数值分析期末实验报告

合集下载

数值分析实验报告

数值分析实验报告

数值分析实验报告【引言】数值分析是一门研究利用计算机和数学方法解决实际问题的学科,它在工程、科学和经济领域中有着广泛的应用。

在这个实验报告中,我将分享我在数值分析实验中的一些发现和结果。

【实验目的】本次实验的目的是通过数值方法对给定的问题进行求解,并分析数值方法的精确性和稳定性。

我们选择了经典的插值和数值积分问题来进行实验。

【实验过程】在插值问题中,我使用了拉格朗日插值和样条插值两种方法。

通过使用已知的数据点,这些方法能够通过构造多项式函数来逼近原始函数,从而能够在未知点上进行预测。

通过比较两种插值方法的结果,我发现拉格朗日插值在低维数据上表现更好,而样条插值在高维数据上更能保持插值曲线的平滑性。

在数值积分问题中,我使用了复合梯形公式和复合辛普森公式来进行数值积分。

这两种方法可以将复杂的区间上的积分问题转化为对若干个小区间进行数值积分的问题。

实验结果表明,复合辛普森公式在使用相同的步长时,其数值积分结果更为精确。

【实验结果】我以一个实际问题作为例子来展示实验结果。

问题是计算半径为1的圆的面积。

通过离散化的方法,我将圆划分为多个小的扇形区域,并使用数值积分方法计算每个扇形的面积。

最后将每个扇形的面积相加,即可得到圆的近似面积。

通过调整离散化的精度,我发现随着扇形数量的增加,计算得到的圆的面积越接近真实的圆的面积。

在插值问题中,我选择了一段经典的函数进行插值研究。

通过选择不同的插值节点和插值方法,我发现当插值节点越密集时,插值结果越接近原函数。

同时,样条插值方法在高阶导数连续的情况下能够更好地逼近原始函数。

【实验总结】通过这次实验,我对数值分析中的插值和数值积分方法有了更深入的理解。

我了解到不同的数值方法在不同的问题中有着不同的适用性和精确度。

在实际应用中,我们需要根据具体问题选择合适的数值方法,并进行必要的数值计算和分析,以获得准确可靠的结果。

总的来说,数值分析作为一种重要的工具和方法,在科学研究和工程实践中具有广泛的应用,并且不断发展和创新。

数值分析综合实验报告

数值分析综合实验报告

一、实验目的通过本次综合实验,掌握数值分析中常用的插值方法、方程求根方法以及数值积分方法,了解这些方法在实际问题中的应用,提高数值计算能力。

二、实验内容1. 插值方法(1)拉格朗日插值法:利用已知数据点构造多项式,以逼近未知函数。

(2)牛顿插值法:在拉格朗日插值法的基础上,通过增加基函数,提高逼近精度。

2. 方程求根方法(1)二分法:适用于函数在区间内有正负值的情况,通过不断缩小区间来逼近根。

(2)Newton法:利用函数的导数信息,通过迭代逼近根。

(3)不动点迭代法:将方程转化为不动点问题,通过迭代逼近根。

3. 数值积分方法(1)矩形法:将积分区间等分,近似计算函数值的和。

(2)梯形法:将积分区间分成若干等分,用梯形面积近似计算积分。

(3)辛普森法:在梯形法的基础上,将每个小区间再等分,提高逼近精度。

三、实验步骤1. 拉格朗日插值法(1)输入已知数据点,构造拉格朗日插值多项式。

(2)计算插值多项式在未知点的函数值。

2. 牛顿插值法(1)输入已知数据点,构造牛顿插值多项式。

(2)计算插值多项式在未知点的函数值。

3. 方程求根方法(1)输入方程和初始值。

(2)选择求解方法(二分法、Newton法、不动点迭代法)。

(3)迭代计算,直到满足精度要求。

4. 数值积分方法(1)输入被积函数和积分区间。

(2)选择积分方法(矩形法、梯形法、辛普森法)。

(3)计算积分值。

四、实验结果与分析1. 插值方法(1)拉格朗日插值法:通过构造多项式,可以较好地逼近已知数据点。

(2)牛顿插值法:在拉格朗日插值法的基础上,增加了基函数,提高了逼近精度。

2. 方程求根方法(1)二分法:适用于函数在区间内有正负值的情况,计算简单,但收敛速度较慢。

(2)Newton法:利用函数的导数信息,收敛速度较快,但可能存在数值不稳定问题。

(3)不动点迭代法:将方程转化为不动点问题,收敛速度较快,但可能存在初始值选择不当的问题。

3. 数值积分方法(1)矩形法:计算简单,但精度较低。

数值分析实验报告心得(3篇)

数值分析实验报告心得(3篇)

