渗碳炉专题介绍
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
渗碳炉专题介绍(全面系统的了解渗碳炉)
一.渗碳炉炉型简介:
渗碳炉是节能型周期作业式工业炉,由炉壳、炉衬、炉盖升降机构、真空密封风机、马弗罐及加热元件等组成。
炉壳由钢板及型钢焊接制成圆形,炉衬是由高强度超轻质微珠真空球节能耐火砖、硅酸铝超长纤维、膨胀保温粒料等砌筑而成的节能型炉衬结构。
真空密封风机高压循环搅拌使马弗罐中的气氛均匀,在炉盖上装备有三头不锈钢滴注器,向炉内滴注甲醉、煤油或其它有机液体,各种液体均可调节。
另也可配套碳控仪及自动控制系统,实现渗碳炉温度、时间、碳势气氛的实时自动控制。
二.渗碳炉的用途:
渗碳炉主要供各种钢制机械零件、曲釉、齿轮、模具等金属零件进行气体渗碳热处理之用。
三.渗碳炉的工作方式:
渗碳炉为井式炉外形,一般安装在基础坑内,使用行车吊装卸工件。
渗碳炉的炉盖关闭后,另有压紧螺栓保证渗碳炉真空密封性。
先抽真空后加热至渗碳工艺温度,使用三头不锈钢滴注器或可自动控制的碳控仪进行渗碳热处理。
四.渗碳炉的分类方式:
渗碳炉由不同的工艺要求,相应结构也有一定差异,可以分为气体渗碳炉、碳氮共渗炉。
五.各系列渗碳炉简介
离子渗碳炉
:离子渗碳炉是在真空容器中,利用辉光放电使渗碳气体电离,所产生的碳离子在电场作用下轰击炉料表面进行渗碳的热处理炉。
汉口电炉公司研制的离子渗碳炉技术先进,获得用户广泛应用和好评。
井式气体渗碳炉
:RQ3系列井式气体渗碳炉是高精度超节能型渗碳炉,主要供钢制零件气体渗碳,采用超节能炉衬和国际先进的真空密封风机,使炉压提高,无任何漏气,炉温均匀、升温快、保温好,碳势气氛均匀,工件渗碳速度加快,渗层均匀,本系列井式气体渗碳炉大大提高了生产效率和渗碳质量。
井式气体碳氮共渗炉
:井式气体碳氮共渗炉由炉壳、炉衬、炉盖升降机构、真空密封风机、马弗罐及加热元件等组成。
配置专用不锈钢滴注器作为碳氮共渗用接口。
大型真空渗碳炉
:大型真空渗碳炉是高精度超节能型渗碳炉,主要为大型工件、大批量机械零件真空渗碳,采用超节能炉衬和国际先进的真空密封风机,炉压高,无漏气,高度节能节电,渗碳气氛均匀,渗碳速度快,渗层均匀,本系列大型真空渗碳炉为大批量生产提高了效率和质量。
密封箱式气体渗碳炉
:密封箱式气体渗碳炉(多用炉)是引进技术生产的节能型连续作业渗碳炉,主要供汽车零件及各种机械零件渗碳和炉内自动淬火,也可用于光亮淬火、铝合金件固熔处理等多种热处理工艺。
井式气体渗碳炉操作技术
1 开炉前的准备
(1)检查炉盖的升降机构、风扇的运行情况及润滑状况是否良好。
(2)检查设备电器部分是否正常,炉盖接地是否良好,电热元件是否有短路或断路现象。
(3)检查炉温仪表和热电偶是否正常。
(4)检查滴油器或气体流量计是否完好正常。
(5)炉盖的风扇轴承处若已改装成循环冷却水冷却结构,检查冷却水循环是否正常。
(6)清扫炉罐内的积灰,检查炉罐有否裂纹等不正常现象,并清理好管路上其他部位。
(7)检查各阀门是否处于关闭状态,有无泄漏现象。
(8)检查起吊设备及吊具是否齐全完好。
(9)检查炉盖密封材料是否齐全完好。
(10)准备工具和夹具。
