Multisim模拟电路仿真实验报告
Multisim数字电路仿真实验报告
低频电子线路实验报告—基于Multisim的电子仿真设计班级:卓越(通信)091班姓名:杨宝宝学号:6100209170辅导教师:陈素华徐晓玲学生姓名:杨宝宝学号:6100209170 专业班级:卓越(通信)091班实验类型:□验证□综合□设计□创新实验日期:实验成绩:实验一基于Multisim数字电路仿真实验一、实验目的1.掌握虚拟仪器库中关于测试数字电路仪器的使用方法,入网数字信号发生器和逻辑分析仪的使用。
2.进一步了解Multisim仿真软件基本操作和分析方法。
二、实验内容用数字信号发生器和逻辑分析仪测试74LS138译码器逻辑功能。
三、实验原理实验原理图如图所示:四、实验步骤1.在Multisim软件中选择逻辑分析仪,字发生器和74LS138译码器;学生姓名:杨宝宝学号:6100209170 专业班级:卓越(通信)091班实验类型:□验证□综合□设计□创新实验日期:实验成绩:2.数字信号发生器接138译码器地址端,逻辑分析仪接138译码器输出端。
并按规定连好译码器的其他端口。
3.点击字发生器,控制方式为循环,设置为加计数,频率设为1KHz,并设置显示为二进制;点击逻辑分析仪设置频率为1KHz。
相关设置如下图学生姓名:杨宝宝学号:6100209170 专业班级:卓越(通信)091班实验类型:□验证□综合□设计□创新实验日期:实验成绩:五、实验数据及结果逻辑分析仪显示图下图实验结果分析:由逻辑分析仪可以看到在同一个时序74LS138译码器的八个输出端口只有一个输出为低电平,其余为高电平.结合字发生器的输入,可知.在译码器的G1=1,G2A=0,G2B=0的情况下,输出与输入的关系如下表所示学生姓名:杨宝宝学号:6100209170 专业班级:卓越(通信)091班实验类型:□验证□综合□设计□创新实验日期:实验成绩:当G1=1,G2A=0,G2B=0中任何一个输入不满足时,八个输出都为1六、实验总结通过本次实验,对Multisim的基本操作方法有了一个简单的了解。
模拟电子线路multisim仿真实验报告精选文档
模拟电子线路m u l t i s i m仿真实验报告精选文档TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-实验一单级放大电路一、实验目的1、熟悉multisim软件的使用方法2、掌握放大器的静态工作点的仿真方法,及对放大器性能的影响。
3、学习放大器静态工作点、电压放大倍数,输入电阻、输出电阻的仿真方法,了解共射级电路的特性。
二、虚拟实验仪器及器材双踪示波器信号发生器交流毫伏表数字万用表三、实验步骤1.仿真电路图E级对地电压25.静态数据仿真26.动态仿真一1.单击仪表工具栏的第四个,放置如图,并连接电路。
2.双击示波器,得到如下波形5.他们的相位相差180度。
27.动态仿真二1.删除负载电阻R62.重启仿真。
28.仿真动态三1.测量输入端电阻。
在输入端串联一个的电阻,并连接一个万用表,启动仿真,记录数据,填入表格。
数据为VL测量数据为VO1.画出如下电路图。
2.元件的翻转4.去掉r7电阻后,波形幅值变大。
实验二 射级跟随器一、实验目的1、熟悉multisim 软件的使用方法2、掌握放大器的静态工作点的仿真方法,及对放大器性能的影响。
3、学习放大器静态工作点、电压放大倍数,输入电阻、输出电阻的仿真方法,了解共射级电路的特性。
4、学习mutisim参数扫描方法 5、学会开关元件的使用二、虚拟实验仪器及器材双踪示波器 信号发生器 交流毫伏表 数字万用表三、实验步骤1实验电路图如图所示;2.直流工作点的调整。
如上图所示,通过扫描R1的阻值,在输入端输入稳定的正弦波,功过观察输出5端的波形,使其为最大不失真的波形,此时可以确定Q1的静态工作点。
7.出现如图的图形。
10.单击工具栏,使出现如下数据。
11.更改电路图如下、17思考与练习。
1.创建整流电路,并仿真,观察波形。
XSC12.由以上仿真实验知道,射级跟随器的放大倍数很大,且输入输出电压相位相反,输入和输出电阻也很大,多用于信号的放大。
Multisim电路仿真实验报告(实验1.2)
Multisim电路仿真实验报告(实验1.2)实验⼀1.电路图
1
2
电容c1和电阻R2交换后
3. 逻辑分析仪和字信号发⽣器的使⽤
实验⼆
1.
静态⼯作点分析
IBQ=12.954uA ICQ=2.727mA
结合电路图可知:UBQ=3.39196V,UCQ=6.54870V,所以三极管的放⼤倍数:β= ICQ/IBQ =210
2.估算出该电路的放⼤倍数Av
从仿真结果中得到:
Uo=1.94895V, Ui=0.014V.
