相敏检波
相敏检波器 ppt课件
相关检测系统原理框图如下图所示。
返回首页
3.7.1 相敏检波器概述
1、系统工作原理 信号通道把输入的被测信号选频放大(初步滤除噪声)
(a)
uGS/V
返回首页
3.7.3 预备知识二——结型场效应管的应用: 电子开关
iD/mA 可 变 UDS=UGS-UGSoff
电
4阻区恒ຫໍສະໝຸດ 3流 2区
1
UGS =0V -0.5V
-1V -1.5V
-2V
0
5
10
15
20
截止 区
(b)
图3.7.3 JFET的 转移特性曲线和
(a)转移特性曲线; 击 穿 (b)输出特性曲线 区
与双极型晶体管不同,在JFET中,栅源
小。当两者幅度相等时输出电压产生跃变,由高电 平变成低电平,或者由低电平变成高电平。由此来 判断输入信号的 大小和极性。 用途:
数模转换、数字仪表、自动控制和自动检测等 技术领域,以及波形产生及变换等场合 。
运放工作在开环状态或引入正反馈。
返回首页
3.7.2 预备知识一——运算放大器的应用: 零电压比较器
时,沟道在漏极附近被局部夹断(称为预夹
断),如图3.7.4(b)所示。此后,uDS再增大,电 压主要降到局部夹断区,而对整个沟道的导电
能力影响不大。所以uDS的变化对iD影响很小。
返回首页
3.7.3 预备知识二——结型场效应管的应用: 电子开关
2. 可变电阻区
2.移相器相敏检波器实验
实验二移相器相敏检波器实验一、实验目的:了解移相器、相敏检波器的工作原理。
二、基本原理:1、移相器工作原理:图2—1为移相器电路原理图与调理电路中的移相器单元面板图。
图2—1 移相器原理图与面板图图中,IC1、R1、R2、R3、C1构成一阶移相器(超前),在R2=R1的条件下,其幅频特性和相频特性分别表示为:K F1(jω)=Vi/V1=-(1-jωR3C1)/(1+jωR3C1)K F1(ω)=1ΦF1(ω)=-л-2tg-1ωR3C1其中:ω=2лf,f为输入信号频率。
同理由IC2,R4,R5,Rw,C3构成另一个一阶移相器(滞后),在R5=R4条件下的特性为:K F2(jω)=Vo/V1=-(1-jωRwC3)/(1+jωRwC3)K F2(ω)=1ΦF2(ω)=-л-2tg-1ωRwC3由此可见,根据幅频特性公式,移相前后的信号幅值相等。
根据相频特性公式,相移角度的大小和信号频率f及电路中阻容元件的数值有关。
显然,当移相电位器Rw=0,上式中ΦF2=0,因此ΦF1决定了图7—1所示的二阶移相器的初始移相角:即ΦF=ΦF1=-л-2tg-12лfR3C1若调整移相电位器Rw,则相应的移相范围为:ΔΦF=ΦF1-ΦF2=-2tg-12лfR3C1+2tg-12лfΔRwC3已知R3=10KΩ,C1=6800p,△Rw=10kΩ,C3=0.022μF,如果输入信号频率f一旦确定,即可计算出图2—1所示二阶移相器的初始移相角和移相范围。
2、相敏检波器工作原理:图2—2为相敏检波器(开关式)原理图与调理电路中的相敏检波器面板图。
图中,AC 为交流参考电压输入端,DC为直流参考电压输入端,Vi端为检波信号输入端,Vo端为检波输出端。
图2—2 相敏检波器原理图与面板图原理图中各元器件的作用:C1交流耦合电容并隔离直流;A1反相过零比较器,将参考电压正弦波转换成矩形波(开关波+14V ~ -14V);D1二极管箝位得到合适的开关波形V7≤0V(0 ~ -14V),为电子开关Q1提供合适的工作点;Q1是结型场效应管,工作在开或关的状态;A2工作在反相器或跟随器状态;R6限流电阻起保护集成块作用。
相敏检波的应用特点
相敏检波的应用特点相敏检波作为一种常见的电子技术应用,具有许多独特的特点,使其在各种领域中得到广泛的应用。
本文将介绍相敏检波的应用特点,以帮助读者更好地理解和认识这一技术。
首先,相敏检波具有高灵敏度的特点。
相敏检波器能够在低信噪比环境下实现有效的信号检测和提取,使得它在弱信号接收和测量领域中具有重要的应用价值。
相敏检波器通过采用相位敏感的电路,能够对信号的相位信息进行高精度的检测,从而实现对信号的灵敏度增强。
其次,相敏检波具有宽频带特性。
相敏检波器能够在广泛的频率范围内进行工作,因此可以适用于多种不同频率信号的检测和处理。
