行程 和倍 差倍 和差

合集下载

行程问题公式

行程问题公式

解行程问题必备的基本公式基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间相遇问题:速度和×相遇时间=相遇路程追击问题:追击时间=路程差÷速度差流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2【和差问题公式】(和+差)÷2=较大数;(和-差)÷2=较小数。

【和倍问题公式】和÷(倍数+1)=一倍数;一倍数×倍数=另一数,或和-一倍数=另一数。

【差倍问题公式】差÷(倍数-1)=较小数;较小数×倍数=较大数,或较小数+差=较大数。

【反向行程问题公式】反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。

这两种题,都可用下面的公式解答:(速度和)×相遇(离)时间=相遇(离)路程;相遇(离)路程÷(速度和)=相遇(离)时间;相遇(离)路程÷相遇(离)时间=速度和。

【同向行程问题公式】追及(拉开)路程÷(速度差)=追及(拉开)时间;追及(拉开)路程÷追及(拉开)时间=速度差;(速度差)×追及(拉开)时间=追及(拉开)路程。

【列车过桥问题公式】(桥长+列车长)÷速度=过桥时间;(桥长+列车长)÷过桥时间=速度;速度×过桥时间=桥、车长度之和。

【行船问题公式】(1)一般公式:静水速度(船速)+水流速度(水速)=顺水速船速-水速=逆水速度;(顺水速度+逆水速度)÷2=船速;(顺水速度-逆水速度)÷2=水速。

(2)两船相向航行的公式:甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度(3)两船同向航行的公式:后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。

数学期末专区和差倍、行程及面积问题专项练习

数学期末专区和差倍、行程及面积问题专项练习

四年级和差倍、行程及面积问题专题练习姓名:一、和差倍问题1.刘爷爷在山林里养了360只鸡,其中母鸡比公鸡多48只。

刘爷爷养的公鸡和母鸡各有多少只?先根据题意把线)段图补充完整,再解答。

2.两个油桶共有油500千克,从第一个油桶中倒60千克给第二个油桶,两桶油重量相等,原来两桶油各有多少千克?3.张师傅和李师傅一共要加工198个零件。

完成任务时,张师傅比李师傅少加工24个。

张师傅和李师傅各加工零件多少个?(先把已知条件在线段图上表示出来,再解答)4.两筐苹果共重86千克,如果从第一筐中取出5千克放入第二筐中,两筐的重量相等,这两筐苹果原来各重多少千克?5.妈妈的身高比聪聪高22厘米,聪聪的身高比爸爸矮32厘米,爸爸和妈妈身高的和是334厘米,爸爸身高多少?6.少先队员种杨树和柳树共135棵,柳树的棵数比杨树的3倍多15棵,两种树各种多少棵?7.淘气正在读一本281页的故事书,不小心合上了,他记得刚读完连续两页页码之和是81页。

(1)淘气刚读完的两页页码分别是多少?(2)这本故事书还剩多少页没读?(3)如果淘气每天读20页,剩下的几天能读完?二、行程问题1、甲、乙二人沿运动场的跑道跑步,甲每分钟跑290米,乙每分钟跑270米,跑道一圈长400米.如果两人同时从起跑线上同方向跑,那么甲经过多长时间才能第一次追上乙?2、龟.兔赛跑,全程180。

米,乌龟每分钟爬15米,兔子每分钟跑400米,发令枪响后,兔子一会儿就把乌龟远远甩在后边,骄傲的兔子以为跑的快,在途中美美的睡了一觉,结果乌龟到达终点时,兔子离终点还有200米.兔子在途中睡了多少时间?3、兔子经过锻炼之后又道清乌龟再来一次比赛,全程是10000米,鸟龟的速度是每分钟20米,兔子的速度是每分钟400米,适次兔子跑了—半的路程之后有些疲惫,就跑到地里休息,当兔子休息好之后,发现乌龟又跑到前面去了,奋起直追.在距离终点1000米的地方发现乌龟超过了终点,那么兔子休息了多久?4、甲、乙两车同时从A地出发去B地,甲车每小时行12千米,乙车每小时行9千米,途中甲车停车4小时,结果甲车和乙车同时达目的地,问A、B两地之间的路程是多少千米?5、甲乙两人分别从相距420千米的两地乘车出发,相向而行,5小时后相遇.如果甲乙两人乘原来的车分别从两地同时同向出发,慢车在前,快车在后,15小时后甲乙两人相遇,求快慢车的速度分别是多少?6、甲、乙两人在周长400米的环形跑道跑歩,如果两人从同地相背而行,经2分钟相遇;如果两人从同地同向而行,经20分钟相遇,已知甲比乙快,求甲、乙的速度各是多少?7、甲、乙两地相距420千米,客车从甲地,货车从乙地同时相向开出,经过6小时相遇,如果两车分别从两地向同一方向开岀,货车在前,喜车在后,10小时就可以追上货车,求喜车和货车的速度分别是多少?8、小王家离工厂3千米,他每天骑车以每分钟200米的速度上班,正好准时到工厂.有一天,他出发几分钟后,因遇熟人停车2分钟,为了准时到厂,后面的路必须每分钟多行100米.小王是在离工厂多远处遇到孰人的?9、甲、乙两地相距240千米,一辆汽车原计划6小时从甲地到乙地,汽车行驶了一半路程,因故在中途停留了一个小时,如果按原定时间回到乙地,汽车在后半程的速度应该是多少?比原速快多少?三、面积问10、小明从家到学校,如果每分钟150米的速度,他将于7:50到校;如果以每分钟200米的速度,他将于7:45到校,小明想在7:40到校,他该以怎样的速度前进?题1.如图是学校操场一角,请计算它的面积(单位:米)2.一块长方形铁板,长15分米,宽12分米,如果长和宽各减少2分米,面积比原来减少多少平方分米?3.一块长方形纸片,在长边剪去5cm,宽边剪去2cm 后(如图),得到的正方形面积比原长方形面积少3Icm.求原长方形纸片的面积.面积拓展题答案:1.公鸡156只;母鸡204只。

和倍差倍及和差问题

和倍差倍及和差问题

第一讲和倍问题和倍问题是已知大小两个数的和与它们的倍数关系,求大小两个数的应用题。

为了帮助我们理解题意,弄清两种量彼此间的关系,常采用画线段图的方法来表示两种量间的这种关系,以便于找到解题的途径。

例1.甲班和乙班共有图书160本。

甲班的图书本数是乙班的3倍,甲班和乙班各有图书多少本?分析:设乙班的图书本数为1倍数,则甲班图书为3倍数,那么甲班和乙班图书本数的和是4倍数。

4倍数的数量是160本,可以求出1倍数,即乙班的图书本数,然后再求甲班的图书本数。

用下图表示它们的关系:解:160÷(3+1)=40(本)………………乙班40⨯3=120(本)或160-40=120(本)………………………甲班答:甲班有图书120本,乙班有图书40本。

这道应用题答完了,怎样验算呢?可把求出的甲班本数和乙班本数相加,看和是不是160本:再把甲班的本数除以乙班本数,看是不是等于3倍。

如果与条件相符,表明这题作对了。

注意验算决不是把原式再算一遍。

验算:120+40=160(本)120÷40=3(倍)。

例2.甲班有图书120本,乙班有图书30本,甲班给乙班多少本,甲班的图书是乙班图书的2倍?分析:解这题的关键是找出哪个量是变量,哪个量是不变量。

从已知条件中得出,不管甲班给乙班多少本书,还是乙班从甲班得到多少本书,甲、乙两班图书总和是不变的量。

最后要求甲班图书是乙班图书的2倍,那么甲、乙两班图书总和相当于乙班现有图书的3倍。

依据例1解和倍问题的方法,先求出乙班现有图书多少本,再与原有图书本数相比较,可以求出甲班给乙班多少本书(如上图所示)。

解:(30+120)÷(2+1)=150÷3=50(本)………………乙班现有图书50-30=20(本)答:甲班给乙班20本图书后,甲班图书是乙班图书的2倍。

验算:(120-20)÷(30+20)=2(倍)(120-20)+(30+20)=150(本)。

【16】第16讲 用一元一次方程解决实际问题(和差倍分及行程问题)

【16】第16讲 用一元一次方程解决实际问题(和差倍分及行程问题)

