概率计算公式.doc
概率公式大全
概率公式大全概率公式大全(上篇)概率公式在概率论中起着非常重要的作用,它们用于描述随机事件的发生概率以及事件之间的关系。
本文将介绍一些常见的概率公式,帮助读者更好地理解和应用概率论。
1. 基本概率公式1) 事件的概率公式:在概率论中,事件的概率通常用P(A)表示,其中A表示一个事件。
事件A的概率可以用下述公式计算:P(A) = N(A) / N(S)其中,N(A)表示事件A发生的次数,N(S)表示样本空间S 中的总次数。
2) 样本空间的概率公式:当样本空间S的每个样本点发生的概率相同且为1/N(S)时,我们可以使用下述公式计算事件A的概率:P(A) = N(A) / N(S)这个公式在实际问题中应用广泛,是基本的概率公式之一。
2. 条件概率公式1) 条件概率的定义:在事件B发生的条件下,事件A发生的概率称为A在B 条件下的条件概率,用P(A|B)表示。
条件概率的计算公式如下:P(A|B) = P(A ∩ B) / P(B)其中,P(A ∩ B)表示事件A与事件B同时发生的概率。
2) 乘法公式:乘法公式是条件概率的推广形式,用于计算两个事件同时发生的概率。
根据乘法公式,我们可以得到:P(A ∩ B) = P(A|B) * P(B)这个公式在计算复杂事件的概率时非常有用。
3. 全概率公式全概率公式用于计算一个事件发生的总概率,它假设事件发生的样本空间可以划分为若干个互斥事件。
全概率公式如下:P(A) = Σi P(A|Bi) * P(Bi)其中,Bi表示样本空间S的一个划分,P(A|Bi)表示在Bi条件下事件A发生的概率。
这个公式可以在一些复杂问题中计算事件发生的概率,非常实用。
4. 贝叶斯公式贝叶斯公式是条件概率公式的逆运算,用于通过已知的条件概率反推出相反的条件概率。
根据贝叶斯公式,可以得到:P(A|B) = P(B|A) * P(A) / P(B)其中,P(A)和P(B)分别表示事件A和事件B的概率。
独立事件概率公式大全
独立事件概率公式大全1.乘法法则:对于两个独立事件A和B,它们同时发生的概率为它们各自发生概率的乘积,即P(A∩B)=P(A)*P(B)。
2.加法法则:对于两个互斥事件A和B,它们至少有一个发生的概率为它们各自发生概率的和,即P(A∪B)=P(A)+P(B)。
3.全概率公式:对于一系列互相独立且构成完全事件集合的事件A₁,A₂,...,它们的其中一事件B的概率可以通过每个事件的概率与相应条件概率的乘积求和来计算,即P(B)=Σ(P(Aᵢ)*P(B,Aᵢ))。
4.贝叶斯定理:对于事件集合A₁,A₂,...,它们的其中一事件B的概率可以通过每个事件的概率与相应条件概率的乘积除以所有条件概率的加和来计算,即P(Aᵢ,B)=(P(Aᵢ)*P(B,Aᵢ))/Σ(P(Aⱼ)*P(B,Aⱼ))。
5.独立事件的组合公式:对于n个独立事件A₁,A₂,...,Aⱼ的概率,可以使用二项分布的公式来计算,即P(A₁∩A₂∩...∩Aⱼ)=P(A₁)*P(A₂)*...*P(Aⱼ)。
6.独立事件的加法公式:对于n个独立事件A₁,A₂,...,Aⱼ的概率,它们至少有一个事件发生的概率可以使用二项分布公式来计算,即P(A₁∪A₂∪...∪Aⱼ)=1-P(A₁ᶜ)*P(A₂ᶜ)*...*P(Aⱼᶜ),其中Aᶜ为事件A的补集。
7.互不相容事件的组合公式:如果事件A₁,A₂,...,Aⱼ互不相容,即任意两个事件Aᵢ和Aⱼ不能同时发生,那么它们至少有一个事件发生的概率可以简单地通过它们各自的发生概率的加和来计算,即P(A₁∪A₂∪...∪Aⱼ)=P(A₁)+P(A₂)+...+P(Aⱼ)。
这些独立事件概率公式可以帮助我们计算独立事件的概率,从而更好地理解和分析各种概率问题。
在实际应用中,我们可以根据具体问题选择合适的公式进行计算,从而推导出所需的结果。
概率事件计算公式
概率事件计算公式一、频率法:频率法是通过观察实验数据的频率来计算概率的一种方法。
其基本思想是在重复进行相同或类似的随机试验中,将事件发生的次数除以总次数,得到事件发生的频率即为事件的概率。
频率法公式如下:P(A)=n(A)/n其中,P(A)表示事件A发生的概率;n(A)表示事件A发生的次数;n表示试验总次数。
例如,如果进行一个抛硬币的实验,我们抛硬币100次,事件A表示抛硬币正面朝上的次数,如果正面朝上的次数为60次,则事件A发生的概率可以计算为:P(A)=60/100=0.6二、古典概型法:古典概型法(也称为等可能概型法)适用于所有试验结果等可能出现的情况。
在古典概型法中,事件的概率等于事件包含的有利结果数除以总的可能结果数。
古典概型法公式如下:P(A)=n(A)/n(S)其中,P(A)表示事件A发生的概率;n(A)表示事件A包含的有利结果数;n(S)表示总的可能结果数。
例如,如果有一副有52张牌的扑克牌,现在从中抽取一张牌,事件A表示抽到一张黑桃牌的概率,由于一副扑克牌中有13张黑桃牌,总共有52张牌,所以事件A发生的概率可以计算为:P(A)=13/52=0.25三、几何概型法:几何概型法适用于连续性试验的概率计算,其中样本空间可以用几何形状表示。
几何概型法公式如下:P(A)=S(A)/S其中,P(A)表示事件A发生的概率;S(A)表示事件A对应的样本空间区域的面积或体积;S表示整个样本空间对应的面积或体积。
例如,如果在一个圆形领域中随机取一点,事件A表示这个点落在圆形的一半区域内的概率,由于圆形的一半区域的面积为圆形的面积的一半,整个圆形的面积为S,则事件A发生的概率可以计算为:P(A)=S(A)/S=1/2总结:概率事件计算公式有频率法、古典概型法和几何概型法。
频率法适用于观察实验数据的频率计算概率;古典概型法适用于所有试验结果等可能出现的情况;几何概型法适用于连续性试验的概率计算。
通过应用适当的公式,我们可以计算出事件发生的概率,进一步理解和应用概率论。
概率的公式大全
概率的公式1.随机事件及其概率吸收律:A AB A A A A =⋃=∅⋃Ω=Ω⋃)( AB A A A AA =⋃⋂∅=∅⋂=Ω⋂)()(AB A B A B A -==-反演律:B A B A =⋃ B A AB ⋃=n i i n i i A A 11=== ni i n i i A A 11===2.概率的定义及其计算)(1)(A P A P -=若B A ⊂ )()()(A P B P A B P -=-⇒对任意两个事件A , B , 有 )()()(AB P B P A B P -=-加法公式:对任意两个事件A , B , 有)()()()(AB P B P A P B A P -+=⋃)()()(B P A P B A P +≤⋃)()1()()()()(2111111n n nnk j i k j i n j i j i n i i n i i A A A P A A A P A A P A P A P -≤<<≤≤<≤==-+++-=∑∑∑3.条件概率()=A B P )()(A P AB P乘法公式())0)(()()(>=A P A B P A P AB P()())0)(()()(12112112121>=--n n n n A A A P A A A A P A A P A P A A A P全概率公式∑==n i i AB P A P 1)()( )()(1i ni i B A P B P ⋅=∑=Bayes 公式)(A B P k )()(A P AB P k = ∑==n i i i k k B A P B P B A P B P 1)()()()(4.随机变量及其分布分布函数计算)()()()()(a F b F a X P b X P b X a P -=≤-≤=≤<5.离散型随机变量(1) 0 – 1 分布1,0,)1()(1=-==-k p p k X P k k(2) 二项分布 ),(p n B若P ( A ) = pn k p p C k X P k n kk n ,,1,0,)1()( =-==-*Possion 定理0lim >=∞→λn n np 有,2,1,0!)1(lim ==---∞→k k e p p C k kn n k n k n n λλ(3) Poisson 分布 )(λP,2,1,0,!)(===-k k e k X P kλλ6.