从⽽估算出该电路的放⼤倍数:Av=139
对两电路的带负载能⼒进⾏⽐较
3.1
由以上两个仿真图可知,放⼤电路2⽐放⼤电路1带负载能⼒更强。
⽽放⼤电路的带负载能⼒受其输出电阻影响,输出电阻越⼩,带负载能⼒越强。
由后⾯的计算可知放⼤电路2的输出电阻更⼩,因⽽其带负载能⼒⽐放⼤电路1强。
因此仿真实验结果符合理论要求。
3.2 对电路1和2分别作温度扫描分析
3.3 测试电路1和2
的输⼊和输出阻抗
电路1
输⼊电阻的测试电路图及测试结果
电路1输出电阻的测试电路图及测试结果由以上实验结果算出电路1的输⼊阻抗1264kΩ,输出阻抗为1.92kΩ
电路2
输⼊电阻的测试电路图及测试结果
电路2输出电阻的测试电路图及测试结果
由以上实验结果算出电路1的输⼊阻抗5.9kΩ,输出阻抗为4.8Ω
放⼤电路1是放⼤电路2的电流串联负反馈形式,电流串联负反馈的作⽤是增⼤输⼊输出电阻。
模拟电子线路multisim仿真实验报告
MULTISIM 仿真实验报告实验一单级放大电路一、实验目的1、熟悉multisim软件的使用方法2、掌握放大器的静态工作点的仿真方法,及对放大器性能的影响。
3、学习放大器静态工作点、电压放大倍数,输入电阻、输出电阻的仿真方法,了解共射级电路的特性。
二、虚拟实验仪器及器材双踪示波器信号发生器交流毫伏表数字万用表三、实验步骤1.仿真电路图V110mVrms 1kHz0°R1100kΩKey=A10 %R251kΩR320kΩR45.1kΩQ12N2222AR5100ΩR61.8kΩC110µFC210µFC347µF37V212 V4521R75.1kΩ9XMM16E级对地电压25.静态数据仿真记录数据,填入下表仿真数据(对地数据)单位;V计算数据单位;V基级集电极发射级Vbe Vce RP10k 26.动态仿真一1.单击仪表工具栏的第四个,放置如图,并连接电路。
V110mVrms 1kHz0°100kΩKey=A10 %R251kΩR320kΩR45.1kΩQ12N2222AR5100ΩR61.8kΩC110µFC210µFC347µF37V212 V52R75.1kΩXSC1A BExt Trig++__+_6192.双击示波器,得到如下波形5.他们的相位相差180度。
27.动态仿真二1.删除负载电阻R6V110mVrms1kHz0°100kΩKey=A10 %R251kΩR320kΩR45.1kΩQ12N2222AR5100ΩR61.8kΩC110µFC210µFC347µF37V212 V52XSC1A BExt Trig++__+_6192.重启仿真。
记录数据.仿真数据(注意填写单位)计算Vi有效值Vo有效值Av3.分别加上,300欧的电阻,并填表填表.4.其他不变,增大和减少滑动变阻器的值,观察VO的变化,并记录波形28.仿真动态三1.测量输入端电阻。
multisim使用及电路仿真实验报告_范文模板及概述
multisim使用及电路仿真实验报告范文模板及概述1. 引言1.1 概述引言部分将介绍本篇文章的主题和背景。
在这里,我们将引入Multisim的使用以及电路仿真实验报告。
Multisim是一种强大的电子电路设计和仿真软件,广泛应用于电子工程领域。
通过使用Multisim,可以实现对电路进行仿真、分析和验证,从而提高电路设计的效率和准确性。
1.2 文章结构本文将分为四个主要部分:引言、Multisim使用、电路仿真实验报告以及结论。
在“引言”部分中,我们将介绍文章整体结构,并简要概述Multisim的使用与电路仿真实验报告两个主题。
在“Multisim使用”部分中,我们将详细探讨Multisim软件的背景、功能与特点以及应用领域。
接着,在“电路仿真实验报告”部分中,我们将描述一个具体的电路仿真实验,并包括实验背景、目的、步骤与结果分析等内容。
最后,在“结论”部分中,我们将总结回顾实验内容,并分享个人的实验心得与体会,同时对Multisim软件的使用进行评价与展望。
1.3 目的本篇文章旨在介绍Multisim的使用以及电路仿真实验报告,并探讨其在电子工程领域中的应用。
通过对Multisim软件的详细介绍和电路仿真实验报告的呈现,读者将能够了解Multisim的基本特点、功能以及实际应用场景。
同时,本文旨在激发读者对于电路设计和仿真的兴趣,并提供一些实践经验与建议。
希望本文能够为读者提供有关Multisim使用和电路仿真实验报告方面的基础知识和参考价值,促进他们在这一领域的学习和研究。
2. Multisim使用2.1 简介Multisim是一款功能强大的电路仿真软件,由National Instruments(国家仪器)开发。
它为用户提供了一个全面的电路设计和分析工具,能够模拟各种电子元件和电路的行为。
使用Multisim可以轻松地创建、编辑和测试各种复杂的电路。
2.2 功能与特点Multisim具有许多强大的功能和特点,使其成为研究者、工程师和学生选择使用的首选工具之一。
multisim仿真电路
1.输入和逻辑状态判断电路的测试
1)调节逻辑电平测试器的被测电压(输入直流电压)为低电平(VL<0.8v)用数字万用表测逻辑状态判断电路输出电平。
2)调节逻辑电平测试器的被测电压(输入直流电压)为高电平(VH>3.5v)用数字万用表测逻辑状态判断电路输出电平。
2.音响声调产生电路
1)逻辑电平测试器的被测电压为低电平(VL<0.8v)用示波器观察、记录音响声调产生电路输出波形,用频率计测量振荡频率f.