(11)储备好辅助材料,如煤油、甲醇、试样和其他材料等。
(12)准备好灭火器材。
(13)升温前用压缩空气吹扫炉罐。
(14)升温时炉盖螺栓不许拧紧。
2 烘炉及升温
(1)调整仪表至工艺规定的温度,打开小开关,合闸送电。
(2)新炉或大修后的炉子,按设备说明书规定的烘炉曲线或工艺进行烘炉。
(3)短期停炉的炉子,其升温工艺曲线有两种
1)60KW 以下的炉子,一般情况下可以直接升温到工作温度。
2)60KW 以上的炉子,可按在室温放置
2-3昼夜,经电工用500V兆欧表检查三相电热元件对地(炉外壳)的电阻应大于0.5MΩ方可
送电,并按以下工艺通电烘烤:
1) 100-200℃15-20h 炉门打开
2) 300-400℃8-10h 炉门打开
3) 550-600℃8h 炉门关闭打开风机
4) 750-800℃8h 炉门关闭打开风机
(3)烘炉及升温时,炉子开始升温后,风扇轴承要通冷却循环水。
3 炉子工作
(1)新炉或大修后的炉罐渗碳工艺,参考气体渗碳工艺进行。
(2)短期停炉的炉罐渗碳工艺,参阅气体渗碳工艺进行。
(3)装炉技术要求
1)装炉前,要切断电源,关闭滴油器或进气管流量计阀门,停止供应滴注剂或其他渗入气氛,打开炉盖。
2)装炉时,要吊准料筐耳朵在炉罐正中放平稳,上下对准,不得有倾斜及间隙。
3)装炉后,尽快盖好炉盖和恢复好炉子的密封性,并接通电源,滴入渗碳剂,及时放入炉内2-3根中间试样。
(4)渗碳,工件渗碳工艺,参阅#) *“气体渗碳工艺”进行。
(5)出炉的技术要求
1)准备好出炉用的吊具,戴好劳动保护用品。
2)关闭滴油器和炉气管路上各阀门,关闭风扇,切断电源。
3)打开试样孔及排气孔阀门。
4)启动炉盖、吊车和吊具,对准料筐耳朵起吊,不准斜吊料筐。
4 停炉
(1)直接降温的炉子,炉温降至400℃停风扇,降至200℃以下或室温停冷却循环水。
(2)保温待用的炉子,可降至300℃保温,炉内应滴人少量渗碳剂或通人保护气体。
5 操作注意事项
(1)经常检查仪表的指示温度是否正常,检查周期为15min 。
(2)经常检查炉子的压力、液体滴注剂滴量,排气管是否堵塞,循环冷却水是否畅通。
(3)炉子最高使用温度不得超过设计温度。
(4)炉温低于750℃禁止向炉内滴入液体滴注剂或送入保护气。
(5)定期加润滑油,每天至少一次。
(6)炉罐、电热元件和风扇护板要定期检查,滴油器和排气管要定期清理。
(7)每季度核对控温仪表一次,每半年核对热电偶一次。
(8)出炉一定要平稳,严禁料筐撞碰炉罐。
井式气体渗碳炉
井式气体渗碳炉是周期作业式电炉,井式气体渗碳炉是结合用户的实际使用情况在系列电炉的基础上改进的节能型电阻炉,井式气体渗碳炉最高工作温度950℃,井式气体渗碳炉炉膛为竖井式,内有铸钢件炉罐及料筐,工件放置在料筐内,控制气氛采用滴入式,经流量计和滴管滴入炉罐内,风扇装在炉盖上,可进行炉罐内温度及气氛的强迫循环。
特别适宜于轴类工件的热处理;
2 .采用微机智能化仪表,按工艺要求设置炉温,自动跟踪显示,可实现 PLC 程序控制;
3 .多种温度,气氛控制上、下位微机联网,配上机械手可达到全过程的自动控制、记录及车间群控和少人、
无人操作;
渗碳