连续型随机变量(1) 均匀分布 ),(b a U⎪⎩⎪⎨⎧<<-=其他,0,1)(bx a a b x f⎪⎪⎩⎪⎪⎨⎧--=1,,0)(a b ax x F(2) 指数分布 )(λE⎪⎩⎪⎨⎧>=-其他,00,)(x e x f xλλ ⎩⎨⎧≥-<=-0,10,0)(x e x x F x λ(3) 正态分布 N (μ , σ 2 )+∞<<∞-=--x e x f x 222)(21)(σμσπ⎰∞---=x tt e x F d 21)(222)(σμσπ*N (0,1) — 标准正态分布 +∞<<∞-=-x e x x 2221)(πϕ +∞<<∞-=Φ⎰∞--x t e x x t d 21)(22π7.多维随机变量及其分布二维随机变量( X ,Y )的分布函数 ⎰⎰∞-∞-=x ydvdu v u f y x F ),(),(边缘分布函数与边缘密度函数⎰⎰∞-+∞∞-=x X dvdu v u f x F ),()(⎰+∞∞-=dv v x f x f X ),()(⎰⎰∞-+∞∞-=y Y dudvv u f y F ),()( ⎰+∞∞-=du y u f y f Y ),()(8. 连续型二维随机变量(1) 区域G 上的均匀分布,U ( G )⎪⎩⎪⎨⎧∈=其他,0),(,1),(G y x Ay x f(2)二维正态分布+∞<<-∞+∞<<∞-⨯-=⎥⎥⎦⎤⎢⎢⎣⎡-+------y x e y x f y y x x ,121),(2222212121212)())((2)()1(21221σμσσμμρσμρρσπσ9. 二维随机变量的条件分布 0)()()(),(>=x f x y f x f y x f X X Y X 0)()()(>=y f y x f y f Y Y X Y⎰⎰+∞∞-+∞∞-==dy y f y x f dy y x f x f Y Y X X )()(),()( ⎰⎰+∞∞-+∞∞-==dx x f x y f dx y x f y f X X Y Y )()(),()()(y x f Y X )(),(y f y x f Y = )()()(y f x f x y fY X X Y =)(x y f X Y )(),(x f y x f X = )()()(x f y f y x f X Y Y X =10.随机变量的数字特征数学期望∑+∞==1)(k k k p x X E⎰+∞∞-=dxx xf X E )()(随机变量函数的数学期望X 的 k 阶原点矩)(k X EX 的 k 阶绝对原点矩)|(|k X EX 的 k 阶中心矩)))(((k X E X E -X 的 方差)()))(((2X D X E X E =-X ,Y 的 k + l 阶混合原点矩)(l k Y X EX ,Y 的 k + l 阶混合中心矩()l k Y E Y X E X E ))(())((--X ,Y 的 二阶混合原点矩)(XY EX ,Y 的二阶混合中心矩 X ,Y 的协方差 ()))())(((Y E Y X E X E --X ,Y 的相关系数XY Y D X D Y E Y X E X E ρ=⎪⎪⎭⎫⎝⎛--)()())())(((X 的方差D (X ) =E ((X - E (X ))2))()()(22X E X E X D -=协方差()))())(((),cov(Y E Y X E X E Y X --= )()()(Y E X E XY E -= ())()()(21Y D X D Y X D --±±=相关系数)()(),cov(Y D X D Y X XY =ρ。
概率的计算方法
概率的计算方法概率是描述事件发生可能性的数值,对于许多领域来说都是非常重要的概念。
概率的计算方法是一套系统而精确的推导过程,以便我们能够准确地评估不同事件发生的可能性。
本文将讨论一些常见的概率计算方法。
一、经典概率计算方法经典概率计算方法适用于所有可能的结果是等概率出现的情况。
例如,投掷一个公正的骰子,每个面出现的概率都是1/6。
在这种情况下,我们可以使用以下公式计算概率:P(A) = |A| / |S|其中,P(A)表示事件A发生的概率,|A|表示事件A包含的元素个数,|S|表示样本空间中的元素个数。
例如,从一副扑克牌中抽取一张牌,求得到黑桃的概率。
由于一副扑克牌有52张牌,其中有13张黑桃牌,因此根据经典概率计算方法,我们可以得出:P(黑桃) = 13 / 52 = 1 / 4二、统计概率计算方法统计概率计算方法适用于事件发生的概率与历史数据相关的情况。
在统计概率计算方法中,我们需要借助于样本数据来估计事件发生的概率。
常用的统计概率计算方法有频率法和相对频率法。
频率法是通过对事件进行多次实验,记录事件发生的频次来估计概率。
例如,我们想要评估抛硬币出现“正面”的概率。
我们可以抛硬币100次,记录下出现“正面”的次数,然后用“正面”的出现频次除以总次数来估计概率。
相对频率法则是通过统计样本中事件发生的相对频率来估计概率。
例如,我们调查了1000个人参加一次抽奖活动中奖的情况,其中有200人中奖,那么我们可以估计中奖的概率为200/1000=0.2。
三、条件概率计算方法条件概率计算方法是用于在给定一定条件下计算事件发生概率的方法。
条件概率可以表示为P(A|B),表示在事件B已经发生的条件下,事件A发生的概率。
条件概率可以通过以下公式计算:P(A|B) = P(A∩B) / P(B)其中,P(A∩B)表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。
例如,我们有一批产品,其中20%是次品。
概率公式大全
A A A吸收律:A A AA (AB) A A (A B)A B AB A (AB)反演律:A B AB AB A Bn n n n A概率公式整理1.随机事件及其概率A i 1Ai 1Ai 1Ai 12•概率的定义及其计算P(a X b) P(XF(b)5.离散型随机变量(1) 0 -1分布k 1p (1 p)P(X k)(2)二项分布B(n, p) P(X k) C:p k(1* Possion 定理lim np nnP(A) 1 P(A)P(B A) P(B) P(A)有Hm Cn p k(1 对任意两个事件A, B,有P(B A) P(B) P(AB)加法公式:对任意两个事件A, B,有P(A B) P(A) P(B) P(AB)P(A B) P(A) P(B)b) P(X a)F(a)k, kn kp)P n)0,10,1, , nk!0,1,2,⑶ Poisson分布P(kP(X k) e订,k6.连续型随机变量0,1,2 ,nP(i 1A)3.条件概率乘法公式P(A) 1P(AB) P(A) P B A P(AA2 A n)全概率公式P(A)i 1Bayes公式P(B k A)P(A i A j)nP(AB)丽(P(A) 0)nP(AAjA)j k n(1)(均匀分布(AA2(明)1b af(x)0,0,其他P(AJPA2 A(P(AA2P(AB i)P(AB k)P(A)4.随机变量及其分布分布函数计算A n | A1 A A n1) 0)P(B i) P(A B i) 1P(BQP(ABQ nP(B i)P(AB i) i 1F(x)A n 1(2)指数分布f (x)F(x)E(0, 其他0,1 e(3)正态分布1f(x)石(xX彳 (t 厂F(x) 一 X e 亍* N (0,1)— 标准正态分布x 2 Tdt fYx(yx )f (x,y) f x (X )f x|Y (x y) f Y (y)f x (X )(x)2 e10.随机变量的数字特征数学期望E(X)t 2乏dt X k P k 1(x)...一 V2 7•多维随机变量及其分布 二维随机变量(X ,Y )的分布函数 x y f (u, v)dvdu E(X)xf (x)dx随机变量函数的数学期望阶原点矩E(X k ) F(x, y) 边缘分布函数与边缘密度函数 阶绝对原点矩E(|X|k )F x (x) f (u,v )dvduk阶中心矩E((X E(X))) f x (X )f (x, v)dv 方差 E((X E(X))2) D(X)F y (y)f (u,v)dudv X ,丫的k + l 阶混合原点矩E(X k Y l) f y (y) f(u,y)du X ,Y 的 k + l 阶混合中心矩8.