四、实验内容及步骤
1.场效应管共源放大器的调试
(1)连接电路。按图1连接好电路,场效应管选用N沟道消耗型2N3370,静态工作点的设置方式为自偏压式。直流稳压电源调至12V。
图1
2.测量静态工作点
将输入端短接(图2),并测量此时的 Vg、Vs、VD、 ,填入下表1
静态工作点:
1.006V
39.355nV
1)输入电阻测量:先闭合开关S1(R2=0),输入信号电压Vs,测出对应的输出电压 ,然后断开S1,测出对应的输出电压 ,因为两次测量中和是基本不变的,所以
,测得 =134.137mV, =67.074mV,
仿真结果如下图4:
2)输出电阻测量:在放大器输入端加入一个固定信号电压Vs,分别测量当已知负载RL断开和接上的输出电压 和 。则 ,由于本实验所用的场效应管必须接入很大的负载才能达到放大效果,因此此方法不适合用来测量本实验输出电阻效果不太好,仿真结果如下图5 =66.8mV, =125mV .
38.328
43.36
35
40
45
50
55
60
65
47.847
51.875
55.507
Multisim模拟电路仿真实验
Multisim模拟电路仿真实验Multisim 模拟电路仿真实验1.实验目的(1)学习用Multisim实现电路仿真分析的主要步骤。
(2)用Multisim的仿真手段对电路性能作较深入的研究。
2.实验内容实验19-1 基本单管放大电路的仿真研究(1)(2)理论分析(仿真电路符号如图):在V的情况下,可计算出则对比分析:经过比较,I(B)的误差较大。
而由实验结果也可看出,并不等于60,说明实际的三极管工作是由于电容、电阻各方面的因素β并不等于理论值,这即是I(B)误差较大的原因。
(3)理论分析:即放大倍数为14.07,相位相差180°输入电压最大值为1.41mV,输出最大值为19.5mV,相位正好相差180°,故实际的放大倍数为相对误差为1.71%可以看到,这与理论值还是十分接近的,相对误仅差为1.71% (4)幅频特性:上限截止频率18.070MHz下限截止频率17.694Hz则放大倍数,相对误差为1.56%带宽为(5)交流分析使用游标功能可测量出在输入频率为1000Hz时,放大倍数,相对误差为1.51%如上图,相位差为179.999°,相对误差趋0。
(6)当输入电压为300mV时此时失真度为21.449%.(7)理论分析:实验结果:测量输入电阻采用“加压求流法”,测输入端的电压(已知)和电流即可。
输入电流为2.951毫安于是,相对误差为2.1%,误差较小。
测量输出电阻采用改变负载电阻测输出电压进而估算输出电阻的方法。
00r 1o L oL U R U ??=-? ??? 00r 1o L oL U R U ??=-? ???,0o U 是输出端空载时的输出电压,oL U 是接入负载L R 时的输出电压,输出信号频率是1000KHz 。
于是,相对误差为1.97%,误差也是比较小(8)将1E R 去掉,将2E R 的值改为1.2k于是根据y2=95.2477得到放大倍数幅频特性上限截止频率18.911MHz 下限截止频率105.775Hz 则放大倍数95.25(此处可以通过示波器的显示结果验证)带宽为则输入电阻为(9)对比分析:结论:在去掉后,放大倍数、上下限截止频率都会增加,输入电阻会减小。
模电仿真报告
模拟电子技术基础Multisim 仿真实验报告课题:交流负反馈对放大倍数稳定性的影响班级:自1203班姓名:张凯(41251083)张晨光(41251084)李顶立(41251085)一、题目负反馈对电压串联负反馈放大电路电压放大倍数稳定性的影响。
二、仿真电路仿真电路采用虚拟集成运放,运放U1、U2分别引入了局部电压并联负反馈,其闭环电压放大倍数分别为RR A11f 1uf -≈,RR A22f 2uf ≈,可以认为该负反馈放大电路中基本放大电路的放大倍数AA Au u 2f 1f ≈整个电路引入了急件电压串联负反馈,闭环电压放大倍数FA A A A Au u u u u 2f 1f 2f 1f f1+≈,RRR Ff+=,三、仿真内容分别测量 Ω=k R f 1002和 Ωk 10 时的 A u f 。
从示波器可读出输出电压的幅值,得到放大倍数电压的变化。
四、仿真结果1、张凯的结果(1)实验截图图1 负反馈放大倍数(张凯)(2)实验数据表图2 实验数据表(张凯)(1)实验截图图3 负反馈放大倍数(张晨光)(2)实验数据表图4 实验数据表(张晨光)(1)实验截图图5 负反馈放大倍数(李顶立)(2)实验数据表图6 实验数据表(李顶立)五、实验数据分析1、比较第1组数据与第2组数据可知,当反馈电阻减小时,运放的闭环电压放大倍数减小。