类型一 和差倍分问题典例1 为了改善办学条件,学校购置了笔记本电脑和台式电脑共100台,已知笔记本电脑的台数比台式电脑的台数的14还少5台,则购置的笔记本电脑有多少台?变式1.一方有难,八方支援.新冠肺炎期间,广西共出动八批,共计912位医护人员驰援武汉,他们是新时代最可爱的人.3月19日,第二批和第八批医护人员共130人乘坐飞机返回广西,其中第二批人数是第八批人数的3倍还多10人.(1)第八批广西共出动了多少名医护人员?(2)当第五批医护人员在前往武汉时,若乘坐3架小型飞机,则有15人没有座位;若乘坐4架小型飞机,则有30个空座,求每架小型飞机的载客量以及第五批医护人员的人数.变式2.列一元一次方程解应用题:某小组计划做一批“中国结”,如果每人做5个,那么可比计划多做9个;如果每人做4个,那么将比计划少15个.问:他们计划做多少个“中国结”?类型二 余缺问题典例2(2021秋•勃利县期末)育才中学组织七年级师生去春游,如果单租45座客车若干辆,则刚好坐满;如果单租60座的客车,则少租一辆,且余15个座位.(1)求参加春游的师生总人数;(2)已知一辆45座客车的租金每天250元,一辆60座客车的租金每天300元,问单租哪种客车省钱?(3)如果同时租用这两种客车,那么两种客车分别租多少辆最省钱?(只写出租车方案即可)解决实际问题(和差倍分) 第十六讲 专题16ZHUAN TI SHILIU变式3.《孙子算经》是我国古代重要的数学著作,书中记载这样一个问题;今有三人共车,二车空;二人共车,九人步,问人几何?这个问题的意思是:今有若干人乘车,每三人乘一车,恰好剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,则乘车人数为多少人?【课后练习】一、精心选一选(每题5分,共20分)1.某牧场,放养的鸵鸟和奶牛一共70只,已知鸵鸟和奶牛的腿数之和为196条,则鸵鸟的头数比奶牛多( )A .20只B .14只C .15只D .13只2.已知甲车间有72人,乙车间有96人.若从乙车间调x 人到甲车间以后,乙车间的人数恰是甲车间人数的15,则x 的值为( ) A .42 B .68 C .32 D .403.某班级劳动时,将全班同学分成x 个小组,若每小组8人,则余下1人;若每小组9人,则有一组少5人.按下列哪个选项重新分组,能使每组人数相同?( )A .6组B .7组C .8组D .9组4.一个长方形的周长为28cm ,若把它的长减少1cm ,宽增加3cm ,就变成一个正方形,则这个长方形的面积是( )A .48cm 2B .45cm 2C .40cm 2D .33cm 2一、细心填一填(每题5分,共20分)5.已知某快递公司的收费标准为:首重10元/千克,续重6元/千克,即:寄一件物品,不超过1千克,收费10元;超过1千克的部分,每千克加收6元.小明在该快递公司寄一件4千克的物品,需要付费 元.6.一个长方形的长和宽之比为4:3,且它的周长为42厘米,则长方形的长是 厘米,宽是 厘米.7.用一根80cm 的绳子围成一个长方形,且这个长方形的长比宽多10cm ,则围成长方形的面积为 cm 2.8.已知一个三位数,各个位数上的数字和是14,十位上的数字是个位上的数字的2倍,百位上的数字比个位上的数字多2,这个三位数是 .三、耐心答一答(共60分)9.(8分)世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元.10.(8分)如图所示是我们在运动场上踢的足球,而大多的足球是由许多小黑白块的皮缝合而成的.小强和小刚两位同学,一天在玩足球时研究起足球上的黑白块的个数,结果发现黑块都是五边形,白块都是六边形.小强好不容易才数清了黑块共12块,小刚数白块时不是重复,就是遗漏,无法数清白块的个数,你能帮助小刚解决这一问题吗?11.(8分)在防疫政策的指导下,疫情得到了全面控制某医疗器械厂计划在规定时间内完成一批防护服的生产任务,如果每天生产防护服300套,那么就比原计划生产任务少生产100套;如果每天生产350套,那么可提前一天完成任务,并且还超过原计划生产任务50套,求这批防护服原计划生产任务是多少?12.(8分)为了防控疫情,某区抽调党员干部下沉社区支持防疫工作,今年5月份,该区下派的268名党员中,男性党员比女性党员的3倍少12人,求男性党员的人数?13.(8分)《九章算术》中有一道题:“今有人持米出三关,外关三而取一,中关五而取一,内关七而取一,余米五斗.问持米几何?题意是:有人背米过关卡,经过外关时,用全部米的13纳税,过中关时用所余的15纳税,经过内关时用再余的17纳税,最后还剩下5斗米.这个人原来背多少米出关?14.(10分)为确保广大群众正常的生产生活,西安市制定了每周一次的全员核酸检测措施,在本周的核酸检测中,某社区有A 、B 两个检测小组,从早上8:00开始工作至12:00结束,共采集核酸样本880个,已知乙组每小时采集的核酸样本是甲组的56倍,求甲、乙两组每小时各采集多少核酸样本?15.(10分)某校组织一部分学生参加艺术展演,如果单租45座客车若干辆,则刚好坐满;如果单租60座客车,则少租一辆,且余15个座位.求参加艺术展演学生总人数.类型一 相遇问题典例1甲、乙两人分别从相距2000米的A ,B 两地步行出发相向而行,两人速度保持不变,若两人同时出发,则他们10分钟之后相遇;若乙比甲先出发4分钟,则甲出发8分钟之后,甲乙两人相遇,则甲的速度为( )A .70米/分钟B .80米/分钟C .90米/分钟D .100米/分钟变式1.甲、乙两人在A 地,丙在B 地,他们三人同时出发,甲与乙同向而行,丙与甲、乙相向而行,甲每分钟走100米,乙每分钟走110米,丙每分钟走125米,若丙遇到乙后10分钟又遇到甲,求A 、B 两地之间的距离.类型二 追击问题典例2敌我相距14千米,得知敌军于1小时前以每小时4千米的速度逃跑,现在我军以每小时7千米的速度追击敌军,在距敌军0.6千米处向敌军开火,48分钟将敌军全部歼灭.问敌军从逃跑到被我军歼灭共花( )小时.A .5.8B .6.6C .6.8D .7.6变式2.元代数学家朱世杰的《算学启蒙》书中记载一道数学问题:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”题意是:“跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可以追上慢马?”设慢马和快马从同一地点出发,则快马 天追上慢马.类型三 水流问题典例3列方程解应用题:一艘轮船在甲、乙两个码头之间航行,顺水航行要3小时,逆水航行要5小时.如果轮船在静水中的速度保持不变,水流的速度为每小时8千米,求轮船在静水中的速度是每小时多少千米?变式3.一架飞机在两城之间飞行,顺风时飞行需256小时,逆风时飞行需3小时,已知风速是每小时24千米,求两城之间的距离.解决实际问题(行程问题) 第十六讲专题16 ZHUAN TI SHILIU变式4.一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了3小时.已知水流的速度是3千米/时,求船在静水中的平均速度.类型四环形跑道问题典例4. 周末,甲乙两人沿环形生态跑道散步,甲每分钟行80米,乙每分钟行120米,跑道一圈长400米.求:(1)若甲乙两人同时同地同向出发,多少分钟后他们第一次相遇?(2)若两人同时同地反向出发,多少分钟后他们第一次相距100米?变式5.甲、乙、丙三人进行400米赛跑,丙到终点时乙跑了360米,甲距终点还有50米,如果甲乙二人的速度不变,那么乙到达终点时,甲距终点还有多少米?【课后练习】一、精心选一选(每小题6分,共24分)1.甲乙两人骑自行车同时从相距48千米的两地相向而行,1.5小时相遇,若甲比乙每小时多骑2千米,则乙每小时行驶()A.12.5千米B.15 千米C.17千米D.20千米2.甲、乙两人在400m跑道上练中长跑,甲每分钟跑300m,乙每分钟跑260m,两人同地、同时同向起跑,xmin后第一次相遇,x等于()A.10 B.15 C.20 D.303.小明和小亮在长为400米的圆形跑道上练习长跑.小亮每分钟跑320米,小明每分钟跑240米,如果两人同时由同一起点出发,同向跑步,经过分钟两人首次相遇.4.一轮船从甲地顺水开往乙地,所用时间比从乙地逆水开往甲地少1.5h.已知船在静水中的速度为18km/h,水流速度为2km/h,甲、乙两地之间的距离为()A.90km B.120km C.150km D.160km二、细心填一填(每小题6分,共36分)5.元代朱世杰所著的《算学启蒙》里有这样一道题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”译文是:“快马每天走240里,慢马每天走150里.慢马先走12天,快马几天可以追上慢马?”请你回答:良马天可以追上驽马.6.一列火车长110米,现在以30km/h的速度向北缓缓行驶,9:20追上向北行走的路人甲,15秒离开甲,9:26迎面遇上向南行走的路人乙,12秒钟后离开乙.若路人甲、乙行走速度不变,请问路人甲和乙相遇时间是火车迎面遇上路人乙后分钟.7.如图,A、B两地相距90千米,从A到B依次经过60千米平直公路(AC段)、10千米上坡公路(CD 段)和20千米平直公路(DB段).甲从A地驾驶汽车前往B地,乙从B地骑摩托车前往A地,他们同时出发.已知在平直公路上汽车、摩托车的速度分别是120千米/时、60千米/时,汽车上坡速度为100千米/时,摩托车下坡速度为80千米/时,两人出发小时相遇.8.A,B两地相距的路程为300千米,甲、乙两车沿同一路线从A地出发到B地,分别以一定的速度匀速行驶.甲车出发30分钟时距离A地30千米,此时乙车出发.乙车出发45分钟时追上了甲车,两车继续行驶,途中乙车发生故障,修车耗时1小时.随后乙车车速比修车前减少40千米/小时,但仍保持匀速前行,两车同时到达B地.乙车修好时,甲车距离B地还有千米.9.在风速度为30千米/小时的条件下,一架飞机顺风从A机场飞到B机场要用2.8小时,它逆风飞行同样的航线要用3小时,则飞机在无风情况下的飞行速是千米/小时.10.小杰、小丽在400米环形跑道上练习竞走,小杰120米/分钟,小丽100米/分钟,两人同时由同一起点反向出发,运动一周后(即回到起点)即刻停止,分钟后,小丽与小杰相距20米.三、耐心答一答(共40分)11.(10分)甲、乙两人同时从A地到B地,甲骑摩托车,乙骑自行车.甲、乙时速之比为5:1,甲先到达B地以后立即返回A地.在返回途中遇见乙,此时,距他们出发时间为2小时15分.若A地、B 地相距67.5千米,求甲、乙两人的速度各是多少.12.(10分)一艘轮船从甲码头到乙码头顺流而行,用了4小时,从乙码头返回甲码头逆流而行,用了6小时,已知船在静水的平均速度是30千米/小时,求水流速度.13.(20分)A、B两地相距3千米,甲从A地出发步行到B地,乙从B地出发步行到A地,两人同时出发,20分钟后两人相遇,又经过10分钟,甲所余路程为乙所余路程的2倍.(1)求甲、乙每小时各行多少千米?(2)在他们出发后几分钟两人相距1.5千米(直接写出结果)?。

