对数函数是初中数学中重要的概念,学好这两个函数的计算方法对于理解高中数学和实际问题具有重要意义。

本文将对初中数学指数函数与对数函数的计算知识点进行总结。

一、指数函数的计算知识点总结1. 指数幂的定义:对于任意的实数a和正整数n,a^n表示a连乘n 次,其中a称为底数,n称为指数。

2. 同底数幂相乘:当底数相同时,指数幂相乘等于底数不变,指数相加,即a^m * a^n = a^(m+n)。

3. 同底数幂相除:当底数相同时,指数幂相除等于底数不变,指数相减,即a^m / a^n = a^(m-n)。

4. 指数幂的幂:幂的指数就是指数幂的指数,即(a^m)^n = a^(m*n)。

5. 零指数幂:任意非零数的零次方等于1,即a^0 = 1(a ≠ 0)。

6. 负指数幂:任意非零数的负整数次方等于该数的倒数的绝对值的幂,即a^(-n) = 1 / a^n(a ≠ 0)。

二、对数函数的计算知识点总结1. 对数的定义:对于正数a(a ≠ 1),b(b > 0)和正整数n,n称为底数,b称为真数,记作logₐb=n,表示a的n次幂等于b。

2. 换底公式:logₐb = logₐc * log_cb,其中a,b,c为正数,且a,b 不等于1。

3. 常用对数和自然对数:以10为底的对数称为常用对数,记作logb,以自然常数e为底的对数称为自然对数,记作lnb。

三、指数函数与对数函数的性质1. 指数函数与对数函数是互为反函数的关系,即对于a^x = y,有logₐy = x。

2. 指数函数和对数函数的图像是关于直线 y = x 的对称图像。

3. 指数函数的图像随着底数的变化有不同的特征,如当底数大于1时,图像递增;当底数在0和1之间时,图像递减。

4. 对数函数的图像在底数大于1和小于1的情况下有不同的特征,如当底数大于1时,图像递增;当底数在0和1之间时,图像递减。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

指数函数与对数函数知识点总结
(一)指数与指数幂的运算
1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次
方根,其中n >1,且n ∈N *
. 当n 是奇数时,
a a n
n =,当n 是偶数时,


⎧<≥-==)0()
0(||a a a a a a n
n 2.分数指数幂
正数的分数指数幂的意义,规定:
)
1,,,0(*>∈>=n N n m a a a
n m n
m
)1,,,0(1
1*>∈>=
=
-
n N n m a a a
a
n
m
n
m n
m
3.实数指数幂的运算性质
(1)r a ·s
r r a a += ),,0(R s r a ∈>;
(2)rs
s r a a =)( ),,0(R s r a ∈>;
(3)
s
r r a a ab =)( ),,0(R s r a ∈>.
(二)指数函数及其性质
1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x
且叫做指数函数,其中x 是自变量,函数的定义域为R .
二、对数函数 (一)对数
1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数,
记作:N x a log =(a — 底数,N — 真数,N a log — 对数式)
两个重要对数:

1 常用对数:以10为底的对数N lg ; ○
2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化
幂值 真数
(二)对数的运算性质
如果0>a ,且1≠a ,0>M ,0>N ,那么: ○
1 M a (log ·=)N M a log +N a log ; ○
2 =N
M
a log M a log -N a log ; ○
3 n a M log n =M a log )(R n ∈. 注意:换底公式
a
b
b c c a log log log =
(0>a ,且1≠a ;0>c ,且1≠c ;
0>b )
. 利用换底公式推导下面的结论
(1)b m
n
b a n a m log log =;
(2)a b b a log 1log =. (二)对数函数
1、对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。

如:x y 2log 2=,5
log 5x y = 都不是对数函
数,而只能称其为对数型函数.

2 对数函数对底数的限制:0(>a ,且)1≠a .
1、用根式的形式表示下列各式)0(>a (1)5
1a = (2)3
2
a
-
=
2、用分数指数幂的形式表示下列各式: (1)3
4y x = (2))0(2>=m m
m
3、求下列各式的值
(1)2
325= (2)32
254- ⎛⎫
⎪⎝⎭
=
4、解下列方程
(1)1
3
1
8
x
-
= (2)151243
=-x 指数函数
1、函数)1,0(1
2≠>=-a a a
y x 的图象必过定点 。