2、不接反馈电阻时的开环电压放大倍数与接上反馈电阻时的闭环电压放大倍数具有明显的差异,表明负反馈具有提高放大倍数稳定性的作用。
六、实验结论1、由 图4 可知,当R 2f 从100k Ω 变为10k Ω时,电路的开环电压放大倍数变化量Δ9.0101010443)(=-=A A ,闭环电压放大倍数变化量Δ()148.01.1.95-0.811ff-≈=AA u u ,AA AA uf∆<<∆uf。
由此说明负反馈放大倍数的稳定性。
2、根据 图四 可知R 2f 从100k Ω 变为10k Ω时,开环电压放大倍数A 从104变为103,闭环电压放大倍数A uf 分别为99和90.9,与仿真结果近似。
multisim仿真实验报告
实验一单级放大电路一、实验目的1、熟悉multisim软件的使用方法2、掌握放大器的静态工作点的仿真方法,及对放大器性能的影响。
3、学习放大器静态工作点、电压放大倍数,输入电阻、输出电阻的仿真方法,了解共射级电路的特性。
二、虚拟实验仪器及器材双踪示波器信号发生器交流毫伏表数字万用表三、实验步骤1.仿真电路图E级对地电压25.静态数据仿真26.动态仿真一1.单击仪表工具栏的第四个,放置如图,并连接电路。
2.双击示波器,得到如下波形5.他们的相位相差180度。
27.动态仿真二1.删除负载电阻R62.重启仿真。
3.分别加上5.1k,300欧的电阻,并填表填表.28.仿真动态三1.测量输入端电阻。
在输入端串联一个5.1k的电阻,并连接一个万用表,启动仿真,记录数据,填入表格。
2.测量输出电阻RO数据为VL测量数据为VO填表1.画出如下电路图。
2.元件的翻转4.去掉r7电阻后,波形幅值变大。
实验二 射级跟随器一、实验目的1、熟悉multisim 软件的使用方法2、掌握放大器的静态工作点的仿真方法,及对放大器性能的影响。
3、学习放大器静态工作点、电压放大倍数,输入电阻、输出电阻的仿真方法,了解共射级电路的特性。
4、学习mutisim参数扫描方法 5、学会开关元件的使用二、虚拟实验仪器及器材双踪示波器 信号发生器交流毫伏表数字万用表 三、实验步骤1实验电路图如图所示;2.直流工作点的调整。
如上图所示,通过扫描R1的阻值,在输入端输入稳定的正弦波,功过观察输出5端的波形,使其为最大不失真的波形,此时可以确定Q1的静态工作点。
7.出现如图的图形。
10.单击工具栏,使出现如下数据。
11.更改电路图如下、17思考与练习。
1.创建整流电路,并仿真,观察波形。
XSC12.由以上仿真实验知道,射级跟随器的放大倍数很大,且输入输出电压相位相反,输入和输出电阻也很大,多用于信号的放大。
实验三:负反馈放大电路一、实验目的:1、熟悉Multisim软件的使用方法2、掌握负反馈放大电路对放大器性能的影响3、学习负反馈放大器静态工作点、电压放大倍数、输入电阻、输出电阻的开环和闭环仿真方法。
multisim 模拟仿真实验
一、实验目的和要求(1)学习用multisim 进行模拟电路的设计仿真 (2)掌握几种常见的实用电路原理图二、实验内容和原理2.1测量放大电路仿真分析在multisim11中画出如下电路原理图。
如图所示为测量放大电路,采用两级放大,前级采用同相放大器,可以获得很高的输入阻抗;后级采用差动放大器,可获得比较高的共模抑制比,增强电路的抗干扰能力。
该电路常常作为传感器放大器或测量仪器的前端放大器,在微弱信号检测电路设计中应用广泛。
电路的电压放大倍数理论计算为)1(94367R R R R R A u++=将电路参数代入计算:630)101001001(10300=++=uA2.2电压-频率转换电路仿真分析给出一个控制电压,要求波形发生电路的振荡频率与控制电压成正比,这种通过改变输入电压的大小来改变输出波形频率,从而将电压参数转换成频率参量电路成为电压—频率转换电路(VCO ),又称压控振荡器。
在multisim11中创建如图所示的电压-频率转换电路的电路原理图。
电路中,U1是积分电路,U2是同相输入迟滞比较器,它起开关左右;U3是电压跟随电流,输入测试电压U1。
电路的输出信号的振荡频率与输入电压的函数关系为Zi CU R R U R T f 31421==2.3单电源功率放大电路仿真分析在许多电子仪器中,经常要求放大电路的输出机能够带动某种负载,这就要求放大电路有足够大的输出功率,这种电路通称为功率放大器,简称“功放”。
一般对功放电路的要求有:(1)根据负载要求提供所需要的输出功率;(2)功率要高(3)非线性失真要小(4)带负载的能力强。
根据上述这些要求,一般选用工作在甲乙类的共射输出器构成互补对称功率放大电路。