小学四年级应用题类型总结

小学四年级应用题类型总结

小学四年级应用题类型总结(刘军义)归一归总连乘除,路程面积足不足,和差倍数看总份,价格优惠算度数。

——2015年12月9日【解释】:第一句:1.归一问题、2.归总问题、3.连乘问题、4.连除问题;第二句:5.路程问题、6.面积问题、7.够不够问题;第三句:8.和差问题、9.倍数问题、10.份数问题;第四句:11.价格问题、12.优惠类问题、13.求角度数问题;【举例】:一、归一问题:1、买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?2、3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?二、归总问题:1、服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。

原来做791套衣服的布,现在可以做多少套?2、小华每天读24页书,12天读完了《红岩》一书。

小明每天读36页书,几天可以读完《红岩》?三、连乘问题:1、小东每天练2张毛笔字,每张上有16个字,小东一星期(7天)写了多少个字?2、一个方队,共8列,小明在第3列,小明前面有5个人,后面有6个人,这个方队共有多少人?3、一个方队有8列,小明在第6列,从前往后数,小明是第5个人,从后往前数,小明是第6个人,这个方队共有多少人?4、一学校为四川灾区捐款,学校共有6个年级,每个年级有3个班,平均每班捐款123元,他们一共捐了多少钱?5、每个书架有3层,每层可放书36本,学校有20个这样的书架。

一共可放书多少本?6、1只青蛙1天吃害虫98条,按这样计算,20只青蛙一个月(30天)能捉多少条害虫?7、三年级一班有38个同学,举行接力赛,每人跑2圈。

(操场长30米,宽20米)这个班的学生大约一共跑了多少米8、一本小说大约50页,每页大约有25行字,每行大约30个字,这本书大概有多少字?9、铅笔每盒有24支,每支9角,小明想买2盒,小明要付多少元钱?10、新兴小区一幢楼有16层,共3个单元,每个单元每层住2户,这幢楼住多少户人家?11、六一节,老师准备给每个同学准备2个香蕉,1个苹果,全班有36人,一共要准备多少个水果?12、每盒有16个鸡蛋,每箱有4盒,6箱共需要多少个鸡蛋?四、连除问题:1、4台织布机一周织布1568米,平均每台织布机每天织布多少米?2、360人排成4个方阵,每个方阵有5列,平均每列站多少人?3、服装店一天工卖出3箱衣服,每箱6件,一共收入3600元,平均每件衣服多少元?4、7头猪一星期喂245千克食料,平均1头猪1天喂多少食料?5、1盒月饼有2层,每层有4个,一个工厂一天生产了560个月饼,这个工厂一天生产了几盒月饼?6、奶奶家养了59只母鸡,125只公鸡,把这些鸡关在8只鸡笼里,平均每只鸡笼里关几只鸡?7、森林里有420张桌子,想摆成7个大组,每个大组摆6列,平均每列有几张桌子?8、128个梨,每盒装8个,2盒装一箱。

四年级奥数举一反三第26272829周之巧算年龄较复杂的和差倍问题周期问题行程问题

四年级奥数举一反三第26272829周之巧算年龄较复杂的和差倍问题周期问题行程问题

四年级奥数举一反三第26272829周之巧算年龄较复杂的和差倍问题周期问题行程问题26 巧算年龄专题简析:年龄问题是一类与计算有关的问题,它通常以和倍、差倍或和差等问题的形式出现。

有些年龄问题往往是和、差、倍数等问题的综合,需要灵活地加以解决。

解答年龄问题,要灵活运用以下三条规律:1,无论是哪一年,两人的年龄差总是不变的;2,随着时间的向前或向后推移,几个人的年龄总是在减少或增加相等的数量;3,随着时间的变化,两人的年龄之间的倍数关系也会发生变化。

例1:爸爸今年43岁,儿子今年11岁。

几年后爸爸的年龄是儿子的3倍?分析与解答:儿子出生后,无论在哪一年,爸爸和儿子的年龄差总是不变的,这个年龄差是43-11=32岁。

所以,当爸爸的年龄是儿子3倍时,儿子是32÷(3-1)=16岁,因此16-11=5年后,爸爸的年龄是儿子的3倍。

练习一1,妈妈今年36岁,儿子今年12岁。

几年后妈妈年龄是儿子的2倍?2,小强今年15岁,小亮今年9岁。

几年前小强的年龄是小亮的3倍?3,爷爷今年60岁,孙子今年6岁。

再过多少年爷爷的年龄比孙子大2倍?例2:妈妈今年的年龄是女儿的4倍,3年前,妈妈和女儿的年龄和是39岁。

妈妈和女儿今年各多少岁?分析与解答:从3年前到今年,妈妈和女儿都长了3岁,她们今年的年龄和是:39+3×2=45岁。

于是,这个问题可转化为和倍问题来解决。

所以,今年女儿的年龄是45÷(1+4)=9岁,妈妈今年是9×4=36岁。

练习二1,今年爸爸的年龄是儿子的4倍,3年前,爸爸和儿子的年龄和是44岁。

爸爸和儿子今年各是多少岁?2,今年小丽和她爸爸的年龄和是41岁,4年前爸爸的年龄恰好是小丽的10倍。

小丽和爸爸今年各是多少岁?3,今年小芳和她妈妈的年龄和是38岁,3年前妈妈的年龄比小芳的9倍多2岁。

小芳和妈妈今年各多少岁?例3:今年小红的年龄是小梅的5倍,3年后小红的年龄是小梅的2倍。

小学六年级奥数学习的重点和方法

小学六年级奥数学习的重点和方法

小学六年级奥数学习的重点和方法六年级是小升初的重要阶段,如果这一时期的奥数学的好,在小升初择校的竞争中优势是非常明显的。

这里跟大家介绍小学六年级奥数学习重点和方法,希望对大家有所帮助。

学习重点难点一、分数百分数问题,比和比例这是六年级的重点内容,在历年各个学校测试中所占比例非常高,重点应该掌握好以下内容:对单位1的正确理解,知道甲比乙多百分之几和乙比甲少百分之几的区别;求单位1的正确方法,用具体的量去除以对应的分率,找到对应关系是重点;分数比和整数比的转化,了解正比和反比关系;通过对“份数”的理解结合比例解决和倍(按比例分配)和差倍问题;二.行程问题应用题里最重要的内容,因为综合考察了学生比例,方程的运用以及分析复杂问题的能力,所以常常作为压轴题出现,重点应该掌握以下内容:路程速度时间三个量之间的比例关系,即当路程一定时,速度与时间成反比;速度一定时,路程与时间成正比;时间一定时,速度与路程成正比。

特别需要强调的是在很多题目中一定要先去找到这个“一定”的量;当三个量均不相等时,学会通过其中两个量的比例关系求第三个量的比;学会用比例的方法分析解决一般的行程问题;有了以上基础,进一步加强多次相遇追及问题及火车过桥流水行船等特殊行程问题的理解,重点是学会如何去分析一个复杂的题目,而不是一味的做题;三.几何问题几何问题是各个学校考察的重点内容,分为平面几何和立体几何两大块,具体的平面几何里分为直线形问题和圆与扇形;立体几何里分为表面积和体积两大部分内容。

学生应重点掌握以下内容:等积变换及面积中比例的应用;与圆和扇形的周长面积相关的几何问题,处理不规则图形问题的相关方法;立体图形面积:染色问题、切面问题、投影法、切挖问题;立体图形体积:简单体积求解、体积变换、浸泡问题;四.数论问题常考内容,而且可以应用于策略问题,数字谜问题,计算问题等其他专题中,相当重要,应重点掌握以下内容:掌握被特殊整数整除的性质,如数字和能被9整除的整数一定是9的倍数等;最好了解其中的道理,因为这个方法可以用在许多题目中,包括一些数字谜问题;掌握约数倍数的性质,会用分解质因数法,短除法,辗转相除法求两个数的最大公因数和最小公倍数;学会求约数个数的方法,为了提高灵活运用的能力,需了解这个方法的原理;了解同余的概念,学会把余数问题转化成整除问题,下面的这个性质是非常有用的:两个数被第三个数去除,如果所得的余数相同,那么这两个数的差就能被这个数整除;能够解决求一个多位数除以一个较小的自然数所得的余数问题,例如求1011121314…9899除以11的余数,以及求20082008除以13的余数这类问题;五.计算问题计算问题通常在前几个题目中出现概率较高,主要考察两个方面,一个是基本的四则运算能力,同时,一些速算巧算及裂项换元等技巧也经常成为考察的重点。