连续型二维随机变量 (1)区域G 上的均匀分布, E(X k lE(X)) (Y E(Y))X ,Y 的 二阶混合原点矩E(XY) 1f (X, y) A , 0, (x, y) G 其他 X ,Y 的二阶混合中心矩X ,Y 的协方差(2)二维正态分布 f (x,y ) 21 2(12)E (X E(X))(YE(Y))X ,丫的相关系数(x 1)2 2 (x 1)(y 2) 21(y 2)222E (X E(X))(YE(Y))vD(Xh D(Y)X 的方差D (X ) =E ((X - E(X))2)2 2D(X) E(X ) E (X)XYf(x, y)f x (x)f Yx (yx) f x (x) 0 f Y (y)f x|Y (x y) f Y (y) o f x (x) f (x, y)dy f xY (xy) f Y (y)dy f Y (y)f(x,y)dx f Yx (yx) f x (x)dxf xY (xy) f(x,y) f Y (y)f Y|x (yx) f x (x) f Y (y)9.二维随机变量的条件分布 协方差cov(X,Y) 相关系数XYE (X E(X))(Y E(Y))E(XY) E(X)E(Y)-D(X Y) D(X) D(Y)2cov(X,Y) D(X)、D(Y)。
《概率论公式大全》Word文档
概率论公式1.随机事件及其概率吸收律:AAB A A A A =⋃=∅⋃Ω=Ω⋃)( AB A A A A A =⋃⋂∅=∅⋂=Ω⋂)( )(AB A B A B A -==-反演律:B A B A =⋃ B A AB ⋃=n i i n i i A A 11=== ni in i i A A 11===2.概率的定义及其计算)(1)(A P A P -=若B A ⊂ )()()(A P B P A B P -=-⇒对任意两个事件A , B , 有 )()()(AB P B P A B P -=-加法公式:对任意两个事件A , B , 有)()()()(AB P B P A P B A P -+=⋃)()()(B P A P B A P +≤⋃)()1()()()()(2111111n n n n k j i k j i n j i j i n i i n i i A A A P A A A P A A P A P A P -≤<<≤≤<≤==-+++-=∑∑∑3.条件概率()=A B P)()(A P AB P乘法公式 ())0)(()()(>=A P A B P A P AB P()())0)(()()(12112112121>=--n n n n A A A P A A A A P A A P A P A A A P全概率公式 ∑==n i i AB P A P 1)()( )()(1i ni i B A P B P ⋅=∑=Bayes 公式)(A B P k )()(A P AB P k = ∑==n i i i k k B A P B P B A P B P 1)()()()(4.随机变量及其分布分布函数计算)()()()()(a F b F a X P b X P b X a P -=≤-≤=≤<5.离散型随机变量(1) 0 – 1 分布1,0,)1()(1=-==-k p p k X P k k(2) 二项分布 ),(p n B若P ( A ) = pn k p p C k X P k n k k n ,,1,0,)1()( =-==-*Possion 定理0lim >=∞→λn n np 有 ,2,1,0!)1(lim ==---∞→k k e p p C kk n n k n kn n λλ(3) Poisson 分布 )(λP,2,1,0,!)(===-k k e k X P kλλ6.连续型随机变量(1) 均匀分布 ),(b a U⎪⎩⎪⎨⎧<<-=其他,0,1)(b x a ab x f ⎪⎪⎩⎪⎪⎨⎧--=1,,0)(a b a x x F(2) 指数分布 )(λE⎪⎩⎪⎨⎧>=-其他,00,)(x e x f x λλ ⎩⎨⎧≥-<=-0,10,0)(x e x x F x λ(3) 正态分布 N (m , s 2 )+∞<<∞-=--x e x f x 222)(21)(σμσπ⎰∞---=x t t e x F d 21)(222)(σμσπ*N (0,1) — 标准正态分布 +∞<<∞-=-x e x x 2221)(πϕ +∞<<∞-=Φ⎰∞--x t e x xt d 21)(22π7.多维随机变量及其分布二维随机变量( X ,Y )的分布函数⎰⎰∞-∞-=xy dvdu v u f y x F ),(),(边缘分布函数与边缘密度函数⎰⎰∞-+∞∞-=xX dvdu v u f x F ),()( ⎰+∞∞-=dv v x f x f X ),()( ⎰⎰∞-+∞∞-=y Y dudv v u f y F ),()(⎰+∞∞-=du y u f y f Y ),()(8.连续型二维随机变量(1) 区域G 上的均匀分布,U ( G ) ⎪⎩⎪⎨⎧∈=其他,0),(,1),(G y x A y x f(2)二维正态分布+∞<<-∞+∞<<∞-⨯-=⎥⎥⎦⎤⎢⎢⎣⎡-+------y x e y x f y y x x ,121),(2222212121212)())((2)()1(21221σμσσμμρσμρρσπσ9.二维随机变量的 条件分布 0)()()(),(>=x f x y f x f y x f X X Y X 0)()()(>=y f y x f y f Y Y X Y ⎰⎰+∞∞-+∞∞-==dy y f y x f dy y x f x f Y Y X X )()(),()( ⎰⎰+∞∞-+∞∞-==dx x f x y f dx y x f y f X X Y Y )()(),()( )(y x f Y X )(),(y f y x f Y = )()()(y f x f x y f Y X X Y =)(x y f X Y )(),(x f y x f X = )()()(x f y f y x f X Y Y X =10.随机变量的数字特征数学期望 ∑+∞==1)(k k k p x X E⎰+∞∞-=dx x xf X E )()(随机变量函数的数学期望X 的 k 阶原点矩)(k X EX 的 k 阶绝对原点矩)|(|k X EX 的 k 阶中心矩)))(((k X E X E -X 的 方差)()))(((2X D X E X E =-X ,Y 的 k + l 阶混合原点矩)(l k Y X EX ,Y 的 k + l 阶混合中心矩()l k Y E Y X E X E ))(())((--X ,Y 的 二阶混合原点矩)(XY EX ,Y 的二阶混合中心矩 X ,Y 的协方差()))())(((Y E Y X E X E --X ,Y 的相关系数XY Y D X D Y E Y X E X E ρ=⎪⎪⎭⎫ ⎝⎛--)()())())(((X 的方差D (X ) =E ((X - E (X ))2))()()(22X E X E X D -=协方差()))())(((),cov(Y E Y X E X E Y X --=)()()(Y E X E XY E -= ())()()(21Y D X D Y X D --±±= 相关系数)()(),cov(Y D X D Y X XY =ρ(注:素材和资料部分来自网络,供参考。
概率论的公式大全
概率论的公式大全概率论是一门研究随机现象的数学分支,它使用概率来描述和解释随机事件发生的规律性。
在实际应用中,我们常常需要使用一些基本概率公式来计算和分析各种随机现象。
以下是一些常见的概率论公式:1.概率的定义公式:P(A)=N(A)/N(S)其中P(A)表示事件A的概率,N(A)表示事件A发生的次数,N(S)表示样本空间中发生的总次数。
2.加法公式:P(A∪B)=P(A)+P(B)-P(A∩B)其中P(A∪B)表示事件A和事件B至少发生一个的概率,P(A∩B)表示事件A和事件B同时发生的概率。
3.乘法公式:P(A∩B)=P(A)某P(B,A)其中P(A∩B)表示事件A和事件B同时发生的概率,P(B,A)表示在事件A发生的条件下事件B发生的概率。
4.条件概率公式:P(A,B)=P(A∩B)/P(B)其中P(A,B)表示在事件B发生的条件下事件A发生的概率,P(A∩B)表示事件A和事件B同时发生的概率,P(B)表示事件B的概率。