单电源功放电路中指标计算公式如下: 功率放大器的输出功率:Lo oR U P = 直流电源提供的直流功率:CO CC E I U P ⨯=电路效率:%100⨯=EoP P η 实验电路原理图如下:2.4直流稳压电源仿真分析在所以电子电路和电子设备中,通常都需要电压稳定的直流电源供电。
模电Multisim仿真报告
模电Multisim仿真报告电⼦科技⼤学UNIVERSITY OF ELECTRONIC SCIENCE AND TECHNOLOGY OF CHINA Multisim电路仿真实验Analog Electronic Technology Foundation实验内容直流稳压电源电路课程名称模拟电⼦技术基础上课地点清⽔河⽴⼈楼B111学⽣姓名范昊洋学号2015170201032年⽉⽇⼀,实验⽬的:在Multisim上设计出⼀个直流稳压电源电路,要求:输出电压5V最⼤输出电流0.5A电压调整率<4%电流调整率<4%纹波系数<5%⼆,仿真电路设计及理论分析:1.⾸先,直流稳压电源由变压器,整流电路,滤波电路和稳压电路构成,所以在电路仿真设计中必须包含如下⼏个模块的设计:【电源变压器】变压器使⽤常规的变压器,变压系数之后计算。
【整流电路】整流电路使⽤桥式整流电路,电路图如图所⽰:【滤波电容】经过整流桥以后的是脉动直流波动范围很⼤。
后⾯⼀般⽤⼤⼩两个电容⼤电容⽤来稳定输出,众所周知电容两端电压不能突变,因此可以使输出平滑⼩电容是⽤来滤除⾼频⼲扰的,使输出电压纯净电容越⼩,谐振频率越⾼,可滤除的⼲扰频率越⾼。
容量选择:⼤电容,负载越重,吸收电流的能⼒越强,这个⼤电容的容量就要越⼤。
⼩电容,凭经验,⼀般104即可。
在电源设计中,滤波电容的选取原则是:C≥2.5T/R其中,C为滤波电容,T为频率,R 为负载电阻。
市电电源频率为50Hz,经桥式整流桥整流后频率变为100Hz,则需要知道负载电阻。
在条件中有,稳压电压为直流的5V,最⼤电流要求为0.5A。
P=UI可知,最⼤的输出功率为2.5W,最⼩的负载电阻RL为10Ω。
为限流,在稳压管前接⼀个5Ω电阻。
利⽤限流电阻R上的电压变化来补偿输⼊电压的波动;利⽤稳压管上的电流变化来补偿负载引起的电流变化。
UI的选择UI=(2~3)UZ,其中UZ设定为5V,所以UI应为10到15V,则本电路中UI 设定为11V(有效值),即变压器系数设定为20:1。
multisim仿真实验报告
竭诚为您提供优质文档/双击可除multisim仿真实验报告
篇一:multisim仿真实验报告
multisim仿真实验报告
3班刘鑫学号:20XX302660009
实验一单极放大电路
动态仿真一
动态仿真二
2.重新启动仿真波形
R=5.1k
R=330欧
篇二:multisim仿真实验报告
实验报告
—基于multisim的电子仿真设计
班级:卓越(通信)091班姓名:杨宝宝学号:6100209170辅导教师:陈素华徐晓玲
实验一基于multisim数字电路仿真实验
学生姓名:杨宝宝学号:6100209170专业班级:卓越(通信)091班实验类型:□验证□综合□设计□创新实验日期:实验成绩:
一、实验目的
1.掌握虚拟仪器库中关于测试数字电路仪器的使用方法,入网数字信号发生器和逻辑分析仪的使用。
2.进一步(:multisim仿真实验报告)了解multisim仿真软件基本操作和分析方法。
二、实验内容
用数字信号发生器和逻辑分析仪测试74Ls138译码器逻辑功能。
三、实验原理
实验原理图如图所示:
四、实验步骤
1.在multisim软件中选择逻辑分析仪,字发生器和
74Ls138译码器;
2.数字信号发生器接138译码器地址端,逻辑分析仪接138译码器输出端。
并按规定连好译码器的其他端口。
3.点击字发生器,控制方式为循环,设置为加计数,频率设为1Khz,并设置显
学生姓名:杨宝宝学号:6100209170专业班级:卓越(通。
Multisim模拟电路仿真实验
实验19 Multisim模拟电路仿真实验1.实验目的(1)学习用Multisim实现电路仿真分析的主要步骤。
(2)用仿真手段对电路性能作较深入的研究。
2.预习内容对仿真电路需要测量的数据进行理论计算,以便将测量值与理论值进行对照。
3.实验内容实验19-1 基本单管放大电路的仿真研究射极电流负反馈放大电路的仿真电路如下图所示。
三极管的电流放大系数设置为60。