这一特点使得相敏检波在无线通信、雷达系统、光通信等领域中得到广泛应用。
此外,相敏检波具有良好的线性度和动态范围。
相敏检波器的线性度指其输出信号与输入信号之间的线性关系程度,而动态范围则是指相敏检波器可以处理的最大信号幅度范围。
这两个特点保证了相敏检波器在测量和检测过程中能够提供准确、可靠的结果。
另外,相敏检波还具有较低的噪声水平。
噪声对于信号检测和提取过程中的干扰至关重要,而相敏检波器能够通过优化电路设计和采用适当的滤波技术来降低噪声水平,从而提高信号的检测性能和准确性。
最后,相敏检波器具有较高的稳定性和可靠性。
稳定性是指相敏检波器在长时间运行和各种工作条件下的性能保持能力,而可靠性则是指相敏检波器在各种环境和应力下的正常工作能力。
这两个特点使得相敏检波器在实际应用中能够稳定可靠地工作,并且能够适应不同的工作场景和要求。
总结起来,相敏检波作为一种重要的电子技术应用,具有高灵敏度、宽频带、良好的线性度和动态范围、低噪声水平以及高稳定性和可靠性等特点。
这些特点使得相敏检波在无线通信、测量仪器、传感器技术等众多领域中得到广泛应用,对于实现高精度的信号检测和提取具有重要的意义。
简述相敏检波器的作用及用法。
简述相敏检波器的作用及用法。
相敏检波器是一种电子设备,用于检测高频信号中的调制信号。
它可以将高频信号中的调制信息提取出来,并将其转换成低频信号输出。
相敏检波器的作用是将调制信号从高频转换到低频,以便于后续的处理和分析。
它常用于收音机、电视机、无线电通信等领域,用于接收和解调无线信号。
相敏检波器的用法如下:
1. 连接:将需要检测的高频信号输入到相敏检波器的输入端,连接好电源和地线。
2. 调节:根据实际需求,调节相敏检波器的增益、中心频率、带宽等参数。
3. 检测:将输出端连接到后续的处理设备或进行信号分析。
可以通过观察输出信号的变化来判断调制信号的特征。
需要注意的是,相敏检波器对输入信号的频率范围有一定要求,应根据信号的特性选择合适的相敏检波器。
另外,还需要注意相敏检波器的性能指标,如灵敏度、线性度、动态范围等,以确保信号的准确检测和解调。
相敏检波器的工作原理
相敏检波器的工作原理相敏检波器是一种广泛应用于无线通信系统中的重要器件,它能够将高频信号转换成低频信号,用于接收和解调调制信号。
相敏检波器的工作原理主要基于相移和幅度调制的特性,下面我们将详细介绍相敏检波器的工作原理。
首先,我们来了解一下相敏检波器的基本结构。
相敏检波器主要由相移网络、幅度调制网络和滤波器组成。
相移网络用于将输入信号进行相移处理,幅度调制网络则用于调制信号的幅度,最后通过滤波器将信号进行滤波,得到所需的低频信号。
在相敏检波器中,输入的高频信号首先经过相移网络,相移网络会引入一个与输入信号频率成正比的相位变化,这样就实现了对输入信号的相位调制。
接着,经过幅度调制网络的调制,将相位调制的信号转换成幅度调制的信号。
最后,经过滤波器的滤波处理,得到所需的低频信号。
相敏检波器的工作原理可以用数学模型来描述。
假设输入信号为cos(ωt),经过相移网络后变为cos(ωt+φ),再经过幅度调制网络后变为Acos(ωt+φ),其中A为幅度调制的系数。
最后经过滤波器滤波处理,得到低频信号。
可以看出,相敏检波器的工作原理主要是通过相位调制和幅度调制来实现对高频信号的处理。
相敏检波器在无线通信系统中有着重要的应用。
它可以用于接收调制信号,解调成基带信号,从而实现信号的传输和处理。
相敏检波器的工作原理简单清晰,结构也相对简单,因此在实际应用中具有较高的可靠性和稳定性。
总之,相敏检波器是一种重要的无线通信器件,它通过相位调制和幅度调制来实现对高频信号的处理,能够将高频信号转换成低频信号,用于接收和解调调制信号。
相敏检波器的工作原理简单清晰,结构相对简单,具有较高的可靠性和稳定性,因此在无线通信系统中有着广泛的应用。
3 、相敏检波电路与包络检波电路在功能与电路构成上最主要的区别是
一、相敏检波的功用和原理1、什么是相敏检波电路?相敏检波电路是具有鉴别调制信号相位和选频能力的检波电路。
2、为什么要采用相敏检波?包络检波有两个问题:一是解调的主要过程是对调幅信号进行半波或全波整流,无法从检波器的输出鉴别调制信号的相位。