5.全概率公式:P(A)=ΣP(A,Bi)某P(Bi)其中P(A)表示事件A的概率,P(A,Bi)表示在事件Bi发生的条件下事件A发生的概率,P(Bi)表示事件Bi发生的概率,Σ表示对所有可能的事件Bi求和。
6.贝叶斯公式:P(Bi,A)=P(A,Bi)某P(Bi)/ΣP(A,Bj)某P(Bj)其中P(Bi,A)表示在事件A发生的条件下事件Bi发生的概率,P(A,Bi)表示在事件Bi发生的条件下事件A发生的概率,P(Bi)表示事件Bi发生的概率,P(A,Bj)表示在事件Bj发生的条件下事件A发生的概率,Σ表示对所有可能的事件Bj求和。
7.期望值的公式:E(X)=ΣXi某P(Xi)其中E(X)表示随机变量X的期望值,Xi表示随机变量X的可能取值,P(Xi)表示随机变量X取值为Xi的概率,Σ表示对所有可能的取值Xi求和。
8.方差的公式:Var(X) = E(X^2) - [E(X)]^2其中Var(X)表示随机变量X的方差,E(X^2)表示随机变量X的二阶矩,[E(X)]^2表示随机变量X的期望值的平方。
概率公式大全
第一章随机事件和概率第二章随机变量及其分布第三章二维随机变量及其分布第四章随机变量的数字特征第七章参数估计单正态总体均值和方差的假设检验公式整理1.随机事件及其概率吸收律:A AB A A A A =⋃=∅⋃Ω=Ω⋃)( AB A A A AA =⋃⋂∅=∅⋂=Ω⋂)()(AB A B A B A -==-反演律:B A B A =⋃ B A AB ⋃=n i in i iA A 11=== ni in i iA A 11===2.概率的定义及其计算)(1)(A P A P -=若B A ⊂ )()()(A P B P A B P -=-⇒对任意两个事件A , B , 有 )()()(AB P B P A B P -=- 加法公式:对任意两个事件A , B , 有)()()()(AB P B P A P B A P -+=⋃ )()()(B P A P B A P +≤⋃)()1()()()()(2111111n n nnk j i kjinj i jini i n i i A A A P A A A P A A P A P A P -≤<<≤≤<≤==-+++-=∑∑∑3.条件概率 ()=A B P )()(A P AB P 乘法公式())0)(()()(>=A P A B P A P AB P()())0)(()()(12112112121>=--n n n n A A A P A A A A P A A P A P A A A P 全概率公式∑==ni i AB P A P 1)()( )()(1i ni i B A P B P ⋅=∑=Bayes 公式)(A B P k )()(A P AB P k =∑==n i i i k k B A P B P B A P B P 1)()()()(4.随机变量及其分布 分布函数计算)()()()()(a F b F a X P b X P b X a P -=≤-≤=≤<5.离散型随机变量 (1) 0 – 1 分布1,0,)1()(1=-==-k p p k X P k k(2) 二项分布 ),(p n B 若P ( A ) = pn k p p C k X P k n kk n ,,1,0,)1()( =-==-*Possion 定理0lim >=∞→λn n np有,2,1,0!)1(l i m ==---∞→k k ep p C kkn n k nkn n λλ(3) Poisson 分布 )(λP,2,1,0,!)(===-k k ek X P kλλ6.连续型随机变量 (1) 均匀分布 ),(b a U⎪⎩⎪⎨⎧<<-=其他,0,1)(b x a ab x f ⎪⎪⎩⎪⎪⎨⎧--=1,,0)(a b a x x F(2) 指数分布 )(λE⎪⎩⎪⎨⎧>=-其他,00,)(x e x f x λλ⎩⎨⎧≥-<=-0,10,0)(x e x x F xλ (3) 正态分布 N (μ , σ 2 )+∞<<∞-=--x e x f x 222)(21)(σμσπ⎰∞---=xt t ex F d 21)(222)(σμσπ*N (0,1) — 标准正态分布+∞<<∞-=-x ex x 2221)(πϕ+∞<<∞-=Φ⎰∞--x t ex xt d 21)(22π7.多维随机变量及其分布二维随机变量( X ,Y )的分布函数⎰⎰∞-∞-=xydvdu v u f y x F ),(),(边缘分布函数与边缘密度函数⎰⎰∞-+∞∞-=xX dvdu v u f x F ),()(⎰+∞∞-=dv v x f x f X ),()(⎰⎰∞-+∞∞-=yY dudv v u f y F ),()(⎰+∞∞-=du y u f y f Y ),()(8. 连续型二维随机变量(1) 区域G 上的均匀分布,U ( G )⎪⎩⎪⎨⎧∈=其他,0),(,1),(Gy x A y x f(2)二维正态分布+∞<<-∞+∞<<∞-⨯-=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+------y x ey x f y y x x ,121),(2222212121212)())((2)()1(21221σμσσμμρσμρρσπσ9. 二维随机变量的 条件分布0)()()(),(>=x f x y f x f y x f X X Y X0)()()(>=y f y x f y f Y Y X Y⎰⎰+∞∞-+∞∞-==dy y f y x f dy y x f x f Y Y X X )()(),()(⎰⎰+∞∞-+∞∞-==dx x f x y f dx y x f y f X X Y Y )()(),()()(y x f Y X )(),(y f y x f Y =)()()(y f x f x y f Y X X Y = )(x y f X Y )(),(x f y x f X =)()()(x f y f y x f X Y Y X = 10.随机变量的数字特征数学期望∑+∞==1)(k k k p x X E⎰+∞∞-=dx x xf X E )()(随机变量函数的数学期望 X 的 k 阶原点矩)(k X E X 的 k 阶绝对原点矩)|(|k X E X 的 k 阶中心矩)))(((k X E X E - X 的 方差)()))(((2X D X E X E =- X ,Y 的 k + l 阶混合原点矩)(l k Y X E X ,Y 的 k + l 阶混合中心矩()l k Y E Y X E X E ))(())((--X ,Y 的 二阶混合原点矩)(XY E X ,Y 的二阶混合中心矩 X ,Y 的协方差()))())(((Y E Y X E X E --X ,Y 的相关系数XY Y D X D Y E Y X E X E ρ=⎪⎪⎭⎫⎝⎛--)()())())((( X 的方差D (X ) =E ((X - E (X ))2))()()(22X E X E X D -=协方差()))())(((),cov(Y E Y X E X E Y X --=)()()(Y E X E XY E -=())()()(21Y D X D Y X D --±±= 相关系数)()(),cov(Y D X D Y X XY =ρ⎰∞---=xt t ex F d 21)(222)(σμσπ*N (0,1) — 标准正态分布+∞<<∞-=-x ex x 2221)(πϕ+∞<<∞-=Φ⎰∞--x t e x xt d 21)(22π7.多维随机变量及其分布二维随机变量( X ,Y )的分布函数⎰⎰∞-∞-=xydvdu v u f y x F ),(),(边缘分布函数与边缘密度函数⎰⎰∞-+∞∞-=xX dvdu v u f x F ),()(⎰+∞∞-=dv v x f x f X ),()(⎰⎰∞-+∞∞-=yY dudv v u f y F ),()(⎰+∞∞-=du y u f y f Y ),()(8. 