(1)调节R w,使V E=1.2V;(2)用“直流工作点分析”功能进行直流工作点分析,测量静态工作点,并与估算值比较;(3)用示波器观测输入、输出电压波形的幅度和相位关系,并测量电压放大倍数,与估算值比较;(4)用波特图仪观测幅频特性和相频特性,并测量电压放大倍数和带宽(测出下线截止频率和上限截止频率即可);(5)用“交流分析”功能测量幅频特性和相频特性;(6)加大输入信号幅度,观测输出电压波形何时会出现失真,并用失真度分析仪测量信号的失真度;(7)设计测量输入电阻、输出电阻的方法并测量之。
(测输入电阻采用“加压求流法”,测输出电阻采用改变负载电阻测输出电压进而估算输出电阻的方法,即。
式中,U oO是输出端空载时的输出电压,U oL是接入负载R L时的输出电压。
输入信号频率选用1000H Z)。
(8)将去掉,将的值改为1.2kΩ,即静态工作点不变,重测电压放大倍数、上下限截止频率及输入电阻。
将测得的放大倍数、上下限截止频率和输入电阻进行列表对比,说明对这三个参数的影响。
实验结果如下:(1)静态直流工作点分析理论上,;;。
实际测量结果如下:;相对误差为0.018%;相对误差为0.018%;相对误差为2.698%;; 相对误差为0.061%;相对误差为0.029%;由此可见,静态工作点的理论预测值与实际测量值十分接近。
其中误差最大,其主要影响因素应当是根据模拟的参数设置,该三极管是实际三极管而并非理想三极管,在实际电流放大倍数方面与理论值有一定的误差。
电脑模拟电路实验报告(3篇)
第1篇一、实验目的1. 理解电脑模拟电路的基本原理和组成;2. 掌握电脑模拟电路的仿真方法和技巧;3. 分析电脑模拟电路的性能指标,提高电路设计能力。
二、实验原理电脑模拟电路是指使用计算机软件对实际电路进行模拟和分析的一种方法。
通过搭建电路模型,可以预测电路的性能,优化电路设计。
实验中主要使用到的软件是Multisim。
三、实验内容及步骤1. 电路搭建以一个简单的RC低通滤波器为例,搭建电路模型。
首先,在Multisim软件中创建一个新的电路,然后按照电路图添加电阻、电容和电源等元件。
将电阻和电容的参数设置为实验所需的值。
2. 仿真设置在仿真设置中,选择合适的仿真类型。
本实验选择瞬态分析,观察电路在时间域内的响应。
设置仿真时间,本实验设置时间为0-100ms。
设置仿真步长,本实验设置步长为1μs。
3. 仿真运行点击运行按钮,观察仿真结果。
在Multisim软件的波形窗口中,可以看到电路的输入信号和输出信号随时间变化的曲线。
4. 数据分析分析仿真结果,观察电路的频率响应、幅度响应和相位响应。
本实验中,观察RC 低通滤波器的截止频率、通带增益和阻带衰减等性能指标。
5. 结果优化根据仿真结果,对电路参数进行调整,优化电路性能。
例如,可以通过调整电容值来改变截止频率,通过调整电阻值来改变通带增益。
四、实验结果与分析1. 频率响应通过仿真结果可以看出,RC低通滤波器的截止频率约为3.18kHz。
在截止频率以下,电路具有良好的滤波效果;在截止频率以上,电路的幅度衰减明显。
2. 幅度响应在通带内,RC低通滤波器的增益约为-20dB。
在阻带内,增益约为-40dB。
3. 相位响应在截止频率以下,电路的相位变化约为-90°;在截止频率以上,相位变化约为-180°。
五、实验结论1. 通过本实验,加深了对电脑模拟电路基本原理的理解;2. 掌握了Multisim软件在电路仿真中的应用;3. 分析了电路性能指标,提高了电路设计能力。
数电仿真实验报告Multism
实验一组合逻辑电路设计与分析1实验目的(1)学习掌握组合逻辑电路的特点;(2)利用逻辑转换仪对组合逻辑电路进行分析与设计。
2实验内容:实验电路及步骤:(1)利用逻辑转换仪对逻辑电路进行分析:按下图所示连接电路。
图表1 待分析的逻辑电路A经分析得到真值表和表达式:逻辑功能说明:观察真值表,我们发现当四个输入变量A、B、C、D中1的个数为奇数是,输出为0;当四个变量中的个数为偶数时,输出为1.该电路是一个四位输入信号的奇偶校验电路。
(2)根据要求利用逻辑转换仪进行逻辑电路的设计。
问题提出:有一火灾报警系统,设有烟感、温感、紫外线三种类型不同的火灾探测器。
为了防止误报警,只有当其中有两种或两种以上的探测器发出火灾探测信号时,报警系统才产生报警信号,试设计报警控制信号的电路在逻辑转换仪面板上根据下列分析出真值表如下图所示:由于探测器发出的火灾探测信号也只有两种可能,一种是高端平(1),表示有火灾报警;一种是低电平(0),表示正常无火灾报警。
因此,令A、B、C分别表示烟感、温感、紫外线三种探测器输出的信号,为报警控制电路的输入、令F为报警控制电路的输出。
(3)在逻辑转换仪面板上单击按钮(由真值表导出简化表达式)后得到下图所示的最简化表达式。
(4)在上图的基础上单击(由逻辑表达式得到逻辑电路)后得到如下图所示的逻辑电路思考题(1)设计一个4人表决电路。