第二,包络检波电路本身不具有区分不同载波频率的信号的能力。
对于不同载波频率的信号它都以同样方式对它们整流,以恢复调制信号,这就是说它不具有鉴别信号的能力。
为了使检波电路具有判别信号相位和频率的能力,提高抗干扰能力,需采用相敏检波电路。
3、相敏检波电路与包络检波电路在功能与电路构成上最主要的区别是什么?相敏检波电路与包络检波电路在功能上的主要区别是相敏检波电路能够鉴别调制信号相位,从而判别被测量变化的方向,同时相敏检波电路还具有选频的能力,从而提高测控系统的抗干扰能力。
从电路结构上看,相敏检波电路的主要特点是,除了所需解调的调幅信号外,还要输入一个参考信号。
有了参考信号就可以用它来鉴别输入信号的相位和频率。
4、相敏检波电路与调幅电路在结构上有哪些相似之处?它们又有哪些区别?将调制信号Ux乘以幅值为1的载波信号就可以得到双边带调幅信号Us,将双边带调幅信号Us再乘以载波信号,经低通滤波后就可以得到调制信号Ux。
这就是相敏检波电路在结构上与调制电路相似的原因。
二者主要区别是调幅电路实现低频调制信号与高频载波信号相乘,输出为高频调幅信号;而相敏检波器实现高频调幅信号与高频载波信号相乘,经滤波后输出低频解调信号。
这使它们的输入、输出耦合回路与滤波器的结构和参数不同。
二、相敏检波电路的选频与鉴相特性1、相敏检波电路的选频特性什么是相敏检波电路的选频特性?相敏检波电路的选频特性是指它对不同频率的输入信号有不同的传递特性。
以参考信号为基波,所有偶次谐波在载波信号的一个周期内平均输出为零,即它有抑制偶次谐波的功能。
对于n=1,3,5等各奇次谐波,输出信号的幅值相应衰减为基波的1/ n,即信号的传递系数随谐波次数增高而衰减,对高次谐波有一定抑制作用。
相敏检波电路工作原理
相敏检波电路工作原理
相敏检波电路是一种用于检测并提取调制信号的电路。
它的工作原理如下:
1. 输入信号:相敏检波电路的输入通常是一个高频载波信号和一个调制信号。
2. 相移:通过一个相移电路将输入的高频信号相位进行调整,使得它与调制信号的相位保持一致。
3. 相乘:将相位调整后的高频信号与原始的高频信号进行相乘。
这样做的目的是通过相乘操作将高频信号中的频率成分与调制信号的频率成分相乘,并将其他频率成分滤除。
4. 低通滤波:通过一个低通滤波器将相乘后的信号中的高频成分滤除,只保留与调制信号频率相近的低频成分。
5. 输出信号:经过滤波后,只剩下调制信号的低频成分,即提取出了调制信号。
这个输出信号可以用于后续的处理或者直接作为调制信号的提取结果。
相敏检波电路的工作原理依赖于相位调整、相乘和滤波等基本操作,通过这些操作可以有效提取出调制信号。
传感器相敏检波电路的工作原理
传感器相敏检波电路的工作原理嘿,朋友们!今天咱来聊聊传感器相敏检波电路的工作原理,这可有意思啦!你看啊,传感器就像是我们的眼睛和耳朵,能感知各种信息,然后把这些信息传递给电路。
那相敏检波电路呢,就像是个超级聪明的小机灵鬼,能从这些信息中找出最关键的部分。
想象一下,传感器送过来的信号就像是一群叽叽喳喳的小鸟,各种各样的声音都有。
而相敏检波电路呢,它能分辨出哪些是我们真正想听的歌声,哪些只是嘈杂的噪音。
它是怎么做到的呢?这就得说说它的工作原理啦。
它就像是一个有魔法的筛子,能把有用的信号筛选出来,把没用的给过滤掉。
它会根据输入信号的特点,精确地找到我们需要的那部分。
比如说,当一个特定频率的信号进来时,相敏检波电路就会特别敏感地捕捉到它,就好像是它的知音一样。
然后呢,它会把这个信号放大,让我们能更清楚地看到或听到。
这就好比是在一场混乱的音乐会上,你能准确地听到你最喜欢的那首歌的旋律,而不会被其他的声音所干扰。
是不是很神奇呢?而且啊,这个相敏检波电路还特别厉害的一点是,它能分辨信号的相位呢!这就像是能分辨出声音是从左边传来的还是右边传来的一样。
你说,这得多牛啊!它能根据信号的相位来做出不同的反应,这可不是一般的电路能做到的。
在我们的生活中,传感器相敏检波电路可是发挥了大作用呢!比如在医疗领域,它能帮助医生更准确地检测病人的身体状况;在工业生产中,能让机器更精确地运行。
总之,传感器相敏检波电路就像是一个默默工作的小英雄,虽然我们可能不太注意到它,但它却在背后为我们的生活带来了很多便利和进步。