连续型二维随机变量(1) 区域G 上的均匀分布,U ( G )⎪⎩⎪⎨⎧∈=其他,0),(,1),(Gy x A y x f(2)二维正态分布+∞<<-∞+∞<<∞-⨯-=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+------y x ey x f y y x x ,121),(222221212121)())((2)()1(21221σμσσμμρσμρρσπσ9.二维随机变量的 条件分布0)()()(),(>=x f x y f x f y x f X X Y X0)()()(>=y f y x f y f Y Y X Y⎰⎰+∞∞-+∞∞-==dy y f y x f dy y x f x f Y Y X X )()(),()(⎰⎰+∞∞-+∞∞-==dx x f x y f dx y x f y f X X Y Y )()(),()( )(y x f Y X )(),(y f y x f Y = )()()(y f x f x y f Y X X Y = )(x y f X Y )(),(x f y x f X = )()()(x f y f y x f X Y Y X = 10.随机变量的数字特征数学期望∑+∞==1)(k k k p x X E⎰+∞∞-=dx x xf X E )()(随机变量函数的数学期望X 的 k 阶原点矩)(k X EX 的 k 阶绝对原点矩)|(|k X E X 的 k 阶中心矩)))(((k X E X E - X 的 方差)()))(((2X D X E X E =- X ,Y 的 k + l 阶混合原点矩)(l k Y X E X ,Y 的 k + l 阶混合中心矩()l k Y E Y X E X E ))(())((--X ,Y 的 二阶混合原点矩)(XY EX ,Y 的二阶混合中心矩 X ,Y 的协方差 ()))())(((Y E Y X E X E --X ,Y 的相关系数XY Y D X D Y E Y X E X E ρ=⎪⎪⎭⎫⎝⎛--)()())())((( X 的方差D (X ) =E ((X - E (X ))2))()()(22X E X E X D -=协方差()))())(((),cov(Y E Y X E X E Y X --=)()()(Y E X E XY E -=())()()(21Y D X D Y X D --±±= 相关系数)()(),cov(Y D X D Y X XY =ρ。
3-概率运算公式
P ( A1 A2 ⋯ An ) = P( A1 ) P ( A2 ) ⋯ P( An )
第一段 基本知识
例:甲、乙同时彼此独立地向一敌机开炮,已知甲击 中敌机的概率为0.6,乙击中敌机的概率 为0.5,求敌 机被击中的概率。 解:记A={甲中敌机},B={乙击中敌机} C={敌机被击中},则 C=A+B P(C)=P(A+B)=P(A)+P(B)-P(AB) =P(A)+P(B)-P(A)P(B) =0.6+0.5-0.6*0.5 =0.8
Ai = A1 A2 ⋯ Ai −1 Ai
P( A1 ⋯ Ai−1 Ai ) = P( A1 )P( A2 | A1 )P( A3 | A1 A2 )⋯P( Ai | A1 ⋯ Ai−1 )
n −1 n − 2 n − i +1 1 = ⋯ n n −1 n − i + 2 n − i +1 1 = n
第一段、 第一段、基本知识
在实际问题中,除了要知道事件 B的概率外,有时还需要知道在“在 事件A已发生的条件下,事件B发生的 概率”,这个概率称为条件概率 条件概率。记 条件概率 为P(B|A)。 在上面讨论中,如果已知取到的 是蓝球,那么该球是玻璃球的概率是 多少?也就是求事件A已发生的条件 下事件B发生的概率P(B|A).
2 3 3 P( AB) = × = 5 4 10
两种方法结果相同。 两种方法结果相同。
第一段 基本知识
例 设袋中有2个红球,3个白球,第一次取出一球,取 后放回,第二次再取一球,求“第一次取得红球,第二 次取得白球”的概率。 解:用概率乘法计算。记 A={第一次取得红球},B={第二次取得白球} 于是 而 P(A)=2/5,P(B)=3/5 P(B|A)=3/5=P(B),于是 P(AB)=P(A)P(B|A)=P(A)P(B) =(2/5)*(3/5)=6/25
最简单的全概率公式
最简单的全概率公式
全概率公式是概率论中的一个重要概念,它是用来求解复杂事件概率的一种方法。
通过最简单的全概率公式,我们可以计算出复杂事件在各种不同条件下发生的概率。
最简单的全概率公式可以表示为:P(A) = P(B1)P(A|B1) + P(B2)P(A|B2) + ... +
P(Bn)P(A|Bn)。
其中,P(A)表示事件A的概率,P(B1)、P(B2)、...、P(Bn)表示条件事件B1、
B2、...、Bn发生的概率,P(A|B1)、P(A|B2)、...、P(A|Bn)表示在条件事件B1、
B2、...、Bn发生的情况下事件A发生的概率。
最简单的全概率公式的应用可以帮助我们处理复杂事件的概率计算问题。
当我
们想要计算一个复杂事件的概率,但这个事件的发生取决于多个条件事件的发生时,我们可以利用最简单的全概率公式来解决这个问题。
举例来说,假设我们想要计算某个城市发生交通事故的概率P(A),但这个概率受到两个条件事件的影响:下雨(B1)和晴天(B2)。
我们还知道在下雨天(B1)的条件下发生交通事故的概率是P(A|B1),在晴天(B2)的条件下发生交通事故的
概率是P(A|B2)。
通过最简单的全概率公式,我们可以计算出发生交通事故的总概
率P(A),即P(A) = P(B1)P(A|B1) + P(B2)P(A|B2)。
使用最简单的全概率公式可以帮助我们在复杂的条件事件下计算概率,从而更
好地理解和预测事物的发生。
它是概率论中的基础概念,为我们解决概率计算问题提供了重要的工具。
无论是在科学研究领域还是日常生活中,最简单的全概率公式都具有重要的应用价值。
概率公式大全
第一章? 随机事件和概率?第二章? 随机变量及其分布?第三章? 二维随机变量及其分布第四章? 随机变量的数字特征第五章? 大数定律和中心极限定理第六章样本及抽样分布第七章? 参数估计第八章? 假设检验单正态总体均值和方差的假设检验公式整理1.随机事件及其概率吸收律:AAB A AA A =⋃=∅⋃Ω=Ω⋃)( AB A A A AA =⋃⋂∅=∅⋂=Ω⋂)(反演律:B A B A =⋃ B A AB ⋃= 2.概率的定义及其计算若B A ⊂ )()()(A P B P A B P -=-⇒对任意两个事件A , B , 有 )()()(AB P B P A B P -=- 加法公式:对任意两个事件A , B , 有)()1()()()()(2111111n n nnk j i kjinj i jini i ni i A A A P A A A P A A P A P A P ΛΛY -≤<<≤≤<≤==-+++-=∑∑∑3.条件概率 ()=A B P )()(A P AB P 乘法公式()())0)(()()(12112112121>=--n n n n A A A P A A A A P A A P A P A A A P ΛΛΛΛ全概率公式Bayes 公式4.随机变量及其分布 分布函数计算 5.离散型随机变量 (1) 0 – 1 分布 (2) 二项分布 ),(p n B 若P ( A ) = p *Possion 定理有 Λ,2,1,0!)1(lim ==---∞→k k ep p C kkn n k nk nn λλ(3) Poisson 分布 )(λP 6.连续型随机变量 (1) 均匀分布 ),(b a U (2) 指数分布 )(λE (3) 正态分布 N (? , ? 2 ) *N (0,1) — 标准正态分布 7.多维随机变量及其分布二维随机变量( X ,Y )的分布函数 边缘分布函数与边缘密度函数 8. 连续型二维随机变量(1) 区域G 上的均匀分布,U ( G )(2)二维正态分布+∞<<-∞+∞<<∞-⨯-=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+------y x ey x f y y x x ,121),(2222212121212)())((2)()1(21221σμσσμμρσμρρσπσ9. 二维随机变量的 条件分布10.