第1篇在数值分析这门课程的学习过程中,我深刻体会到了理论知识与实践操作相结合的重要性。

通过一系列的实验,我对数值分析的基本概念、方法和应用有了更加深入的理解。

以下是我对数值分析实验的心得体会。

一、实验目的与意义1. 巩固数值分析理论知识:通过实验,将课堂上学到的理论知识应用到实际问题中,加深对数值分析概念和方法的理解。

2. 培养实际操作能力:实验过程中,我学会了使用Matlab等软件进行数值计算,提高了编程能力。

3. 增强解决实际问题的能力:实验项目涉及多个领域,通过解决实际问题,提高了我的问题分析和解决能力。

4. 培养团队协作精神:实验过程中,我与同学们分工合作,共同完成任务,培养了团队协作精神。

二、实验内容及方法1. 实验一:拉格朗日插值法与牛顿插值法(1)实验目的:掌握拉格朗日插值法和牛顿插值法的原理,能够运用这两种方法进行函数逼近。

(2)实验方法:首先,我们选择一组数据点,然后利用拉格朗日插值法和牛顿插值法构造插值多项式。

最后,我们将插值多项式与原始函数进行比较,分析误差。

2. 实验二:方程求根(1)实验目的:掌握二分法、Newton法、不动点迭代法、弦截法等方程求根方法,能够运用这些方法求解非线性方程的根。

(2)实验方法:首先,我们选择一个非线性方程,然后运用二分法、Newton法、不动点迭代法、弦截法等方法求解方程的根。

最后,比较不同方法的收敛速度和精度。

3. 实验三:线性方程组求解(1)实验目的:掌握高斯消元法、矩阵分解法等线性方程组求解方法,能够运用这些方法求解线性方程组。

(2)实验方法:首先,我们构造一个线性方程组,然后运用高斯消元法、矩阵分解法等方法求解方程组。

最后,比较不同方法的计算量和精度。

4. 实验四:多元统计分析(1)实验目的:掌握多元统计分析的基本方法,能够运用这些方法对数据进行分析。

(2)实验方法:首先,我们收集一组多元数据,然后运用主成分分析、因子分析等方法对数据进行降维。

数值分析实验报告

数值分析实验报告

一、实验目的1. 理解数值分析的基本概念和常用算法;2. 掌握数值方法在求解实际问题中的应用;3. 培养编程能力,提高对数值分析软件的使用熟练度。

二、实验内容本次实验主要涉及以下内容:1. 拉格朗日插值法;2. 牛顿插值法;3. 线性方程组的求解方法;4. 方程求根的数值方法;5. 最小二乘法曲线拟合。

三、实验步骤1. 拉格朗日插值法(1)输入数据:给定一组数据点(x1, y1)、(x2, y2)、...、(xn, yn)。

(2)计算拉格朗日插值多项式L(x)。

(3)利用L(x)计算待求点x0的函数值y0。

2. 牛顿插值法(1)输入数据:给定一组数据点(x1, y1)、(x2, y2)、...、(xn, yn)。

(2)计算牛顿插值多项式N(x)。

(3)利用N(x)计算待求点x0的函数值y0。

3. 线性方程组的求解方法(1)输入数据:给定线性方程组的系数矩阵A和常数向量b。

(2)采用高斯消元法求解线性方程组Ax=b。

4. 方程求根的数值方法(1)输入数据:给定函数f(x)和初始值x0。

(2)采用二分法求解方程f(x)=0的根。

5. 最小二乘法曲线拟合(1)输入数据:给定一组数据点(x1, y1)、(x2, y2)、...、(xn, yn)。

(2)建立线性最小二乘模型y=F(x)。

(3)利用最小二乘法求解模型参数。

四、实验结果与分析1. 拉格朗日插值法与牛顿插值法的比较通过实验,我们发现牛顿插值法的精度高于拉格朗日插值法。

这是因为牛顿插值法在计算过程中考虑了前一项的导数信息,从而提高了插值多项式的平滑性。

2. 线性方程组的求解方法高斯消元法在求解线性方程组时,计算过程较为繁琐,但稳定性较好。

在实际应用中,可根据具体问题选择合适的方法。

3. 方程求根的数值方法二分法在求解方程时,收敛速度较慢,但具有较好的稳定性。

对于初始值的选择,应尽量接近真实根。

4. 最小二乘法曲线拟合最小二乘法在拟合曲线时,误差较小,适用于数据点较多的情况。

数值分析实验报告末班

数值分析实验报告末班

数值分析实验报告末班实验目的本实验旨在通过计算机模拟与实际测量相结合的方法,研究数值计算方法在实际问题中的应用,并通过实验结果验证和分析方法的准确性和可靠性。

实验原理在数值分析中,我们通常使用数值方法来解决数学模型的近似求解问题。

最常用的数值方法包括插值法、数值积分法、求解线性方程组的迭代法等。

这些方法通过将连续的数学问题转化为离散的数值计算问题,通过计算机模拟来求解。

在本次实验中,我们选择了两个典型的数值计算问题进行研究。

第一个问题是求解非线性方程的数值解,在这个问题中,我们使用了牛顿迭代法和二分法作为数值求解的方法。

第二个问题是对函数进行数值积分,我们使用了辛普森公式和梯形公式进行数值积分的计算。

实验步骤与结果求解非线性方程的数值解我们选择了一个非线性方程f(x) = x^3 - 2x - 5 = 0 作为例子,通过牛顿迭代法和二分法来求解其数值解。

1. 首先,我们使用牛顿迭代法。

通过计算,我们得到了该非线性方程的一个近似解为x =2.0945514815423265。

2. 其次,我们使用二分法来求解该非线性方程的数值解。

通过计算,我们得到了一个近似解为x = 2.0945514815423265。

通过比较以上两个数值解,我们可以发现两种方法得到的结果非常接近,验证了这两种方法的准确性和可靠性。

数值积分我们选择了一个函数f(x) = x^2 在区间[0, 1] 上进行数值积分,通过辛普森公式和梯形公式来计算其数值积分结果。

1. 首先,我们使用辛普森公式进行数值积分。

通过计算,我们得到了该函数在[0,1] 区间上的数值积分结果为0.3333333333333333。

2. 其次,我们使用梯形公式进行数值积分。

通过计算,我们得到了该函数在[0, 1] 区间上的数值积分结果为0.3333333333333333。

通过比较以上两种方法得到的数值积分结果,我们可以发现两种方法得到的结果完全相同,进一步验证了这两种方法的准确性和可靠性。

数值分析原理实验报告

数值分析原理实验报告

一、实验目的通过本次实验,掌握数值分析的基本原理和方法,了解数值分析在科学和工程领域的应用,培养动手能力和分析问题的能力。

二、实验内容1. 二分法求方程根(1)原理:二分法是一种在实数域上寻找函数零点的算法。

对于连续函数f(x),如果在区间[a, b]上f(a)f(b)<0,则存在一个根在区间(a, b)内。

二分法的基本思想是将区间[a, b]不断二分,缩小根所在的区间,直到满足精度要求。

(2)实验步骤:① 输入函数f(x)和精度要求;② 初始化区间[a, b]和中间点c=a+(b-a)/2;③ 判断f(c)与f(a)的符号,若符号相同,则将区间缩小为[a, c],否则缩小为[c,b];④ 重复步骤②和③,直到满足精度要求;⑤ 输出根的近似值。

2. 牛顿法求方程根(1)原理:牛顿法是一种在实数域上寻找函数零点的算法。

对于可导函数f(x),如果在点x0附近,f(x0)f'(x0)≠0,则存在一个根在点x0附近。

牛顿法的基本思想是通过泰勒展开近似函数,然后求解近似方程的根。

(2)实验步骤:① 输入函数f(x)和精度要求;② 初始化迭代次数n=0,近似根x0;③ 计算导数f'(x0);④ 求解近似方程x1=x0-f(x0)/f'(x0);⑤ 判断|x1-x0|是否满足精度要求,若满足,则停止迭代;否则,将x0更新为x1,n=n+1,返回步骤③。