它的工作原理虽然有点复杂,但只要我们用心去理解,就一定能发现它的奇妙之处!难道不是吗?所以啊,大家可别小看了这个小小的电路哦,它可是有着大大的能量呢!。
波放大器和相敏检波
§5-4 供电容式传感器使用的特殊信号调节电路 电荷转移法
§5-4 供电容式传感器使用的特殊信号调节电路 电荷转移法
§5-4 供电容式传感器使用的特殊信号调节电路 双T电路 如果C1=C2, 电流表中的电流为0
驻极体话筒
§5-5 分解器-数字变换器和数字-分解器变 换器
§5-5 分解器-数字变换器和数字-分解器变换器
则有:
(5.36)
Vo=Ve(t) x(t) /2 = Ve × cos2πfet × X cos(2πfxt+φx ) = (Ve X/4) cos[2π ( fe + fx ) t+φx ] + (Ve X/4) cos[2π ( fe - fx ) t -φx ]
/2
(5.38)
Z1=Z0(1+x), Z2=Z0(1-x)
§5-3-3 在线性差动变压器中的应用
LVDT有三个或四个绕组,最简单的方案是直接用整流的方法。
§5-3-3 在线性差动变压器中的应用
采用AD公司的单片集成电路。
AD598用于具有三个或四个输出端 的LVDT中,利用从Eo1+Eo2 作为 参考信号,从(Eo1-Eo2)/ (Eo1+Eo2) 中恢复有用信息。
§5-3 载波放大器和相敏检波 §5-3-1 载波放大器的工作原理和结构
1载波放大器的作用 用于输出为调幅交流信号(AM),且能响应正
负值信号的传感器,完成信号交流放大、解调和 低通滤波。如LVDT、交流电桥、磁通闸门、SQUID、 电磁流量计等。
单片集成电路包括NE5521(Signetics公司)、 AD598/AD698(AD公司) 2载波放大器的组成
(5.37)
§5-3-1 载波放大器的工作原理和结构
相敏检波器的鉴相特性
相敏检波器的鉴相特性
由于调制信号的频率远低于载波信号的频率,在载波信号的若干周期内,调制信号的值变化很小,常将其看作为常数,这时双边带调幅信号us与载波信号uc(或Uc)为同频信号;调制信号为正时,us与uc(或Uc)同相;调制信号为负时,us与uc(或Uc)反相。
为鉴别调制信号的相位,需采用相敏检波电路。
相敏检波电路除了输入需解调的调幅信号us外,还需要一个与之同频的信号uc(或Uc)作参考信号。
相敏检波电路的鉴相特性为:输出电压为正时,表示输入的调幅信号us与参考信号(即载波信号)uc(或Uc)同相,此时调制信号为正(或负);当输出电压为负时,表示输入的调幅信号us与参考信号uc(或Uc)反相,此时调制信号为负(或正)。
采用Multisim 对3个相敏检波电路进行仿真实验,并给出实验结果。
1、仿真实验
1.1、方案一
相加式相敏检波仿真电路如图1所示。
电路选用理想元件,调幅信号经变压器T1输入,参考信号经变压器T2输入,参考信号uc的幅值远大于调幅信号us的幅值。
输出为低频信号(解调信号),经电容滤波后输出。
仿真电路运行结果如图2所示,图2(a)显示的是us与uc同相时的运行结果,图2(b)显示的是us与uc反相时的运行结果。
相敏检波电路工作原理及工作过程
相敏检波电路工作原理及工作过程相敏检波器有两种:一种由变压器和二极管桥组成,这种电路体积大,稳定性差;另一种则由模拟乘法器构成,性能上得到了很大提高,但价格高,调试麻烦。
为此,在研制大气电场仪的过程中,根据大气电场仪探头的结构特点和大气电场测试中对检波器的要求,利用光电开关、四通道模拟开关和运放组合设计一种结构简单,性能稳定的相敏检波器。
同时,为了对电场信号的极性进行有效可靠的鉴别,根据相敏检波理论,将通过调整光电开关的设置位置,保证感应电压信号与同步脉冲信号同相,以获得最大整流输出,从而准确辨别被测电场极性。
1、什么是相敏检波电路?相敏检波电路是具有鉴别调制信号相位和选频能力的检波电路。
2、为什么要采用相敏检波?包络检波有两个问题:一是解调的主要过程是对调幅信号进行半波或全波整流,无法从检波器的输出鉴别调制信号的相位。
第二,包络检波电路本身不具有区分不同载波频率的信号的能力。
对于不同载波频率的信号它都以同样方式对它们整流,以恢复调制信号,这就是说它不具有鉴别信号的能力。