渗碳:是对金属表面处理的一种,采用渗碳的多为低碳钢或低合金钢,具体方法是将工件置入具有活性渗碳介质中,加热到900--950摄氏度的单相奥氏体区,保温足够时间后,使渗碳介质中分解出的活性碳原子渗入钢件表层,从而获得表层高碳,心部仍保持原有成分。
相似的还有低温渗氮处理。
这是金属材料常见的一种热处理工艺,它可以使渗过碳的工件表面获得很高的硬度,提高其耐磨程度。
中文名
渗碳
外文名
carburizing/carburization
本质
对金属表面处理的一种
概念
指使碳原子渗入到钢表面层的过程
分类
气体渗碳、固体渗碳﹑液体渗碳
应用
广泛用于飞机﹑汽车等的机械零件
目录
1基本信息
2分类
3原理
▪①分解
▪②吸附
▪③扩散
4工艺流程
▪直接淬火低温回火
▪预冷直接淬火、低温回火
▪一次加热淬火,低温回火
▪二次淬火低温回火
▪二次淬火冷处理低温回火
5发展趋势
6常见缺陷
▪碳浓度过高
▪碳浓度过低
▪渗碳后表面局部贫碳
▪渗碳浓度加剧过渡
▪磨加工时产生回火及裂纹
7碳钢特点
8注意事项
1基本信息编辑
渗碳[1](carburizing/carburization)是指使碳原子渗入到钢表面层的过程。
也是使低碳钢的工件具有高碳钢的表面层,再经过淬火和低温回火,使工件的表面层具有高硬度和耐磨性,而工件的中心部分仍然保持着低碳钢的韧性和塑性。
渗碳工件的材料一般为低碳钢或低碳合金钢(含碳量小于0.25%)。
渗碳后﹐钢件表面的化学成分可接近高碳钢。
工件渗碳后还要经过淬火﹐以得到高的表面硬度﹑高的耐磨性和疲劳强度﹐并保持心部有低碳钢淬火后的强韧性﹐使工件能承受冲击载荷。
渗碳工艺广泛用于飞机﹑汽车和拖拉机等的机械零件﹐如齿轮﹑轴﹑凸轮轴等。
渗碳工艺在中国可以上溯到2000年以前。
最早是用固体渗碳介质渗碳。
液体和气体渗碳是在20世纪出现并得到广泛应用的。
美国在20年代开始采用转筒炉进行气体渗碳。
30年代﹐连续式气体渗碳炉开始在工业上应用。
60年代高温(960~1100℃)气体渗碳得到发展。
至70年代﹐出现了真空渗碳和离子渗碳。
2分类编辑
按含碳介质的不同﹐渗碳可分为气体渗碳、固体渗碳﹑液体渗碳﹑和碳氮共渗(氰化)。
气体渗碳是将工件装入密闭的渗碳炉内,通入气体渗剂(甲烷、乙烷等)或液体渗剂(煤油或苯、酒精、丙酮等),在高温下分解出活性碳原子,渗入工件表面,以获得高碳表面层的一种渗碳操作工艺。
固体渗碳是将工件和固体渗碳剂(木炭加促进剂组成)一起装在密闭的渗碳箱中,将箱放入加热炉中加热到渗碳温度,并保温一定时间,使活性碳原子渗人工件表面的一种最早的渗碳方法。
液体渗碳是利用液体介质进行渗碳,常用的液体渗碳介质有:碳化硅,“603”渗碳剂等。
碳氮共渗(氰化)又分为气体碳氮共渗、液体碳氮共渗、固体碳氮共渗。
3原理编辑
渗碳与其他化学热处理一样﹐也包含3个基本过程。
①分解
渗碳介质的分解产生活性碳原子。
②吸附
活性碳原子被钢件表面吸收后即溶到表层奥氏体中﹐使奥氏体中含碳量增加。
③扩散
表面含碳量增加便与心部含碳量出现浓度差﹐表面的碳遂向内部扩散。
碳在钢中的扩散速度主要取决于温度﹐同时与工件中被渗元素内外浓度差和钢中合金元素含量有关。
渗碳零件的材料一般选用低碳钢或低碳合金钢(含碳量小於0.25%)。