如果3人或3人以上同意,则通过;反之,则被否决。
用与非门实现。
记A、B、C、D四个变量表示一个人是否同意,若同意输出1,反之输出0。
在逻辑转换仪面板上分析出真值表如下图所示:化简逻辑表达式后并转化成与非门电路如下图所示(2)利用逻辑转换仪对下图所示电路进行分析。
得出真值表如下逻辑功能分析:当A、B不同时为1时,输出为C非;当A、B同时为1时,输出为C。
A B端作为控制信号控制输出与C的关系。
实验二编码器、译码器电路仿真实验一、实验要求(1)掌握编码器、编译器的工作原理。
multisim 仿真实验报告
multisim 仿真实验报告Multisim 仿真实验报告引言:Multisim是一款功能强大的电子电路仿真软件,它为工程师和学生提供了一个方便、直观的平台,用于设计、分析和测试各种电路。
本文将介绍我在使用Multisim进行仿真实验时的经验和结果。
1. 实验目的本次实验的目的是通过Multisim软件仿真,验证电路设计的正确性和性能。
具体来说,我们将设计一个简单的放大器电路,并使用Multisim进行仿真,以验证电路的增益、频率响应和稳定性。
2. 实验设计我们设计的放大器电路采用了共射极放大器的基本结构。
电路由一个NPN晶体管、输入电阻、输出电阻和耦合电容组成。
我们选择了适当的电阻和电容值,以实现所需的放大倍数和频率响应。
3. 仿真过程在Multisim中,我们首先选择合适的元件并进行连接,然后设置元件的参数。
在本实验中,我们需要设置晶体管的参数,例如其直流放大倍数和频率响应。
接下来,我们将输入信号源连接到电路的输入端,并设置输入信号的幅度和频率。
在仿真过程中,我们可以观察电路的各种性能指标,如电压增益、相位差和输出功率。
我们还可以通过改变电路中的元件值,来分析它们对电路性能的影响。
通过多次仿真实验,我们可以逐步优化电路设计,以达到所需的性能要求。
4. 仿真结果通过Multisim的仿真,我们得到了放大器电路的性能曲线。
我们可以观察到电路的增益随频率的变化情况,以及输出信号的波形和频谱。
通过对比仿真结果和理论预期,我们可以评估电路设计的准确性和可行性。
此外,Multisim还提供了一些实用工具,如示波器和频谱分析仪,用于更详细地分析电路性能。
通过这些工具,我们可以观察到电路中各个节点的电压和电流变化情况,以及信号的频谱特性。
5. 实验总结通过本次实验,我们深入了解了Multisim软件的功能和应用。
它为我们提供了一个方便、直观的平台,用于设计和分析各种电路。
通过仿真实验,我们可以快速评估电路设计的性能,并进行必要的优化和改进。
Multisim电路仿真实验
Multisim电路仿真实验一、实验目的熟悉电路仿真软件Multisim的功能,掌握使用Multisim进行输入电路、分析电路和仪表测试的方法。
二、使用软件NI Multisim student V12三、实验内容1.研究电压表内阻对测量结果的影响输入如图1所示的电路图,在setting 中改变电压表的内阻,使其分别为200kΩ、5kΩ等,观察其读数的变化,研究电压表内阻对测量结果的影响。
并分析说明仿真结果。
图1实验结果:【200kΩ】图2【5kΩ】图3分析:①根据图1电路分析,如果不考虑电压表内阻的影响,U10=R2V1/(R1+R2)=5V;②根据图2,电压表内阻为200kΩ时,电压表示数U10=4.878V,相对误差|4.878-5|*100%/5=2.44%③根据图3,电压表内阻为5kΩ时,电压表示数U10=2.5V,相对误差|2.5-5|*100%/5=50%可以看出,电压表内阻对于测量结果有影响,分析原因,可知电压表具有分流作用,与R2并联后,R2’=1/(1/R1+1/R V)<R2,U10’=R2‘V1/(R1+R2’)=V1/(R1/R2‘+1)<U10;因而,电压表内阻使得测量结果偏小,并且电压表内阻越小,误差越大;电压表内阻越大,误差越小;当R V>>R2时,U10’≈U102. RLC串联谐振研究输入如图4的电路,调节信号源频率,使之低于、等于、高于谐振频率时,用示波器观察波形的相位关系,并测量谐振时的电流值。
用波特图仪绘制幅频特性曲线和相频特性曲线,并使用光标测量谐振频率、带宽(测量光标初始位置在最左侧,可以用鼠标拖动。
将鼠标对准光标,单击右键可以调出其弹出式菜单指令,利用这些指令可以将鼠标自动对准需要的座标位置)。