3. 雅可比迭代法解线性方程组(1)原理:雅可比迭代法是一种解线性方程组的迭代算法。

对于线性方程组Ax=b,雅可比迭代法的基本思想是利用矩阵A的对角线元素将方程组分解为多个一元线性方程,然后逐个求解。

(2)实验步骤:① 输入系数矩阵A和常数向量b;② 初始化迭代次数n=0,近似解向量x0;③ 计算对角线元素d1, d2, ..., dn;④ 更新近似解向量x1=x0-A/d1, x2=x0-A/d2, ..., xn=x0-A/dn;⑤ 判断|x1-x0|是否满足精度要求,若满足,则停止迭代;否则,将x0更新为x1, x2, ..., xn,n=n+1,返回步骤③。

数值分析实验报告5篇

数值分析实验报告5篇
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -13 -14
1.69376699767424 0.92310666706964 0.08471614569741 0.40804026409411
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
讨论:
利用这种方法进行这类实验,可以很精确的扰动敏感性的一般规律。即 当对扰动项的系数越来越小时,对其多项式扰动的结果也就越来越小, 即扰动敏感性与扰动项的系数成正比,扰动项的系数越大,对其根的扰 动敏感性就越明显,当扰动的系数一定时,扰动敏感性与扰动的项的幂 数成正比,扰动的项的幂数越高,对其根的扰动敏感性就越明显。
解线性方程组的直接方法
实验 (主元的选取与算法的稳定性) 问题提出:Gauss消去法是我们在线性代数中已经熟悉的。但由于计算 机的数值运算是在一个有限的浮点数集合上进行的,如何才能确保 Gauss消去法作为数值算法的稳定性呢?Gauss消去法从理论算法到数值 算法,其关键是主元的选择。主元的选择从数学理论上看起来平凡,它 却是数值分析中十分典型的问题。 实验内容:考虑线性方程组 编制一个能自动选取主元,又能手动选取主元的求解线性方程组的 Gauss消去过程。 实验要求: (1)取矩阵,则方程有解。取n=10计算矩阵的条件数。让程序自动选 取主元,结果如何? (2)现选择程序中手动选取主元的功能。每步消去过程总选取按模最 小或按模尽可能小的元素作为主元,观察并记录计算结果。若每步消去 过程总选取按模最大的元素作为主元,结果又如何?分析实验的结果。 (3)取矩阵阶数n=20或者更大,重复上述实验过程,观察记录并分析 不同的问题及消去过程中选择不同的主元时计算结果的差异,说明主元

数值分析实验报告总结

数值分析实验报告总结

一、实验背景数值分析是研究数值计算方法及其理论的学科,是计算机科学、数学、物理学等领域的重要基础。

为了提高自身对数值分析理论和方法的理解,我们进行了数值分析实验,通过实验加深对理论知识的掌握,提高实际操作能力。

二、实验目的1. 理解数值分析的基本理论和方法;2. 掌握数值分析实验的基本步骤和技巧;3. 培养实验设计和数据分析能力;4. 提高编程和计算能力。

三、实验内容本次实验主要分为以下几个部分:1. 线性方程组求解实验:通过高斯消元法、LU分解法等求解线性方程组,并分析算法的稳定性和误差;2. 矩阵特征值问题计算实验:利用幂法、逆幂法等计算矩阵的特征值和特征向量,分析算法的收敛性和精度;3. 非线性方程求根实验:运用二分法、牛顿法、不动点迭代法等求解非线性方程的根,比较不同算法的优缺点;4. 函数插值实验:运用拉格朗日插值、牛顿插值等方法对给定的函数进行插值,分析插值误差;5. 常微分方程初值问题数值解法实验:运用欧拉法、改进的欧拉法、龙格-库塔法等求解常微分方程初值问题,比较不同算法的稳定性和精度。

四、实验过程1. 线性方程组求解实验:首先,编写程序实现高斯消元法、LU分解法等算法;然后,对给定的线性方程组进行求解,记录计算结果;最后,分析算法的稳定性和误差。

2. 矩阵特征值问题计算实验:编写程序实现幂法、逆幂法等算法;然后,对给定的矩阵进行特征值和特征向量的计算,记录计算结果;最后,分析算法的收敛性和精度。

3. 非线性方程求根实验:编写程序实现二分法、牛顿法、不动点迭代法等算法;然后,对给定的非线性方程进行求根,记录计算结果;最后,比较不同算法的优缺点。

4. 函数插值实验:编写程序实现拉格朗日插值、牛顿插值等方法;然后,对给定的函数进行插值,记录计算结果;最后,分析插值误差。

5. 常微分方程初值问题数值解法实验:编写程序实现欧拉法、改进的欧拉法、龙格-库塔法等算法;然后,对给定的常微分方程初值问题进行求解,记录计算结果;最后,比较不同算法的稳定性和精度。

数值分析期末实验报告

数值分析期末实验报告

数值计算方法论文论文名称:数值计算方法期末总结学号:姓名:完成时间:摘要:数值计算方法是数学的一个重要分支,以用计算机求解数学问题的理论和方法为研究对象。

本文是我对本学期数值分析这门课程中所学到的内容以及所作的工作的总结。

通过一学期的学习,我深入学习了线性方程组的解法,非线性方程的求根方法,矩阵特征值与特征向量的计算,函数的插值方法,最佳平方逼近,数值积分与数值微分,常微分方程初值问题的数值解法。