为了使检波电路具有判别信号相位和频率的能力,提高抗干扰能力,需采用相敏检波电路。
3、相敏检波电路与包络检波电路在功能与电路构成上最主要的区别是什么?相敏检波电路与包络检波电路在功能上的主要区别是相敏检波电路能够鉴别调制信号相位,从而判别被测量变化的方向,同时相敏检波电路还具有选频的能力,从而提高测控系统的抗干扰能力。
从电路结构上看,相敏检波电路的主要特点是,除了所需解调的调幅信号外,还要输入一个参考信号。
有了参考信号就可以用它来鉴别输入信号的相位和频率。
4、相敏检波电路与调幅电路在结构上有哪些相似之处?它们又有哪些区别?将调制信号ux乘以幅值为1的载波信号就可以得到双边带调幅信号us,将双边带调幅信号us再乘以载波信号,经低通滤波后就可以得到调制信号ux。
这就是相敏检波电路在结构上与调制电路相似的原因。
二者主要区别是调幅电路实现低频调制信号与高频载波信号相乘,输出为高频调幅信号;而相敏检波器实现高频调幅信号与高频载波信号相乘,经滤波后输出低频解调信号。
matlab 实现相敏检波算法
matlab 实现相敏检波算法【原创实用版】目录1.相敏检波算法的概述2.MATLAB 实现相敏检波算法的步骤3.相敏检波算法在 MATLAB 中的应用实例4.总结正文一、相敏检波算法的概述相敏检波算法是一种广泛应用于雷达、通信和电子对抗系统的信号处理技术。
它的主要作用是检测信号中的目标信号,并抑制干扰信号。
相敏检波算法根据接收信号与本地振荡信号之间的相位差来判断目标信号的方向和距离,从而实现对目标信号的检测。
二、MATLAB 实现相敏检波算法的步骤1.准备数据:首先需要准备接收信号和本地振荡信号的数据。
这些数据可以从实际的雷达系统中获取,或者通过仿真生成。
2.计算相位差:使用 MATLAB 的计算功能,计算接收信号与本地振荡信号之间的相位差。
相位差的计算公式为:Δφ = arg(R) - arg(L),其中 R 为接收信号,L 为本地振荡信号。
3.判断目标信号:根据计算出的相位差,判断接收信号中是否存在目标信号。
如果相位差在一定范围内,则认为存在目标信号。
4.抑制干扰信号:如果存在目标信号,则需要对干扰信号进行抑制。
这可以通过对本地振荡信号进行调整,使其与接收信号中的目标信号同步,从而消除或减小干扰信号。
三、相敏检波算法在 MATLAB 中的应用实例假设我们有如下接收信号和本地振荡信号:接收信号:R = [1, 2, 1, 0, -1, -2, -1, 0];本地振荡信号:L = [1, 1, 1, 1, 1, 1, 1, 1];首先,我们可以使用 MATLAB 计算相位差:Δφ = arg(R) - arg(L);然后,根据相位差的绝对值判断目标信号的方向和距离。
在本例中,我们可以设定一个阈值,如π/2,来判断目标信号是否存在。
if abs(Δφ) < pi/2% 存在目标信号else% 不存在目标信号end最后,我们可以根据需要对本地振荡信号进行调整,以消除或减小干扰信号。
这里不再详细展开。
相敏检波器工作原理
相敏检波器工作原理
相敏检波器是一种常用的电子测量仪器,它主要用于检测电磁信号的幅度和相位。
相敏检波器的工作原理如下:
1. 信号输入:首先,待测的电磁信号被输入到相敏检波器的输入端口。
这个信号可以是来自射频天线、电路或其他信号源的电磁波。
2. 平行调谐电路:相敏检波器中的平行调谐电路用于选择特定频率的信号。
这个电路通常由电容和电感构成,可以形成特定频率的谐振回路。
3. 相移网络:平行调谐电路后面会接一个相移网络。
这个网络可以将输入信号的相位平移一定角度,通常是90度或180度。
相移网络可以是电容、电感或者延迟线构成的。
4. 相敏检波:在相移网络后面,是一个相敏检波器。
这个检波器可以将信号的幅度和相位信息转换成直流电压。
5. 低通滤波器:为了得到一个稳定的直流电压输出,相敏检波器通常会接一个低通滤波器。
这个滤波器可以滤掉高频噪声和杂散信号,只保留直流分量。
6. 直流输出:最后,经过滤波器处理后的信号被输出为一个直流电压。
这个电压的幅度和相位可以反映出输入信号的幅度和相位。
总的来说,相敏检波器利用相移网络和相敏检波将输入信号的幅度和相位信息转换成直流电压输出。