和倍问题差倍问题和差问题

和倍问题差倍问题和差问题

与倍问题学法指导已知两个数得与及它们之间得倍数关系,求这两个数各就是多少得应用题叫做与倍应用题,简称与倍问题、首先我们要并清几个问题:两个数相比,以被比得数为标准,这个被比得数称为一倍数,比得数里有几个这样得一倍数,就就是几倍数,我们就说一个数就是另一个数得几倍、它们之间得数量关系式就是: 一倍数×倍数=几倍数t几倍数÷一倍数=倍数几倍数÷倍数=一倍数在解决与倍问题时,先要确定一个数为标准(通常以较小得数为标准),即一倍数,再根据较大得数与较小得数之间得倍数关系,确定总与相当于一倍数(较小得数)得多少倍,然后求出一倍数(较小得数),再算出其她各数量、与倍问题得数量关系式就是:与÷(倍数+1)=一倍数即较小得数与一较小得数=较大得数,或较小得数×倍数=较大得数甲、乙两车间共有工人664人,甲车间得人数就是乙得3倍,甲、乙两车间各有工人多少人?【分析与解答】我们可以用线段图表示题中得已知条件与问题:乙车间:甲车间:从上图瞧出,甲车间得人数就是乙得3倍,那么把乙车间得人数瞧作1份,甲就有这样得3份,总人数664人占了1+3 =4份,把664人平均分成4份,l份就就是乙车间得人数,3份就就是甲车间得人数。

664÷(1+3) =166(人)166 x3 =498(人)或664 -166= 498(人)答:甲车间有工人498人,乙车间有166人、试一试1华强与建军共有图书84本,华强得图书本数就是建军得3倍。

华强与建军各有图书多少本?【例题】果园里有梨树、苹果树、桃树共207棵,其中梨树得棵数就是苹果树得3倍,苹果树得棵数就是桃树得2倍。

三种果树各多少棵?【分析与解答】我们把桃树得棵数瞧作1份,苹果树得棵数就就是这样得2份,梨树得棵数就就是桃树得2 x3=6倍,三种果树得总棵数就就是桃树得6+2+1=9倍、可以先求出桃树有207÷9=23(棵),苹果树有23×2=46(棵),梨树就就是46x3=138(棵)。

小升初专题复习-归一.归总问题及和差.和倍.差倍问题(课件)人教版六年级下册数学

小升初专题复习-归一.归总问题及和差.和倍.差倍问题(课件)人教版六年级下册数学
(和-差)÷2=小数 的应用题叫做和差问题。
(和+差)÷2=大数
归一、归总问题 (1)(湖北·黄冈)小华计划用 12 天看完一本 240 页的故事书,实际前 4 天看了 96 页,照这样计算,他能不能按时看完这本故事书? (2)(河南·郑州)工程队修一条水渠,每天工作 6 小时,12 天完成,如果 每天工作效率不变,每天工作 8 小时,多少天可以完成任务?
A.180÷15×2 B.180÷15×60×2 C.180×(60×2÷15) D.60×2÷(15÷180)
2.一桶水连桶重 65.2 千克,倒出一半后,连桶重 33.2 千克,桶重( C ) 千克。
A.32 B.16 C.1.2 D.64

3.甲、乙两根绳子原来一样长,如果甲绳剪去 15 m,乙绳剪去 10 m, 这时乙绳的长度是甲绳的 2 倍。甲、乙两绳原来长度均是( D )m。 A.5 B.10 C.15 D.20
和倍问题 (湖南·长沙)某野生动物园一共有东北虎和白虎 16 只,且东北虎的只 数是白虎的 7 倍,那么白虎有多少只? 思路点拨:此题是一道和倍问题。将白虎的数量看成 1 倍数,东北虎的 数量是 7 倍数,两种虎的数量和是(7+1)倍数,一共有 16 只,则白虎的 只数是 16÷(7+1)=2(只)。 【答案】16÷(7+1)=2(只)。
7.学校科技小组共有组员 30 人,其中男生比女生的 2 倍少 3 人,科技 小组中有男生( 19 )人,女生( 11 )人。 8.一项工作,原计划 20 人每天工作 8 小时,15 天完成。后来增加了 5 人,每天的工作时间减少 2 小时。实际( 16 )天可以完成这项工作。
二、选择。(20 分) 1.一架客机 15 分钟飞行 180 千米,照这样计算,2 小时飞行多少千米? 下面算式中错误的是( A )。

五年级上册数学:和差、和倍、差倍问题

五年级上册数学:和差、和倍、差倍问题

五年级上册-和差、和倍、差倍问题一、知识梳理和倍问题:和倍问题就是已知两个数的和以及它们之间的倍数关系,求这两个数各是多少的问题差倍问题:差倍问题就是已知大小两数的差,以及大小两数的倍数关系,求大小两数的问题.和差问题:已知两个数的和与差,反过来求这两个数.二、方法归纳和倍问题:基本公式和÷(倍数+1)=较小数(一倍数)较小数×倍数=较大数或:和-较小数=较大数.差倍问题:基本公式:差÷(倍数-1)=较小的数较小的数×倍数=较大的数差倍问题就是已知大小两数的差,以及大小两数的倍数关系,求大小两数的问题.差倍问题的特点与和倍问题类似.解答差倍问题的关键是要确定两个数量的差及相对应的倍数差,一般情况下,在题目中不直接给出,需要经过调整和计算才能得到.和差问题:基本公式(和+差)÷2 = 较大的数(和-差)÷2 = 较小的数温馨提示:为了帮助我们理解题意,弄清两种量彼此间的关系,常采用画线段图的方法来表示几种量间的这种关系,以便于找到解题的途径.【和倍问题】例1甲班和乙班共有图书160本,甲班的图书本数是乙班的3倍,甲班和乙班各有图书多少本?练习一、1.根据线段图列式:2.小敏有14元,小花有10元,小花给小敏几元,小敏的钱数就是小花的2倍?3.小华和爷爷今年共72岁,爷爷的岁数是小华的7倍.爷爷比小华大多少岁?例2 有两根铁丝,第一根长18米,第二根长10米,两根铁丝用去同样长的一段后,第一根剩下的长度是第二根剩下长度的3倍,两根铁丝各剩下多少米?练习二、4.有两条纸带,一条长21厘米,一条长13厘米,两条纸带都剪下同样的一段后,长纸带剩下的长度是短纸带剩下的3倍,问剪下的一段有多长?5.二⑴班的图书角里有故事书和连环画共47本,如果故事书拿走7本后,故事书的本数就是连环画的4倍.原有连环画和故事书各有多少本?例3 有两盘苹果,如果从第一盘中拿2个放到第二个盘里,那么两盘的苹果数相同;如果从第二个盘中拿2个放到第一盘里,那么第一盘的苹果数是第二盘的2倍.第一盘有苹果多少个?练习三、6.一个长方形的周长是36厘米,长是宽的2倍,这个长方形的面积是多少平方厘米?7.5箱苹果和5箱葡萄共重75千克,每箱苹果是每箱葡萄重量的2倍.每箱苹果和每箱葡萄各重多少千克?例4 师、徒两人共加工105个零件,师傅加工的个数比徒弟的3倍还多5个,师傅和徒弟各加工零件多少个?练习四、8.实验小学共有学生956人,男生比女生2倍少4人.问:实验小学男学生和女学生各有多少人?【差倍问题】例5 李爷爷家养的鸭比鹅多18只,鸭的只数是鹅的3倍,你知道李爷爷家养的鸭和鹅各有多少只吗?练习五、9.甲班的图书本数比乙班多80本,甲班的图书本数是乙班的3倍,甲班和乙班各有图书多少本?例6 某小学原来参加室外活动的人数比参加室内活动的人数多480人,现在把室内活动的50人改为室外活动,这样室外活动的人数正好是室内人数的5倍,则参加室内、室外活动的共有多少人?【和差问题】例7王亮期中考试语文语文和数学的平均分时94分,数学没考好,语文比数学多8分.问王亮的语文数学各得了多少分?练习七、10.两个数的和为36,差为22, 则较大的数为(), 较小的数为().11. 在一个减法算式里, 被减数、减数与差三个数的和是388, 减数比差大16, 则减数等于( ).12. 两筐水果共重124千克, 第一筐比第二筐多8千克, 两筐水果各重( )千克和( )千克.例8 有大中小三筐苹果,小筐装的是中筐的一半,中筐比大筐少装16千克,大筐装的是小筐的4倍.大中小三筐共有苹果多少千克?练习八、13.如果鱼尾重4千克,鱼头重量等于鱼尾加上鱼身一半的重量,鱼身重量等于鱼头加鱼尾的重量,这条鱼有几千克重?四、讲练结合题1.一家三口人,三人年龄之和是72岁,妈妈和爸爸同岁,妈妈的年龄是孩子的4倍,三人各是多少岁?2.果园里有梨树和苹果树共54棵,苹果树的棵数是梨树的5倍,苹果树比梨树多多少棵?3.师傅和徒弟共生产零件190个,师傅生产的个数比徒弟的3倍少10个,师、徒各生产多少个?4. 甲有36本课外书,乙有24本课外书,两人捐出同样多的本数后,甲剩下的数是乙剩下本数的3倍,两人各捐出多少本书?5. 四年级甲班为筹办红领巾图书室号召同学捐送书籍,共收到科技书和故事书320笨,其中科技书是故事书的3倍,四年级甲班同学捐送的科技书和故事书各是多少本?6. 某车间共有工人77名,其中女工人数比徒工人数的2倍还多4人,男工人数比徒工和女工人数之和的2倍少7人,问:这个车间徒工,女工,男工各多少人?7.某保险公司为鼓励工作成绩好的职工,决定将4200元奖金分给三名优秀职工,已知第一名比第二名多得800元,第二名比第三名多得500元,三名优秀职工各得多少元奖金?课后练习一1、明明星期天上街买衣服,花75元钱买了一条裤子和一件上衣,已知上衣比裤子贵15元,明明买上衣花多少元.2.小梅与张芳今年的年龄和是39岁,小梅比张芳大3岁,张芳今年几岁.3.买一支自动铅笔与一支钢笔共用10元,已知铅笔比钢笔便宜6元,那么买铅笔、钢笔各花多少元.4.学校做扫除,张娟和陈芳一共擦玻璃31块,又知张娟比陈芳少擦9块,张娟、陈芳各擦玻璃多少块.5.小兰期末考试时语文和数学平均分是96分,数学比语文多4分,问小兰语文分,数学多少分.6.一个两位数是质数(除1与本身外,不能被其它数整除,这样的数叫质数)由两个数字组成,两个数字之和是8,两个数字之差是2,这个数是多少.7.今年弟弟16岁,哥哥20岁,当两人的年龄和是52时,弟弟几岁.8.两个水桶共盛水50千克,如果把第一桶里的水倒出6千克,两个水桶中的水就一样多了.第一桶原盛水多少千克.9、甲筐里有苹果30千克,乙筐里有桔子若干千克,如果从乙筐里取出12千克桔子,苹果就比桔子多10千克,乙筐原有桔子多少千克.10.甲乙两船共载客623人,若甲船增加34人,乙船减少57人,这时两船乘客同样多,甲船原有乘客几人.课后练习二、1、学校图书馆有文艺书与科技书共605本,文艺书的本数比科技书的3倍多50本,图书馆有文艺书和科技书各多少本?2、禽养场今年养鸡和鸭共4600只,养的鸡比鸭的4倍还多100只,禽养场今年的鸡鸭各多少只?3、姐姐和妹妹共做了340朵小红花,后来姐姐把她做的红花送给了小明30朵,妹妹自己又做了20朵,这时姐姐做的小红花是妹妹的5倍。