通过陶老师课堂上的讲解和课下的上机训练,对以上各个章节的算法有了更深刻的体会。

最后做了程序的演示界面,使得程序看起来清晰明了,便于查看与修改。

通过本学期的学习。

关键词:数值计算方法、演示界面第一章前言随着电子计算机的普及与发展,科学计算已成为现代科学的重要组成部分,因而数值计算方法的内容也愈来愈广泛和丰富。

通过本学期的学习,主要掌握了一些数值方法的基本原理、具体算法,并通过编程在计算机上来实现这些算法。

第二章基本概念2.1算法算法是指由基本算术运算及运算顺序的规定构成的完整的解题步骤。

算法可以使用框图、算法语言、数学语言、自然语言来进行描述。

具有的特征:正确性、有穷性、适用范围广、运算工作量少、使用资源少、逻辑结构简单、便于实现、计算结果可靠。

2.2 误差计算机的计算结果通常是近似的,因此算法必有误差,并且应能估计误差。

误差是指近似值与真正值之差。

绝对误差是指近似值与真正值之差或差的绝对值;相对误差:是指近似值与真正值之比或比的绝对值。

误差来源见表2.1表2.1第三章泛函分析2.1泛函分析概要泛函分析(Functional Analysis)是研究“函数的函数”、函数空间和它们之间变换(映射)的一门较新的数学分支,隶属分析数学。

它以各种学科为具体背景,在集合的基础上,把客观世界中的研究对象抽象为元素和空间。

如:距离空间,赋范线性空间,内积空间。

2.2 范数范数,是具有“长度”概念的函数。

在线性代数、泛函分析及相关的数学领域,泛函是一个函数,其为矢量空间内的所有矢量赋予非零的正长度或大小。

数值分析实验报告模板

数值分析实验报告模板

数值分析实验报告模板篇一:数值分析实验报告(一)(完整)数值分析实验报告12345篇二:数值分析实验报告实验报告一题目:非线性方程求解摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。

本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。

利用二分法求解给定非线性方程的根,在给定的范围内,假设f(x,y)在[a,b]上连续,f(a)xf(b) 直接影响迭代的次数甚至迭代的收敛与发散。

即若x0 偏离所求根较远,Newton法可能发散的结论。

并且本实验中还利用利用改进的Newton法求解同样的方程,且将结果与Newton法的结果比较分析。

前言:(目的和意义)掌握二分法与Newton法的基本原理和应用。

掌握二分法的原理,验证二分法,在选对有根区间的前提下,必是收敛,但精度不够。

熟悉Matlab语言编程,学习编程要点。

体会Newton使用时的优点,和局部收敛性,而在初值选取不当时,会发散。

数学原理:对于一个非线性方程的数值解法很多。

在此介绍两种最常见的方法:二分法和Newton法。

对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b) Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式xk?1?xk?f(xk) f'(xk)产生逼近解x*的迭代数列{xk},这就是Newton法的思想。

当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。

另外,若将该迭代公式改进为xk?1?xk?rf(xk) 'f(xk)其中r为要求的方程的根的重数,这就是改进的Newton 法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。

程序设计:本实验采用Matlab的M文件编写。

其中待求解的方程写成function的方式,如下function y=f(x);y=-x*x-sin(x);写成如上形式即可,下面给出主程序。

数值分析的实验报告

数值分析的实验报告

数值分析的实验报告实验目的本实验旨在通过数值分析方法,探讨数学问题的近似解法,并通过实际案例进行验证和分析。

具体目的包括: 1. 理解和掌握数值分析的基本原理和方法; 2. 学会使用计算机编程语言实现数值分析算法; 3. 分析数值分析算法的精确性和稳定性; 4. 根据实验结果对数值分析算法进行优化和改进。

实验步骤1. 问题描述首先,我们选择一个数学问题作为实验的对象。

在本次实验中,我们选取了求解非线性方程的问题。

具体而言,我们希望找到方程 f(x) = 0 的解。

2. 数值方法选择根据非线性方程求解的特点,我们选择了牛顿迭代法作为数值方法。

该方法通过不断迭代逼近方程的解,并具有较好的收敛性和精确性。

3. 程序设计与实现为了实现牛顿迭代法,我们使用了Python编程语言,并使用了相应的数值计算库。

具体的程序实现包括定义方程 f(x) 和其导数f’(x),以及实现牛顿迭代法的迭代过程。

4. 实验案例与结果分析我们选择了一个具体的方程,例如 x^3 - 2x - 5 = 0,并通过程序运行得到了方程的解。

通过比较实际解与数值解的差异,我们可以分析数值方法的精确性和稳定性。

5. 优化与改进基于实验结果的分析,我们可以对数值分析算法进行优化和改进。

例如,通过调整迭代的初始值、增加迭代次数或修改算法公式等方式,改进算法的收敛性和精确性。

实验结论通过本次实验,我们深入理解了数值分析的基本原理和方法,并通过具体案例验证了牛顿迭代法的有效性。

同时,我们也意识到数值分析算法的局限性,并提出了一些改进的建议。

在今后的数学问题求解中,我们可以运用数值分析的方法,通过计算机编程实现更精确的近似解。

数值分析 实验报告

数值分析 实验报告

数值分析实验报告1. 引言数值分析是一门研究如何利用计算机进行数值计算的学科。

它涵盖了数值计算方法、数值逼近、插值和拟合、数值微积分等内容。

本实验报告旨在介绍数值分析的基本概念,并通过实验验证其中一些常用的数值计算方法的准确性和可行性。

2. 实验目的本实验的目的是通过对一些简单数学问题进行数值计算,验证数值计算方法的正确性,并分析计算误差。

具体实验目标包括: - 了解数值计算方法的基本原理和应用场景; - 掌握常用的数值计算方法,如二分法、牛顿法等; - 验证数值计算方法的准确性和可靠性。

3. 实验设计3.1 实验问题选择了以下两个数学问题作为实验对象: 1. 求解方程f(x) = 0的根; 2. 求解函数f(x)在给定区间上的最小值。

3.2 实验步骤3.2.1 方程求根1.确定待求解的方程f(x) = 0;2.选择合适的数值计算方法,比如二分法、牛顿法等;3.编写相应的计算程序,并根据初始条件设置迭代终止条件;4.运行程序,得到方程的根,并计算误差。

3.2.2 函数最小值1.确定待求解的函数f(x)和给定的区间;2.选择合适的数值计算方法,比如黄金分割法、斐波那契法等;3.编写相应的计算程序,并根据初始条件设置迭代终止条件;4.运行程序,得到函数的最小值,并计算误差。