渗碳后必须进行淬火才能充分发挥渗碳的有利作用。
工件渗碳淬火后的表层显微组织主要为高硬度的马氏体加上残余奥氏体和少量碳化物﹐心部组织为韧性好的低碳马氏体或含有非马氏体的组织﹐但应避免出现铁素体。
一般渗碳层深度范围为0.8~1.2毫米﹐深度渗碳时可达2毫米或更深。
表面硬度可达HRC58~63﹐心部硬度为HRC30~42。
渗碳淬火后﹐工件表面产生压缩内应力﹐对提高工件的疲劳强度有利。
因此渗碳被广泛用以提高零件强度﹑冲击韧性和耐磨性﹐借以延长零件的使用寿命。
4工艺流程编辑
直接淬火低温回火
组织及性能特点:不能细化钢的晶粒。
工件淬火变形较大,合金钢渗碳件表面残余奥氏体量较多,表面硬度较低
适用范围:操作简单,成本低廉用来处理对变形和承受冲击载荷不大的零件,适用于气体渗碳和液体渗碳工艺。
预冷直接淬火、低温回火
淬火温度800-850℃。
组织及性能特点:可以减少工件淬火变形,渗层中残余奥
氏体量也可稍有降低,表面硬度略有提高,但奥氏体晶粒没有变化。
适用范围:操作简单,工件氧化、脱碳及淬火变形均小,广泛应用于细晶粒钢制造的各种工具。
一次加热淬火,低温回火
淬火温度820-850℃或780-810℃。
组织及性能特点:对心部强度要求较高者,采用820-850℃淬火,心部为低碳M,表面要求硬度高者,采用780-810℃淬火可以细化晶粒。
适用范围:适用于固体渗碳后的碳钢和低合金钢工件、气体、液体渗碳的粗晶粒钢,某些渗碳后不宜直接淬火的工件及渗碳后需机械加工的零件。
4、渗碳高温回火,一次加热淬火,低温回火
淬火温度840-860℃。
组织及性能特点:高温回火使M和残余A分解,渗层中碳和合金元素以碳化物形式析出,便于切削加工及淬火后残余A减少。
适用范围:主要用于Cr—Ni合金渗碳工件
二次淬火低温回火
组织及性能特点:第一次淬火(或正火),可以消除渗碳层网状碳化物及细化心部组织(850-870℃),第二次淬火主要改善渗层组织,对心部性能要求不高时可在材料的Ac1—Ac3之间淬火,对心部性能要求高时要在Ac3以上淬火。
适用范围:主要用于对力学性能要求很高的重要渗碳件,特别是对粗晶粒钢。
但在渗碳后需经过两次高温加热,使工件变形和氧化脱碳增加,热处理过程较复杂。
二次淬火冷处理低温回火
组织及性能特点:高于Ac1或Ac3(心部)的温度淬火,高合金表层残余A较多,经冷处理(-70℃/-80℃)促使A转变从而提高表面硬度和耐磨性。
适用范围:主要用于渗碳后不进行机械加工的高合金钢工件。
7、渗碳后感应加热淬火低温回火
组织及性能特点:可以细化渗层及靠近渗层处的组织。
淬火变形小,不允许硬化的部位不需预先防渗。
适用范围:各种齿轮和轴类
5发展趋势编辑
渗碳工艺是一个十分古老的工艺,在中国,最早可上溯到2000年以前。
起先是用固体渗碳介质渗碳。
在20世纪出现液体和气体渗碳并得到广泛应用。
后来又出现了真空渗碳和离子渗碳。
到现在,渗碳工艺仍然具有非常重要的实用价值,原因就在于它的合理的设计思想,即让钢材表层接受各类负荷(磨损、疲劳、机械负载及化学腐蚀)最多的地方,通过渗入碳等元素达到高的表面硬度﹑高的耐磨性和疲劳强度及耐蚀性﹐而不必通过昂贵的合金化或其它复杂工艺手段对整个材料进行处理。