和倍差倍和差问题

和倍差倍和差问题

和倍、差倍、和差问题一、熟练掌握线段图画法二、熟练掌握解答倍数问题※线段图画法画线段图非常非常非常重要,是解决中常用的一种思考策略,它能将题中抽象关系以形象的方式表达出,更清楚地反映数量关系。

画线段图不会浪费时间,越复杂的题目越需要画图,可以说,会不会画图决定着你的解题能力,决定分数!※和倍、差倍、和差问题公式和倍问题:两数之和÷(倍数+ 1)=小数差倍问题:两数之差÷(倍数- 1)=小数和差问题:(和+ 差)÷ 2 =大数(和- 差)÷ 2 =小数稍复杂的倍数问题可能包含两个状态,我们一般抓住倍数的那个状态。

●和倍问题线段图1.甲班和乙班共有图书160本。

甲班的图书本数是乙班的3倍,甲班和乙班各有图书多少本?(和倍)2.甲班和乙班共有图书210本。

甲班的图书本数是乙班的3倍多10本,甲班和乙班各有图书多少本?(和倍)3.甲班和乙班共有图书150本。

甲班的图书本数是乙班的3倍少10本,甲班和乙班各有图书多少本?(和倍)4.甲班和乙班共有图书150本。

甲班的图书给乙班20本后,两班就一样多,甲班和乙班原来各有图书多少本?(和倍)●差倍问题线段图1.甲班的图书比乙班多160本。

甲班的图书本数是乙班的3倍,甲班和乙班各有图书多少本?(差倍)2.甲班的图书比乙班多160本。

甲班的图书本数是乙班的3倍多10本,甲班和乙班各有图书多少本?(差倍)3.甲班的图书比乙班多160本。

甲班的图书本数是乙班的3倍少10本,甲班和乙班各有图书多少本?(差倍)●和差问题线段图甲班和乙班共有图书160本。

甲班的图书本数比乙班的多20本,甲班和乙班各有图书多少本?(和差)和倍问题习题(一)1.小红和妈妈的年龄加在一起是40岁,妈妈年龄是小红年龄的4倍,小红和妈妈各几岁?2.小红和妈妈的年龄加在一起是49岁,妈妈年龄是小红年龄的4倍多4岁,小红和妈妈各几岁?3.小红和妈妈的年龄加在一起是49岁,妈妈年龄是小红年龄的4倍少1岁,小红和妈妈各几岁?4.小明买大书和小书共25本,其中大书的本数比小书的本数的2倍多4本,大书的本数有几本,小单线的书有几本?5.小明买大书和小书共25本,其中大书的本数比小书的本数的2倍少5本,大书的本数有几本,小单线的书有几本?6.师傅和徒弟共生产零件190个,师傅生产的个数比徒弟的3倍少10个;师、徒各生产几个?7.一块长方形木板,长是宽的2倍,周长是54厘米.这个长方形木板的面积是多少平方厘米?8.一块长方形木板,长是宽的3倍少1厘米,周长是54厘米.这个长方形木板的面积是多少平方厘米?9.甲乙两个冷藏库原来共存肉92吨,从甲库运出28吨后,乙库存肉比甲库的4倍少6吨,甲库原来存肉几吨,乙库原来存肉几吨?10.甲乙两个冷藏库原来共存肉92吨,从甲库运出10吨给乙后,乙库存肉比甲库的4倍少3吨,甲库原来存肉几吨,乙库原来存肉几吨?11.小红有30支铅笔,小兰有45支铅笔,小兰给小红几支后,小红的支数是小兰的2倍?12.姐姐有320元钱,弟弟有180元钱,弟弟给姐姐多少元钱后,姐姐的钱比弟弟的钱多3倍?13.姐姐有320元钱,弟弟有180元钱,弟弟花掉多少元钱后,姐姐的钱比弟弟的钱多3倍?14.姐姐有320元钱,弟弟有180元钱,姐姐再得到多少元钱后,姐姐的钱比弟弟的钱多3倍?15.三个饲养场共养140头牛,第二饲养场养牛的头数是第一饲养场的2倍,第三饲养场养的头数是第二饲养场的2倍,三个饲养场各养牛多少头?16.三个饲养场共养160头牛,第二饲养场养牛的头数是第一饲养场的2倍,第三饲养场养的头数是第二饲养场的2倍多6头,三个饲养场各养牛多少头?17.三个饲养场共养180头牛,第二饲养场养牛的头数是第一饲养场的2倍,第三饲养场养的头数是第一饲养场的3倍,三个饲养场各养牛多少头?18.有两筐苹果共重78千克,如果从甲筐中取出14千克放入乙筐,则此时甲筐重量和乙筐相等,求两筐原来各有多少千克?19.有两筐苹果共重78千克,如果从甲筐中取出14千克放入乙筐,则此时甲筐重量比乙筐的2倍少12千克,求两筐原来各有多少千克?20.甲桶里有油470千克,乙桶里有油190千克,甲桶的油倒入乙桶多少千克,才能使甲桶油是乙桶油的2倍?21.已知甲、乙、丙三个数的和是135,乙是甲的2倍,丙是乙的3倍,求甲、乙、丙三个数分别是多少?22.甲乙两个粮库原来共存粮170吨,后来从甲库运出30吨,给乙库运进10吨,这时甲库存粮是乙库存粮的2倍,两个粮库原来各存粮多少吨?23.甲、乙、丙三数之和是183,乙比丙的2倍少4,甲比丙的3倍多7,求甲、乙、丙三数各是多少?和倍问题习题(二)24.两个数相除商是8,被除数、除数与商的和是170,求被除数、除数是多少?25.两个数相除商是6余数是7,被除数、除数、商与余数的和是125,求被除数、除数是多少?26.两数相除,商是3,余数是1,被除数、除数、商与余数的和是89。

小学数学“和差,和倍,差倍,倍比”

小学数学“和差,和倍,差倍,倍比”

小学数学“和差,和倍,差倍,倍比”一、和差问题已知两个数的和与差,求出这两个数各是多少的应用题,叫做和差应用题。

基本数量关系是:(和+差)÷2=大数(和-差)÷2=小数和差问题:相加一半是大数、相减一半是小数和差问题,就是已知两数之和、两数之差,求两数。

例题:小红的班级一共有41名同学,其中男生比女生多5人,请问班级里男生和女生各有多少人?这是典型的和差问题,题目中只有两个数字信息,一个是“和=41”,一个是“差=5”,下面我们运用口诀“相加一半是大数、相减一半是小数”对问题进行解答。