随机变量的数字特征 数学期望随机变量函数的数学期望X 的 k 阶原点矩)(k X E X 的 k 阶绝对原点矩)|(|k X E X 的 k 阶中心矩)))(((k X E X E - X 的 方差)()))(((2X D X E X E =- X ,Y 的 k + l 阶混合原点矩)(l k Y X E X ,Y 的 k + l 阶混合中心矩 X ,Y 的 二阶混合原点矩)(XY EX ,Y 的二阶混合中心矩 X ,Y 的协方差 X ,Y 的相关系数 X 的方差D (X ) =E ((X - E (X ))2)协方差 相关系数)()(),cov(Y D X D Y X XY =ρ*N (0,1) — 标准正态分布 7.多维随机变量及其分布二维随机变量( X ,Y )的分布函数 边缘分布函数与边缘密度函数 8. 连续型二维随机变量(1) 区域G 上的均匀分布,U ( G ) (2)二维正态分布+∞<<-∞+∞<<∞-⨯-=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+------y x ey x f y y x x ,121),(2222212121212)())((2)()1(21221σμσσμμρσμρρσπσ9. 二维随机变量的 条件分布10.随机变量的数字特征 数学期望随机变量函数的数学期望X 的 k 阶原点矩)(k X E X 的 k 阶绝对原点矩)|(|k X E X 的 k 阶中心矩)))(((k X E X E - X 的 方差)()))(((2X D X E X E =- X ,Y 的 k + l 阶混合原点矩)(l k Y X E X ,Y 的 k + l 阶混合中心矩 X ,Y 的 二阶混合原点矩)(XY EX ,Y 的二阶混合中心矩 X ,Y 的协方差 X ,Y 的相关系数 X 的方差D (X ) =E ((X - E (X ))2)协方差 相关系数)()(),cov(Y D X D Y X XY =ρ。
概率公式大全
第一章随机事件和概率第二章随机变量及其分布第三章二维随机变量及其分布第四章随机变量的数字特征第七章参数估计单正态总体均值和方差的假设检验公式整理1.随机事件及其概率吸收律:AAB A AA A =⋃=∅⋃Ω=Ω⋃)( AB A A A AA =⋃⋂∅=∅⋂=Ω⋂)()(AB A B A B A -==-反演律:B A B A =⋃ B A AB ⋃=n i in i iA A 11=== ni in i iA A 11===2.概率的定义及其计算)(1)(A P A P -=若B A ⊂ )()()(A P B P A B P -=-⇒对任意两个事件A , B , 有 )()()(AB P B P A B P -=- 加法公式:对任意两个事件A , B , 有)()()()(AB P B P A P B A P -+=⋃ )()()(B P A P B A P +≤⋃)()1()()()()(2111111n n nnk j i kjinj i jini i n i i A A A P A A A P A A P A P A P -≤<<≤≤<≤==-+++-=∑∑∑3.条件概率 ()=A B P )()(A P AB P 乘法公式())0)(()()(>=A P A B P A P AB P()())0)(()()(12112112121>=--n n n n A A A P A A A A P A A P A P A A A P 全概率公式∑==ni i AB P A P 1)()( )()(1i ni i B A P B P ⋅=∑=Bayes 公式)(A B P k )()(A P AB P k =∑==n i i i k k B A P B P B A P B P 1)()()()(4.随机变量及其分布 分布函数计算)()()()()(a F b F a X P b X P b X a P -=≤-≤=≤<5.离散型随机变量 (1) 0 – 1 分布1,0,)1()(1=-==-k p p k X P k k(2) 二项分布 ),(p n B 若P ( A ) = pn k p p C k X P k n kk n ,,1,0,)1()( =-==-.*Possion 定理0lim >=∞→λn n np有,2,1,0!)1(lim ==---∞→k k ep p C kkn n k nk n n λλ(3) Poisson 分布 )(λP,2,1,0,!)(===-k k ek X P kλλ6.连续型随机变量 (1) 均匀分布 ),(b a U⎪⎩⎪⎨⎧<<-=其他,0,1)(b x a ab x f ⎪⎪⎩⎪⎪⎨⎧--=1,,0)(a b a x x F(2) 指数分布 )(λE⎪⎩⎪⎨⎧>=-其他,00,)(x e x f x λλ⎩⎨⎧≥-<=-0,10,0)(x e x x F xλ (3) 正态分布 N (μ , σ 2 )+∞<<∞-=--x e x f x 222)(21)(σμσπ⎰∞---=xt t ex F d 21)(222)(σμσπ*N (0,1) — 标准正态分布+∞<<∞-=-x e x x 2221)(πϕ+∞<<∞-=Φ⎰∞--x t ex xt d 21)(22π7.多维随机变量及其分布二维随机变量( X ,Y )的分布函数⎰⎰∞-∞-=xydvdu v u f y x F ),(),(边缘分布函数与边缘密度函数⎰⎰∞-+∞∞-=xX dvdu v u f x F ),()(⎰+∞∞-=dv v x f x f X ),()(⎰⎰∞-+∞∞-=yY dudv v u f y F ),()(⎰+∞∞-=du y u f y f Y ),()(8. 连续型二维随机变量(1) 区域G 上的均匀分布,U ( G )⎪⎩⎪⎨⎧∈=其他,0),(,1),(Gy x A y x f(2)二维正态分布+∞<<-∞+∞<<∞-⨯-=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+------y x ey x f y y x x ,121),(2222212121212)())((2)()1(21221σμσσμμρσμρρσπσ9. 二维随机变量的 条件分布0)()()(),(>=x f x y f x f y x f X X Y X0)()()(>=y f y x f y f Y Y X Y⎰⎰+∞∞-+∞∞-==dy y f y x f dy y x f x f Y Y X X )()(),()(⎰⎰+∞∞-+∞∞-==dx x f x y f dx y x f y f X X Y Y )()(),()()(y x f Y X )(),(y f y x f Y =)()()(y f x f x y f Y X X Y = )(x y f X Y )(),(x f y x f X =)()()(x f y f y x f X Y Y X = 10.随机变量的数字特征数学期望∑+∞==1)(k k k p x X E⎰+∞∞-=dx x xf X E )()(随机变量函数的数学期望 X 的 k 阶原点矩)(kX E X 的 k 阶绝对原点矩)|(|kX E X 的 k 阶中心矩)))(((kX E X E - X 的 方差)()))(((2X D X E X E =- X ,Y 的 k + l 阶混合原点矩)(lkY X E X ,Y 的 k + l 阶混合中心矩()l k Y E Y X E X E ))(())((--X ,Y 的 二阶混合原点矩)(XY E X ,Y 的二阶混合中心矩 X ,Y 的协方差()))())(((Y E Y X E X E --X ,Y 的相关系数XY Y D X D Y E Y X E X E ρ=⎪⎪⎭⎫⎝⎛--)()())())((( X 的方差D (X ) =E ((X - E (X ))2))()()(22X E X E X D -=协方差()))())(((),cov(Y E Y X E X E Y X --=)()()(Y E X E XY E -=())()()(21Y D X D Y X D --±±= 相关系数)()(),cov(Y D X D Y X XY =ρ⎰∞---=xt t ex F d 21)(222)(σμσπ*N (0,1) — 标准正态分布+∞<<∞-=-x ex x 2221)(πϕ+∞<<∞-=Φ⎰∞--x t e x xt d 21)(22π7.