数值分析实验报告-插值,逼近
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告:函数逼近&插值多项式补充
问题1:对于给函数21()1+25f x x =
,取点21
cos 22
k
k x n π+=+,k 取0,1,…,n 。n 取10或20。试画出拟合曲线并打印出方程,与第二章计算实习题2的结果进行比较。 问题2:对于给函数2
1
()1+25f x x
=
在区间[-1,1]上取x i =-1+0.2i (i=0,1,2,…,10),试求3次曲线拟合,试画出拟合曲线并打印出方程,与第二章计算实习题2的结果进行比较。
实验目的:通过编程实现牛顿插值方法和函数逼近,加深对多项式插值的理解。应用所编程序解决实际算例。
实验要求:
1. 认真分析问题,深刻理解相关理论知识并能熟练应用; 2. 编写相关程序并进行实验; 3. 调试程序,得到最终结果; 4. 分析解释实验结果; 5. 按照要求完成实验报告。
实验原理:
详见《数值分析 第5版》第二章、第三章相关内容。
实验内容: (1)问题1:
这里我们可以沿用实验报告一的代码,对其进行少量修改即可。
当n=10时,代码为:
clear all
clc
k=0:10;
n=length(k);
x1=cos((2*k+1)/2/n*pi);
y1=1./(1+25.*x1.^2);
f=y1(:);
for j=2:n
for i=n:-1:j
f(i)=(f(i)-f(i-1))/(x1(i)-x1(i-j+1));
end
end
syms F x p;
F(1)=1;p(1)=y1(1);
for i=2:n
F(i)=F(i-1)*(x-x1(i-1));
p(i)=f(i)*F(i);
end
syms P
P=sum(p);
P10=vpa(expand(P),5);
x0=-1:0.001:1;
y0=subs(P,x,x0);
y2=subs(1/(1+25*x^2),x,x0);
plot(x0,y0,x0,y2)
grid on
xlabel('x')
ylabel('y')
由此我们可以得到P10(x)=-46.633*x^10+3.0962e-14*x^9+130.11*x^8-7.2714e-14*x^7-133.44*x^6+7.1777e-14*x^5+61.443*x^4-1.5805e-14*x^3-12.477*x^2-1.6214e-16*x+1.0
并可以得到牛顿插值多项式在[-1,1]上的图形,并和原函数进行对比,得Fig. 1。
Fig.1 牛顿插值多项式(n=10)函数和原函数图形
当n=20,将上述代码中的“k=0:10;”改为“k=0:20;”即可。
由此我们可以得到P20(x)=6466.6*x^20+8.0207e-13*x^19-34208.0*x^18-3.5038e-12*x^17+77754.0*x^16-99300.0*x^14+3.7253e-9*x^13+78236.0*x^12-
39333.0*x^10+12636.0*x^8-4.6566e-10*x^7-2537.3*x^6+306.63*x^4-
21.762*x^2+1.0
并可以得到牛顿插值多项式在[-1,1]上的图形,并和原函数进行对比,得Fig. 2。
Fig.2牛顿插值多项式(
n=20)函数和原函数图形
回顾一下实验一的结果(见Fig. 3),我们不难发现,仅仅是改变了x的取值,结果发生了很大的变化。实验一中,插值多项式与原函数产生了很大的偏差,并且随着分的段数的增加,其误差不断变大,但是在本次实验中,我们不难发现,虽然多项式依旧存在震荡现象,但是误差小了很多,而且随着分的段数的增加,插值多项式曲线与原函数曲线已经十分接近了。
Fig.3实验一结果
这个例子说明:采用切比雪夫节点替代等距节点可以消除龙格现象。
(2)问题2:
分析问题,发现在这个问题中,我们已经知道了原函数,同时它也告诉我们所需取的11个点的值,所以这里可以用两种方法进行函数逼近得到拟合曲线。
首先采用最小二乘法来考虑这个问题,编写代码如下(这里没有直接调用polyfit函数):clear all
clc
n=3;
x1=-1:0.2:1;
y1=1./(1+25.*x1.^2);
syms S G d a x;
for i=1:n+1;
for j=1:n+1;
G(i,j)=sum(x1.^(i+j-2));
end
end
for i=1:n+1;
d(i)=sum(x1.^(i-1).*y1);
end
a=G^-1*d';
for i=1:n+1
X(i)=x^(i-1);
end
S=vpa(X*a,5)
x0=-1:0.001:1;
y0=subs(S,x,x0);
y2=subs(1/(1+25*x^2),x,x0);
plot(x0,y0,x0,y2)
grid on
xlabel('x')
ylabel('y')
我们可以得到一个三次多项式:S3=1.1665e-16*x^3 - 0.57518*x^2 - 9.4553e-17*x + 0.48412。同时我们也可以得到它与原函数的图形,如图Fig. 4。