它可以用于各种应用,如通信、雷达、无线电频谱分析等。
模拟相敏检波
模拟相敏检波的原理目前的常规的电法测井仪器中对于检波器的设计仍采用模拟的方法来实现。
可以分为两类:一种是参考信号和输入信号同为正弦波;一种是参考信号为方波,输入信号为正弦波。
对于两组不同的信号检测,也采用两种不同的方案进行相关检测。
方案一:采用变压器和双极型三极管组成的正弦波检正弦波的相敏检波器,原理图如图1所示;图1 正弦波相敏检波器原理方案二:是把正弦波先进行波形变化转化为方波,再进行相关性运算,也就是参考信号为方波的相敏检波器,原理图如图2所示。
图3 方波相敏检波器原理从图可以看出当输入信号和参考信号同相时,检波器将输出直流电压;当输入信号和参考信号正交时,输出的电压值为零。
模拟相敏检波器虽然可以有效地抑制噪声信号,但是工作在高温高压环境下的测井仪器,由于温度的变化使得各元器件的性能发生变化,从而引起的相位漂移和零漂都对测量结果带来不稳定的影响。
(数字相敏检波器在测井仪器中的应用研究_李科)理论推导:相敏检波器由模拟乘法器与低通滤波器组成,设输入信号e i 的角频率为ω0,ω0=2πf 0,f 0=220 Hz 是斩波频率。
e i 可表示为i i 0sin e E t ω=式中,E i 是输入信号的幅度。
图3 相敏检波原理框图图4 参考信号波形电路中参考信号e r 是e i 具有相同频率的方波,为讨论方便,设其幅值为1,其波形如图4所示。
于是e r 可表示为r 1=1e -⎧⎨⎩ ()/43/4nT T t nT T +≤≤+其余时间 式中,T=1/f 0是信号周期,n=0,1,2,…。
将e r 展成傅里叶级数,其傅氏系数为()()0r r 0112sin /2T jn t F n e e n T n ωππ-⎧⎪==⎨⎪⎩⎰ ()()00n n =≠ 从而 ()()()000r r 102sin /24sin /2=11jn t jn t jn t n n n n n n e F n e e e n n ωωωππππ∞∞∞=-∞=-∞=≠=+=+∑∑∑ 当n 为偶数时,()sin /20n π= ,上式可化为()()()r 012sin 21/2=1cos 2121/2k k e k t k πωπ∞=+⎡⎤⎣⎦++⎡⎤⎣⎦+∑ 于是,图3中乘法器输出的信号为()()()()()()()(){}0i r i i 001i i 0012sin 21/2=sin cos 2121/22sin 21/2sin 22sin 221/2k k k e e e e E t k t k k e E k t k t k πωωππωωπ∞=∞=+⎡⎤⎣⎦=++=⎡⎤⎣⎦++⎡⎤⎣⎦++-⎡⎤⎣⎦+∑∑ 由上式可看出,e 0中除了含有e i 项以外,还含有e i 信号的高次谐波成分。
相敏检波器的鉴相特性
相敏检波器的鉴相特性由于调制信号的频率远低于载波信号的频率,在载波信号的若干周期内,调制信号的值变化很小,常将其看作为常数,这时双边带调幅信号us与载波信号uc(或Uc)为同频信号;调制信号为正时,us与uc(或Uc)同相;调制信号为负时,us与uc(或Uc)反相。
为鉴别调制信号的相位,需采用相敏检波电路。
相敏检波电路除了输入需解调的调幅信号us外,还需要一个与之同频的信号uc(或Uc)作参考信号。
相敏检波电路的鉴相特性为:输出电压为正时,表示输入的调幅信号us与参考信号(即载波信号)uc(或Uc)同相,此时调制信号为正(或负);当输出电压为负时,表示输入的调幅信号us与参考信号uc(或Uc)反相,此时调制信号为负(或正)。
采用Multisim对3个相敏检波电路进行仿真实验,并给出实验结果。
1、仿真实验1.1、方案一相加式相敏检波仿真电路如图1所示。
电路选用理想元件,调幅信号经变压器T1输入,参考信号经变压器T2输入,参考信号uc的幅值远大于调幅信号us的幅值。
输出为低频信号(解调信号),经电容滤波后输出。
仿真电路运行结果如图2所示,图2(a)显示的是us与uc同相时的运行结果,图2(b)显示的是us与uc反相时的运行结果。
1.2、方案二开关式全波相敏检波仿真电路如图3所示。
电路选用实际元件。