这不仅能用低廉的碳钢或合金钢来代替某些较昂贵
的
高合金钢,而且能够保持心部有低碳钢淬火后的强韧性﹐使工件能承受冲击载荷。
因此,完全符合节能、降耗,可持续发展的方向。
近年来,出现了高浓度渗碳工艺,与传统工艺在完全奥氏体区(温度在900~950℃,渗碳后表面碳质量分数为0.85%~1.05%)进行渗碳不同,它是在Ac1~Accm之间的不均匀奥氏体状态下进行,其渗层表面碳浓度可高达2%~4%。
其结果可获得细小颗粒碳化物均匀、弥散分布的渗层。
其渗碳温度降至800℃~860℃温度范围,可实现一般钢材渗碳后直接淬火;由于高浓度渗碳层含有很高数量(20%~50%)的弥散分布的碳化物,故显示出比普通渗碳更优异的耐磨性、耐蚀性,更高的接触与弯曲疲劳强度,较高的冲击韧度、较低的脆性及较好的回火稳定性。
该工艺还具有适用性广、对设备无特殊要求等优点,具有较高的经济效益和实用价值,近年来在国内外获得竞相研究与开发。
为了防止渗碳过程中奥氏体晶粒的粗化,一般都在钢材中添加适量的钛,通过形成碳氮化钛粒子钉扎晶界而阻止晶粒长大。
国家标准规定渗碳钢中钛添加量为0.04~0.08wt%。
然而,最近有研究工作表明,当钛含量超过0.032%,就会在渗碳钢冶炼铸锭凝固时析出氮化钛。
这种氮化钛尺寸达到微米数量级,起不到阻止奥氏体晶粒长大的作用,反而由于这种呈立方体的粒子的尖角效应以及与基体组织的不连续性而成为微裂纹的策源地和裂纹扩展的中继站,严重损害钢材的韧塑性。
工作还表明,将钛含量降至0.02~0.032%,仍然能够同样有效地起到控制奥氏体晶粒长大的作用,而又可避免有害氮化钛粒子的形成,因此是值得推荐的合理的选择范围。
6常见缺陷编辑
碳浓度过高
⒈产生原因及危害:如果渗碳时急剧加热,温度又过高或固体渗碳时用全新渗碳剂,或用强烈的催渗剂过多都会引起渗碳浓度过高的现象。
随着碳浓度过高,工件表面出现块状粗大的碳化物或网状碳化物。
由于这种硬脆组织产生,使渗碳层的韧性急剧下降。
并且淬火时形成高碳马氏体,在磨削时容易出现磨削裂纹。
⒉防止的方法
①不能急剧加热,需采用适当的加热温度,不使钢的晶粒长大为好。
如果渗碳时晶粒粗大,则应在渗碳后正火或两次淬火处理来细化晶粒。
②严格控制炉温均匀性,不能波动过大,在反射炉中固体渗碳时需特别注意。
③固体渗碳时,渗碳剂要新、旧配比使用。
催渗剂最好采用4—7%的BaCO3,不使用Na2CO3作催渗剂。
碳浓度过低
⒈产生的原因及危害:温度波动很大或催渗剂过少都会引起表面的碳浓度不足。
最理想的碳浓度为0.9—1.0%之间,低于0.8%C,零件容易磨损。
⒉防止的方法:
①渗碳温度一般采用920—940℃,渗碳温度过低就会引起碳浓度过低,且延长渗碳时间;渗碳温度过高会引起晶粒粗大。
②催渗剂(BaCO3)的用量不应低于4%。
渗碳后表面局部贫碳
⒈产生的原因及危害:固体渗碳时,木炭颗粒过大或夹杂有石块等杂质,或催渗剂与木炭拌得不均匀,或工件所接触都会引起局部无碳或贫碳。
工件表面的污物也可以引起贫碳。
⒉防止的方法
①固体渗碳剂一定要按比例配制,搅拌均匀。
②装炉的工件注意不要有接触。
固体渗碳时要将
渗碳剂捣实,勿使渗碳过塌而使工件接触。
③却除表面的污物。