4. 实验结果与分析4.1 方程求根我们选择了二分法和牛顿法来求解方程f(x) = 0的根,并得到了如下结果: - 二分法得到的根为 x = 2.345,误差为 0.001; - 牛顿法得到的根为 x = 2.345,误差为 0.0001。

通过计算结果可以看出,二分法和牛顿法都能较准确地求得方程的根,并且牛顿法的收敛速度更快。

4.2 函数最小值我们选择了黄金分割法和斐波那契法来求解函数f(x)在给定区间上的最小值,并得到了如下结果: - 黄金分割法得到的最小值为 x = 3.142,误差为 0.001; - 斐波那契法得到的最小值为 x = 3.142,误差为 0.0001。

华工数值分析实验报告

华工数值分析实验报告

一、实验名称数值分析实验二、实验目的1. 掌握数值分析的基本概念和方法。

2. 理解并应用插值法、数值积分、数值微分、数值解法等数值分析的基本方法。

3. 提高数值计算能力和编程能力。

三、实验内容1. 插值法1.1 拉格朗日插值法1.2 牛顿插值法1.3 线性插值法1.4 拉格朗日插值法与牛顿插值法的比较2. 数值积分2.1 牛顿-科特斯公式2.2 帕普斯公式2.3 比较牛顿-科特斯公式与帕普斯公式的精度3. 数值微分3.1 前向差分法3.2 后向差分法3.3 中点差分法3.4 比较三种差分法的精度4. 数值解法4.1 线性方程组的迭代法4.2 非线性方程的迭代法4.3 比较不同迭代法的收敛速度四、实验步骤1. 插值法1.1 输入插值点的数据,使用拉格朗日插值法计算插值多项式。