Uc为uc整形后的方波信号。
在Uc=“1”的半周期,模拟开关导通,放大倍数为-1;在Uc=“0”的半周期,模拟开关截止,放大倍数为+1。
仿真电路运行波形如图4所示,图4(a)中us与Uc 同相;图4(b)中us与Uc反相。
1.3、方案三图5所示电路能鉴别两信号的超前或滞后关系,且输出电压的大小与两信号之间的相位差成对应关系。
A1,A2为过零比较器,输出经限幅得两个矩形波,其相位差与输入信号的相位差相同。
两矩形波经异或门和低通滤波电路得与两输入信号的相位差相对应的直流电压,经A3输出。
D触发器与三极管构成超前、滞后鉴别电路,当uA超前uB 时,触发器输出高电平,三极管导通,输出为负;uA滞后uB时,触发器输出低电平,三极管截止,输出为正。
相敏检波电路的作用
相敏检波电路的作用
相敏检波电路的作用是将信号进行调制和解调,实现信号的传输和处理。
具体作用如下:
1. 调制:相敏检波电路可以将信号与参考信号进行相位调制,将信号的频率转换到高频范围,以便进行传输和处理。
例如,在无线通信中,相敏检波电路可以将音频信号调制成无线电频率,以便在空中传输。
2. 解调:相敏检波电路可以将调制信号与参考信号进行混频解调,提取出原始信号。
例如,在无线通信中,相敏检波电路可以将无线电信号解调成音频信号,使其能够被人们听到。
3. 相位比较:相敏检波电路可以对输入信号和参考信号进行相位比较,得到两者之间的相位差。
这对于测量信号的相位差、频率差或相位变化等参数具有重要意义。
4. 频率锁定:相敏检波电路可以根据输入信号和参考信号之间的相位差,实现频率锁定功能。
通过反馈控制,可以使输出信号的频率与参考信号的频率保持一致,从而实现频率锁定。
相敏检波电路在通信、测量和控制等领域中有着广泛的应用,可以实现信号的调制、解调、相位比较和频率锁定等功能。
相敏检波器的工作原理
相敏检波器的工作原理
相敏检波器是一种基于相位差的电路,用于检测和测量高频信号的强度。
它可以将高频信号转换为直流信号,使其易于测量和分析。
相敏检波器工作的基本原理是利用电容和电阻构成的相位移网络。
进入相敏检波器的高频信号首先通过一个电容,根据电容的阻抗特性,电流与电压之间存在相位差。
接下来,信号经过一个电阻,电阻的阻值和电容的耦合决定了信号的相位差量。
经过电容和电阻后,信号被分成两个组成部分,一个是与电流相位一致的直流分量,另一个是与电压相位一致的交流分量。
然后,通过一个低通滤波器,只保留交流分量而滤除直流分量。
经过滤波后的交流分量与原始信号相位差90度,并且其幅度
与原始信号的强度成正比。
最后,经过交流放大器放大后的信号被转换为直流信号,并由直流放大器进行放大和输出。
这样,相敏检波器就能够将原始高频信号转换为直流信号,并且其直流输出的幅度与原始信号的强度成正比。
总而言之,相敏检波器利用相位差电路,将高频信号转换为直流信号,并通过滤波和放大等处理,得到与信号强度成正比的输出。
其工作原理主要是基于相位差和滤波放大的原理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相敏检波
(一)相敏检波的功用和原理
1、什么是相敏检波电路?
相敏检波电路是具有鉴别调制信号相位和选频能力的检波电路。
2、为什么要采用相敏检波?
包络检波有两个问题:一是解调的主要过程是对调幅信号进行半波或全波整流,无法从检波器的输出鉴别调制信号的相位。
第二,包络检波电路本身不具有区分不同载波频率的信号的能力。
对于不同载波频率的信号它都以同样方式对它们整流,以恢复调制信号,这就是说它不具有鉴别信号的能力。
为了使检波电路具有判别信号相位和频率的能力,提高抗干扰能力,需采用相敏检波电路。
3、相敏检波电路与包络检波电路在功能与电路构成上最主要的区别是什么?
相敏检波电路与包络检波电路在功能上的主要区别是相敏检波电路能够鉴别调制信号相位,从而判别被测量变化的方向,同时相敏检波电路还具有选频的能力,从而提高测控系统的抗干扰能力。
从电路结构上看,相敏检波电路的主要特点是,除了所需解调的调幅信号外,还要输入一个参考信号。
有了参考信号就可以用它来鉴别输入信号的相位和频率。
4、相敏检波电路与调幅电路在结构上有哪些相似之处?它们又有哪些区别?