图4实验结果:【等于:f=159.155Hz】图5:波形图6:谐振时的电流图7:幅频特性曲线图8.1:测量带宽图8.2:测量带宽【小于:f=150Hz】【大于:f=200Hz】图11:波形分析:a.根据图5波形,当信号源频率等于谐振频率f0=159.155Hz时,其中f0=1/(2π√LC),相位相同,谐振时的电流为99.946mA;根据图8.1及8.2,可求得带宽Δf=(175.952-143.98)Hz=31.972Hzb.根据图10波形,当信号源频率小于谐振频率,f=150Hz时,可以观察到U R的相位超前U,分析原因知,由于X L=2πfL,X C=1/(2πfC),f<f0时,X L<X C,X L-X C<0,又易知U R的相位超前U。
Multisim电路仿真实验报告
Multisim电路仿真实验报告谢永全1 实验目的:熟悉电路仿真软件Multisim的功能,掌握使用Multisim进行输入电路、分析电路和仪表测试的方法。
2使用软件:NI Multisim student V12。
(其他版本的软件界面稍有不同)3 预习准备:提前安装软件熟悉其电路输入窗口和电路的编辑功能、考察其元件库中元件的分类方式、工具栏的定制方法、仪表的种类、电路的分析方法等;预习实验步骤,熟悉各部分电路。
4熟悉软件功能(1)了解窗口组成:主要组建包括:电路图编辑窗口、主菜单、元件库工具条、仪表工具条。
初步了解各部分的功能。
(2)初步定制:定制元件符号:Options|Global preferences,选择Components标签,将Symbol Standard区域下的元件符号改为DIN。
自己进一步熟悉全局定制Options|Global preferences窗口中各标签中的定制功能。
(3)工具栏定制:选择:View|Toolbars,从显示的菜单中可以选择显示或者隐藏某些工具栏。
通过显示隐藏各工具栏,体会其功能和工具栏的含义。
关注几个主要的工具栏:Standard(标准工具栏)、View(视图操作工具栏)、Main(主工具栏)、Components(元件工具栏)、Instruments (仪表工具栏)、Virtual(虚拟元件工具栏)、Simulation(仿真)、Simulation switch(仿真开关)。
(4)Multisim中的元件分类元件分两类:实际元件(有模型可仿真,有封装可布线)、虚拟元件(有模型只能仿真、没有封装不能布线)。
另有一类只有封装没有模型的元件,只能布线不能仿真。
在本实验中只进行仿真,因此电源、电阻、电容、电感等使用虚拟元件,二极管、三极管、运放和其他集成电路使用实际元件。
元件库的结构:元件库有三个:Master database(主库)、Corporate database(协作库)和User database(用户库)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、实验目的
1.认识并了解Multisim的元器件库;
2.学习使用Multisim绘制电路原理图;
3.学习使用Multisim里面的各种仪器分析模拟电路;
二、实验内容
【基本单管放大电路的仿真研究】
1.仿真电路如图所示。
2.修改参数,方法如下:
双击三极管,在Value选项卡下单击EDIT MODEL;修改电流放大倍数BF为60,其他参数不变;图中三极管名称变为2N2222A*;
双击交流电源,改为1mV,1kz;
双击Vcc,在Value选项卡下修改电压为12V;
双击滑动变阻器,在Value选项卡下修改Increment值为0.1% 或更小。
三、数据计算
1.
由表中数据可知,测量值和估算值并不完全相同。
可以通过更精细地调节滑动变阻器,使V E更接近于1.2V.
2.电压放大倍数
测量值A u =−13.852985 ;估算值A u =−14.06 ;
相对误差=−13.852985−(−14.06)
−14.06
×100% =−1.47%
由以上数据可知,测量值和估算值并不完全相同,可能的原因有:
1) 估算值的计算过程中使用了一些简化处理,如动态分析时视电容为短路,
r be =300+(β+1)∙26
I E
等与仿真电路并不完全相同。
2) 仿真电路的静态工作点与理想情况并不相同,也会影响放大倍数。
3. 输入输出电阻
验相同的原因外(不再赘述),还有:万用表本身存在电阻。
4.
去掉R E1后,电压放大倍数增大,下限截止频率和上限截止频率增大,输入电阻减小。
说明R E1减小了放大倍数,增大了输入电阻。
四、感想与体会
电子实验中,估算值与仿真值、仿真值与实际测量值往往并不完全一致。
在设计电路时可以通过估算得到大致的判断,再在电脑中进行仿真,最后再实际测量运行。
用电脑仿真是很必要的,一方面可以及早发现一些简单错误,防止功亏一篑,另一方面还可以节省材料和制作时间。
但必须考虑实际测量与仿真的不同之处,并应以实测值为准。