1.2 使用牛顿插值法计算插值多项式。

1.3 使用线性插值法计算插值多项式。

1.4 比较三种插值法的精度。

2. 数值积分2.1 输入被积函数和积分区间,使用牛顿-科特斯公式进行数值积分。

2.2 使用帕普斯公式进行数值积分。

2.3 比较两种数值积分方法的精度。

3. 数值微分3.1 输入函数和求导点的数据,使用前向差分法、后向差分法和中点差分法计算导数。

3.2 比较三种差分法的精度。

4. 数值解法4.1 输入线性方程组或非线性方程,使用迭代法求解方程组或方程。

4.2 比较不同迭代法的收敛速度。

五、实验结果与分析1. 插值法通过比较三种插值法的精度,得出以下结论:- 线性插值法精度最低。

- 拉格朗日插值法与牛顿插值法精度较高,但牛顿插值法在计算过程中需要计算多项式的导数,增加了计算量。

2. 数值积分通过比较牛顿-科特斯公式与帕普斯公式的精度,得出以下结论:- 牛顿-科特斯公式精度较高。

- 帕普斯公式精度较低。

3. 数值微分通过比较三种差分法的精度,得出以下结论:- 中点差分法精度最高。

- 后向差分法次之。

- 前向差分法精度最低。

4. 数值解法通过比较不同迭代法的收敛速度,得出以下结论:- 牛顿迭代法收敛速度最快。

数值分析的实验报告

数值分析的实验报告

数值分析的实验报告数值分析的实验报告导言数值分析是一门研究数值计算方法和数值计算误差的学科,它在科学计算、工程技术和社会经济等领域具有广泛的应用。

本实验旨在通过对数值分析方法的实际应用,验证其有效性和可靠性。

实验一:方程求根方程求根是数值分析中的基础问题之一。

我们选取了一个非线性方程进行求解。

首先,我们使用二分法进行求解。

通过多次迭代,我们得到了方程的一个近似解。

然后,我们使用牛顿法进行求解。

与二分法相比,牛顿法的收敛速度更快,但需要选择一个初始点。

通过比较两种方法的结果,我们验证了牛顿法的高效性。

实验二:插值与拟合插值与拟合是数值分析中常用的数据处理方法。

我们选取了一组实验数据,通过拉格朗日插值法和最小二乘法进行插值和拟合。

通过对比两种方法的拟合效果,我们验证了最小二乘法在处理含有噪声数据时的优势。

同时,我们还讨论了插值和拟合的精度与样本点数量之间的关系。

实验三:数值积分数值积分是数值分析中的重要内容之一。

我们选取了一个定积分进行计算。

首先,我们使用复化梯形公式进行积分计算。

通过增加分割区间的数量,我们得到了更精确的结果。

然后,我们使用复化辛普森公式进行积分计算。

与复化梯形公式相比,复化辛普森公式具有更高的精度。

通过比较两种方法的结果,我们验证了复化辛普森公式的优越性。

实验四:常微分方程数值解常微分方程数值解是数值分析中的重要应用之一。

我们选取了一个常微分方程进行数值解的计算。

首先,我们使用欧拉方法进行数值解的计算。

然后,我们使用改进的欧拉方法进行数值解的计算。

通过比较两种方法的结果,我们验证了改进的欧拉方法的更高精度和更好的稳定性。

实验五:线性方程组的数值解法线性方程组的数值解法是数值分析中的重要内容之一。

我们选取了一个线性方程组进行数值解的计算。

首先,我们使用高斯消元法进行数值解的计算。

然后,我们使用追赶法进行数值解的计算。

通过比较两种方法的结果,我们验证了追赶法在求解三对角线性方程组时的高效性。

数值分析实验报告

数值分析实验报告

数值分析实验报告一、实验目的数值分析是一门研究用计算机求解数学问题的数值方法及其理论的学科。

本次实验的目的在于通过实际操作和编程实现,深入理解和掌握数值分析中的常见算法,提高运用数值方法解决实际问题的能力,并对算法的精度、稳定性和效率进行分析和比较。

二、实验环境本次实验使用的编程语言为 Python,使用的开发工具为 PyCharm。

实验所依赖的主要库包括 NumPy、Matplotlib 等。

三、实验内容(一)函数逼近与插值1、拉格朗日插值法通过给定的离散数据点,构建拉格朗日插值多项式,对未知点进行函数值的估计。

2、牛顿插值法与拉格朗日插值法类似,但采用了不同的形式和计算方式。

(二)数值积分1、梯形公式将积分区间划分为若干个梯形,通过计算梯形面积之和来近似积分值。

2、辛普森公式基于抛物线拟合的方法,提高积分近似的精度。

(三)线性方程组求解1、高斯消元法通过逐行消元将线性方程组化为上三角形式,然后回代求解。

2、 LU 分解法将系数矩阵分解为下三角矩阵 L 和上三角矩阵 U,然后通过两次前代和回代求解。

(四)非线性方程求解1、二分法通过不断将区间一分为二,逐步缩小根所在的区间,直到满足精度要求。

2、牛顿迭代法利用函数的切线来逼近根,通过迭代逐步收敛到根的近似值。

四、实验步骤(一)函数逼近与插值1、拉格朗日插值法定义计算拉格朗日基函数的函数。

根据给定的数据点和待求点,计算插值多项式的值。

输出插值结果,并与真实值进行比较。

2、牛顿插值法计算差商表。

构建牛顿插值多项式。

进行插值计算和结果分析。

(二)数值积分1、梯形公式定义积分区间和被积函数。

按照梯形公式计算积分近似值。

分析误差。

2、辛普森公式同样定义积分区间和被积函数。

运用辛普森公式计算积分近似值。

比较与梯形公式的精度差异。

(三)线性方程组求解1、高斯消元法输入系数矩阵和右端项向量。

进行消元操作。

回代求解方程。

输出解向量。

2、 LU 分解法对系数矩阵进行 LU 分解。

工程数值分析实验报告(3篇)

工程数值分析实验报告(3篇)

第1篇一、实验目的本次实验旨在通过数值分析的方法,对工程实际问题进行建模、求解和分析。

通过学习数值方法的基本原理和算法,提高解决实际工程问题的能力。

二、实验内容1. 线性方程组的求解2. 矩阵特征值与特征向量的计算3. 函数插值与曲线拟合4. 数值微分与积分三、实验步骤1. 线性方程组的求解(1)编写程序实现高斯消元法、克劳斯消元法和列主元素法(2)设计输入界面,用户输入增广矩阵的行和列,填写系数及常数项(3)分别运用三种方法求解线性方程组,比较求解结果的正确性、数值稳定性和计算效率2. 矩阵特征值与特征向量的计算(1)编写程序实现幂法、QR算法和逆幂法(2)设计输入界面,用户输入矩阵的行和列,填写矩阵元素(3)分别运用三种方法计算矩阵的特征值与特征向量,比较求解结果的准确性和计算效率3. 函数插值与曲线拟合(1)编写程序实现拉格朗日插值、牛顿插值和样条插值(2)设计输入界面,用户输入函数的自变量和函数值,选择插值方法(3)分别运用三种方法进行函数插值,比较插值结果的准确性和光滑性4. 数值微分与积分(1)编写程序实现有限差分法、龙格-库塔法和辛普森法(2)设计输入界面,用户输入函数的导数或积分的上下限,选择数值方法(3)分别运用三种方法进行数值微分和积分,比较求解结果的准确性和计算效率四、实验结果与分析1. 线性方程组的求解通过实验,我们发现列主元素法在求解线性方程组时具有较好的数值稳定性,计算效率也较高。

而高斯消元法和克劳斯消元法在处理大型稀疏矩阵时存在一定的困难。

2. 矩阵特征值与特征向量的计算实验结果表明,QR算法和逆幂法在计算矩阵特征值与特征向量时具有较高的准确性和计算效率。

幂法在处理大型稀疏矩阵时表现出较好的性能。

3. 函数插值与曲线拟合在函数插值和曲线拟合实验中,样条插值方法具有较好的准确性和光滑性。

拉格朗日插值和牛顿插值方法在处理简单函数时表现良好,但在处理复杂函数时可能存在精度问题。

数值分析实验报告doc

数值分析实验报告doc

数值分析实验报告篇一:数值分析实验报告(一)(完整)数值分析实验报告12345篇二:数值分析实验报告数值分析实验报告课题一:解线性方程组的直接方法1.实验目的:1、通过该课题的实验,体会模块化结构程序设计方法的优点;2、运用所学的计算方法,解决各类线性方程组的直接算法;3、提高分析和解决问题的能力,做到学以致用;4、通过三对角形线性方程组的解法,体会稀疏线性方程组解法的特点。

2.实验过程:实验代码:#include "stdio.h"#include "math.h"#includeusing namespace std;//Gauss法void lzy(double **a,double *b,int n) {int i,j,k;double l,x[10],temp;for(k=0;k {for(j=k,i=k;j {if(j==k)temp=fabs(a[j][k]);else if(temp {temp=fabs(a[j][k]);i=j;}}if(temp==0){cout return;}elsefor(j=k;j {temp=a[k][j];a[k][j]=a[i][j];a[i][j]=temp;}temp=b[k];b[k]=b[i];b[i]=temp;}for(i=k+1;i {l=a[i][k]/a[k][k];for(j=k;j a[i][j]=a[i][j]-l*a[k][j]; b[i]=b[i]-l*b[k];}}if(a[n-1][n-1]==0){cout return;}x[n-1]=b[n-1]/a[n-1][n-1];for(i=n-2;i>=0;i--)temp=0;for(j=i+1;j temp=temp+a[i][j]*x[j]; x[i]=(b[i]-temp)/a[i][i];}for(i=0;i {printf("x%d=%lf\t",i+1,x[i]);printf("\n");}}//平方根法void pfg(double **a,double *b,int n) {int i,k,m;double x[8],y[8],temp;for(k=0;k {temp=0;for(m=0;m temp=temp+pow(a[k][m],2); if(a[k][k] return;a[k][k]=pow((a[k][k]-temp),1.0/2.0); for(i=k+1;i {temp=0;for(m=0;m temp=temp+a[i][m]*a[k][m]; a[i][k]=(a[i][k]-temp)/a[k][k];}temp=0;for(m=0;m temp=temp+a[k][m]*y[m];y[k]=(b[k]-temp)/a[k][k];}x[n-1]=y[n-1]/a[n-1][n-1];for(k=n-2;k>=0;k--){temp=0;for(m=k+1;m temp=temp+a[m][k]*x[m];x[k]=(y[k]-temp)/a[k][k];}for(i=0;i {printf("x%d=%lf\t",i+1(转自:小草范文网:数值分析实验报告),x[i]);printf("\n");}}//追赶法void zgf(double **a,double *b,int n){int i;double a0[10],c[10],d[10],a1[10],b1[10],x[10],y[10];for(i=0;i {a0[i]=a[i][i];if(i c[i]=a[i][i+1];if(i>0)d[i-1]=a[i][i-1];}a1[0]=a0[0];for(i=0;i {b1[i]=c[i]/a1[i];a1[i+1]=a0[i+1]-d[i+1]*b1[i];}y[0]=b[0]/a1[0];for(i=1;i y[i]=(b[i]-d[i]*y[i-1])/a1[i];x[n-1]=y[n-1];for(i=n-2;i>=0;i--)x[i]=y[i]-b1[i]*x[i+1];for(i=0;i {printf("x%d=%lf\t",i+1,x[i]);printf("\n");}}int main(){int n,i,j;double **A,**B,**C,*B1,*B2,*B3;A=(double **)malloc(n*sizeof(double)); B=(double **)malloc(n*sizeof(double));C=(double **)malloc(n*sizeof(double));B1=(double *)malloc(n*sizeof(double));B2=(double *)malloc(n*sizeof(double));B3=(double *)malloc(n*sizeof(double));for(i=0;i {A[i]=(double *)malloc((n)*sizeof(double));B[i]=(double*)malloc((n)*sizeof(double));C[i]=(double*)malloc((n)*sizeof(double)); }cout cin>>n;cout for(i=0;i for(j=0;j篇三:数值分析实验报告(包含源程序)课程实验报告课程实验报告。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数值计算方法论文论文名称:数值计算方法期末总结学号:姓名:完成时间:摘要:数值计算方法是数学的一个重要分支,以用计算机求解数学问题的理论和方法为研究对象。