将调制信号ux乘以幅值为1的载波信号就可以得到双边带调幅信号us,将双边带调幅信号us再乘以载波信号,经低通滤波后就可以得到调制信号ux。
这就是相敏检波电路在结构上与调制电路相似的原因。
二者主要区别是调幅电路实现低频调制信号与高频载波信号相乘,输出为高频调幅信号;而相敏检波器实现高频调幅信号与高频载波信号相乘,经滤波后输出低频解调信号。
这使它们的输入、输出耦合回路与滤波器的结构和参数不同。
(二)相敏检波电路的选频与鉴相特性
1、相敏检波电路的选频特性
什么是相敏检波电路的选频特性?
相敏检波电路的选频特性是指它对不同频率的输入信号有不同的传递特性。
以参考信号为基波,所有偶次谐波在载波信号的一个周期内平均输出为零,即它有抑制偶次谐波的功能。
对于n=1,3,5等各奇次谐波,输出信号的幅值相应衰减为基波的1/ n,即信号的传递系数随谐波次数增高而衰减,对高次谐波有一定抑制作用。
2、相敏检波电路的鉴相特性
什么是相敏检波电路的鉴相特性?
如果输入信号us为与参考信号uc(或Uc)同频信号,但有一定相位差,这时输出电压uo=Usm/2cos∮,即输出信号随相位差∮的余弦而变化。
由于在输入信号与参考信号同频但有一定相位差时,输出信号的大小与相位差有确定的函数关系,可以根据输出信号的大小确定相位差的值,相敏检波电路的这一特性称为鉴相特性。
附录:相关资料
相敏检波电路-(幅值调制信号的解调)
相敏检波电路-(幅值调制信号的解调)
相敏检波电路(与滤波器配合)可以将调幅波还原成原信号波形,起解调作用;并具有鉴别信号相位的能力。
下面给出典型的二极管相敏检波电路及其输入输出关系图。
它由四个特性相同的二极管D1~D4沿同一方向串联成一个桥式回路,桥臂上有附加电阻,用于桥路平衡。
四个端点分别接在变压器A和B的次级线圈上,变压器A的输入为调幅波xm(t),B的输入信号为载波y(t),uf为输出。
二极管的导通与截止完全由B的次级的输出决定,因此要求B的次级的输出大于A的次级输出。
调制与解调过程(波形转换)
整流检波和相敏检波
开关式全波相敏检波电路
一、实验目的
1.熟悉和掌握相敏检波器的工作原理。
2.验证相敏检波器的检幅特性和鉴相特性。
二、实验设备及参考电路图
1.实验台中部件:相敏检波器、音频振荡器、移相器、直流稳压电源、低通滤波器、电压表(毫伏表)
2.双踪示波器
3.实验参考电路图
三、实验步骤
将音频振荡器的输出信号(00 )接至相敏检波器的输入端(1)。
1.参考信号为直流电压
⑴将直流稳压电源+2V接入相敏检波器参考信号输入端(4),用双踪示波器测试相敏检波器输入端(1)和输出端(3)的波形。
⑵将直流稳压电源-2V接入相敏检波器参考信号输入端(4),用双踪示波器测试相敏检波器输入端(1)和输出端(3)的波形。
2.参考信号为交流电压
⑴将音频信号00接入相敏检波器参考信号输入端(2),用双踪示波器观察(1) ~(6)端波形。
⑵将音频信号1800 接入相敏检波器参考信号输入端(2),用双踪示波器观察(1) ~(6)端波形。
3.相敏检波器检幅特性
将相敏检波器的输出端(3)接低通滤波器的输入端,将低通滤波器的输出端接数字电压表。
⑴相敏检波器的输入信号(接(1))和参考信号(接(2))同相,改变音频信号的输入幅值Vp-p,分别读出电压表显示的数值填入下表。
⑵相敏检波器的输入信号(接(1))与参考信号(接(2))反相时,改变音频信号的输入
4.相敏检波器的鉴相特性
将音频信号接移相器的输入端,移相器电路输出接相敏检波器参考输入端(2),旋转移相器的电位器旋钮,改变参考电压的相位,音频振荡器输出幅值不变,用示波器观察(1) ~
(6)波形,并读出对应的电压表值。
四、实验报告要求
1.画出该相敏检波器的电路图,并说明该电路的工作原理。
2.画出该实验第三步骤和第四步骤的原理框图。
3.分别画出参考电压与相敏检波器的输入信号同相、反相时(1) ~(6)点的波形图及低通滤波器的输出波形。
4.画出参考电压通过移相器后(差900 时),相敏检波器(1) ~(6)点及低通滤波器的输出波形。
5. 分别纪录当参考电压与输入信号同相时、反向时,相敏检波器经低通滤波器输出对应输入信号的电压值。
五、思考题
1. 什么是相敏检波? 为什么要采用相敏检波?
2. 什么是相敏检波器的鉴相特性?。