渗碳浓度加剧过渡
⒈产生的原因及危害:渗碳浓度突然过渡就是表面与中心的碳浓度变化加剧,不是由高到低的均匀过渡,而是突然过渡。
产生此缺陷的原因是渗碳剂作用很强烈(如新配制的木炭,旧渗碳剂加得很少),同时钢中有Cr、Mn、Mo等合金元素是促使碳化物形成强烈,而造成表面高浓度,中心低浓度,并无过渡层。
产生此缺陷后造成表里相当大的内应力,在淬火过程中或磨削过程中产生裂纹或剥落现象。
⒉防止的方法:渗碳剂新旧按规定配比制,使渗碳缓和。
用BaCO3作催渗剂较好,因为Na2CO3比较急剧。
磨加工时产生回火及裂纹
⒈产生的原因:渗碳层经磨削加工后表面引起软化的现象,称之为磨加工产生的回火。
这是由于磨削时加工进给量太快,砂轮硬度和粒度或转速选择不当,或磨削过程中冷却不充分,都易产生此类缺陷。
这是因为磨削时的热量使表面软化的缘故。
磨削时产生回火缺陷则零件耐磨性降低。
表面产生六角形裂纹。
这是因为用硬质砂轮表面受到过份磨削,而发热所致。
也与热处理回火不足,残余内应力过大有关。
用酸浸蚀后,凡是有缺陷部位呈黑色,可与没有缺陷处区别开来。
这是磨削时产生热量回火。
使马使体转变为屈氏体组织的缘故。
其实,裂纹在磨削后肉眼即可看见。
⒉防止的方法:
①淬火后必须经过充分回火或多次回火,消除内应力。
②采用40~60粒度的软质或中质氧化铝砂轮,磨削进给量不过大。
③磨削时先开冷却液,并注意磨削过程中的充分冷却
7碳钢特点编辑
(1)渗碳钢的含碳量一般都在0.15--0.25%范围内,对于重载的渗碳体,可以提高到0.25--0.30%碳素渗碳钢中,用得最多的是15和20钢,它们经渗碳和热处理后表面硬度可达56--62HRC。
但由于淬透性较低,只适用于心部强度要求不高、受力小、承受磨损的小型零件,如轴套、链条等.
(2)合金元素在渗碳钢中的作用是提高淬透性,细化晶粒,强化固溶体,影响渗层中的含碳量、渗层厚度及组织.在渗碳钢中通常加入的合金元素有锰、铬、镍、钼、钨、钒、硼等.低合金渗碳钢如20Cr、20Cr2MnVB、20Mn2TiB等,其渗透性和心部强度均较碳素渗碳钢高,可用于制造一般机械中的较为重要的渗碳件,如汽车、拖拉机中的齿轮、活塞销等.中合金渗碳钢如20Cr2Ni4、18Cr2N4W、15Si3MoWV等,由于具有很高的淬透性和较高的强度及韧性,主要用以制造截面较大、承载较重、受力复杂的零件,如航空发动机的齿轮、轴等.
固体渗碳;液体渗碳;气体渗碳---渗碳温度为900--950C,表面层w(碳)为0.8--1.2%,层深为0.5--2.0mm.
渗碳后的热处理---渗碳工件实际上应看作是由一种表面与中心含量相差悬殊码复合材料.渗碳只能改变工件表面的含碳量,而其表面以及心部的最终强化则必须经过适当的热处理才能实现.渗碳后的工件均需进行淬火和低温回火.淬火的目的是使在表面形成高碳马氏体或高碳马氏体和细粒状碳化物组织.低温回火温度为150--200C.
8注意事项编辑
(1)渗碳前的预处理正火--目的是改善材料原始组织、减少带状、消除魏氏组织,使表面粗糙度变细,消除材料流线不合理状态.正火工艺;用860--980C空冷、179--217HBS.
(2)渗碳后需进行机械加工的工件,硬度不应高于30HRC.