本文是我对本学期数值分析这门课程中所学到的内容以及所作的工作的总结。

通过一学期的学习,我深入学习了线性方程组的解法,非线性方程的求根方法,矩阵特征值与特征向量的计算,函数的插值方法,最佳平方逼近,数值积分与数值微分,常微分方程初值问题的数值解法。

通过陶老师课堂上的讲解和课下的上机训练,对以上各个章节的算法有了更深刻的体会。

最后做了程序的演示界面,使得程序看起来清晰明了,便于查看与修改。

通过本学期的学习。

关键词:数值计算方法、演示界面第一章前言随着电子计算机的普及与发展,科学计算已成为现代科学的重要组成部分,因而数值计算方法的内容也愈来愈广泛和丰富。

通过本学期的学习,主要掌握了一些数值方法的基本原理、具体算法,并通过编程在计算机上来实现这些算法。

第二章基本概念2.1算法算法是指由基本算术运算及运算顺序的规定构成的完整的解题步骤。

算法可以使用框图、算法语言、数学语言、自然语言来进行描述。

具有的特征:正确性、有穷性、适用范围广、运算工作量少、使用资源少、逻辑结构简单、便于实现、计算结果可靠。

2.2 误差计算机的计算结果通常是近似的,因此算法必有误差,并且应能估计误差。

误差是指近似值与真正值之差。

绝对误差是指近似值与真正值之差或差的绝对值;相对误差:是指近似值与真正值之比或比的绝对值。

误差来源见表2.1表2.1第三章泛函分析2.1泛函分析概要泛函分析(Functional Analysis)是研究“函数的函数”、函数空间和它们之间变换(映射)的一门较新的数学分支,隶属分析数学。

它以各种学科为具体背景,在集合的基础上,把客观世界中的研究对象抽象为元素和空间。

如:距离空间,赋范线性空间,内积空间。

2.2 范数范数,是具有“长度”概念的函数。

在线性代数、泛函分析及相关的数学领域,泛函是一个函数,其为矢量空间内的所有矢量赋予非零的正长度或大小。

这里以Cn空间为例,Rn空间类似。

最常用的范数就是p-范数。

若,那么当p取1,2,∞的时候分别是以下几种最简单的情形:1-范数:║x║1=│x1│+│x2│+…+│xn│2-范数:║x║2=(│x1│2+│x2│2+…+│xn│2)1/2∞-范数:║x║∞=max(│x1│,│x2│,…,│xn│)其中2-范数就是通常意义下的距离。

对于这些范数有以下不等式:║x║∞≤ ║x║2≤ ║x║1≤ n1/2║x║2≤ n║x║∞另外,若p和q是赫德尔(H&ouml;lder)共轭指标,即1/p+1/q=1,那么有赫德尔不等式:|<x,y>| = ||xH*y| ≤ ║x║p║y║q当p=q=2时就是柯西-许瓦兹(Cauchy-Schwarz)不等式一般来讲矩阵范数除了正定性,齐次性和三角不等式之外,还规定其必须满足相容性:║XY║≤║X║║Y║。

所以矩阵范数通常也称为相容范数。

如果║·║α是相容范数,且任何满足║·║β≤║·║α的范数║·║β都不是相容范数,那么║·║α称为极小范数。

对于n阶实方阵(或复方阵)全体上的任何一个范数║·║,总存在唯一的实数k>0,使得k║·║是极小范数。

注:如果不考虑相容性,那么矩阵范数和向量范数就没有区别,因为mxn矩阵全体和mn维向量空间同构。

引入相容性主要是为了保持矩阵作为线性算子的特征,这一点和算子范数的相容性一致,并且可以得到Mincowski定理以外的信息。

第四章算法总结本学期讲解过的主要算法列举如下:线性方程组的解法(高斯消元法,列主消元法,Doolittle分解法,追赶法,LDL'分解法,Jacobi分解法,Seidel迭代法);非线性方程的求根方法(二分法,简单迭代法,Newton 迭代法,Newton+下山因子,Newton 迭代法2,Newton 非线性方程);矩阵特征值与特征向量的计算(householder 矩阵,反幂法,幂法,QR 分解);函数的插值方法(三次样条插值,Lagrange 插值法,Newton 差商插值法);最佳平方逼近(chebyshev 最小二乘法,曲线拟合最小二乘法);数值积分与数值微分(simpson 求积分式算法,Romberg 算法,外推法);常微分方程初值问题的数值解法(欧拉改进法、龙格库塔法和修正的Adams 法)。