注意口诀中的相加、相减,指的是题目中的“和”和“差”。

根据口诀列式:较大数=(和+ 差)÷2 =(41 + 5)÷2 = 23 (人)较小数=(和- 差)÷2 =(41 - 5)÷2 = 18 (人)答:男生有23人,女生有18人。

验证:23+18=41,23-18=5二、和倍问题和倍问题,是指已知两数之和,并且知道其中一数是另一数几倍,求两数。

已知两个数的和,又知两个数的倍数关系,求这两个数分别是多少,这类问题称为和倍问题。

解决和倍问题的基本方法:将小数看成1份,大数是小数的n倍,大数就是n份,两个数一共是n+1份。

基本数量关系:小数=和÷(n+1)大数=小数×倍数或和-小数=大数和倍问题:小数和除倍加一例题:小刚和小明玩拍球游戏,两人一共拍了84下,小刚拍球数是小明的2倍,求两人各拍了多少下?在这道题目中,已知两个数的和是84,一数是另一数的2倍,一个“和”一个“倍”,这就要用和倍口诀来解题了。

小数和除倍加一,列出算式就是:较小数= 和÷(倍数+ 1)= 84 ÷(2 + 1)= 28 (下)求出其中的较小数,再求另一数就十分简单了,根据题意,可以使用减法或乘法求解:较大数= 和- 较小数= 84 - 28 = 56(下)较大数= 较小数×倍数= 28 ×2 = 56(下)答:小刚拍了56下,小明拍了28下。

专题09 一元一次不等式的应用与一元一次不等式组(原卷版)

专题09 一元一次不等式的应用与一元一次不等式组(原卷版)