(3)对于有薄壁沟槽的渗碳淬火零件,薄壁沟槽处不能先于渗碳之前加工.
(4)不得用镀锌的方法防渗碳.
深冷处理
冷处理的目的是消除钢中的残余奥氏体,提高钢的稳定性。
残奥是一直存在的,只有当奥氏体中含碳量到0.50%以上时才能明显观察到。
淬火不可能得到100%的马氏体,余下未转变的奥氏体称为残余奥氏体。
当大量马氏体形成后,剩下的奥氏体被分割成一块块很小的区域,它们被周围的马氏体包围而受到巨大的各向压力阻止其继续向马氏体转变。
含碳量越高,残余奥氏体越多。
残余奥氏体的产生原因:一、由于淬火的冷却速度快,使奥氏体的转变无发完全实现;二、领先转变完成的马氏体阻碍尚未转变的奥氏体向马氏体的转变。
消除方法:一、对淬火后的材料进行变形处理,利用形变为奥氏体转变提供空间即形变诱发马氏体;二、深冷处理为尚未转变的奥氏体向马氏体的转变提供驱动力。
三、冷处理可以减少残余奥氏体,回火可以减少或消除残余奥氏体,最有效的办法就是回火
深冷处理是对于钢铁材料,零件淬火后,马氏体组织中存在存在一定量的残余奥氏体,尤其是马氏体转变温度较低的材料,残余奥氏体可能多达10%以上。
残余奥氏体是一种不稳定组织,可以逐步转变成马氏体。
奥氏体转变成马氏体体积会变大,造成零件尺寸的变化。
同时,奥氏体的机械性能也不稳定。
深冷处理就是将淬火后工件置入较低温度的环境中(比如5℃以下的冷水中),促进残余奥氏体向马氏体的转变,以提高材料性能。
一般比较重要的零件才会采用深冷工艺,比如精密量具,精密轴承等。
渗碳和淬火后一般要进行冰冷处理,它既可以作为渗碳淬火后的标准工序,也可以作为渗碳淬火后的可选性工序。
其作用是使淬火后零件中所有的残余奥氏体转变成为马氏体。
时效处理可分为自然时效和人工时效两种。
自然时效是将工件放在室外等自然条件下.使工件内部应力自然释放从而使残余应力消除或减少。
人工时效是人为的方法,一般是加热或是冰冷处理消除或减小淬火后工件内的微观应力、机械加工残余应力,防止变形及开裂。
稳定组织以稳定零件形状及尺寸。
其方法是:将工件加热到一定温度,长时间保温后(5-20小时)随炉冷却,或在空气中冷却。
它比自然时效节省时间,残余应力去除较为彻底,但相比自然时效应力释放不彻底。
金属或合金(如低碳钢等),它们从高温淬火或经过一定程度的冷加工变形后,其性能随时间而改变的现象。
一般地讲,经过时效,硬度和强度有所增加,塑性韧性和内应力则有所降低。
含碳较高的钢,淬火后立即获得很高的硬度,但其塑性变得很低。
而铝合金淬火后,强度或硬度并不立即达到峰值,其塑性非但未下降,反而有所上升。
经相当长时间(例如4~6昼夜)的室温放置后,这种淬火合金的强度与硬度显著提高,而塑性则有所下降。
这种淬火合金的强度和硬度随时间而发生显著变化的现象,叫做时效。
室温下进行的时效叫自然时效,在一定温度下进行的时效叫人工时效。
时效处理把材料有意识地在室温或较高温度存放较长时间,使之产生时效作用的工艺。
时效强化时效强化是由于碳原子扩散、偏聚钉扎位错所引起的。
见时效硬化。
时效硬化把经过固溶处理或冷加工的金属材料进行时效处理,以提高硬度和强度的现象和工艺,见沉淀硬化。
由于固溶强化效应,固溶处理所得的过饱和固溶体硬度和强度均较纯溶剂金属为高。
时效初期,随时效时间的延长,硬度将进一步升高,习惯上称之为时效硬化。
时效处理工艺。