2、如果指数函数x
a x f )1()(-=是R 上的单调减函数,那么a 取值范围是 ( )A 、2<a B 、2>a C 、21<<a D 、10<<a
3、下列关系中,正确的是 ( )
A 、51
31)21()21(> B 、2.01.022> C 、2.01.022--> D 、115
311()()22
- - >
4、比较下列各组数大小:
(1)0.5
3.1 2.33.1 (2)0.3
23-⎛⎫ ⎪
⎝⎭
0.24
23-⎛⎫

⎝⎭
(3) 2.52.3- 0.10.2-
5、函数x
x f 10)(=在区间[1-,2]上的最大值为 ,最小值为 。

函数x
x f 1.0)(=在区间[1-,2]上的最大值为 ,最小值为 。

6、函数x y ⎪⎭⎫ ⎝⎛=31的图象与x
y -⎪⎭

⎝⎛=31的图象关于 对称。

7、已知函数)1,0(≠>=a a a y x
在[]2,1上的最大值比最小值多2,求a 的
值 。

8、已知函数)(x f =1
22+-x x a
是奇函数,求a 的值 。

对数(第11份)
1、将下列指数式改写成对数式
(1)1624= (2)205=a 答案为:(1) (2) 2、将下列对数式改写成指数式
(1)3125log 5= (2)10log 2a =-
答案为:(1) (2) 3、求下列各式的值
(1)64log 2= (2)27log 9 = (3)0001.0lg = (4)1lg = (5)9log 3= (6)9log 3
1= (7)8log 32=
4、已知0>a ,且1≠a ,m a =2log ,n a =3log ,求n m a +2的值。

5、若)1(log 3a -有意义,则a 的范围是
6、已知48log 2=x ,求x 的值
对数(第12份)
1、求下列各式的值
(1))42(log 5
32⨯=__________(2)125log 5=__________
(3)
1)01.0lg(10lg 2lg 25lg 2
1
-+++=__________ (4)5log 38log 9
32
log 2log 25333-+- =__________
(5)25lg 50lg 2lg 20lg 5lg -⋅-⋅=__________
(6)1lg 872lg 49lg 2
1
67lg 214lg +-+-=__________
(7)50lg 2lg )5(lg 2
⋅+=__________ (8)5lg 2lg 3)5(lg )2(lg 3
3
⋅++=__________
2、已知b a ==3lg ,2lg ,试用b a ,表示下列各对数。

(1)108lg =__________ (2)25
18
lg
=__________ 3、(1)求32log 9log 38⨯的值__________;
(2)8log 7log 6log 5log 4log 3log 765432⨯⨯⨯⨯⨯=__________ 4、设3643==y x ,求
y
x 1
2+的值__________。

5、若n
m 1
10log ,2lg 3==,则6log 5等于 。

6、已知函数x y a )1(log -=在),0(+∞上为增函数,则a 的取值范围是 。

7、设函数)1(log 2-=x y ,若[]2,1∈y ,则∈x 8、函数0(3)3(log >+-=a x y a 且)1≠a 恒过定点 。

9、已知函数)1,0(log ≠>=a a x y a 在]4,2[∈x 上的最大值比最小值多1,求实数a 的值 。

幂函数(第15份)
1、下列函数中,是幂函数的是( )
A 、x
y 2=
B 、2
x y -=
C 、x y 2log =
D 、2
1-=x
y
2、若一个幂函数)(x f 的图象过点)4
1,2(,则)(x f 的解析式为
3、已知函数1
2+=m x
y 在区间()+∞,0上是增函数,求实数m 的取值范围
为 。

函数与零点(第16份)
1、证明:(1)函数462
++=x x y 有两个不同的零点;(2)函数13)(3
-+=x x x f 在区间(0,1)上有零点
2、若方程方程2570x x a --=的一个根在区间(1-,0)内,另一个在区间(1,
2)内,求实数a 的取值范围 。

二分法(第17份)
1、设0x 是方程062ln =-+x x 的近似解,且),(0b a x ∈,1=-a b ,z b a ∈,,则b a ,的值分别为 、
2、函数x x y 26ln +-=的零点一定位于如下哪个区间 ( )A 、()2,1 B 、()3,2 C 、()4,3 D 、()6,5
3、已知函数()35x
f x x =+-的零点[]0,x a b ∈,且1b a -=,a ,b N *∈,则
a b += .
4、函数()lg 3f x x x =+-的零点在区间(,1)m m +()m Z ∈内,则
m = .
5、用二分法求函数43)(--=x x f x 的一个零点,其参考数据如下:
据此数据,可得方程043=--x x 的一个近似解(精确到0.01)为。

相关文档
最新文档