多维随机变量及其分布二维随机变量( X ,Y )的分布函数⎰⎰∞-∞-=xydvdu v u f y x F ),(),(边缘分布函数与边缘密度函数⎰⎰∞-+∞∞-=xX dvdu v u f x F ),()(⎰+∞∞-=dv v x f x f X ),()(⎰⎰∞-+∞∞-=yY dudv v u f y F ),()(⎰+∞∞-=du y u f y f Y ),()(8. 连续型二维随机变量(1) 区域G 上的均匀分布,U ( G )⎪⎩⎪⎨⎧∈=其他,0),(,1),(Gy x A y x f(2)二维正态分布+∞<<-∞+∞<<∞-⨯-=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+------y x ey x f y y x x ,121),(2222212121212)())((2)()1(21221σμσσμμρσμρρσπσ9.二维随机变量的 条件分布0)()()(),(>=x f x y f x f y x f X X Y X0)()()(>=y f y x f y f Y Y X Y⎰⎰+∞∞-+∞∞-==dy y f y x f dy y x f x f Y Y X X )()(),()(⎰⎰+∞∞-+∞∞-==dx x f x y f dx y x f y f X X Y Y )()(),()( )(y x f Y X )(),(y f y x f Y = )()()(y f x f x y f Y X X Y = )(x y f X Y )(),(x f y x f X = )()()(x f y f y x f X Y Y X = 10.随机变量的数字特征数学期望∑+∞==1)(k k k p x X E⎰+∞∞-=dx x xf X E )()(随机变量函数的数学期望X 的 k 阶原点矩)(k X EX 的 k 阶绝对原点矩)|(|k X EX 的 k 阶中心矩)))(((k X E X E - X 的 方差)()))(((2X D X E X E =- X ,Y 的 k + l 阶混合原点矩)(l k Y X E X ,Y 的 k + l 阶混合中心矩()l k Y E Y X E X E ))(())((--X ,Y 的 二阶混合原点矩)(XY EX ,Y 的二阶混合中心矩 X ,Y 的协方差 ()))())(((Y E Y X E X E --X ,Y 的相关系数XY Y D X D Y E Y X E X E ρ=⎪⎪⎭⎫⎝⎛--)()())())(((X 的方差D (X ) =E ((X - E (X ))2))()()(22X E X E X D -=协方差()))())(((),cov(Y E Y X E X E Y X --=)()()(Y E X E XY E -= ())()()(21Y D X D Y X D --±±= 相关系数)()(),cov(Y D X D Y X XY =ρ。
概率统计的8种计算方法专题讲解
概率统计的8种计算方法专题讲解
一、概率的基本概念
- 定义:某一事件发生的可能性大小。
- 表述:一般用P(A)表示。
二、概率的计算方法
1. 数学概率法
- 公式:P(A) = n(A) / n(S)
- P(A):事件A发生的概率
- n(A):事件A发生的样本点数
- n(S):样本空间中所有样本点的个数
2. 几何概率法
- 公式:P(A) = S(A) / S(S)
- P(A):事件A发生的概率
- S(A):与事件A有关的图形面积或长度等
- S(S):样本空间内所对应的图形面积或长度等
3. 频率概率法
- 公式:P(A)=发生事件A的次数 / 总实验次数
三、条件概率
- 定义:在另一事件B已经发生的条件下,事件A发生的概率。
- 公式:P(A|B) = P(AB) / P(B)
四、乘法公式
- 定义:事件A和事件B同时发生的概率。
- 公式:P(AB) = P(A) * P(B|A)
五、加法公式
- 定义:事件A或B发生的概率。
- 公式:P(A ∪ B) = P(A) + P(B) - P(AB)
六、全概率公式
- 定义:在几个互不相容事件之中,任何一个都可能发生,求
事件A发生的概率。
- 公式:P(A) = ∑P(Bi)P(A|Bi)
七、贝叶斯公式
- 定义:在一事实的证据下,要求另一假设成立的概率。
- 公式:P(Bi|A) = P(Bi)P(A|Bi) / ∑P(Bi)P(A|Bi)
八、大数定律
- 定义:在独立重复的实验中,随着实验次数的增加,事件发生的频率趋近于概率。
概率公式大全范文
概率公式大全范文概率是数学中一个重要的分支,主要研究随机现象发生的可能性。
概率公式是计算概率的数学表达式,用于解决各种随机事件的问题。
下面将介绍一些常见的概率公式。
1.事件发生的概率事件A发生的概率记作P(A),可以通过下面的公式计算:P(A)=N(A)/N(S)其中,N(A)表示事件A发生的次数,N(S)表示样本空间中所有可能事件发生的总次数。
2.互补事件事件A和事件A的互补事件A'是互斥事件,即它们不能同时发生。
它们的概率和为1:P(A)+P(A')=13.加法原理对于两个事件A和B,它们的并事件A∪B发生的概率可以通过下面的公式计算:P(A∪B)=P(A)+P(B)-P(A∩B)其中,P(A∩B)表示事件A和B同时发生的概率。
4.减法原理对于事件A和事件B,A发生且B不发生的概率可以通过下面的公式计算:P(A-B)=P(A)-P(A∩B)其中,P(A∩B)表示事件A和B同时发生的概率。
5.乘法原理对于两个事件A和B,它们的联合事件A∩B发生的概率可以通过下面的公式计算:P(A∩B)=P(A)×P(B,A)其中,P(B,A)表示在事件A发生的条件下,事件B发生的概率。
6.独立事件对于两个事件A和B,它们的独立性可以通过下面的公式判断:P(A∩B)=P(A)×P(B)如果上式成立,则事件A和事件B是独立事件。
7.事件的互斥与独立的关系如果两个事件互斥,则它们不可能同时发生,即P(A∩B)=0。
当事件A和事件B是独立事件时,它们不互斥。
8.重复试验对于重复试验中一些事件的概率,可以使用二项分布公式进行计算:P(X=k)=C(n,k)×p^k×(1-p)^(n-k)其中,C(n,k)表示从n次试验中选k次的组合数,p表示每次试验中事件发生的概率。
9.期望值对于一个随机变量X,它的期望值可以通过下面的公式计算:E(X)=Σ(x×P(X=x))其中,x表示随机变量X的一些取值,P(X=x)表示该值对应的概率。
概率的计算公式-
P(A)
P(AB)
P(B)
P(B| A)
条件概率计算公式
当 P(A)0,P(BA)P(AB ) P(A)
当 P(B)0,P(AB)P(AB ) P(B)
Note 条件概率是概率吗?
条件概率满足概率三公 理。
2. 乘法公式
P(A)B P(A )P(BA )P(B)P(AB).
§1.3 概率的计算公式
一、加法公式 二、条件概率与乘法公式 三、全概率公式 四、贝叶斯(Bayes)公式
二.条件概率与乘法公 式
1.条件概率
Def 已知事 B出件现的条 A出 件现 下的
称为条件概率。记作 P(A B).
eg 班级 男生 女生 总数
1班
16
16
32
2班
18
10
28
从这两个班 ,A 中 令 选 任得 选是 ,
P (Y )P (A 1A 1B 1A 2)P (A 1)P (A 1B 1A 2)
0 .2 P (A 1 ) P (B 1 /A 1 ) P (A 2 /A 1 B 1 )
0 .2 0 .8 0 .7 0 .4 0.424
三.全概率公式
设A1,A2, ,An为一互不相容完 组备 ,
eg 4.
在空战 ,甲中机先向乙,击 机毁 开率 火 0.2为 ,
若乙机未 ,就 被 向 击 甲 毁 ,机 击反 中0击 率 .3,
若甲机又未被击毁就 乙向 机再次反,击
击毁率为0.4, 求在这3个回合中, 甲机被击毁的概机率被与击乙毁的?概
解 令 X 甲被 ,Y击 乙毁 被 , 击毁
四.贝叶 (Ba斯 ye)公 s 式
概率的计算公式
推论1 若A,B为两个事件,且A与B不相容,则
P(A∪B)=P(A)+P(B)
推论 2:对任意事件A, P( A ) 1 P( A).