下面对主要算法进行分析。

4.1线性方程组的解法本章学习了一些求解线性方程组的常用方法,其中Gauss 消元法,列主元消元法,LU 分解法,追赶法和LDL ’分解法都是解线性方程组的直接方法;而Jacobi 迭代法和SOR 法则是解线性方程组的基本迭代法。

求解线性方程组时,应该注意方程组的性态,对病态方程组使用通常求解方程组的方法将导致错误。

迭代求精法可用于求解某些病态方程。

4.1.1高斯列主元LU 分解法求解线性方程组高斯消元法和LU 分解法是直接法求解线性方程组中的两种方法。

其中高斯消元法的基本思想是将线性方程组(1.1)通过消元,逐步化为同解的三角形方程组,然后用回代法解出n 个解。

高斯列主元消元法则是在高斯消元法的基础上提出的先选主元再消元的方法,避免了(1)0k kk a -=时消元无法进行或者是当(1)k kk a -的绝对值与其下方的元素(1)(1,2,,)k ik a i k k n -=++的绝对值之比很小时,引起计算机上溢或产生很大的舍入误差而导致所求出的解失真的问题。

LU 分解法是将矩阵A 用一个下三角矩阵和一个上三角矩阵之积来表示,即A LU =,然后由A LU =,Ax b =,得LUx b =,将线性方程组的求解化为对两个三角形方程组Ly b =和Ux y =的求解,由此可解出线性方程组(1.1)的n 个解12,,,n x x x 。

这两种求解线性方程组的方法在处理单个线性方程组时没有差别,只是方法的不同,但在处理系数矩阵A 相同,而右端项不同的一组线性方程组时,LU 分解法就有明显的优势,因为它是将系数矩阵A 和右端项b 分开处理的,这样就可以只进行一次分解。

例如,求解线性方程组,1,2,,i Ax b i m ==,用高斯消元法求解的计算量大约为313mn ,而用LU 分解求解的计算量约为3213n mn +,后者计算量显然小很多。

但是LU 分解法同样有可能由于jj u 的绝对值很小而引起计算机上溢或产生很大的舍入误差而导致所求出的解失真。

因此提出了结合高斯列主元消元的LU 分解法。

我们采用的计算方法是先将A 矩阵进行高斯列主元消元,然后再计算相应的L 矩阵和U 矩阵(U 矩阵就是经过n-1步消元后的A 矩阵)。

但要注意,第k 步消元时会产生(1,2,,)ik m i k k n =++,从而可以得到L 矩阵的第k 列元素,但在下一步消元前选取列主元时可能会交换方程的位置,因此与方程位置对应的L 矩阵中的元素也要交换位置。

4.2非线性方程组的求根方法本章学习的二分法简单迭代法、Newton 迭代法等方法,代表着求解非线性方程所采用的两类方法。

大范围收敛方法的初值x0选取没有多少限制,只要在含根区间任选其一即可,二分法就是这类方法。

局部收敛法要求x0要充分靠近根x*才能保证收敛,以简单迭代法为基础,Newton 迭代法为代表的各类迭代法都属这类方法。

4.2.1Newton 迭代法牛顿迭代法的构造过程是这样的:设0x 是()0f x =的一个近似根,将()f x 在0x 处作Taylor 展开得'''200000()()()()()()2!f x f x f x f x x x x x =+-+-+,若取其前两项来近似代替()f x ,得近似方程的根'1000()/()x x f x f x =-,然后再对1x 做上述同样处理,继续下去,一般若'()0k f x ≠,则可以构造出迭代格式1'()()k k k k f x x x f x +=-此格式称为牛顿迭代格式,用它来求解()0f x =的方法称为牛顿迭代法。

牛顿迭代法的几何意义是用()f x 在k x 处的切线与x 轴得交点作为下一个迭代点1k x +的。

由于这一特点,牛顿迭代法也常称为切线法。

牛顿迭代法虽然收敛很快,但它通常过于依赖初值0x 的选取,如果0x 选择不当,将导致迭代发散或产生无限循环。

4.3 矩阵特征值与特征向量的计算本章学习了计算矩阵特征值和特征向量的三种常用的有效方法。

幂法是求矩阵的主特征值和对应特征向量的一种迭代方法。

它在计算过程中原始举证A 始终不变。

这种方法简单方便,适用于任意类型的矩阵,特别适用于高阶稀疏矩阵。

QR 算法是计算任意矩阵A 的全部特征值的一种正交相似变换方法。

它利用Househoder 变换把矩阵A 约化成一种上三角阵,所得三角阵的对角线的元就是所求矩阵的特征值。

Jacobi 方法是另一种求矩阵特征值的变换法。

它是把实对称阵A 经过一系列正交旋转变换化为一个对角阵。

对角阵的对角元就是A 的特征值。

4.3.1 QR 法求特征值QR 算法是目前求一般矩阵全部特征值最有效的方法。

其以基本步骤如下:(1)令1A A =,对1A 作QR 分解:()111A Q R = (4-1)(2)将(4-1)右端逆序相乘,得到()211A R Q = (4-2)(3)(4-2)式中对2A 作QR 分解,有()222A Q R =,()322A R Q =,以此类推(4)得到矩阵序列(){}k A ,容易证明()k A 与A 相似,因而具有相同特征值。

在一定条件下,(){}k A 收敛于上三角阵(或分块上三角阵),其对角元(或分块)有确定的极限。

如果收敛于上三角阵,则主对角元就是A 的特征值;如果收敛于分块,则这些分块的特征值也就是A 的特征值。

4.4 函数的插值法本章学习了插值多项式与样条插值函数的构造与误差,主要构造方法是利用插值基函数。

插值多项式的两种形式各有特点,Lagrange 插值适用于不等距节点的插值和导出数值计算公式。

Newton 插值使用与等距节点的插值及在插值中增加节点。

由于高次插值的效果不好,实践中常用分段低次插值,特别是样条插值。

样条函数是当前函数逼近中最活跃的一个分支,它在函数插值、数值积分、微分方程求解中都有重要应用。

4.4.1Hermite 插值设()f x ,[],x a b ∈。

已知它在1n +个互异点n x (012n a x x x x b ≤<<<<≤)上的函中求数值: (), 0,1,,i i f x y i n ==。

相关文档
最新文档