专题09 一元一次不等式的应用与一元一次不等式组一、一元一次不等式实际问题1.行程问题:路程=速度×时间2.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量3.利润问题:商品利润=商品售价-商品进价,4.和差倍分问题:增长量=原有量×增长率5.银行存贷款问题:本息和=本金+利息,利息=本金×利率6.数字问题:多位数的表示方法:例如:.7.收费问题:分类讨论,起步价,超过部分价格分好设x 即可8.几何问题:判断是哪种类型,如果是长方形则设长和宽x 即可列不等式解决实际问题列一元一次不等式解应用题与列一元一次方程解应用题类似,通常也需要经过以下几个步骤:(1)审:认真审题,分清已知量、未知量及其关系,找出题中不等关系要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“至少”、“不超过”、“超过”等;(2)设:设出适当的未知数;(3)列:根据题中的不等关系,列出不等式;(4)解:解所列的不等式;(5)答:写出答案,并检验是否符合题意.注意(1)列不等式的关键在于确定不等关系;(2)求得不等关系的解集后,应根据题意,把实际问题的解求出来;=100%´利润利润率进价32101010abcd a b c d =´+´+´+(3)构建不等关系解应用题的流程如图所示.(4)用不等式解决应用问题,有一点要特别注意:在设未知数时,表示不等关系的文字如“至少”不能出现,即应给出肯定的未知数的设法,然后在最后写答案时,应把表示不等关系的文字补上.二、一元一次不等式组不等式组的概念如,等都是一元一次不等式组.(1)这里的“几个”不等式是两个、三个或三个以上.(2)这几个一元一次不等式必须含有同一个未知数.解一元一次不等式组1.一元一次不等式组的解集:注意:(1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分.(2)有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况.2.一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集.一元一次不等式组的应用列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答.注意:(1)利用一元一次不等式组解应用题的关键是找不等关系.(2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取整数.2562010x x ->ìí-<î7021163159x x x ->ìï+>íï+<î类型一、行程问题【解惑】(2023春·全国·七年级专题练习)小茗要从石室联中到春熙路IFS 国际金融中心,两地相距1.7千米,已知他步行的平均速度为90米/分钟,跑步的平均速度为210米/分钟,若他要在不超过12分钟的时间内到达,那么他至少需要跑步多少分钟?设他要跑步的时间为x 分钟,则列出的不等式为( )A .()2109012 1.7x x +-³B .()2109012 1.7x x +-£C .()21090121700x x +-³D .()21090121700x x +-£【融会贯通】1.(2023·黑龙江哈尔滨·统考一模)甲、乙两车分别从相距200千米的A 、B 两地相向而行,甲乙两车均保持匀速行驶,若甲车行驶2小时,乙车行驶3小时,两车恰好相遇:若甲车行驶4小时,乙车行驶1小时,两车也恰好相遇.(1)求甲乙两车的速度(单位:千米/小时)是多少.(2)若甲乙两车同时按原速度行驶了1小时,甲车发生故障不动了,为了保证乙车再经过不超过2小时与甲车相遇,乙车提高了速度,求乙车提速后的速度至少是每小时多少千米?2.(2023春·全国·七年级专题练习)在爆破时,如果导火索燃烧的速度是0.015m/s,人跑开的速度是3m/s,那么要使点导火索的施工人员在点火后能够跑到100m以外(包括100m)的安全地区,这根导火索的长度至少应取多少米?3.(2022春·上海·八年级期中)小明早上七点骑自行车从家出发,以每小时18千米的速度到距家7千米的学校上课,行至距学校1千米的地方时,自行车突然发生故障,小明只得改为步行前往学校,如果他想在7点30分赶到学校,那么他每小时步行的速度至少是多少千米?4.(2021春·山西·七年级校联考期末)小宇骑自行车从家出发前往地铁2号线的B站,与此同时,一列地铁从A站开往B站.3分钟后,地铁到达B站,此时小宇离B站还有2400米.已知A、B两站间的距离和小宇家到B站的距离恰好相等,这列地铁的平均速度是小宇骑车的平均速度的5倍.(1)求小宇骑车的平均速度(2)如果此时另有一列地铁需10分钟到达B站,且小宇骑车到达B站后还需2分钟才能走到地铁站台候车,那么他要想乘上这趟地铁,骑车的平均速度至少应提高多少?(假定这两列地铁的平均速度相同)5.(2021·广西百色·校联考一模)邓老师从学校出发,到距学校2160米的某商场买学习奖品,她步行了9分钟然后换骑共享单车,全程共用15分钟(转换方式所需时间忽略不计).已知邓老师骑共享单车的平均速度是步行速度的3倍.(1)邓老师步行和骑共享单车的平均速度分别是多少?(2)若邓老师仍然以步行和骑共享单车的方式分别按原来速度原路返回,买完奖品时正好10:31,为赶上10:45的数学课,问路上最多可步行多少米?类型二、工程问题【解惑】(2022秋·重庆丰都·九年级校考期中)众所周知,我国新疆盛产棉花,品种多且质量好,其中天然彩棉最具特色.每年4月底至5月初是种植天然彩棉的最佳季节.某农场今年有8480亩待种棉地,计划全部播种天然彩棉.农场现有雇佣工人若干名,且每个工人每小时种植棉花的面积相同.农场先将所有工人分成A、B、C三组,其中C组比A组多5人,且A、B、C三组工人每天劳动时间分别为12小时,10小时,8小时.一开始三组工人刚好用了8天完成了3200亩棉地的种植;接下来,农场安排A组工人每天劳动8小时,C组工人每天劳动12小时,B组工人劳动时间不变,这样调整后的三组工人也刚好用了8天完成了3280亩棉地的种植.为了不错过种植的最佳季节,农场决定从其他农场紧急雇佣3m名工人,平均分配给A、B、C三组进行支援,此时A、B、C三组工人每天劳动时间仍分别为8小时,10小时,12小时,以确保剩下的棉地在4天内完成全部种植,则3m的最小值为______.【融会贯通】1.(2022春·海南海口·七年级校考期中)5月份是空调销售和安装的高峰时期.某区域售后服务中心现有600台已售空调尚待安装,另外每天还有新销售的空调需要安装.设每天新销售的空调台数相同,每个空调安装小组每天安装空调的台数也相同.若同时安排3个装机小组,恰好60天可将空调安装完毕;若同时安排5个装机小组,恰好20天就能将空调安装完毕.(1)求每天新销售的空调数和每个空调安装小组每天安装空调的台数;(2)如果要在5天内将空调安装完毕,那么该区域售后服务中心至少需要安排几个空调安装小组同时进行安装?2.(2023春·广东佛山·八年级校考阶段练习)小明借到一本72页的图书,要在10天之内读完,开始2天每天只读5页,在剩下的时间里,小明每天至少要读多少页?3.(2023春·八年级单元测试)现有甲乙两个工程队参加一条道路的施工改造,受条件阻制,每天只能由一个工程队施工.甲工程队先单独施工3天,再由乙工程队单独施工5天,则可以完成340米施工任务;若甲工程队先单独施工2天,再由乙工程对单独施工4天,则可以完成260米的施工任务.(1)求甲、乙两个工程队平均每天分别能完成多少米施工任务?(2)要改造的道路全长1300米,工期不能超过30天,那么乙工程队至少施工多少天?类型三、利润问题【解惑】(2023春·山东济南·八年级校考阶段练习)某种笔记本原售价是每本7元,凡一次购买3本或以上可享受优惠价格,第1种:3本按原价,其余按七折优惠;第2种:全部按原价的八折优惠,若想在购买相同数量的情况下,要使第1种比第2种更优惠,则至少购买笔记本是()A.7本B.8本C.9本D.10本类型四、和差倍分问题【解惑】(2020·湖南常德·统考一模)我国的《洛书》中记载着世界上最古老幻方:将1-9这九个数字填入3×3的方格内,使三行、三列、两对角线上的三个数之和都相等.如图的幻方中字母m 所能表示的所有数中最大的数是()A.6B.7C.8D.9【融会贯通】1.(2023·云南·模拟预测)某校为活跃班级体育大课间,计划分两次购进一批羽毛球和乒乓球.第一次分别购进羽毛球和乒乓球30盒和15盒,共花费675元;第二次分别购进羽毛球和乒乓球12盒和5盒,共花费265元.若两次购进的羽毛球和乒乓球的价格均分别相同.(1)羽毛球和乒乓球每盒的价格分别是多少元?(2)若购买羽毛球和乒乓球共30盒,且乒乓球的数量少于羽毛球数量的2倍,请你给出一种费用最省的方案,并求出该方案所需费用.2.(2022秋·黑龙江哈尔滨·九年级哈尔滨德强学校校考阶段练习)某班级为学习成绩进步的学生购买奖品,计划购买同一品牌的钢笔和自动铅笔,到文教店查看定价后发现,购买1支钢笔和5支自动铅笔共需50元,购买3支钢笔和2支自动铅笔共需85元.(1)求该品牌的钢笔、自动铅笔每支的定价分别是多少元;(2)如果该班级需要自动铅笔的数量是钢笔的数量的2倍还多8个,现在文教店进行促销活动,全场商品一律八折出售,且班级购买钢笔和自动铅笔的总费用不超过620元,那么该班级最多可购买多少支该品牌的钢笔?5.(2023春·福建漳州·七年级统考期中)某商场进货40件A商品和30件B商品共用了760元,进货50件A商品和10件B商品共用了840元.(1)求A、B两种商品的进价.(2)该商场在某次进货中,B商品的件数比A商品的件数的2倍少4件,且A、B两种商品的总件数至少为26件,总费用不超过248元,请问该商场有哪几种进货方案?类型五、利息问题【解惑】(2013·浙江杭州·统考一模)某企业向银行贷款100万元,一年后归还银行106.6多万元,则年利率高于_____%.【融会贯通】元.可使年利润超过35000元?类型六、收费问题【解惑】【融会贯通】份最多可用水多少立方米?类型七、数字问题【解惑】(2020·七年级统考课时练习)一个两位数,它的十位数上的数字比个位上的数字大2.且这个两位数小于40,则这个两位数是________.【融会贯通】类型八、几何问题【解惑】(2021春·山东潍坊·七年级统考期末)如图,一机器人在平地上按图中的程序行走,要使机器人行走的路程大于10m,则a的值可能是()A.90°B.45°C.36°D.24°【融会贯通】1.(2022·福建·模拟预测)小明同学在计算一个多边形的内角和时,由于粗心少算了一个内角,结果得到的总和是800°,则少算了这个内角的度数为___ .2.(2023春·全国·七年级专题练习)将长为4,宽为a(a大于2且小于4)的长方形纸片按如图①所示的方式折叠并压平,剪上一个边长等于长方形宽的正方形,称为第一次操作;再把剩下的长方形按如图②所示的方式折叠并压平,剪下边长等于此时长方形宽的正方形,称为第二次操作;如此反复操作下去…,若在第n次操作后,剩下的长方形恰为正方形,则n=时,a的值为___________.操作终止.当33.(2023春·江苏·七年级专题练习)如图,已知∠AOB=120°,射线OP从OA位置出发,以每秒2°的速度顺时针向射线OB旋转;与此同时,射线OQ以每秒6°的速度,从OB位置出发逆时针向射线OA旋转,到达射线OA后又以同样的速度顺时针返回,当射线OQ返回并与射线OP重合时,两条射线同时停止运动.设旋转时间为t秒.(1)当t=5时,则∠POQ的度数是______.(2)求射线OQ返回时t的值取值范围.(3)在旋转过程中,当020POQ °<У°时,求t 的取值范围.(注:此题主要考查,把不等式变等式来求,分三种情况,求相遇,相距30度的t ,再写三个不等式范围)4.(2023春·江苏·七年级专题练习)长方形的一边长为2米,另一边长为()8x +米,它的周长不大于48米,求x 的取值范围.5.(2021春·七年级课时练习)若多边形有且只有四个钝角,那么此多边形的边数至多是多少?类型九、一元一次不等式组中取整【解惑】(2023·山东泰安·统考一模)不等式组3x m x <ìí³î有4个整数解,则m 的取值范围是( )A .67m ££B .67m <<C .67£<m D .67m <£【融会贯通】1.(2023春·安徽滁州·七年级校考期中)关于x 的不等式组0251x a x x ->ìí-<-î有且仅有5个整数解,则a 的取值范围是( )A .54a -<£-B .54a -£<-C .43a -<£-D .43a -£<-2.(2022春·四川泸州·七年级统考期末)若关于x 的一元一次不等式组231220x x a +>ìí-£î恰有3个类型十、一元一次不等式组中有、无解(2022秋·浙江·八年级专题练习)若不等式12x x m <£ìí>î有解,则m 的取值范围是( )A .2m <B .2m ³C .1m <D .12m £<【融会贯通】类型十一、一元一次不等式组与二元一次方程组求解【融会贯通】1.(2022春·重庆·七年级校考期中)已知关于x ,y 的二元一次方程组242x y ax y a +=-ìí-=-î的解关于x ,y 满足0x <,2y £,则a 的取值范围为________.2.(2023春·七年级单元测试)整数m 满足关于x ,y 的二元一次方程组5321x y mx y +=ìí+=î的解是正整数,且关于x 的不等式组5406x m x ->ìí£î有且仅有2个整数解,则m 为_____.3.(2022春·江苏泰州·七年级校联考阶段练习)若关于x ,y 的二元一次方程组23122x y a x y +=-ìí+=î,(1)若x +y =1,求a 的值.(2)若﹣3≤x ﹣y ≤3,求a 的取值范围.(3)在(2)的条件下化简|a |+|a ﹣2|.4.(2023秋·贵州铜仁·八年级统考期末)已知关于x ,y 的二元一次方程组32121x y m x y m +=+ìí+=-î①②,当m 为何值时,x y <且320x y ->?5.(2021春·甘肃兰州·八年级校考期中)已知关于x,y的二元一次方程组713x y ax y a+=--ìí-=+î的解x为非正数,y为负数,求a的取值范围.类型十二、一元一次不等式组的新定义【解惑】(2023年广东省深圳市三十五校中考模拟数学试卷)定义新运算“Ä”,规定:2a b a bÄ=-,若关于x的不等式组30xx a aÄ>ìíÄ>î的解集为6x>,则a的取值范围是________.【融会贯通】1.(2023春·安徽合肥·七年级合肥市第四十二中学校考期中)新定义:若一元一次方程的解在一元一次不等式组解集范围内,则称该一元一次方程为该不等式组的“关联方程”,例如:3.(2023春·安徽合肥·七年级中国科技大学附属中学校考阶段练习)对x ,y 定义一种新运算T ,规定:()()(),2T x y mx ny x y =++(其中m ,n 均为非零常数).例如:()1,133T m n =+.已知()1,10T -=,()0,28T =.(1)求m ,n 的值;(2)已若关于p 的不等式组()()2,244,32T p p T p p a ì->ïí-£ïî恰好有3个整数解,求a 的取值范围;4.(2022秋·湖南长沙·八年级校考开学考试)定义:给定两个不等式组P 和Q ,若不等式组P 的任意一个解,都是不等式组Q 的一个解,则称不等式组P 为不等式组Q 的“子集”.例如:不等式组M :21x x >ìí>î是N :21x x >-ìí>-î的“子集”.(1)若不等式组:A :1415x x +>ìí-<î,B :2113x x ->ìí>-î,则其中______不等式组是不等式组M :21x x >ìí>î的“子集”(填A 或)B ;(2)若关于x 的不等式组1x ax >ìí>-î是不等式组21x x >ìí>î的“子集”,则a 的取值范围是______;。

六年级下册奥数精讲精练-应用问题(三)和倍、差倍与和差问题的解题方法

六年级下册奥数精讲精练-应用问题(三)和倍、差倍与和差问题的解题方法

第六讲应用问题(三)和倍、差倍与和差问题的解题方法和倍、差倍与和差问题,是根据这几类题目的已知条件而取的名称。

和倍问题是已知两个数的和及它们之间的倍数关系而求这两个数各是多少的应用题;差倍问题是已知两个数的差及它们之间的倍数关系而求这两个数各是多少的应用题;和差问题是已知两个数的和及这两个数的差而求这两个数各是多少的应用题。