证明:由于 A A 且 AA
由推论 1 可知
P ( A) P ( A) 1
得
P ( A) 1 P ( A)
推论 3 若 A, B 满足 A B ,则有
P ( A1 A2 An ) P ( A1 ) P ( A2 ) P ( An )
证明:由可列可加性,并令
Ai (i n 1, n 2,)
P ( Ai ) P ( Ai ) P ( Ai ) P ( Ai )
i 1 i 1 i 1 i 1 n n
§1.3 概率的计算公式
由概率的定义可以证明概率的一些重要性质。
首先
P ( ) 0
由概率的可加性
证明:因为
P ( ) P ( ) P ( )
由 P ( ) 0 ,证得 P ( ) 0 。
一.加法公式 有限可加性
若A1 , A2 , , An 两两互不相容,则
在 1,2,…,100 这一百个整数中能被 3 整除的有 33 个,
能被 4 整除的有 25 个,能被 12 整除的有 8 个。事件
BC 发生相当于能被 3× 整除,即能被 12 整除,因此 4
33 P(B) , 100
25 P(C) , 100
8 P(BC) , 100
P( A) P(B) P(C) P(BC) 33 25 8 1 . 2 100
注:推论 4 还可以推广到多个事件情形, A1 , A2 , A3 为任 设 意三个事件,则有ຫໍສະໝຸດ P(A1 A 2 A3 )
计算几率的公式
计算几率的公式概率(Probability)是数学中处理随机事件的一种重要概念,一个随机事件可以被定义为一系列可能的结果中的任何一个结果发生的概率,也就是概率的值。
这里我们将介绍如何使用公式来计算概率。
一般来说,概率的计算式如下:概率(P)=发生的次数/总次数其中,总次数是每次尝试(也就是观察)的独立次数,发生次数是有特定结果发生的次数。
例如,假设有一个色子,我们将它抛出10次,其中有6次抛出一个点,那么点出现的概率就是:概率(P)=6/10=0.6实际上,计算概率有多种方法,比如可以使用条件概率和互斥概率来计算概率。
(1)条件概率当一个事件的发生依赖另一个事件时,就可以使用条件概率。
条件概率的计算公式如下:条件概率(P)=(事件A和事件B发生的概率)/(事件B发生的概率)其中,事件A和事件B的概率分别用P(A)和P(B)表示。
例如,假设抛掷一枚色子,点数是3或4,其中3的概率为0.3,4的概率0.4,如果知道了点数是3或4之一,那么抛出3的概率就可以计算为:条件概率(P)=(3的概率)/(3 or 4的概率)=0.3/(0.3+0.4)=0.43(2)互斥概率当任一事件的发生与另一事件不可能同时发生时,就可以使用互斥概率。
互斥概率的计算公式如下:互斥概率(P)=1-(事件A发生的概率)例如,假设有一枚色子,抛出3的概率是0.3,计算抛出不是3的概率可以使用互斥概率计算:互斥概率(P)=1-(3的概率)=1-0.3=0.7除了上面介绍的这两种计算方法,还有许多其他的概率计算方法,比如二项分布(binomial distribution)、贝叶斯公式(Bayes formula)以及泊松分布(Poisson distribution)。
此外,还可以使用抽样统计方法等。
从上面提到的计算概率的方法来看,计算概率是数学中一种非常有趣且有用的概念。
它在诸如经济、博弈论、生物学等领域都有应用,广泛地用于实际预测中。
概率公式大全
第一章随机事件和概率第二章随机变量及其分布第三章二维随机变量及其分布第四章随机变量的数字特征第五章大数定律和中心极限定理第六章样本及抽样分布第八章假设检验公式整理1.随机事件及其概率吸收律:A AB A A A A =⋃=∅⋃Ω=Ω⋃)( AB A A A AA =⋃⋂∅=∅⋂=Ω⋂)()(AB A B A B A -==-反演律:B A B A =⋃ B A AB ⋃=n i in i iA A 11=== ni in i iA A 11===2.概率的定义及其计算)(1)(A P A P -=若B A ⊂ )()()(A P B P A B P -=-⇒对任意两个事件A , B , 有 )()()(AB P B P A B P -=- 加法公式:对任意两个事件A , B , 有)()()()(AB P B P A P B A P -+=⋃ )()()(B P A P B A P +≤⋃)()1()()()()(2111111n n nnk j i kjinj i jini i n i i A A A P A A A P A A P A P A P -≤<<≤≤<≤==-+++-=∑∑∑3.条件概率 ()=A B P )()(A P AB P 乘法公式())0)(()()(>=A P A B P A P AB P()())0)(()()(12112112121>=--n n n n A A A P A A A A P A A P A P A A A P 全概率公式∑==ni i AB P A P 1)()( )()(1i ni i B A P B P ⋅=∑=Bayes 公式)(A B P k )()(A P AB P k =∑==n i i i k k B A P B P B A P B P 1)()()()(4.随机变量及其分布 分布函数计算)()()()()(a F b F a X P b X P b X a P -=≤-≤=≤<5.离散型随机变量 (1) 0 – 1 分布1,0,)1()(1=-==-k p p k X P k k(2) 二项分布 ),(p n B 若P ( A ) = pn k p p C k X P k n kk n ,,1,0,)1()( =-==-*Possion 定理0lim >=∞→λn n np有,2,1,0!)1(lim ==---∞→k k ep p C kkn n k nkn n λλ(3) Poisson 分布 )(λP,2,1,0,!)(===-k k ek X P kλλ6.连续型随机变量(1) 均匀分布 ),(b a U⎪⎩⎪⎨⎧<<-=其他,0,1)(b x a ab x f ⎪⎪⎩⎪⎪⎨⎧--=1,,0)(a b a x x F(2) 指数分布 )(λE⎪⎩⎪⎨⎧>=-其他,00,)(x e x f x λλ⎩⎨⎧≥-<=-0,10,0)(x e x x F xλ (3) 正态分布 N (μ , σ 2 )+∞<<∞-=--x e x f x 222)(21)(σμσπ⎰∞---=xt t ex F d 21)(222)(σμσπ*N (0,1) — 标准正态分布+∞<<∞-=-x e x x 2221)(πϕ+∞<<∞-=Φ⎰∞--x t ex xt d 21)(22π7。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率计算公式
加法法则
P(A∪B)=P(A)+P(B)-P(AB
条件概率
当P(A)>0,P(B|A)=P(AB)/P(A)
乘法公式
P(AB)=P(A)×P(B|A)=P(B)×P(A|B)
计算方法
“排列组合”的方法计算
记法
P(A)=A
加法法则
定理:设A、B是互不相容事件(AB=φ),P(AB)=0.则
P(A∪B)=P(A)+P(B)-P(AB)=p(A)+P(B)
推论1:设A1、A2、…、An互不相容,则:P(A1+A2+...+ An)= P(A1) +P(A2) +…+ P(An) 推论2:设A1、A2、…、An构成完备事件组,则:P(A1+A2+...+An)=1
推论3: P(A)=1-P(A')
推论4:若B包含A,则P(B-A)= P(B)-P(A)
推论5(广义加法公式):
对任意两个事件A与B,有P(A∪B)=P(A)+P(B)-P(AB)
折叠条件概率
条件概率:已知事件B出现的条件下A出现的概率,称为条件概率,记作:P(A|B)
条件概率计算公式:
当P(A)>0,P(B|A)=P(AB)/P(A)
当P(B)>0,P(A|B)=P(AB)/P(B)
折叠乘法公式
P(AB)=P(A)×P(B|A)=P(B)×P(A|B)
推广:P(ABC)=P(A)P(B|A)P(C|AB)
折叠全概率公式
设:若事件A1,A2,…,An互不相容,且A1+A2+…+An=Ω,则称A1,A2,…,An构成一个完备事件组。
全概率公式的形式如下:
以上公式就被称为全概率公式。