有时, 题目的条件可能适当变化,不局限于两个数,可能是三个数或更多一些的数。

例 1 秋收之后,红星农场把 56000 千克粮食分别存入两个仓库,已知往第一仓库里存放的粮食是第二仓库的 3 倍。

求两个仓库各存粮食多少千克?分析:我们可以把容量较小的第二仓库存放的粮食数看作是 1 份,那么第一仓库的存粮数就是 3 份,两个仓库存粮总数 56000 千克就相当于第二仓库存粮数的 4 份那么多,于是,第二仓库存粮数即可求得。

(1)第二仓库存粮数。

56000÷(3+1)=14000(千克)(2)第一仓库存粮数。

14000×3=42000(千克)答:第一仓库存粮 42000 千克,第二仓库存粮 14000 千克。

例2 果园里有梨树、桃树、核桃树共 526 棵。

梨树比桃树的 2 倍多24 棵,核桃树比桃树少 18 棵。

求梨树、桃树及核桃树各有多少棵?270分析:已知条件告诉我们,梨树比桃树的 2 倍多24 棵,核桃树比桃树少 18 棵,都是同桃树相比较,可见,以桃树的棵数为标准,也就是把桃树的棵数看作为 1份的话,是便于解答的。

又知三种树的总数是 526 棵,如果给核桃树增加 18 棵,那么就和桃树相等了;再从梨树里减少 24 棵,那么就相当于桃树的 2 倍了。

如果这样做的话,总棵数就变成(526+18-24=)520 棵了,恰好相当于桃树棵数的4 倍。

(1)桃树的棵数。

(526+18-24)÷(2+1+1)。

=520÷4=130(棵)(2)梨树的棵数。

和差、和倍、差倍问题

和差、和倍、差倍问题

和差、和倍、差倍问题一、知识要点1、已知两数和及它们的差,求这两个数各是多少的应用题,叫做和差应用题,简称和差问题。

和差问题解题公式:(两数和+两数差)÷2=大数;(两数和-两数差)÷2=小数。

2、已知两个数的和与两个数的倍数关系,求两个数各是多少的应用题,我们通常把它叫做和倍问题。

和倍问题解题公式:两数和÷(倍数+1)=小数;小数×倍数=两数和-小数=大数。

3、已知大小两个数的差,还知道大数是小数的几倍,求大小两个数各是多少的应用题,我们通常把它叫做差倍问题。

差倍问题解题公式:两数差÷(倍数-1)=小数;小数×倍数=小数+差=大数。

二、典型例题例1、有1元和5元人民币共17张,合计49元,两种面值人民币各有多少张?解析:该题求两种面值的人民币各有多少张,已知总张数17张,但两种人民币张数相差多少难以确定,怎么办?再分析题意,又知两种面值的人民币的总钱数及各自的票面值,但两种人民币相差的钱数也难以确定,这又怎么办?我们可假设17张人民币全是5元,总钱数则为5×17=85(元),比实际的49元多85-49=36(元),多的原因是把1元的人民币假设为5元的人民币,用数量关系式表示为:每张5元币比一元币多的钱×1元币的张数=比实际多的钱。

根据这一关系式可以先求1元人民币的张数。

解:(5×17-49)÷(5-1)=9(张) 17-9=8(张)答:1元的人民币有9张,5元的有8张。

训练:1、小张和小赵共有400元,如果小赵借给小张20元,两人的钱相等。

两人各有多少元?例2、某印刷厂第一季度印书690000册,二月份印的册书是一月份的2倍,三月份印的册书是一月份的3倍,一、二、三月份分别印书多少册?解析:我们以一月份印书册数为标准(1倍),则690000册是一月份的(1+2+3)倍。

一月份:二月份:三月份:解:一月份印书:690000÷(1+2+3)=115000(册)二月份印书:115000×2=230000(册)三月份印书:115000×3=345000(册)答:一、二、三月份分别印书115000册、230000册、345000册。

行程 和倍 差倍 和差

行程 和倍 差倍 和差

行程和倍差倍和差
1.甲乙两车从相距750千米的两地同时开出,相向而行,5小时相遇,甲车每小时
行80千米,乙车每小时行多少千米?
2.小芳和小红同时从相距800米的两地相对走来,小芳每分钟走45米,经过5分
钟后二人还相距150米。

小红每分钟走多少米?
3.甲乙两地相距475千米,货车以每小时35千米的速度从甲地驶往乙地。

5小时后,
客车从乙地驶往甲地,又经过4小时两车相遇,客车每小时的速度是多少?
4.甲、乙两桶油共重30千克,如果把甲桶中6千克油倒入乙桶,那么两桶油重量相等,问甲、乙两桶原有多少油?
4.今年小强7岁,爸爸35岁,当两人年龄和是58岁时,两人年龄各多少岁?
5.小明期末考试时语文和数学的平均分数是94分,数学比语文多8分,问语文和数
学各得了几分?
6.小宁有圆珠笔芯30枝,小青有圆珠笔芯15枝,问小青给多少枝小宁后,小宁的
圆珠笔芯枝数是小青的8倍?
7.甲水池有水69吨,乙水池有水36吨,如果甲水池中的水以每分钟2吨的速度流
入乙水池,那么多少分钟后,乙水池的水是甲水池的2倍?
8.甲、乙两个数,如果甲数加上50就等于乙数,如果乙数加上50就等于甲数的3
倍,甲、乙两数各是多少?
9.甲仓存粮吨数是乙仓的3倍,如果甲仓中取出80吨,乙仓中运进80吨,甲、乙
两个粮仓存粮吨数正好相等。

甲、乙两个粮仓各存粮多少吨?
10.仓库里存有面粉和大米,已知面粉的重量比大米的3倍多5吨,面粉比大米多21
吨。

仓库里存有面粉和大米各多少吨?
11.被除数、除数、商的和为79,商是4,被除数、除数各是几?
12.被除数与除数的和为320,商是7,被除数和除数各是几?。

数学行程问题公式大全

数学行程问题公式大全

行程问题公式行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。

路程=速度×时间;路程÷时间=速度;路程÷速度=时间确定行程过程中的位置路程相遇路程÷速度和=相遇时间相遇路程÷相遇时间= 速度和相遇问题(直线)甲的路程+乙的路程=总路程相遇问题(环形)甲的路程 +乙的路程=环形周长追及时间=路程差÷速度差速度差=路程差÷追及时间路程差=追及时间×速度差追及问题(直线)距离差=追者路程-被追者路程=速度差X追及时间追及问题(环形)快的路程-慢的路程=曲线的周长顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2水速:(顺水速度-逆水速度)÷2船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题。

流水行船问题,是行程问题中的一种,因此行程问题中三个量(速度、时间、路程)的关系在这里将要反复用到.此外,流水行船问题还有以下两个基本公式:顺水速度=船速+水速,(1)逆水速度=船速-水速.(2)这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程.水速,是指水在单位时间里流过的路程.顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程。

根据加减法互为逆运算的关系,由公式(l)可以得到:水速=顺水速度-船速,船速=顺水速度-水速。

由公式(2)可以得到:水速=船速-逆水速度,船速=逆水速度+水速。

这就是说,只要知道了船在静水中的速度,船的实际速度和水速这三个量中的任意两个,就可以求出第三个量。

另外,已知船的逆水速度和顺水速度,根据公式(1)和公式(2),相加和相减就可以得到:船速=(顺水速度+逆水速度)÷2,水速=(顺水速度-逆水速度)÷2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

行程和倍差倍和差
1.甲乙两车从相距750千米的两地同时开出,相向而行,5小时相遇,甲车每小时
行80千米,乙车每小时行多少千米?
2.小芳和小红同时从相距800米的两地相对走来,小芳每分钟走45米,经过5分
钟后二人还相距150米。

小红每分钟走多少米?
3.甲乙两地相距475千米,货车以每小时35千米的速度从甲地驶往乙地。

5小时后,
客车从乙地驶往甲地,又经过4小时两车相遇,客车每小时的速度是多少?
4.甲、乙两桶油共重30千克,如果把甲桶中6千克油倒入乙桶,那么两桶油重量相等,问甲、乙两桶原有多少油?
4.今年小强7岁,爸爸35岁,当两人年龄和是58岁时,两人年龄各多少岁?
5.小明期末考试时语文和数学的平均分数是94分,数学比语文多8分,问语文和数
学各得了几分?
6.小宁有圆珠笔芯30枝,小青有圆珠笔芯15枝,问小青给多少枝小宁后,小宁的
圆珠笔芯枝数是小青的8倍?
7.甲水池有水69吨,乙水池有水36吨,如果甲水池中的水以每分钟2吨的速度流
入乙水池,那么多少分钟后,乙水池的水是甲水池的2倍?
8.甲、乙两个数,如果甲数加上50就等于乙数,如果乙数加上50就等于甲数的3
倍,甲、乙两数各是多少?
9.甲仓存粮吨数是乙仓的3倍,如果甲仓中取出80吨,乙仓中运进80吨,甲、乙
两个粮仓存粮吨数正好相等。

甲、乙两个粮仓各存粮多少吨?
10.仓库里存有面粉和大米,已知面粉的重量比大米的3倍多5吨,面粉比大米多21
吨。

仓库里存有面粉和大米各多少吨?
11.被除数、除数、商的和为79,商是4,被除数、除数各是几?
12.被除数与除数的和为320,商是7,被除数和除数各是几?。

相关文档
最新文档